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Chapitre 1

Metric spaces

We briefly present in this chapter some basics on topology in order to introduce limit and
continuity of functions.

1.1 Metric spaces

The elementary way to introduce limit and continuity is first to describe how we can measure
quantitatively the space between two points of the space. In this view, it is natural to define a
distance.

1.1.1 Distance

We briefly remind the definition of distance on a set E.

Definition 1.1.1 (Distance) A distance d on a set E is a map from E × E to R+ such that
Symmetric property d(x, y) = d(y, x).
Separation x 6= y ⇐⇒ d(x, y) > 0.
Triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

Remark that the separation property is equivalent to

x = y ⇐⇒ d(x, y) = 0.

Definition 1.1.2 (Metric space) A metric space is a couple (E, d) where E is a set and d is
a distance on the set X.

1.1.2 Elementary properties

Proposition 1.1.1 Let be given (E, d) a metric space, the following property holds :

∀(x, y) ∈ E2 d(x, y) ≥ 0.

Moreover, the distance between distances is smaller than the distance, meaning that

∀(x, y, z) ∈ E3 |d(x, y)− d(x, z)| ≤ d(y, z).

Proof : To establish the second point, we write the triangle inequality :

d(x, y) ≤ d(x, z) + d(z, y)⇐⇒ d(x, y)− d(x, z) ≤ d(z, y).
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We also have
d(x, z) ≤ d(x, y) + d(y, z)⇐⇒ d(x, z)− d(x, y) ≤ d(z, y).

The two equations above lead to

|d(x, y)− d(x, z)| ≤ d(y, z).

�

1.1.3 Balls in a metric space

Definition 1.1.3 (Balls) Let be given (E, d) a metric space and a point x ∈ E. For any r > 0,
the open ball B(x, r) is defined as

B(x, r) = {y ∈ E | d(x, y) < r} .

The closed ball B̄(x, r) is defined as

B̄(x, r) = {y ∈ E | d(x, y) ≤ r} .

The following inclusions are obvious :

∀0 < r < r′ B(x, r) ⊂ B(x, r′).

These inclusions are generally strict (but not always).

1.1.4 Bounded sets

Definition 1.1.4 (Bounded sets) A subset A of a metric space (E, d) is bounded if a closed
ball B̄(x0, r) exists such that A ⊂ B̄(x0, r), meaning that :

∀x ∈ A d(x, x0) ≤ r.

Of course, we can replace in the definition of bounded sets the closed ball by an open one. At
last, the choice of x0 is not important owing to the triangle inequality.

Definition 1.1.5 (Bounded function) Let be given a metric space (E, d) and a function f :
X 7−→ E, f is bounded on X if f(X) is a bounded subset of E.

1.1.5 Finite dimensional examples

You will find below a short list of typical examples.

1. For any set E, the function defined by d(x, y) = δx,y where δ is the Kronecker symbol
(equals to 1 if x = y or 0 if x 6= y) is obviously a distance. The ball B(x, r) for any
r ∈ (0, 1) is the singleton {x}.

2. In R, define d(x, y) = |x− y|. The balls are intervals of R :

B(x, r) =]x− r, x+ r[ and B(x, r) = [x− r, x+ r].

3. In C, replace the open (resp. closed) intervals by a true geometrical open (resp. closed)
ball.
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4. It is an easy exercise to check that

∀(x, y) ∈ Rn × Rn d1(x, y) :=
n∑
i=1

|xi − yi|

is a distance on Rn, whatever the integer n is. This distance is called the `1 distance.
5. It is an easy exercise to check that

∀(x, y) ∈ Rn × Rn d2(x, y) :=

√√√√ n∑
i=1

(xi − yi)2.

is a distance on Rn, whatever the integer n is. This distance is called the `2 distance. We
can also speak about the Euclidean distance.

6. It is an easy exercise to check that

∀(x, y) ∈ Rn × Rn d∞(x, y) := max
1≤i≤n

|xi − yi|

is a distance on Rn, whatever the integer n is. This distance is called the `∞ distance. We
can also speak about the supremum distance.
Figure 1.1 below provide several typical examples.

Figure 1.1: Several examples of unit balls in R2.

we will indeed establish the Minkowski theorem that generalises these results for any
power between 0 and +∞.

∀(x, y) ∈ Rn × Rn dp(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

7. From a finite number of metric spaces (Ei, di), it is easy to build a product space E =
E1 × . . .× En associated to the metric d defined by

∀(x, y) ∈ E × E d(x, y) =

n∑
i=1

di(xi, yi).

8. If (E, d) is a metric space, and if ϕ is an increasing functions from R+ to R+ such that

ϕ(u+ v) ≤ ϕ(u) + ϕ(v) and ϕ(u) = 0⇐⇒ u = 0

then d̃ := ϕ ◦ d is also a distance on E so that (E, d̃) is also a metric space. The proof is
quite obvious by using the subadditivity property. Interestingly, we can apply this result
with the function

ϕ(t) =
t

1 + t
or ϕ(t) = 1 ∧ t,

3



which are bounded functions. Hence, starting from an initial metric space (E, d), it is
always possible to build a new metric space (E, d̃) such that d̃ is also a bounded distance
on E.

d̃(x, y) =
d(x, y)

1 + d(x, y)
or d̃(x, y) = 1 ∧ d(x, y).

1.1.6 Infinite dimensional examples

We can also introduce a few examples of metric spaces in an infinite dimensional settings.

1. Let be given E a set and (F, dF ) a metric space, we denote Fb(E,F ) the set of bounded
functions from E to F . According to the following distance, Fb(E,F ) becomes a metric
space :

∀(f, g) ∈ Fb(E,F )2 d∞(f, g) := sup
x∈F

dF (f(x), g(x)).

This distance is illustrated by Figure 1.2 : as shown in Figure 1.2, the balls associated to
this distance are “tubes" around a function.

Figure 1.2: The function g is at a distance r of the function f . The ball centered on f of radius r is the
set of functions that stay in between the upper and lower dot lines.

2. A famous result, that may be seen as an extension of the `p distance seen in the paragraph
above, is given by the Minkowski theorem on Lp spaces. In this view, let us recall that
for any measure µ on an interval I, the real space of functions Lp(I, µ) is

Lp(I, µ) :=

{
f : I 7−→ R |

∫
I
|f |pdµ <∞

}
For the sake of simplicity, we will simply consider the Lebesgue measure on I and will
establish that

∀(f, g) ∈ Lp(I) dp(f, g) :=

(∫
I
|f(x)− g(x)|pdx

)1/p

defines a distance on Lp(I). The non trivial point comes from the triangle inequality.

Theorem 1.1.1 (Minkowski’s Theorem) For any (f, g) in Lp(I) with I = [0, 1] and
p ≥ 1

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof : First, we admit the Hölder inequality, that assumes :

If f ∈ Lp(I) and g ∈ Lp′(I)with
1

p
+

1

p′
= 1 =⇒ ‖fg‖1 ≤ ‖f‖p‖g‖p′ (1.1)
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We then consider f and g in Lp(I), the triangle inequality leads to :

‖f + g‖pp =

∫ 1

0
|f + g|p(x)dx ≤

∫ 1

0
(|f |+ |g|)(x)|f + g|(x)p−1dx.

We expand the term above and obtain :

‖f + g‖pp ≤
∫ 1

0
|f |(x)|f + g|(x)p−1dx+

∫ 1

0
|g|(x)|f + g|(x)p−1dx

We shall now apply the Hölder inequality (1.1) to f ∈ Lp and (f + g)p−1 ∈ Lp′ .
— Therefore, we need to show that (f + g)p−1 ∈ Lp′ . Since 1/p + 1/p′ = 1, we deduce

that ⇐⇒ p′ = p
p−1 and then(

|f + g|p−1
)p′ ≤ (2p−1

(
|f |p−1 + |g|p−1

))p′ ≤ 2(p−1)p′
(
|f |(p−1)p′ + |g|(p−1)p′

)
The two terms of the right hand side are equal to |f |p and |g|p, because of the rela-
tionship between p and p′. Hence, (f + g)p−1 belongs to Lp′(I).

— We apply the Hölder inequality (1.1) and obtain that∫
‖f + g‖pp ≤ ‖f‖p‖(f + g)p−1‖p′ + ‖g‖p‖(f + g)p−1‖p′

In the same time, we calculate :

‖(f + g)p−1‖p′ =

(∫ 1

0
|f + g|(p−1)p′

)1/p′

(1.2)

=

(∫ 1

0
|f + g|p

)1−1/p

. (1.3)

Hence, we have

‖f + g‖pp ≤ (‖f‖p + ‖g‖p)
‖f + g‖pp
‖f + g‖p

.

We then obtain the desired upper bound while dividing by ‖f + g‖pp.
�

To complete the proof, we now come back to the proof of the Hölder inequality, which is
shown in the next Lemma.

Lemma 1.1.1 Assume that f ∈ Lp(I) and g ∈ Lp′(I) with 1/p + 1/p′ = 1, then fg ∈
L1(I) and

‖fg‖1 ≤ ‖f‖p‖g‖p′ .

Proof : We can normalize each function and consider the situation where ‖f‖p = ‖g‖q = 1
while dividing by ‖f‖p and ‖g‖p′ . We consider α = 1/p and β = 1/p′. The convex
arithmetico-geometric inequality yields

∀(u, v) ∈ R2
+ uαvβ ≤ αu+ βv.

To show this inequality, we can take for example the logarithm of the two expressions
above and use the concavity of the logarithm.
Then, we consider u = |f(x)p| an v = |g(x)|p′ , and we obtain∫ 1

0
|f(x)p|1/p|g(x)p

′ |1/p′dx ≤
∫ 1

0

1

p
|f(x)|p +

1

p′
|g(x)|1/p′dx = α+ β = 1.

�
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1.2 Topology of metric spaces

1.2.1 Open and closed sets

Definition 1.2.1 (Open sets) Let be given a metric space (E, d). A set O is open in E if

∀x ∈ O ∃r > 0 : B(x, r) ⊂ O

Conversely, it is possible to define the closed sets as follows.

Definition 1.2.2 (Closed sets) Let be given a metric space (E, d). A set F is closed in E if
Fc is open in E, meaning that

∀x /∈ F ∃r > 0 : B(x, r) ⊂ Fc

In the metric space (R, |.|), all the intervals [a, b] with −∞ < a ≤ b <∞ are closed. The interval
[a,+∞[ is closed since the complementary set is ]−∞, a[ is open. Conversely, [0, 1[ is not closed
and not open.

Definition 1.2.3 (Closure/Adherence) Let be given a set A of a metric space (E, d), the
closure of A is defined as

Ā := {x ∈ E | ∀r > 0 : B(x, r) ∩A 6= ∅} .

A point x is an accumulation point of A if

∀r > 0 ∃y ∈ B(x, r) ∩A, x 6= y.

Oppositely, x is isolated in A if

∃r > 0 B(x, r0) ∩A = {x}.

For example, consider the set

A :=

{
1

n+ 1
, n ∈ N

}
.

The point 1/2 is isolated in A and is not an accumulation point of A. Oppositely, 0 is an
accumulation point of A and does not belong to A.

It is easier to understand Ā according to the next proposition.

Proposition 1.2.1 Ā is the smallest set (for the inclusion sense) that contains A.

The proof is left to the reader, or may be found in many lecture notes of topology. An immediate
consequence is

Corollary 1.2.1 A is closed if and only if Ā = A.

The closure operation satisfies standard properties.

Proposition 1.2.2 If A and B are two subsets of a metric space (E, d), then :

A ⊂ Ā ¯̄A = Ā A ∪B = Ā ∪ B̄ A ∩B ⊂ Ā ∩ B̄

Note that we do not have necessarily A ∩B ⊂ Ā∩ B̄ : consider for example A =]−∞; 0[ and
B =]0; +∞[, we can check that Ā ∩ B̄ = {0} but A ∩B = ∅.

A last natural definition of this paragraph refers to the notion of density.

6



Definition 1.2.4 (Dense subset) We will say that A is a dense subset of (E, d) if

Ā = E.

Note that from the definition of the closure of A, it is equivalent to understand a dense subset
as follows :

∀x ∈ E ∀r > 0 ∃a ∈ A ∩B(x, r).

For example, in R, the set of rational numbers Q is a dense subset of R. Indeed, since Q is
countable (in bijection with N), we can say that R is separable :

Definition 1.2.5 (Separable metric spaces) A metric space (E, d) is separable if there exists
a countable subset A such that

Ā = E.

This definition will be particularly useful when dealing with Hilbert spaces.

1.2.2 Limits in metric spaces and continuity

The metric spaces introduced above permit to extend the usual definition of limiting values
to general spaces.

Definition 1.2.6 (Limits) A sequence (xn)n≥0 of a metric space (E, d) converges to x according
to the distance d iff

∀ε > 0 ∃n0 ∈ N n ≥ n0 =⇒ d(xn, x) ≤ ε.

We will use the notation limn xn = x without recalling the metric used above when no ambiguity
is possible. It is immediate to check that limits can be used to characterise the closure of a set.

Proposition 1.2.3 For any subset A of a metric space (E, d), the two assertions are equivalent :
— x ∈ Ā
— A sequence (xn)n≥0 in AN exists such that limn xn = x.

Of course, the definition of the limit introduced above for any metric space (E, d) permit to
extend the definition of limit of functions.

Definition 1.2.7 (Pointwise limit of a function) Let be given f : E 7−→ F where (E, d) and
(F, d′) are two metric spaces. We will say that

lim
x−→x0

f(x) = ` ∈ F

if and only if
∀ε > 0 ∃η > 0 d(x, x0) ≤ η =⇒ d′(f(x), f(x0)) ≤ ε.

We will see later on that some limiting value existence may defer according to the choice of the
metric used for the involved metric spaces. Note that the standard properties of limits are still
true in the general case of metric spaces (uniqueness, composition, addition . . . ).

Definition 1.2.8 (Continuity) A function f : E 7−→ F where (E, d) and (F, d′) are two metric
spaces is continuous iff

∀x ∈ E lim
y 7−→x

f(y) = f(x).

Theorem 1.2.1 (Continuity and topology) Let be given two metric spaces (E, d) and (F, d′).
Consider a function f : E −→ F , then the three following assertions are equivalent :

7



— f is continuous on E.
— For any open set O′ ⊂ F , f−1(O′) is an open set of E.
— For any closed set F ′ ⊂ F , f−1(F ′) is a closed set of E.

It is important to note that the theorem above tells something about reciprocal images, but
nothing is known about the direct image of closed or open sets. In particular, consider f(x) = x2

and the open interval I =]− 1; 1[. It is immediate to check that f(I) = [0, 1[, which is not open
or closed.

1.2.3 Uniform continuity

We briefly remind the definition of the uniform continuity of a function f .

Definition 1.2.9 f : E −→ F is uniformly continuous iff

∀ε > 0∃η > 0 ∀(x, y) ∈ E2 d(x, y) ≤ η =⇒ d′(f(x), f(y)) ≤ ε.

Some particularly nice functions are Lipschitz ones.

Definition 1.2.10 (Lipschitz functions) f : E −→ F is L-Lipschitz iff

∀(x, y) ∈ E2 d′(f(x), f(y)) ≤ Ld(x, y).

Lipschitz functions are automatically uniformly continuous.

Proposition 1.2.4 If f is L-Lipschitz, then f is uniformly continuous.

Proof : Consider any ε > 0 and remark that if η = ε/L, then

∀(x, y) ∈ E2 d(x, y) ≤ η =⇒ d′(f(x), f(y)) ≤ Ld(x, y) ≤ L× η ≤ ε.

�
— Note that f(x) = x2 is not uniformly continuous on R and is not Lipschitzian :

d(f(x), f(y)) = |x2 − y2| = |x− y| |x+ y|,

and in the expression above |x+ y| can be arbitrarily large.
— Oppositely, f : x −→ arctanx is Lipschitz since

f(x)− f(y) = f ′(cx,y)× (x− y) =
1

1 + c2
x,y

(x− y).

As a consequence,
|f(x)− f(y)| ≤ |x− y|,

and f is 1-Lipschitz and thus uniformly continuous.

Definition 1.2.11 (Isometry) A function f : E → F between two metric spaces is an isometry
iff it is a bijective function such that

∀(x, y) ∈ E2 d′(f(x), f(y)) = d(x, y).

We will refer to an isometric embedding if we do not assume f to be one to one. A linear
isometric map will be indeed bijective, and two metric spaces E et F are called isometric iff an
isometry between E and F exists.
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1.3 Compact sets

The definition of compactness of sets is at the cornerstone of many fundamental results of
probability, analysis, PDE, economics . . . . Even if it is formalized as an abstract topological
notion, it is often a very practical tool for an efficient analysis of many concrete problem.

1.3.1 Definition

Definition 1.3.1 A metric space (E, d) is compact if the following assertion hold :
— From any covering of E by open sets (Oi, i ∈ I), we can extract a finite set J that still

covers E :
X = ∪i∈IOi =⇒ ∃ Jfinite : X = ∪j∈JOj

It is easy to see that a compact set E if and only if for any family of closed sets (Fi, i ∈ I) :

∩i∈IFi = ∅ =⇒ ∃ Jfinite : ∩j∈JFj = ∅.

We can provide here very simple examples of compact sets :

1. The empty set ∅ is compact.

2. Every finite set is compact, whatever the distance is.

3. The real line R with the |.| distance is not compact, since :

R = ∪n∈Z]n, n+ 2[.

The intervals above are all open and it is impossible to extract a finite covering of R.

1.3.2 Bolzano-Weierstrass property

The main result

Theorem 1.3.1 (Bolzano-Weierstrass) In a metric space (E, d), the three following asser-
tions are equivalent :

i) A is a compact set.
ii) Every infinite part of A countains an accumulation point.
iii) For each sequence (xn)n∈N in AN, we can extract a convergent (in A) subsequence.

We will admit the proof of this famous result, that can be found in many standard lecture
notes, level L3. Remark that an immediate consequence of this former result is that every metric
compact set is separable (contains a dense countable subset). It can be easily seen since for any
n ∈ N :

A = ∪x∈AB(x, 2−n).

It is thus immediate to check that

A ⊂ ∪1≤k≤NnB(xk,n, 2
−n).

An easy consequence is that the set defined by

Ã := {xk,n 1 ≤ k ≤ Nn, n ∈ N} ,

is dense in A and countable
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Consequences The sequential caracterisation of compact sets is very useful, and permits to
exhibit many compact sets.

Theorem 1.3.2 (Heine-Borel-Lebesgue) Every bounded closed real interval is compact.

Proof : We check that we can apply iii) of Theorem 1.3.1. Let be given a sequence (xn)n∈N in
an interval [a, b]. We build a subsequence as follows : a0 = a and b0 = b. For any integer k ≥ 0,
define ck = (ak + bk)/2 and if [ak, ck] contains an infinite number of values of (xn)n∈N : choose
ak+1 = ak and bk+1 = ck. Otherwise, define ak+1 = ck and bk+1 = bk.

It is immediate to check that for any k, [ak, bk] possesses an infinite number of values of
(xn)n∈N. Furthermore, the sequences (ak) and (bk) are adjacent and converges through the same
limit. Therefore, this limit is also a limit of an extraction of (xn)n≥0. �

We can push further the description of compact sets of Rd and prove the corollary :

Corollary 1.3.1 In Rd, the compact sets are the bounded closed subsets of Rd.

Other elementary properties of compact sets We provide other properties of compact
sets :

Proposition 1.3.1 Let be given any metric space (E, d), the following assertions hold :
i) Every compact set of E is closed and bounded
ii) A finite union of compact sets is compact
iii) Any intersection of compact sets is compact
iv) Any finite or countable product of compact sets is compact (for the distance associated to

the cartesian product)

The last point is clearly the most difficult to handle. In the case of countable product of
compact sets, it is known as the Tychonov Theorem. The proof can be found in many L3 lecture
notes.

1.3.3 Continuous functions on compact sets

Continuous functions act very specifically on compact sets, as pointed by the next result.

Proposition 1.3.2 For any two metric spaces (E, d) and (F, d′) with f a continuous function
from E to F , if U is a compact subset of E, then f(U) is a compact subset of F .

Proof : If U is compact, we consider any covering (O′i)i∈I of f(U) and see that ∪i∈If−1(O′i) is
a covering of U , which is a compact set. It is then possible to extract a finite covering of U :
∪1≤i≤NIf

−1(O′i). We then have f(U) ⊂ ∪1≤i≤NIO
′
i and f(U) is compact. � The famous

corollary of this proposition is as follows.

Corollary 1.3.2 A continuous real function on a compact set attains its lower and upper values.

Conversely, it is false that a reverse image of a compact set by a continuous function is compact.
For example, consider the orthogonal projection on the x-axis of R2. We have π−1([0, 1]) =
[0, 1]× R, which is not compact.

Theorem 1.3.3 If f is a continuous function from (E, d) to (F, d′) with E compact, then f is
uniformly continuous on E.
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1.4 Linear maps

1.4.1 Norms

An important notion related to the distance definition relies on the definition of a norm on
a vector space. This norm is not necessarily obtained through a scalar product (see below). In a
formal way, a norm is defined as follows.

Definition 1.4.1 (Norm) A norm on a vector space is a map ‖.‖ from E to R+ such that
— ‖x‖ = 0⇐⇒ x = 0
— ‖λx‖ = |λ|‖x‖
— ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

It is possible to obtain a distance from a norm through

d(x, y) := ‖x− y‖.

In the opposite, it is not always true that a distance is always derived from a norm : for example
d(x, y) = δx,y and some other counter-examples exist with intricate functional spaces.

We can provide a short list of examples :
—

‖x‖p =

(
p∑
i=1

|xi|p
)1/p

.

— If we consider the set of continuous functions on [0, 1], the norm

‖f‖∞ := sup
x∈[0,1]

|f(x)|,

is the norm of the uniform convergence : it means that fn 7−→ f unifomly iff

‖fn − f‖∞ −→ 0 as n −→ +∞.

— We can also handle

Nk(f) := max
0≤i≤k

‖f (i)‖∞ or Ñk(f) :=

(
k∑
i=1

‖f (i)‖p∞

)1/p

A second fundamental definition relies on the equivalence between norms.

Definition 1.4.2 (Norm equivalence) We will say that two norms N1 and N2 are equivalent
iff two constants (c, C) exist such that

cN1 ≤ N2 ≤ CN1.

It is important to have in mind that the norm equivalence is not an innocent definition. For
example, define a sequence of functions (fn)n≥0 as illustrated in Figure 1.3 :

We can check that ‖fn‖∞ := 1 and ‖fn‖1 := 1
n+1 , so that

‖fn‖∞
‖fn‖1

−→ +∞ as n −→ +∞.

It means that ‖.‖∞ and ‖.‖1 are not equivalent.
You will find many results on this topic in the L3 lectures available on my website. You can

also study the book of G. Skandalis : “Topologie et analyse fonctionnelle, 3ème année" or the
reference book of Rudin “Analyse fonctionnelle, Principes d’analyse mathématique"

Mainly, we will have in mind the famous result (stated below)
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Figure 1.3: A triangle function (fn)n≥0.

Theorem 1.4.1 (Norm equivalence) Consider a K-vector spaced E, with K a complete me-
tric space. If E is finite dimensional, then the norms are all pairwise equivalents.

Remark that the Theorem above is not true when K is not yet a complete body. For example,
consider the 2 dimensional space Q-vector space :

E = Q[
√

2] =
{
a+ b

√
2 : (a, b) ∈ Z

}
.

It is immediate to check that the two following norms

∀a+ b
√

2 ∈ E N1(a+ b
√

2) := |a| ∨ |b| and N2(a+ b
√

2) := |a+ b
√

2|

are not equivalent. Consider for example the sequence un = (1 −
√

2)n : the whole sequence
belongs to E and

∀n ∈ N N1(un) ≥ 1 althouth N2(un) −→ 0 as n −→ +∞.

1.4.2 Continuity of linear maps

Let be given two normed vector spaces (E,N1) and (F,N2) and consider a linear map
f : E → F , we define the norm of the application f as

‖f‖ = sup
x∈E\{0}

N2(f(x))

N1(x)
.

Since f is linear, it is obvious to check that we also have :

‖f‖ = sup
N1(x)=1

N2(f(x)) = sup
N1(x)≤1

N2(f(x)).

This last point can be deduced from

N2(f(x))

N1(x)
= N2

(
f(x)

N1(x)

)
= N2

(
f

(
1

N1(x)
x

))
= N2(f(y)),

with y = x/N1(x), whose norm is 1 in E.
Say differently, the norm of the linear map ‖f‖ is the smallest M > 0 such that

∀x ∈ E N2(f(x)) ≤ mN1(x).

It is quite easy to fully caracterise the continuity of linear maps between normed vector spaces
through the following proposition.
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Proposition 1.4.1 (Linear continuous maps) For any linear map f : E −→ F , the three
following assertions are equivalent

1. f is continuous at 0E.
2. f is continuous.
3. ‖f‖ is finite.

— We find below a simple computation of a linear map. Let be given a squared matrix A :

A =

(
a b
c d

)
.

We consider f the linear map from (R2, ‖.‖1) to (R2, ‖.‖2) given by

f(x, y) = A(x, y)t.

We can check that

‖f(x, y)‖22 = (ax+ by)2 + (cx+ dy)2 ≤
(
|x|
√
a2 + c2 + |y|

√
b2 + d2

)2
,

and the last term is upper-bounded by

|x|
√
a2 + c2 + |y|

√
b2 + d2 ≤ (|x|+ |y|) max{

√
a2 + c2;

√
b2 + d2}.

If we consider now a vector (x, y) in the `1 ball of R2, we then have ‖(x, y)‖1 ≤ 1 and

‖f(x, y)‖2 ≤ max{
√
a2 + c2;

√
b2 + d2}.

We will easily check that this last upper bound is attained either at point (1, 0), or at
point (0, 1). We have thus proved

‖f‖ = max{
√
a2 + c2;

√
b2 + d2}.

— The impact of the norm choice is very important ! For example, consider E = R[X] and
consider

ϕ(P ) = P (2).

If we consider on E the suppremum norm ‖.‖∞,[0,1], then |ϕ(P )| ≤ ‖P‖∞ and ϕ is of course
continuous. Nevertheless, consider now the norm given by the maximum of the absolute
values of the coefficients of the polynomial, then ϕ is not continuous : Pn(X) = Xn is a
normed 1 vector and ϕ(Pn) = 2n −→ +∞ as n −→ +∞.

Sometimes, the term “continuous" is replaced by “bounded" for linear maps between vector
spaces mainly because of the equivalence between (1) and (3). In what follows, we denote L(E,F )
the set of continuous and linear maps between E and F . The next proposition is immediate

Proposition 1.4.2 1. The application from L(E,F ) to R such that f 7−→ ‖f‖ is a norm
called operator norm.

2. If f ∈ L(E,F ) and g ∈M(F,G), then

‖g ◦ f‖ ≤ ‖g‖.‖f‖.

3. If E is not reduced to {0}, then
‖Id‖ = 1.
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Proof : The proof relies on three main ingredients and the definition of the operator norm.

1. First, remark that if f ∈ L(E,F ), then

‖f‖ = 0 =⇒ sup
‖x‖6=0

‖f(x)‖/‖x‖ = 0 =⇒ ∀x ∈ E f(x) = 0.

The homogeneity property is obvious. The triangle inequality and the definition of ‖f‖
and ‖g‖ implies that

∀x ∈ E ‖x‖ ≤ 1 ‖(f + g)(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖ ≤ ‖f‖+ ‖g‖.

Taking now the suppremum in the right hand side, we then deduce that

‖f + g‖ ≤ ‖f + g‖.

2. The second point come from the following inequalities :

∀x|‖x‖ ≤ 1 ‖g ◦ f(x)‖ = ‖f(x)‖
∥∥∥∥g( f(x)

‖f‖(x)

)∥∥∥∥ ≤ ‖f(x)‖ sup
‖y‖≤1

‖g(y)‖ ≤ ‖f‖ × ‖g‖.

3. The last point is immediate since ‖Id‖ = supx ‖f(x)‖/‖x‖ = supx ‖x‖/‖x‖ = 1.

�
The next corollary is a simple consequence of the proposition above.

Corollary 1.4.1 For any f ∈ L(E,E), we get

‖fn‖ ≤ ‖f‖n.

You will find below some kind (or not) examples that may deserve attention.
— Consider φ : R[X] 7→ R given by

φ(P ) = P (2).

Consider the norm given by the supremum of the absolute value of the coefficients of P :
N(P ) = supi |ai| with P =

∑
aiX

i.
We then consider the particular case Pn(X) = Xn and we can check that N(Pn) = 1 but
φ(Pn) = 2n −→ +∞. A simple consequence is that φ is not continuous since ‖φ‖ =∞.

— In a same way on R[X] with the suppreum norm and introduce the new norm N1 defined
by

N1

(∑
aiX

i
)

=
∑
i

|ai|,

We consider the identity map ψ(P ) = P , considered from the normed vector space
(R[X], N) into the different vector spaced (R[X], N). We remark that Pn = 1 + X +
. . . + Xn−1 satisfies N(Pn) = 1 although N1(Pn) = n. Hence, ψ = Id is not continuous
between these two normed vector spaces.

1.4.3 Compactness and consequences in normed vector spaces

We will show that an essential difference exists between finite and infinite dimensional space.
We first show a preliminary lemma.
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Lemma 1.4.1 If E, d is a finite dimensional metric space, embedded with a basis (e1, . . . , en).
Define ‖x‖∞ as the supremum norm in this basis :

if x =
n∑
i=1

xiei define ‖x‖∞ := max
1≤i≤n

|xi|,

then the unit ball B̄‖.‖∞(0, 1) is compact.

Proof : It is an easy exercise to check that φ : (x1, . . . , xn) ∈ Rn 7−→
∑n

i=1 xiei is a continuous
isomorphism. Moreover, B̄‖.‖∞(0, 1) = φ(B̄(0, 1)) and B̄(0, 1) is compact. �

It is then possible to state the main result of this paragraph.

Theorem 1.4.2 In a finite dimensional real valued vector space, all the norms are equivalent.

Proof : Consider any norm ‖.‖ on E and a basis of E denoted (e1, . . . , en). We can build the
corresponding norm ‖.‖∞ introduced in Lemma 1.4.1 and write

‖x‖ =

∥∥∥∥∥
n∑
i=1

xiei

∥∥∥∥∥ ≤
n∑
i=1

|xi|‖ei‖ ≤ ‖x‖∞

(
n∑
i=1

‖ei‖

)

This inequality being true for any x in E, we deduce that

‖.‖ ≤

(
n∑
i=1

‖ei‖

)
‖.‖∞ (1.4)

In the meantime, (1.4) says that Id : (E, ‖.‖∞) −→ (E, ‖.‖) is a linear continuous function.
Since the sphere S‖.‖∞(0, 1) is a compact set and ‖‖ is continuous (a norm is always a continuous
function), then ‖‖ attains its minimal value on S‖.‖∞(0, 1) :

∃x∗ ∈ E s.t. ‖x∗‖∞ = 1 and ‖x∗‖ = inf
‖x‖∞=1

‖x‖.

x∗ belongs to the unit sphere S‖.‖∞(0, 1) so that x∗ 6= 0 and ‖x∗‖ = δ > 0. Consequently, for any
x ∈ E :

‖x‖ = ‖x‖∞
∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≥ δ‖x‖∞. (1.5)

Now, (1.4) and (1.5) permits to deduce that ‖.‖ and ‖.‖∞ are equivalent. This last result is true
for any norm on E, which ends the proof. �
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Chapitre 2

Banach spaces

Notations

— H Hilbert Space
— 〈, 〉 the inner (scalar) product on H
— ‖.‖2 the L2 norm derived from the inner product
— . . .

2.1 Banach spaces

2.1.1 Cauchy Sequences

Definition 2.1.1 (Cauchy Sequences) A sequence (un)n≥0 in a metric space(E, d) satisfies
the Cauchy property iff :

∀ε > 0 ∃N ∈ N ∀(p, q) ≥ N d(up, uq) ≤ ε.

You will find below a short list of nice properties of Cauchy sequences.

Proposition 2.1.1 — All extraction of a Cauchy sequence is a Cauchy sequence.
— A Cauchy sequence is always a bounded sequence.
— A sequence converges iff it is a Cauchy sequence with a convergent extraction.
— A uniformly continuous function transforms a Cauchy sequence in a Cauchy sequence.

Proof : Left for the reader as an exercice. See the lecture notes of L3. �
Remark that of course, the second point is only a one side implication and some trivial

counter examples can be found : consider for example un = (−1)n, which is a bounded sequence
but does not satisfy the Cauchy criterion. It should also be noted that a Cauchy sequence does
not always converge : un = 1/n on (0, 1] is a Cauchy sequence but does not converge in (0, 1]
(this sequence converges to 0 /∈ (0, 1]).

2.1.2 Complete spaces, Banach spaces

Definition 2.1.2 (Complete spaces) A metric space (E, d) is complete iff all the Cauchy se-
quences are convergent in E.

The next proposition is naturally used for building several complete spaces.

Proposition 2.1.2 — If (E,NE) and (F,NF ) are complete, then the product E × F is
complete for the norm N = NE +NF .
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— If E is complete and F closed in E, then F is complete.

Proof : Left for the reader as an exercice, see L3 Lecture Notes. �

At last, let us briefly state the next important result.

Theorem 2.1.1 The vector space Rp with the euclidean distance is complete : every Cauchy
sequence of Rp converges.

Proof : Not so trivial, see L3 lectures. �

Definition 2.1.3 (Banach spaces) E is a Banach space if it is a complete normed vector
space.

You will find below some examples.

Finite dimensional examples
1. With the usual distance on R, Q is not complete but R is complete.

For example, consider in Q the sequence u0 = 1, u1 = 1.4, u2 = 1.41, u3 = 1.414, . . . . It is
easy to see that (un)n∈N is a Cauchy sequence that converges in R. It converges towards√

2 /∈ Q and thus Q is not complete.
2. Fortunately, this example is quite intricate and many situations are much more simpler

according to the next result.

Proposition 2.1.3 Every finite dimensional R vector space is a Banach space.

Infinite dimensional example Infinite dimensional examples are more complex (set of se-
quences, functions, . . . ). A first important example :

Proposition 2.1.4 The set of continuous function C([0, 1],R) is a Banach space when the norm
used is ‖.‖∞.

Proof :
Considérons pour cela une suite de Cauchy de C([0, 1],R), notée (fn)n≥1 et remarquons que

pour tout x de [0, 1], la suite (fn(x))n≥1 est de Cauchy dans R qui est complet. Aussi, (fn(x))n≥1

est convergente vers une limite que nous noterons f(x).
On sait aussi que

∀ε > 0 ∃n0 n ≥ n0, p ≥ 0 =⇒ sup
x∈[0,1]

|fn(x)− fn+p(x)| ≤ ε.

En passant à la limite en p, on a alors que

∀ε > 0 ∃n0 n ≥ n0 =⇒ |fn(x)− f(x)| ≤ ε.

Autrement dit, on a :
N∞(fn, f) =⇒ 0 lorsque n −→ +∞.

Il reste ensuite à démontrer que la fonction f est continue. Ce dernier point provient du fait
que l’ensemble des fonctions continues est un fermé pour la norme infinie. Si fn −→ f en norme
infinie, alors

∀ε > 0 ∃nε n ≥ nε =⇒ N∞(fn − f) ≤ ε.
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Fixons alors x ∈ [0, 1] et n ≥ nε, on sait alors que fn est continue en x, donc il existe η > 0
pour lequel

|x− y| ≤ η =⇒ |fn(x)− fn(y)| ≤ ε.
Puis,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| ≤ 3ε.

�

Again, the norm used is very important : consider the same vector space with the L1 norm
N1(f) =

∫ 1
0 |f |, this set is not complete now. In particular, consider the sequence fn equals to

1 between 0 and 1/2 − 1/n, to 0 between 1/2 + 1/n and 1, and affine between 1/2 − 1/n and
1/2 + 1/n. We get easily that it is a Cauchy sequence :

N1(fn+p − fn)) ≤ 1

2n
.

Nevertheless, the limit of fn is not continuous near 1/2, showing that (C([0, 1],R), N1) is not
complete.

Proposition 2.1.5 The space `p for p ≥ 1 is a Banach space where `p refers to the set of
sequences (un)n≥0 such that

∑
(un)p <∞.

Preuve : Là encore, la preuve se déroule en découpant les ε. On considère une suite de Cauchy
(un)n≥1 dans `p. Chaque coordonnée de la suite est donc une suite de Cauchy de R, donc
convergente vers une quantité telle que

unk −→ uk.

Il faut alors démontrer que uk est bien un élément de `p. Cela se démontre en suivant encore le
schéma de la preuve précédente. Enfin, il reste à prouver que ‖un − u‖p −→ 0 lorsque n tend
vers l’infini. On consultera un manuel d’analyse de licence pour une démonstration complète. �

We end the enumeration of examples with maybe the most important complete set for the
beginning of the lecture on functional analysis. Let be given I a closed bounded interval of R
and denote Lp(I) the functions f : I −→ R such that

∫
I f

p < ∞, we can state the next famous
result.

Theorem 2.1.2 Lp(I) with ‖f‖p =
(∫
I |f |

p
)1/p is complete.

Pour une preuve de ce résultat, on pourra par exemple consulter le livre d’H. Brezis.
The next proposition permits to build a large number of Banach spaces and can be compared

to the Proposition 2.1.2.

Proposition 2.1.6 — All closed space in a Banach space is Banach.
— A cartesian product of spaces E × F is Banach iff E and F are Banach spaces.

2.1.3 Series of vectors

Definition 2.1.4 (Convergent series) For any countable set of vectors (uk)k in a normed
space E, we say that

∑
uk converges in E iff

lim
K−→+∞

K∑
j=1

uj exists

and belongs to E. If such a limit exists, we will refer to series of (uk)k.
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Of course, we should have in mind that this definition highly depends on the norm on the
vector space E since the convergence depends on this definition.

Definition 2.1.5 (Absolutely convergent series) For any countable set of vectors (uk)k in
a normed space E, we say that

∑
uk absolutely converges in E iff

∞∑
j=1

‖uj‖ <∞.

Of course, absolutely convergent series permit to obtain Cauchy sequences : if we denote

rn =
n∑
j=1

‖u‖j and Sn =
n∑
j=1

uj

we see that rn is an increasing and bounded sequence, thus convergent in R. A consequence is
that the sequence Sn is a Cauchy sequence :

Sn+p − Sn =

n+p∑
n+1

uj ,

so that the triangle inequality yields

‖Sn+p − Sn‖ ≤ rn+p − rn −→ 0 as n −→ +∞.

As a consequence, when E is a Banach space, the series
∑
uk converges as soon as the series is

absolutely convergent. Indeed, we even have the characterization of completeness :

Proposition 2.1.7 Let E be a normed vector space. E is a Banach space iff for any series of
vector (uk)

∞∑
j=1

‖uj‖ <∞ =⇒
∞∑
j=1

uj converges in E.

Proof : We have already seen that if E is a Banach space, then absolutely convergent series is
stronger than convergent series. We thus study the reverse implication and consider (xn)n∈N a
Cauchy sequence in E : for any k ∈ N, we can find Nk such that

∀m ≥ n ≥ Nk ‖xm − xn‖ ≤ 2−k.

Without loss of generality, we can assume that (Nk)k≥0 is increasing and we then define u1 = xN1

and
uk+1 = xNk+1

− xNk .
We can check that (uj)j≥1 is an absolutely convergent sequence since ‖uk‖ ≤ 2−k and a conse-
quence of our assumption is that it is a convergent series in E. But remark also that the partial
sums are

K∑
k=1

uj = xNK+1
.

Consequently, we have found an extraction of (xn)n≥0 that converges. This proves that the whole
Cauchy sequence (xn) converges in E. �

It is now possible to associate some Banach spaces with linear maps. In particular, let be
given E and F two normed vector spaces such that F is a Banach space, we have the following
result.
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Theorem 2.1.3 L(E,F ) is a Banach space as soon as F is a Banach space.

Proof : The main idea is to use the result of Proposition 2.1.7. We then consider an abolutely
convergent sequence (uk)k≥1 of L(E,F ), meaning that

∞∑
k=1

‖|uk‖| <∞.

For any vector x in E, we then have

‖uk(x)‖F ≤ ‖|uk‖|‖x‖E ,

so that ∑
k

‖uk(x)‖F ≤

( ∞∑
k=1

‖|uk‖|

)
‖x‖.

Hence, for any x, (uk(x)) is an absolutely convergent series, and since F is a Banach space we
know that uk(x) is a convergent series in F . Let us denote

S(x) =
∞∑
k=1

uk(x).

We know that S is linear since each uk are linear, and

‖S(x)‖ ≤

( ∞∑
k=1

‖|uk‖|

)
‖x‖ =⇒ ‖|S‖| ≤

∞∑
k=1

‖|uk‖|.

Thus S is a linear continuous map between E and F . It remains to show that the partial sums
Sn =

∑n
k=1 uk converges to S. It simply relies on the triangle inequality since

(S − Sn)(x) =
∞∑

k=n+1

uk(x),

and

‖|S − Sn‖| ≤
∞∑

k=n+1

‖|uk‖| −→ 0 as n −→ +∞.

�

2.2 Dual space

Definition 2.2.1 (Dual) Let E be a normed vector space, we define E∗ the dual space of E as

E∗ = L(E,R).

In the definition above, we may define the dual space with C instead of R. As pointed by Theorem
2.1.3, the dual E∗ is always a Banach space since R (or C) is complete.

We will see along this lecture several examples, and we start with the following one.
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Remark 2.2.1 If E = c0 is the set of real sequences (yn) such that

lim
n−→+∞

yn = 0.

E is normed with the ‖.‖∞ norm. We consider a sequence u ∈ `1 (such that ‖u‖1 <∞), then we
define fu as follows :

∀y ∈ E fu(y) :=

∞∑
k=1

ykxk.

We can see that fu is linear, mapping E to R. Moreover, we have

fu(y) ≤ ‖y‖∞‖u‖`1 .

Hence, fu is also continuous such that ‖|fu‖| ≤ ‖u‖`1 and fu ∈ E∗. By considering the sequence
yN equals to ±1 from the integer 1 to N and null after N , we can see that

fu(yN ) =
N∑
j=1

|uj | −→ ‖u‖`1 as N −→ +∞.

An easy consequence is that ‖|fu‖| = ‖u‖`1 so that u 7−→ fu is an isometry from `1 to E∗. We
will see later that in fact, the dual space E∗ can be identified by `1.

The dual space E∗ can be thought itself as a normed vector space : for this purpose, we can
define the dual norm

∀X ∈ E∗ ‖X‖∗ := sup
u∈E:‖u‖=1

|X(u)|.

Hence, the norm of X is simply the operatorial norm defined for linear continuous map above.
A very nice space for the dual computation is the finite dimensional R vector space Rn as

pointed by the next result.

Theorem 2.2.1 Assume E = Rn with the euclidean norm, then E∗ is a n dimensional real
vector space. As a consequence, the dual of Rn is isomorphic to Rn (embedded with the euclidean
norm).

Proof : Let us consider ϕ ∈ L(E,R) and denote (e1, . . . , en) the canonical base of E. Since a
linear map is determined through the image of the canonical base, we can check that the dual
canonical family (e∗j )1≤j≤n is a base of E∗, where

e∗j (ei) = δi,j the so called Kronecker symbol, whose value is 1 if j=i, 0 otherwise.

First, each e∗j , for any j between 1 and n is a linear map in E∗. Moreover, it is a continuous map
and an easy computation yields ‖e∗j‖∗ = 1.

Now, we can show that it is a generative family of E∗ since

∀x ∈ E φ(x) = φ(x1e1+. . .+xnen) = x1φ(e1)+. . .+xnφ(en) = e∗1(x)φ(e1)+. . .+e∗n(x)φ(en).

As a consequence, we obtain :

φ = φ(e1)e∗1 + . . .+ φ(en)e∗n.

It is also easy to check that (e∗j ) is an independent family of vectors : assume that a n uple
(a1, . . . , an) exists such that the linear combination of elements of E∗ satisfies

a1e
∗
1 + . . .+ ane

∗
n = 0.
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Then, we get

0 =

(
n∑
i=1

aie
∗
i

)
(ej) = aj .

This ends the proof of the independency of the family, and shows that {Rn}∗ ' Rn �

2.3 Ascoli’s Theorem

2.3.1 Theoretical result

We introduce a supplementary definition on metric spaces.

Definition 2.3.1 (Equicontinuity) . Let be given a family of applications F from (E, d) to
(E′, d′). The family F is equicontinuous if

∀ε > 0 ∀x ∈ E ∃δ > 0 ∀f ∈ F d(x, y) ≤ δ =⇒ d′(f(x), f(y)) ≤ ε,∀f ∈ F .

Sometimes, the equicontinuity assumption is replaced by the uniform equicontinuity given as
follows.

Definition 2.3.2 (Uniform equicontinuity) Let be given a family of applications F from
(E, d) to (E′, d′). The family F is uniformly equicontinuous if

∀ε > 0 ∃δ > 0 ∀f ∈ F ∀(x, y) ∈ E2 d(x, y) ≤ δ =⇒ d′(f(x), f(y)) ≤ ε, ∀f ∈ F .

We can enumerate several examples :
— A finite family of continuous functions on compact spaces is always equicontinuous.
— A family of L-Lipschitz functions is equicontinuous.
Indeed, on compact spaces, the definition of equicontinuity and uniform equicontinuity are

equivalent (as it is the case with the definition of continuity and uniform continuity on compact
spaces). The proof is rather simple.

Proposition 2.3.1 If X is a compact space of a metric space (E, d) and if F is equicontinuous
from X to (E′, d′), the F is uniformly equicontinuous.

Proof : Consider ε > 0 and for any x in X, we consider δx > 0 introduced in Definition 2.3.1.
We can build a simple covering of X :

X = ∪x∈X(B(x, δx) ∪X).

Now, extract a finite covering :

X = ∪1≤i≤nε(B(xi, δxi) ∪X)

and define
δ∗ := min

1≤i≤nε
δxi .

We then check that ∀(x, y) ∈ E2, if d(x, y) ≤ δ∗, then d′(f(x), f(y)) ≤ ε, whatever f is. �
We can now state the most important result of the paragraph.

Theorem 2.3.1 (Arzela-Ascoli’s Theorem) Consider a compact metric space X and F ⊂
C(K,R). The set (F , ‖.‖∞) is compact if and only if F is closed, bounded and equicontinuous.
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Proof :
⇐ Let us first assume that F is equicontinuous, closed and bounded and consider a sequence

of F denoted (fn)n∈N. We want to build an extraction of (fn)n∈N that converges in F with
respect to ‖.‖∞. In this view, since X is a compact set, we can build a countable dense sequence
(xk)k≥0 :

(xk)k≥0 = X.

We will then extract a sequence of (fn)n∈N suitably (through the Cantor diagonal process).
— ((fn)(x1))n≥0 is a bounded sequence of R, meaning that we can extract a subsequence

through ϕ1 such that

fϕ1(n)(x1) −→ l1 as n −→ +∞.

— Consider now ((fϕ1(n))(x2))n≥0, which is a bounded set. Hence, there exists ϕ2 such that

fϕ1◦ϕ2(n)(x2) −→ l2 as n −→ +∞.

— Sequentially, we build ϕp such that

fϕ1◦ϕ2◦ϕp(n)(xp) −→ lp as n −→ +∞.

Now, we define
ψ(p) = ϕ1 ◦ . . . ◦ ϕp(p),

and we can check that every sequence (fψ(p)(xk))p≥0 converges to lk, whatever k is.
We then establish that (fψ(p))p≥1 is a Cauchy sequence of the Banach space C(X,E′). Fix

ε > 0 : a small δ > 0 exists such that

∀(x, y) ∈ X2 d(x, y) ≤ δ =⇒ d′(fφ(p)(x), fφ(p)(y)) ≤ ε.

Moreover, since the sequence of points (xk)k≥0 is dense and X is compact, we can cover with a
finite number of balls with a radius δ the set X :

X ⊂ ∪Ii=1B(xki , δ).

As a convergent sequence, (fψ(p)(xki))p≥0 is a Cauchy sequence for every i. We conclude since

∀x ∈ X ∃xi d(x, xi) ≤ δ.

Then, forall x in X, we have

d′(fψ(p)(x), fψ(q)(x)) ≤ d′(fψ(p)(x), fψ(p)(xi))+d
′(fψ(p)(xi), fψ(q)(xi))+d

′(fψ(q)(xi), fψ(q)(x)) ≤ 3ε

if p and q are chosen large enough, whatever x is. We have shown that (fψ(p))p≥0 is a Cauchy
sequence of (C(X,E′), ‖.‖∞), which is a Banach space. Consequently, (F , ‖.‖∞) is compact.
⇒We assume that F is compact and consider ε > 0. We can find (f1, . . . , fp) in F such that

F ⊂ ∪pi=1B‖.‖∞(fi, ε). As a finite set of functions on a compact set, it is easy to see that the
family (f1, . . . , fp) is equicontinuous :

∀x ∈ X ∃α > 0 ∀y ∈ X d(x, y) ≤ α =⇒ ∀i ∈ {1 . . . p} d(fi(x), fi(y)) ≤ ε.

For such a α, we then immediately obtain

∀f ∈ F d(f(x), f(y)) ≤ d(f(x), fi(x)) + d(fi(x), fi(y)) + d(fi(y), f(y)) ≤ 3ε.

This ends the proof. �
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2.3.2 Applications to ODE

We briefly sketch the standard result of Peano, which is an almost direct consequence of the
Ascoli Theorem.

Theorem 2.3.2 (Peano’s Theorem) Consider a continuous and bounded real valued function
H on [a, b]×R. For any (x0, y0) ∈ [a, b]×R, a δ > 0 exists such that we can find a differentiable
map f such that

∀x ∈ [x0 − δ, x0 + δ] f ′(x) = H(x, f(x)) with y0 = f(x0).

Proof : Since we will need the Schauder result joint with the Ascoli Theorem, the proof is
postponed to the last section.

The usage of Ascoli’s result should be though about as follows : it permits to exhibit some
functional compact spaces. This result in turn can be exploited with some fixed point theorem
(see Section 4) to solve some implicit equations, in the sense of exhibit the existence of a fixed
point of an operator.

For example, in the Peano Theorem above, we are looking for

f = Φ(f) with Φ(f)(x) = y0 +

∫ x

x0

H(u, f(u))du,

which drives us naturally to the introduction of the operator Φ.
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Chapitre 3

Hilbert spaces

3.1 Inner product

3.1.1 Sesquilinear forms

In what follows, E,F will denote two (complex) C-vector spaces.

Definition 3.1.1 (Conjugate linear map) f : E → F is conjugate (antilinear/semilinear) iff

∀λ ∈ C ∀(x, y) ∈ E2 f(x+ y) = f(x) + f(y) and f(λx) = λ̄f(x).

We provide next a rather trivial example : consider E = F = Cn with a canonical base
(e1, . . . , en),

f

(
n∑
i=1

xiei

)
:=

n∑
i=1

x̄iei

is a semilinear transformation of E.
Note that the composition of two semilinear transformations is a linear transformation.

Definition 3.1.2 (Bilinear form) A map B : E × E −→ C is a sesquilinear formr iff :
— for any y, B(., y) is linear
— for any x, B(x, .) is semilinear

If E is a real linear space, B is symmetric iff

∀(x, y) ∈ E2 B(x, y) = B(y, x).

Proposition 3.1.1 (Polarization) We can state important equalities related to linear forms
— If E is a complex vector space and B is sesquilinear, then

∀(x, y) ∈ E2 4B(x, y) = B(x+y, x+y)−B(x−y, x−y)+i [B(x+ iy, x+ iy)−B(x− iy, x− iy)]

— If E is a real vector space and B is a symmetric bilinear form, then

∀(x, y) ∈ E2 4B(x, y) = B(x+ y, x+ y)−B(x− y, x− y)

These identities are important since they prove that it is enough to know the value of the
sesquilinear form (or of the bilinear symmetric form) on the diagonal, i.e. to know the value of
B(t, t) for any t ∈ E.
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Corollary 3.1.1 If E is a complex linear space and B a sesquilinear form, then the following
assertions are equivalent

i) For all (x, y) ∈ E2 B(x, y) = B(y, x)
ii) For all x ∈ E B(x, x) ∈ R.

Definition 3.1.3 (Hermitian form) For any complex vector space E, a form B is Hermitian
if conditions i) or ii) of the corollary above are fulfilled. In particular, we will note that B is an
Hermitian form iff

— For all y ∈ E the map B(., y) is linear
— For all (x, y) ∈ E2 B(x, y) = B(y, x).

3.1.2 Scalar (inner) product

We will say that a Hermitian form B is positive if

∀x ∈ E2 B(x, x) ≥ 0.

We then get the fundamental definition.

Definition 3.1.4 (Inner product) 〈, 〉 is an Inner product iff it is a Hermitian positive form
(on a complex space) or a symmetric positive bilinear form (on a real space).

We can state now the famous Cauchy-Schwarz inequality.

Theorem 3.1.1 (Cauchy Schwarz inequality) An inner product on E satisfies

∀(x, y) ∈ E2 |〈x, y〉| ≤ |〈x, x〉| × |〈y, y〉|

Proof : Consider a pair (x, y) ∈ E2 and a complex number u (of modulus 1) such that u〈x, y〉 =
|〈x, y〉|. Since the inner product is a positive form, we have

∀t ∈ R 〈ux+ ty, ux+ ty〉 ≥ 0.

Now, remark that

P (t) = 〈ux+ ty, ux+ ty〉 = 〈ux, ux〉+ 2tRe(〈ux, y〉)t2〈y, y〉 = 〈x, x〉+ 2t|〈x, y〉|+ t2〈y, y〉.

We can see that P is a second order real polynomial, which is always nonnegative. A direct
consequence is that

∆ = 4|〈x, y〉|2 − 4〈x, x〉〈y, y〉 ≤ 0

We then obtain the desired inequality. �

Proposition 3.1.2 (Minkowski’s inequality) If E is vector space with an inner produc 〈, 〉,
then

x 7−→
√
〈x, x〉

is a semi-norm on E (satisfies the triangle inequality).
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Proof : The demonstration is rather simple : consider a pair (x, y) ∈ E2 and write

〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 〈x, y〉+ 〈x, y〉
≤ 〈x, x〉+ 〈y, y〉+ 2|〈x, y〉|

≤
(√
〈x, x〉+

√
〈y, y〉

)2

We deduce the triangle inequality. �

This last property is sometimes referred to as the parallelogram inequality. It is important
since it permits to build a large number of norms from a scalar product.

Proposition 3.1.3 If 〈, 〉 is a scalar product on E and if 〈x, x〉 6= 0 for x 6= 0E, then
√
〈, 〉 is a

norm on E denoted ‖.‖. We can recover the scalar product from this norm with

2〈x, y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2

3.2 Basic properties of Hilbert spaces

3.2.1 Definition

In what follows, we will consider the vector space E with its inner product 〈, 〉 and the
corresponding norm is denoted ‖.‖. We first state some basic properties.

Proposition 3.2.1 For all y ∈ E, the linear form `y : x 7−→ 〈x, y〉 is continuous from (E, ‖.‖)
to C. Moreover, the map y 7−→ `y is semilinear and isometric from E to E∗.

Proof : The first point comes from the Cauchy-Schwarz inequality :

|`y(x)| ≤ ‖y‖‖x‖.

Since `y is linear and satisfies the inequality above, `y continuous and we have

‖|`y‖| ≤ ‖y‖.

Regarding now the second point, we have to understand that it is a result on the dual space
E∗ of E. We denote ` : y 7−→ `y and since `y is continuous, we see that ` : E −→ E∗. Moreover,
since ‖|`y‖| ≤ ‖y‖, it is immediate to see that

‖|`‖| := sup
y∈E

‖|`y‖|
‖y‖

≤ 1.

But we also check that for all y ∈ E :

‖y‖2 = 〈y, y〉 = `y(y),

leading to the simple observation that

‖|`y‖| = ‖y‖.

Hence, ` is an isometry from E to E∗.
Finally, it is easy to check that ` is semilinear :

`y1+y2(ξ) = 〈ξ, y1 + y2〉 = 〈ξ, y1〉+ 〈ξ, y2〉 = `y1(ξ) + `y2(ξ),

and in a same way `λy(ξ) = λ̄`y(ξ). �
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Definition 3.2.1 (Hilbert space) Let be given a real (or complex) vector space H with an
inner product 〈, 〉 that produces a norm ‖x‖ :=

√
〈x, x〉. If H is complete for ‖.‖, then H is an

Hilbert space.

In particular, the Cauchy Schwarz inequality holds in H : |〈x, y〉| ≤ ‖x‖.‖y‖.

Remark 3.2.1 (The example L2(Ω, µ)) A famous example is the Hilbert space of squared in-
tegrable functions with respect to a reference measure µ. In particular, the inner product is given
by

∀(f, g) ∈ L2(Ω, µ)× L2(Ω, µ) 〈f, g〉 :=

∫
Ω
f(x)g(x)dµ(x)

When Ω = R and µ is the Lebesgue measure, we recover the standard L2(R) space. If now Ω = N
and µ is the couting measure on N, we recover the set `2 of sequences such that∑

u2
n <∞.

In the example above, we have used the fact that L2 is a complete space. Note that it is not so
obvious and deserve a short proof (even if it is a classical exercise).

Theorem 3.2.1 (Fisher-Riesz Theorem) Let be given a measured space (Ω, µ), for any p ∈
[1; +∞], Lp(Ω, µ) is a Banach space.

Proof : We only give a proof for 1 ≤ p < +∞. The case p =∞ deserves a special attention and
can be found in [Brezis,chapter IV].

Let be given a Cauchy sequence (fn)n≥1 of Lp and we aim to show that (fn) converges in Lp

and as it is commonly used, it is enough to show that a subsequence of (fn) converges. From the
Cauchy criterion, we can find (n1, n2) such that

‖fn2 − fn1‖p ≤ 1/2.

A recursive construction permits to find an increasing sequence of integer nk+1 > nk such that

‖fnk+1
− fnk‖p ≤ 2−k.

Let us denote

gk(x) =

k∑
i=1

|fni+1 − fni |.

It is an easy exercice to check that ‖gk‖p ≤ 1, for all integer k ∈ N. Moreover, by construction, we
can see that (gk)k∈N is an increasing sequence of functions. The monotone convergence theorem
yields the convergence of gk towards g in Lp and we thus define

g(x) =
∞∑
i=1

|fni+1 − fni |(x).

We have limk−→+∞ gk = g almost surely and the triangle inequality leads to

|fnK+1(x)− fnk(x)| ≤ |fnK+1(x)− fnK (x)|+ . . .+ |fnk+1
(x)− fnk(x)| ≤ g(x)− gnk(x). (3.1)

We thus have that fnk(x) is almost surely a Cauchy sequence in R. Since R is a complete space,
we then deduce that fnk(x) almost surely converges towards a limiting value denoted f(x).

It remains to show that f ∈ Lp and ‖f − fnk‖p −→ 0 as k −→ +∞.
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— The first point is immediate by taking the limit K −→ +∞ in (3.1), which yields

|f − fnk |(x) ≤ g(x) ∀x ∈ Ωa.s.

Thus, ‖f − fnk‖p ≤ ‖g‖p and ‖f‖p ≤ ‖f − fnk‖p + ‖fnk‖p <∞.
— The second point comes from the fact that |f(x)− fnk |p −→ 0 almost surely and

|f − fnk |
p ≤ gp,

that is an integrable upper bound. The Lebesgue dominated convergence permits to
conclude.

�

Proposition 3.2.2 If E is a closed set in an Hilbert space H, then E is an Hilbert space.

3.2.2 Orthogonality and Projection in Hilbert spaces

Definition 3.2.2 (Orthogonality) Let H an Hilbert space, we say that x, y ∈ H are orthogonal
iff 〈x, y〉 = 0 and following the geometric standards, we will also use the notation x ⊥ y.
For any family of vectors (xn)n≥1, we say the family to be orthogonal iff

∀m 6= n 〈xm, xn〉 = 0.

Furthermore, it is an orthonormal family if one has ‖xm‖ = 1 for all m.

It is easy to establish in this context the Pythagorean relation

Proposition 3.2.3 (Pythagore)

x ⊥ y ⇐⇒ ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

We can moreover extend this relation to a family of orthogonal vectors (x1, . . . , xn) :

‖x1 + . . .+ xn‖2 =

n∑
i=1

‖xi‖2

Proof : Easy with the remark that ‖x1 + . . .+ xn‖2 = 〈x1 + ldots+ xn, x1 + ldots+ xn〉. �

It is easy to check that if x ⊥ yj for j varying between 1 and n, then x is orthogonal to any
vector of the linear span of (yj)1≤j≤n, which will be written as

x ⊥ V ect(y1, . . . , yn).

The next proposition is a fundamental tool of Hilbert spaces.

Proposition 3.2.4 (Orthogonal projection) Let be given a finite orthonormal family of vec-
tors (e1, . . . , en) of an Hilbert space H and define F = Span(e1, . . . , en). For any vector x ∈ H,
the vector

y =

n∑
i=1

〈x, ei〉ei

is the orthogonal projection of x on F :

∀z ∈ F (x− y) ⊥ z.
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Proof : It is easy to check that y ∈ Span(e1, . . . , en) = F . Moreover, x− y is orthogonal to each
vector (ei) and thus orthogonal since

〈x− y, ei〉 = 〈x, ei〉 −
n∑
j=1

〈x,ej〉〈ei, ej〉 = 〈x, ei〉 − 〈x, ei〉 = 0.

As a consequence, x− y is orthogonal to a generative family and thus to the space F . �

We can also state a famous result, useful in the framework of Fourier analysis, the so-called
Bessel inequality.

Proposition 3.2.5 (Bessel’s inequality) Let be given an Hilbert space H and an orthonormal
family (en)n≥1 in H. For all x ∈ H, one has∑

k≥1

〈x, ek〉2 ≤ ‖x‖2

Proof : It is enough to show this inequality for a finite family since the conclusion can be extended
to the infinite case by passing through the limit. We then consider (e1, . . . , en) an orthonormal
family and y =

∑n
i=1〈x, ei〉ei. We define F = Span(e1, . . . , en) and from the proposition above,

we have
x− y ⊥ F.

Hence, the Pythagorean theorem implies

‖x‖2 = ‖(x− y) + y‖2 = ‖x− y‖2 + ‖y‖2 ≥ ‖y‖2 ≥
n∑
i=1

〈x, ei〉2

We then obtain the result. �

We will see later on that this kind of inequality can be expressed in terms of Hilbert basis.

3.3 Projection on a closed convex space

3.3.1 Main result

The next result is at the cornerstone of the Hilbert analysis, and has various applications,
in analysis (Fourier Analysis), PDE (Sobolev spaces), in optimisation (linear minimization pro-
blem), probability and statistics (conditional expectation), economics (existence of Pareto op-
tima), and game theory (von Neuman equilibrium). We will provide some various applications
at the end of the chapter. You will find in Figure 3.1 a very simple geometric illustration of the
result. In particular, the result of ii) becomes clearer when looking at Figure 3.1.

Let us begin by the statement and the proof of the main result.

Theorem 3.3.1 Let H be an Hilbert space and F a nonempty closed convex subset of H.
i) Then, for all x ∈ H, there exists a unique point in F , called the orthogonal projection of
x onto F , such that

d(x, F ) = inf
z∈F
‖x− z‖ = ‖x− y‖.

ii) This point is denoted in what follows PF (x) and is fully characterized by the property :

∀z ∈ F < (〈x− y, z − y〉) ≤ 0,

where <(ξ) denotes the real part of ξ.
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Figure 3.1: Projection of x on the convex closed set C.

Remark 3.3.1 A brief reminder : a set C is convex iff

∀(x, y) ∈ C2 ∀t ∈ [0, 1] tx+ (1− t)y ∈ C.

Proof : If x ∈ F , there is nothing to prove since y = x is the unique point of F that minimises
the distance to x (the minimal value is 0). Moreover, assume that y exists such that

∀z ∈ F < (〈x− y, z − y〉) ≤ 0,

and apply this property to z = x ∈ F , we get

‖x− y‖ ≤ 0 =⇒ x = y.

Proof of i) : We now study the generic case where x /∈ F and we define δ as the minimal
distance between x and F :

δ := inf{‖x− y‖, y ∈ F} > 0.

In the same time, we also consider for all integer n ∈ N the following set :

Cn :=
{
y ∈ F : ‖x− y‖2 ≤ δ2 + 2−2n

}
It is an easy exercice to check that Cn is a nonempty closed set included in F , which is decreasing :

∀n ∈ N Cn+1 ⊂ Cn.

Consider (y1, y2) ∈ C2
n, we know that u = (y1 + y2)/2 is in Cn since F is convex. Thus, we have

‖x− u‖ ≥ δ.

Moreover, the parallelogram formula yields

‖x− y1‖2 + ‖x− y2‖2 = 2‖x− u‖2 +
1

2
‖y1 − y2‖2 (3.2)

First, note that the right hand side of (3.2) can be lower bounded as follows :

2‖x− u‖2 +
1

2
‖y1 − y2‖2 ≥ 2δ2 +

1

2
‖y1 − y2‖2.
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Second, the left hand side of (3.2) is upper bounded easily through the definition of Cn :

‖x− y1‖2 + ‖x− y2‖2 ≤ 2δ2 + 22−n

Taking together the last equalities, we obtain

‖y1 − y2‖2 ≤ 42−n =⇒ ‖y1 − y2‖ ≤ 21−n.

To sum up, (Cn) is a sequence of decreasing set whose diameter is going to 0, we can apply
Lemma 3.3.1 to conclude that a unique point y exists such that

∩nCn = {y} ∈ F.

Hence, y is the unique point of F such that ‖x− y‖ = d(x, F ).
Proof of ii) : Let consider z ∈ F and a real value t ∈ [0, 1]. F is convex so that zt :=

tz + (1− t)y ∈ F . Hence we deduce that

∀t ∈ [0, 1] δ2 ≤ ‖x− zt‖2 = 〈x− zt, x− zt〉
= ‖x− y‖2 + t2‖z − y‖2 − 2t< (〈x− y, z − y〉)
= δ2 + t2‖z − y‖2 − 2t< (〈x− y, z − y〉)

Substracting δ2 and simplifying by t, we obtain that

∀t ∈ [0, 1] 2< (〈x− y, x− y〉) ≤ t‖z − y‖2.

Since this inequality is true for any t, we can take t arbitrarily small and deduce that

< (〈x− y, z − y〉) ≤ 0.

Conversely, consider y′ ∈ F such that

∀z ∈ F <
(
〈x− y′, z − y′〉

)
≤ 0,

and apply this relation for y = z, to get

0 ≥ <
(
〈x− y′, y − y′〉

)
≥ <

(
〈x− y, y − y′〉

)
+ <

(
〈y − y′, y − y′〉

)
= ‖y − y′‖2 −<

(
〈x− y, y′ − y〉

)︸ ︷︷ ︸
negative

≥ ‖y − y′‖2.

Thus, we obtain y = y′. �

It is necessary to establish the following technical lemma to complete the proof of the pro-
jection Theorem.

Lemma 3.3.1 Let E be a complete metric space and Cn a sequence of nonempty closed subspace,
decreasing (with respect to the inclusion) with an asymptotic vanishing diameter, then

∃ !x ∈ E {x} = ∩nCn
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Proof : This result follows a typical argument of complete metric spaces. Remark that each Cn
is non-empty. Hence, we can consider a sequence (xn)n∈N such that

∀n ∈ N xn ∈ Cn.

Since Cn+2 ⊂ Cn+1 ⊂ Cn . . . ⊂ C1, it is easy to see that

∀m ≥ n d(xm, xn) ≤ dn,

where dn denotes the diameter of Cn. Now, our assumption states that dn 7−→ 0 as n 7−→ +∞
and we deduce that (xn)n∈N is a Cauchy sequence of E. It implies in turn that (xn)n∈N converges
towards x∗ and of course

∀n ∈ N ∀m ≥ n xm ∈ Cn.

Passing to the limit on m, we have shown that

∀n ∈ N x∗ ∈ Cn,

meaning that
x∗ ∈ ∩nCn.

The uniqueness of x∗ is obvious : consider two points x∗ and y∗ in the intersection. We deduce
that

∀n ∈ N dn ≥ d(x∗, y∗).

Since dn is going to 0, we can conclude that d(x∗, y∗) = 0 and x∗ = y∗. �

A useful application of Theorem 3.3.1 is commonly encountered when F is a linear subspace
of an Hilbert space H. This is stated as a corollary of Theorem 3.3.1.

Corollary 3.3.1 If F is a closed linear subspace of an Hilbert space H, there exists a unique
projection PF : H 7−→ F such that

‖x− PF (x)‖ = d(x, F ) := inf
z∈F
‖x− z‖.

Moreover, PF is linear, x− PF (x) ⊥ F and PF is 1-Lipschitz.

Proof : Let x ∈ H and z ∈ F , we know that

< (x− PF (x), z − PF (x)) ≤ 0.

F being a linear subspace, we deduce that

∀w ∈ F < (x− PF (x), w) ≤ 0.

Now, replace w by −w and deduce that 〈x− PF (x), w〉 = 0 for all w.
We now study the Lipschitz constant of PF . For x1, x2 in H, we write :

‖x1 − x2‖2 = ‖[x1 − PF (x1)]− [x2 − PF (x2)] + (PF (x1)− PF (x2))‖2

= ‖[x1 − PF (x1)]− [x2 − PF (x2)]‖2 + ‖PF (x1)− PF (x2)‖2

≥ ‖PF (x1)− PF (x2)‖2.

We can read the result with the extremity of the computation above. �
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When the linear subspace F is generated by a finite family of orthonormal vectors (e1, . . . , en),
this projection is then explicit and we can check that

PF (x) =

n∑
i=1

〈x, ei〉ei.

This comes from the fact that x− PF (x) ⊥ F as pointed in a paragraph above.
Another algebraic and topological consequence of Theorem 3.3.1 is the decomposition of the

Hilbert space as a direct sum. It comes from the decomposition x = [x − PF (x)] + PF (x) and
the trivial intersection F ∩ F⊥ = {0}.

Theorem 3.3.2 If F is a closed linear subspace of H, we then have

H = F ⊕ F⊥

3.3.2 Some topological difficulties

We state now a proposition, which will be useful for deriving density results in Hilbert spaces.

Proposition 3.3.1 If there exists x ∈ H and a subset A ⊂ H such that

∀a ∈ A 〈x, a〉 = 0,

then x ⊥ Ā (where Ā denotes the adherence of the set A).

Proof : We state the proof, which is quite simple, to handle topological results and orthogonality.
We begin by showing that for any x ∈ H, the map ϕx : a 7−→ 〈x, a〉 is continuous. It is easy to
check that ϕx is linear. Moreover, the Cauchy Schwarz inequality implies that

|ϕx(a)| ≤ ‖x‖‖a‖,

so that ϕx is linear and continuous, with an operatorial norm bounded by ‖x‖.
Consider a ∈ Ā, then one can find a sequence (an)n≥1 of elements in A such that ‖a−an‖ −→

0. Now, we know from our assumption that x ⊥ an, meaning that

∀n ∈ N 〈x, an〉 = 0.

We then deduce that
lim

n7−→+∞
〈x, an〉 = 0.

But the left hand side of the equality above is 〈x, a〉 since a 7−→ 〈x, a〉 is continuous. This ends
the proof. �

It is important to understand that even if in a finite dimensional settings, things are generally
easy, it is no longer the case when dealing with the infinite dimensional case.

Remark 3.3.2 As an example, remark that in a finite dimensional case, all subspace are neces-
sarily closed, which is not the case if the dimension is infinite. For example, consider the set `c
of sequences in `2 that vanishes from a certain integer. We can see that `c is a dense subset of
`2 since for any u ∈ `2 and for any ε > 0, we can find an integer nε such that∑

k≥nε

u2
k ≤ ε2.
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Hence, the sequence ū defined as
ūk = uk1k≤nε

is such that ‖ū− u‖2 ≤ ε and ū ∈ `c. Consequently, we see that `c is a vector space such that

`c = `2,

and `c is not closed.

Remark 3.3.3 A similar phenomenon occurs when dealing with C([0, 1],R) since

C([0, 1],R) = L2([0, 1]).

Definition 3.3.1 (Orthogonal of a set) For any F a linear subspace of H, we define

F⊥ := {x ∈ H : ∀a ∈ F, 〈x, a〉 = 0}

We can derive the next result

Proposition 3.3.2 Let F be a linear subspace of H, then
— F⊥ is a closed set.
— If G ⊂ F , then F⊥ ⊂ G⊥.
— The following equality is true :

F⊥ = F
⊥

— If F is a closed vector space, then
F⊥⊥ = F

— If F is a closed vector space, then

E = F ⊕ F⊥.

Proof : The first point comes from the Proposition 3.3.1.
The second point is an exercise.
To obtain the third point, we remark that F ⊂ F̄ so that F̄⊥ ⊂ F⊥ and we have the first inclu-
sion. Consider now an element of y ∈ F⊥, we want to show that y ∈ F̄⊥. In this view, consider
any vector x ∈ F̄ : there exists a sequence (xn)n≥1 of F such that xn −→ x. Since y ∈ F⊥, we
obtain 〈y, xn〉 = 0 for all n, and taking the limit we deduce that 〈y, x〉 = 0. We have shown that
y ∈ F̄⊥, which is true for any y so that F⊥ ⊂ F̄⊥.

The third point comes from the projection theorem. First remark that F ⊂ F⊥⊥ is always
true since x ∈ F =⇒ ∀y ∈ F⊥〈x, y〉 = 0 =⇒ x ∈ {F⊥}⊥. Conversely, assume that x ∈ F⊥⊥ /∈ F .
Since F is closed, we can find pF (x) ∈ F such that x−pF (x) ⊥ F . It means that x−pF (x) ∈ F⊥.
We know that x ∈ F⊥⊥ so that ∀y ∈ F⊥〈x, y〉 = 0. In the same time, we also have 〈pF (x), y〉 = 0.
Hence, x− pF (x) is orthogonal to F⊥ and belongs to F⊥, thus x− pF (x) = 0, which is a contra-
diction.

For the last point, we define the projection PF on the convex set F and of course

x = PF (x) + x− PF (x),

showing that E = F + F⊥. The sum is obviously a direct sum. �

We end this paragraph with this important criterion on density in Hilbert spaces.
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Theorem 3.3.3 A linear subspace A of H is dense iff A⊥ = {0}.

Proof : We show the two implications separately. Assume that A is dense in H, then

Ā = H.

As pointed in the third point of Proposition 3.3.2, we have

A⊥ = Ā⊥ = H⊥.

It is now easy to check that H⊥ = {0} : if x 6= 0, then ‖x‖2 = 〈x, x〉 6= 0 and x /∈ H⊥.
Conversely, we assume that A⊥ = {0}. Simple inclusions show that A ⊂ Ā =⇒ Ā⊥ ⊂ A⊥ =⇒

A⊥⊥ ⊂ Ā⊥⊥ = Ā since A⊥ is closed (see Proposition 3.3.2). We have obtained that {0}⊥ ⊂ Ā,
which in turn implies that

H = {0}⊥ = Ā.

This ends the proof. �

3.4 Hilbert basis

Definition 3.4.1 (Hilbert basis) In an Hilbert space H, a system of vectors (ei)i∈I is an Hil-
bert basis of H if (ei)i∈I is an orthonormal family such that

(ei)i∈I = H.

Note that (ei)i∈I refers to any limit of elements∑
i∈I

αiei.

If I is a finite set, it denotes a simple sum, but when I is infinite, it refers to a limit of a sequence
of finite sums, for example

lim
N−→+∞

N∑
i=1

αiei.

We then obtain the following theorem.

Theorem 3.4.1 (Structure of separable Hilbert spaces) Let be given H an Hilbert sepa-
rable space, then one has :

1. there exists a countable Hilbert basis

2. If (ei)i∈N denotes the Hilbert basis, then

H =

{ ∞∑
i=1

xiei |
+∞∑
i=1

|xi|2 <∞

}
.

Moreover, for any x ∈ H, one has

x =
∞∑
i=1

〈x, ei〉ei.
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3. The Pythagore theorem holds :

‖x‖22 =
∞∑
i=1

|xi|2,

as well as the Parseval equality :

〈x, y〉 =
∞∑
i=1

x̄iyi.

Proof : We first establish the first point. We assume that H is separable and consider a dense
sequence (xn)n∈N. It is easy to build a second sequence (en)n∈N, which is orthonormal w.r.t. 〈, 〉
through the Gram-Schmidt algorithm and such that the vector space spanned by (xn)n≤N and
the vector space spanned by exn)n≤N are the same. Since the sequence (xn)n≤N is dense in H,
then we obtain that

(ei)i∈N = H.

We now study the second point. Define for any x in H the partial sum

SN (x) =
N∑
i=1

〈x, ei〉︸ ︷︷ ︸
:=xi

ei.

We have

‖x− SN (x)‖22 = ‖x‖22 +
N∑
i=1

|xi|2 − 2<〈x,
N∑
i=1

xiei〉 = ‖x‖22 −
n∑
i=1

|xi|2,

where the last equality is obtained by expanding the partial sum and using the orthonormality
of the Hilbert basis. We then deduce that

N∑
i=1

|xi|2 ≤ ‖x‖22 <∞

It means that the sequence of coordinate is in `2(N). Moreover, the partial sums form a Cauchy
sequence (using the Pythagore equality in the finite case) and thus (SN )N≥0 is a Cauchy sequence
in H. Hence, SN −→ w ∈ H as N −→ +∞. It is then easy to check that w − x is orthogonal to
every vector ei of the Hilbert basis, and then orthogonal to the whole space H. Hence, w = x.
The last points are easy consequences of this formula. �

3.5 Applications of the Projection Theorem and Hilbert spaces

3.5.1 Conditional expectation

Consider a measured space (Ω,A, µ) and the set of measurable functions L2(µ). We consider
two measurable random variables X and Y and the σ algebra generated by the events X-
measurable is denoted AX . This σ-algebra permits to define L2(X), which is the set of squared
integrable function AX measurable. As already pointed in the beginning of the chapter, both
L2(µ) and L2(X) are complete. Indeed, L2(µ) is an Hilbert space via the inner product

〈f, g〉µ =

∫
Ω
f(w)g(w)dµ(ω) = E[fg]

Moreover, L2(X) is closed in L2(µ) and we can then define the projection of L2(µ) onto L2(X).
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Figure 3.2: Projection of Y on L2(X) and conditionnal expectation E[Y |X].

A simple consequence of this abstract construction is that for any A-measurable random
variable Y , there exists a projection of Y that belongs to L2(X). This random variable is a
function of X (as an element of L2(X)), which is denoted

E[Y |X] := PL2(X)(Y ).

This definition is illustrated in Figure 3.2.
The random variable E[Y |X] satisfies all the properties of the projection written before. In

particular, we have
Y − E[Y |X] ⊥ L2(X),

meaning that
∀f ∈ L2(X) E [(Y − E[Y |X])f(X)] = 0. (3.3)

In particular, to compute the E[Y |X], if we can find g such that for any f ∈ L2(X), we have

E[Y f(X)] = E[g(X)f(X)],

then Equation (3.3) shows that E[Y |X] = g(X).
Another important interpretation is that

E
[
|Y − E[Y |X]|2

]
:= inf

Z∈L2(X)
E[|Z −X|2],

which signifies that E[Y |X] is the best approximation of Y in L2(X) and therefore E[Y |X] is
the random variable that minimises the variance of prediction when X is known.

Note that the purpose of this paragraph is not to provide an exhaustive description of the dif-
ficult notion of conditionnal expectation. Just remark that the « projection »formulation permit
to obtain simple properties such as

E[E[Y |X1]|X2] = E[E[Y |X2]|X1] = E[E[Y |(X1, X2)].
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Figure 3.3: Decomposition of the variance of Y with L2(X).

We can find at another example by considering the variance decomposition formula that relies
on Figure 3.3 (and is just the Pythagorean relation in L2(µ)).

E (Y − E(Y ))2 = E (E[Y |X]− E(Y ))2 + E ([Y − E[Y |X])2 .

This relation can also be written as

V ar(Y ) = V ar(E[Y |X]) + E[V ar(Y |X)].

Note that the conditionnal expectation will play a very important role in the definition of
Markov chains and Markov processes (memoryless random evolutions), and in the definition of
Martingales.

3.5.2 Fourier Analysis : the L2 theory

3.5.2.1 On the use of Hilbert basis

Hilbert spaces make it possible to use the fundamental structure of Hilbert basis to obtain a
good approximation of infinite dimensional objects through the computations of a finite number
of inner products.

Theorem 3.5.1 Let be given an Hilbert basis {ei, i ∈ I} of an Hilbert space H, then for any
f ∈ H and for any subset J of I, we have for any set of coefficients (aj)j∈J :∥∥∥∥∥∥f −

∑
j∈J
〈f, ej〉ej

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥f −

∑
j∈J

ajej

∥∥∥∥∥∥
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Proof : The proof is rather simple. Write∥∥∥∥∥∥f −
∑
j∈J

ajej

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥f −
∑
j∈J
〈f, ej〉ej +

∑
j∈J

(〈f, ej〉 − aj)ej

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥f −
∑
j∈J
〈f, ej〉ej

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
j∈J

(〈f, ej〉 − aj)ej

∥∥∥∥∥∥
2

+2〈f −
∑
j∈J
〈f, ej〉ej ,

∑
j∈J

(〈f, ej〉 − aj)ej〉

The last term of the right hand side may transformed into :

〈f −
∑
j∈J
〈f, ej〉ej ,

∑
j∈J

(〈f, ej〉 − aj)ej〉 =
∑
k∈J

(〈f, ek〉 − ak) 〈ek, 〈f −
∑
j∈J
〈f, ej〉ej〉︸ ︷︷ ︸

:=0

The basis being orthonormal, the last inner product vanishes. �
The geometrical interpretation is easy : denote πJ(f) the following “projection" :

πJ(f) :=
∑
j∈J
〈f, ej〉ej .

We note that πJ(f) is the orthogonal projection of f into the set spanned by {ej , j ∈ J}, using
the inner product 〈, 〉.

We can deduce the following corollary :

Corollary 3.5.1 Let K ⊂ J , then

‖f − πJ(f)‖ ≤ ‖f − πK(f)‖.

This inequality is more or less a generalization of the Bessel inequality

Theorem 3.5.2 (Bessel Inequality) If {ei, i ∈ I} is an Hilbert basis of H and if J ⊂ I :

∀f ∈ H
∑
i∈J
|〈f, ei〉|2 ≤ ‖f‖2.

Moreover, the following equality holds in H (in the sense of the norm ‖.‖) :

‖f‖2 =
∑
i∈I
|〈f, ei〉|2

Proof : We follow the same strategy : Consider J any subset of I, we have :

〈f − πJ(f), πJ(f)〉 = 0.

The Pythagore theorem yields :

‖f‖2 = ‖f − πJ(f)‖2 + ‖πJ(f)‖2.

The norm ‖πJ(f)‖2 may be simplified according to the orthonormality relationships among
(ej)j∈J) :

‖πJ(f)‖2 =
∑
j∈J
|〈f, ej〉|2.
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Therefore, we obtained : ∑
j∈J
|〈f, ej〉|2 ≤ ‖f‖2.

The second identity is the so-called Plancherel equality. We use the important fact that the
Hilbert basis (ei)i∈I is a total family of H, and then the conitnuity of the norm.

In particular, consider the following series :

g =
∑
i∈I
〈f, ei〉ei.

The series rely on a Cauchy sequence of H : since I is at the most countable, we can define

gn =
∑

i ≤ n〈f, ei〉ei

and remark with the Pythagore theorem that :

‖gn+p − gn‖2 ≤
∑

k≥n+1

〈f, ei〉2 −→ 0 as n −→ +∞.

Consequently, (gn)n≥1 converges in H towards g. Now, it is important to remark that

∀i ∈ I 〈f − g, ei〉 = 〈f, ei〉 − 〈
∑
j∈I
〈f, ej〉ej , ei〉 = 0.

Hence, f − g is orthogonal to the whole Hilbert basis (ei)i∈I , and thus is 0 in H. We conclude
that

f =
∑
i∈I
〈f, ei〉ei.

�

Definition 3.5.1 The series above is the expansion of f in the Hilbert basis (ei)i∈I :∑
i∈I
〈f, ei〉ei.

This definition
∑

i∈I〈f, ei〉ei should be understood as a limit when j takes all the possible
values in I. We have pointed that ‖.‖ has a tight relationship with 〈, 〉. Hence, if we handle now
a second norm (for example the supremum norm on functions), nothing is guaranteed for the
equality :

‖f −
∑
i∈I
〈f, ei〉ei‖∞ = 0

In other words, the following equation may not hold :

∞∑
i=1

〈f, ei〉ei 7−→ f lorsque n 7−→ +∞ for the supremum norm ‖.‖∞.
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3.5.2.2 Fourier series

We denote C(T ) the set of continuous functions on [0, 2π], with real or complex values such
that f(0) = f(2π). We set T = [0, 2π]. If f does not satisfy the boundary condition, we can
extend f on a larger interval : we define ∀t ∈ T f(4π − t) = f(t) and then obtain a 4π
periodic function.

We denote µ the normalized Lebesgue measure on T : µ = λ/(2π). We recall the important
result on Lp(T ) :

Theorem 3.5.3 Lp(T , µ) is complete for p ≥ 1.

Below, we only deal with the case p = 2, mainly because of the existence of a natural inner
product on L2(T ), which is an Hilbert space :

〈f, g〉 =

∫
T
fḡdµ.

Definition 3.5.2 (Fourier coefficients) We denote E = {en : R 7→ C} with en(t) = eint.
Then, the Fourier coefficients of f are given by

∀n ∈ Z cn(f) = 〈en, f〉 =
1

2π

∫ 2π

0
f(t)e−intdt

We will study the decomposition of f in Fourier series with the help of the Hilbert space
theory described above.

Proposition 3.5.1 E = {en : R 7→ C} is an orthonormal family of L2(T , µ).

This result is rather simple and comes from the remark : ēn = e−n and enep = en+p. In fact, E
is even more important than just being an orthonormal family of vectors in L2(T , µ). This fact
is illustrated by the next theorem.

Theorem 3.5.4 E = {en : R 7→ C} is an Hilbert basis of L2(T ). Therefore, we have

∀f ∈ L2(T ) f =
∑
n∈Z
〈f, en〉en

with a convergence of the series in L2(T ).

The proof of this important result relies on a density result of Span(E) in L2(T ) and on a
uniqueness of the Fourier decomposition. We first state a preliminary lemma.

Lemma 3.5.1 If f is continuous on T , then

∀n ∈ Z 〈f, en〉 = 0 ⇐⇒ f = 0.

Proof : The other side implication is obvious, and we only focus our attention on the direct
implication. We consider f such that ∀n ∈ Z 〈f, en〉 = 0 and we assume that f is not zero
everywhere. We assumed that f is periodic, and therefore up to a shift on the x coordinate,
we can find an interval [−h, h] where f is non zero. This shift does not modify the sequence of
Fourier coefficients of f , since they are all zero. (A translation of f with a quantity τ multiplies
each coefficient by enτ ).
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We have assumed that f is orthogonal to E : 〈f, en〉 = 0 for any integer n. Hence, f is
orthogonal to any trigonometric polynomial of the form :

Pn(x) = (1 + cosx− cosh)n,

because Pn can be expressed as a linear combinations of ek,−n ≤ k ≤ n. Moreover, for any
x ∈]− h, h[

cosx ≥ cosh.

Therefore, we deduce that

lim
n7−→+∞

Pn(x) = +∞ when x ∈]− h, h[.

But we also know that

∀x ∈]− π, π[\[−h, h] : 0 < 1 + cosx− cosh < 1.

Consequently, we get :

lim
n 7−→+∞

Pn(x) = 0 pour x ∈]− π, π[\[−h, h].

Using that
〈f, Pn〉 = 0 ∀n ∈ Z,

and the Chasles relationship :∫ π

−π
fPn =

∫
[−π,−h[∪]h,π]

fPn +

∫ h

−h
fPn,

the dominated convergence theorem implies that∫
[−π,−h[∪]h,π]

fPn 7−→ 0 when n 7−→ +∞.

At last, the Fatou lemma states that ∫ h

−h
fPn = ±∞.

and we obtain a contradiction. The sign + or − above depends on the sign of f on [−h, h]. �
We now show our main result on the Fourier series of L2 functions.

Proof of the theorem : We will show that E is an Hilbert basis. The lemma implies that any
continuous function orthogonal to E is necessary zero. This result may be extended to general
functions of L2.

Indeed, consider f in L2(T ) such that 〈f, en〉 = 0, for any n. We consider Φ defined by

Φ(x) =

∫ x

−π
f(t)dt.

The Fubini theorem makes it possible to show that

〈Φ, en〉 = 0, ∀n ∈ Z.

Moreover, Φ is a continuous function orthogonal to E and therefore φ is zero. We then
deduce that f is zero almost everywhere because it is the derivative of Φ. This point concludes
the demonstration of the density of Span(E) in L2(T , µ).

45



We deduce that E is an Hilbert basis and the Plancherel identity then leads to (the equality
holds in L2(T )) :

f =
∑
n∈Z
〈f, en〉en.

�
We can also states the famous following corollaries.

Corollary 3.5.2 (Bessel, Plancherel, Parseval) For any (f, g) ∈ L2(T ), we have :
— Bessel inequality : ∑

k∈J
|ck(f)|2 ≤ ‖f‖22 =

1

2π

∫
T
|f2|(t)dt

— Plancherel identity : ∑
k∈Z
|ck(f)|2 = ‖f‖22

— Parseval identity : ∑
k∈Z

ck(f)ck(g) = 〈f, g〉

We should mention that a pointwise theory of Fourier series exist, this approach will not be
dealt with in this Lecture. We highlight the fact that the results stated in these lecture notes are
sufficient to obtain nice formula with series, and will imply important results on non parametric
statistics.

3.5.3 Non-parametric statistics

3.5.3.1 Smoothness class

We have seen the important result in the paragraph above : for any f ∈ L2([0, 1]), we can
reconstruct f through its Fourier series :

f =
∑
k∈Z

ck(f)ek.

We push our analysis further by introducing some more stringent functional spaces. Such spaces
include the knowledge of smoothness of the function f .

We will say that f is s-smooth if and only if f belongs to Hs(R) where :

Hs(R) :=
{
f ∈ L2([0, 1]) : f (s) ∈ L2 with ‖f (s)‖ ≤ R

}
.

Above, f (s) refers to the s-th derivative of f . In particular, s is implicitely assumed to be an
integer (this assumption may be relaxed with additional tecnicalicities).

This smoothness assumption leads to a nice decreasing approximation property, given by the
next proposition.

Proposition 3.5.2 For any f ∈ Hs(R), one has

‖f −
∑

−K≤k≤K
ck(f)ek‖22 ≤ R2K−2s
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Proof : We write the Parseval identity and obtain that

‖f −
∑

−K≤k≤K
ck(f)ek‖22 =

∥∥∥∥∥∥
∑
|k|>K

ck(f)ek

∥∥∥∥∥∥
2

2

=
∑
|k|>K

|ck(f)|2.

We use the simple trick : ∑
|k|>K

|ck(f)|2 =
∑
|k|>K

|k|2s|ck(f)|2|k|−2s,

and we should note that |ck(f ′)| = |k|ck(f). We can iterate this relationship and obtain

|ck(f (s)| = |k|s|ck(f)|.

Coming back to the tail series we have to upper bound, we have :∑
|k|>K

|ck(f)|2 =
∑
|k|>K

|ck(f (s))|2|k|−2s ≤ R2K−2s.

This ends the proof of the proposition. �

3.5.3.2 White noise model as a standard benchmark

We are interested in the “simplest" non-parametric estimation problem : we observe a sequence
of n noisy functions

∀j ∈ {1 . . . n} ∀x ∈ [0, 1] fj(x) = f(x) + σwj(x). (3.4)

We are then interested in recovering f when we assumed that (wj(x))1≤j≤n is a Gaussian
white noise model. The objective of this lecture is not to do a Here, as in many other statistical
problems, there axe two distinct roles for the Gaussian model :

— As a "continuous-time" model of interest in its own right.
— As a "canonical limiting-problem" appearing in connection with many other discrete-

time models involving non-parametric estimation of a function. We observe indeed a high
frequency data of each curve :

fj(xt) = f(x) + σξjt ,

where t lives in a high frequency grid of [0, 1] and (ξjt )t,j stands for a sequence of i.i.d.
standard Gaussian random variable.

In particular, the last approach makes it possible to pass to the limit, when the grid in t becomes
asymptotically the whole segment [0, 1].

We will keep in mind that (3.4) is nothing more than a model equivalent to

∀ψ ∈ L2([0, 1]) 〈ψ,Xi〉 ∼ N (< ψ, f〉, σ2‖ψ‖22)

with the covariance structure :

Cov(〈ψ,Xi〉, 〈φ,Xi〉) = 〈ψ, φ〉.

In particular, we shall apply this last remark to the Fourier basis (ek)k∈Z. We obtain an
important feature of the white noise model :

〈ek, Xi〉 ∼ N (ck(f), σ2‖ek‖2) = N (ck(f), σ2).
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Moreover, the covariance of two randomized Fourier coefficients is

Cov(〈ek, Xi〉, 〈ej , Xi〉) = 〈ek, ej〉 = 1k=j .

Therefore, the empirical Fourier coefficients of one curve form an infinite family of Gaussian
random variables, with a covariance σ2Id. In other words, if we denote

θik = ck(Xi) = 〈ek, Xi〉,

then θik and θik are Gaussian and independent when k 6= j.

3.5.3.3 Non-parametric estimation

The main idea consists in estimating the Fourier coefficient sequence of the function f . Of
course, we only have in our hands n observations X1, . . . , Xn. Therefore, there is no miracle :
we cannot expect to infer the value of an infinite sequence with a finite number of observations
n. Nevertheless, it is possible to use the smoothness assumption Hs(R) and deduce an efficient
method of estimation for f .

Estimation of a fixed Fourier coefficient This estimation problem is standard. It is enough
to define

θ̂k =
1

n

n∑
i=1

θik =
1

n

n∑
i=1

〈ek, Xi〉.

We have seen that each θik are distributed as a N
(
ck(f), σ2

)
random variable. The curve

(Xi)1≤i≤n being independent, we can deduce that :

θ̂k ∼ N
(
ck(f),

σ2

n

)
.

Note that if the random variables θik follow another law (different from a Gaussian one), the
conclusion of the remark above should be slightly modified. But the main remark is that θ̂k is
an unbiased estimation of ck(f) with a variance reduced by a factor n.

Consequently, the mean squared error of estimating ck(f) with θ̂k is

E[|θ̂k − ck(f)|2] =
σ2

n
.

Finally, we should note that the estimation above is optimal : the Cramer-Rao lower bound
yields : for any estimator θ̃k of ck(f) :

E[|θ̃k − ck(f)|2] =
σ2

n
.

Therefore, there is nothing more to do than the LLN for the estimation of each Fourier coefficient
ck(f).

Estimation of f We have seen that each estimation of each Fourier coefficient will induce
a M.S.E. of at least σ2n−1. Consequently, if we manage to estimate f through its description
by the infinite sequence (ck(f))k∈Z, we will certainly obtain an infinite M.S.E., which is not
satisfactory ;).
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A concurrent idea relies on a hard-thresholding strategy approach : we will estimate the low-
frequency coefficients and use the approximation result of Proposition 3.5.2. We introduce the
following estimator of the infinite sequence :

θ̂k
d

= θ̂k1|k|≤d.

This estimator satisfies :

∀k ∈ Z E[θ̂k
d − ck(f)|2] ≤ 1|k|≤d

σ2

n
+ 1|k|>d|ck(f)|2.

Hence, the estimator f̂ defined by :

f̂ =
∑
|k|≤d

θ̂k
d
ek,

satisfies

E
[∫ 1

0
(f̂ − f)2

]
= E[‖f̂ − f‖22 =

∑
k∈Z

E[θ̂k
d − ck(f)]2.

The last equation is a consequence of the Parseval identity. We then obtain the following decom-
position :

E
[∫ 1

0
(f̂ − f)2

]
=
∑
|k|≤d

E[θ̂k − ck(f)]2 +
∑
|k|>d

|ck(f)|2.

This decomposition is nothing more than the standard bias-variance decomposition. In particular,
the variance term is equal to σ2 d

n while the bias is what is left over in large frequencies. This
bias is upper bounded by R2d−2s, according to Proposition 3.5.2. We deduce that

E
[∫ 1

0
(f̂ − f)2

]
≤ σ2 d

n
+R2d−2s.

It remains to do a very simple optimization of the upper bound above with respect to d. We
easily see that the optimal choice for d is d ∼ n

1
2s+1 . We then obtain the rate of convergence of

the estimator f̂ :

E
[∫ 1

0
(f̂ − f)2

]
≤ Cn−2s/(2s+1). (3.5)

We should note that :
— This rate is significantly slower than the parametric rate of convergence of estimators in

regular finite dimensional model. In such cases, the optimal estimators have a M.S.E. of
the order n−1. Here, regardless the value of s, we always have 2s/(2s+ 1) < 1.

— When s becomes large, the rate becomes close to n−1. Therefore, an “infinite" smoothness
parameter s may be seen as a fully parametric situation.

— It is possible to obtain a sharper result where C explicitely depends on R2 and σ2, but
we have omitted this detail for the sake of simplicity.

— The rate obtained above is optimal with respect to n : it is possible to show a kind of
Cramer-Rao lower bound in this infinite dimensional case Hs(R). Such a lower bound
matches the upper bound and says that any estimator of f in Hs(R) will have a M.S.E.
greater than n−2s/(2s+1).

49



3.5.4 Construction of the Brownian Motion

3.5.4.1 The Haar basis of (L2([0, 1], ‖.‖2)

We propose a construction of the Brownian Motion (B.M. for short in what follows). This
construction is not the unique way to build the theoretical object. Nevertheless, it is a good
illustration of the theory of Hilbert spaces.

Consider H = L2([0, 1]) equipped with the inner product

∀(f, g) ∈ H2 〈f, g〉 =

∫ 1

0
f(t)g(t)dt.

For any integer n ∈ N, which will be a “frequency", we denote :

∀k ∈ {0, . . . , n− 1} Dn,k = [k2−n, (k + 1)2−n[,

which is simply the k-th interval of size 2−n in [0, 1]. We also denote

Dn :=

{
f ∈ H | f(x) =

n−1∑
k=0

αk1Dn,k(x)

}

Functions in Dn are constant on each dyadic interval Dn,k. It is easy to see that

Dn ⊂ Dn+1.

We can establish the first proposition.

Proposition 3.5.3 The set ∪n∈NDn is dense in (H, ‖.‖∞) and in (H, ‖.‖2).

Proof : Remark that the set of continuous functions on [0, 1] is dense in (H, ‖.‖∞). Hence, given
any function f in (H, ‖.‖∞) and for any ε > 0, we can find g ∈ C([0, 1]) such that

‖f − g‖∞ ≤ ε.

We introduce ω as the continuity modulus of g :

ωg(h) := sup
|x−y|≤h

|g(x)− g(y)|.

Since g is continuous on [0, 1], which is compact, we then deduce that g is uniformly continuous
on [0, 1] and thus

lim
h−→0

ωg(h) = 0.

Now, we define
∀n ∈ N gn(x) = f(2−nb2nxc),

which is a stepwise constant function on the 2n dyadic intervals of size 2−n. Moreover, we have
the obvious bound

‖g − gn‖∞ ≤ wg(2−n) −→ 0 as n −→ +∞.

Thus, we can find n large enough such that

‖gn − f‖2 ≤ ‖gn − f‖∞ ≤ 2ε.

�
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Figure 3.4: Left : the “mother" Haar wavelet u1. Right : examples of elements taken in the Haar basis
of L2([0, 1]).

The set D is useful to build an orthonormal Hilbert basis of H. The construction could follow
the Gram-Schmidt procedure starting from the set (1Dn,k , n ∈ N, 1 ≤ k ≤ 2n). But here, this
procedure can be suitably skipped, in favour of a visual construction. We start with the constant
function on [0, 1], which is necessarily equal to 1 to obtain a normed vector of H :

u0(t) := 1[0,1](t)

For a fixed frequency n, we define

∀n ≥ 0 ∀k ∈ {0, . . . , 2n − 1} u2n+k = 2n/2
[
1Dn+1,2k

− 1Dn+1,2k+1

]
. (3.6)

Proposition 3.5.4 (Haar’s Basis) The sequence (u2n+k, n ∈ N, 0 ≤ k ≤ 2n − 1) is an Hilbert
basis of L2([0, 1], ‖.‖2).

Proof :
Orthonormal system : We provide here a nice picture, that should be understood as a proof

of this result. It is easy to see that the sequence (up)p≥0 forms an orthonormal basis of D as
illustrated in Figure 3.4.

Note that the orthogonality of the sequence comes from the oscillation of a function at
frequency n as compared to other functions with a strictly lower frequency (red and pink functions
in Figure 3.4), or comes from the disjoint supports when the two elements share the same
frequency (green and blue functions in Figure 3.4). At last, the fact that each element has an L2

norm equals to 1 comes from the normalization by 2n/2 in Equation (3.6).
Density : It remains to show that the sequence (up)p≥0 forms a dense sequence of L2([0, 1]).

In this view, for any n ∈ N, we denote m = 2n − 1 and the set of vectors Um := V ect (up)0≤p≤m
represents the set of functions whose frequency is lower or equal to n. Moreover, as an orthonormal
system, we have

dim(Um) = m+ 1

If we consider also
Dn := V ect

{
1In,k , 0 ≤ k ≤ 2n − 1

}
,

we have
Dn ⊂ Um,

and dimDn = 2n, so that Um = Dn. From Proposition 3.5.3, we obtain the desired result. �
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Figure 3.5: Some functions taken from the Schauder basis.

3.5.4.2 Explicit construction of the Brownian Motion

We use now the Haar basis to mimic the famous oscillations of the B.M. From the Haar basis,
we build the Schauder basis of the Cameron-Martin space :

∀p ∈ N ψp(t) :=

∫ t

0
up(x)dx.

ψp is the triangle basis as shown in Figure 3.5 except for ψ0, that is

ψ0(t) = t.

We consider now an infinite countable sequence of i.i.d. random Gaussian variables ξ(ω) :=
(ξk(ω))k≥0, where for any integer k : ξk ∼ N (0, 1) and the associated process to the event ω is

∀n ∈ N Bn
t (ω) :=

2n−1∑
k=0

ψk(t)ξk(ω)

Definition 3.5.3 The Brownian motion is the “limit" random variable Bn
t , when n −→ +∞.

The important part of this definition corresponds to the proof of the existence of such a limit.
This is the purpose of the next result.

Theorem 3.5.5 (Construction of the Brownian motion) The random variable Bt(ω) :=
limn−→+∞B

n
t (ω) satisfies

1. Bt(ω) is defined a.s. and continuous

2. Bt is a centered Gaussian process, whose covariance is

Cov(Bt, Bs) = s ∧ t.

3. (Bt)t∈[0,1] is a Markov process : Bt+s − Bt is a Brownian motion independent from
(Bu)0≤u≤t.

52



To sum up, the Brownian motion is a continuous Gaussian process, which satisfies the Markov
property. Moreover, Bt ∼ N (0, t) and the conditional laws are fully characterised through the
property

∀(t, s) ∈ R2
+ L (Bt+s|(Bu)u≤t) ∼ N (Bt, s).

Proof : Point 1) : We aim to show that the sequence Bn
t converges in L2 almost surely.

From one frequency to another, we consider the auxiliary process

∀n ∈ N Xn
t (ω) = Bn+1

t (ω)−Bn
t (ω).

We can write the simple bound :

sup
t∈[0,1]

Xn
t (ω) = sup

t∈[0,1]

2n+1−1∑
k=2n

ψk(t)ξk(ω) ≤ sup
2n≤k≤2n+1−1

|ξk(ω)| × sup
t∈[0,1]

ψk(t)

since in the sum above, at the most one term is not equal to 0 (by considering the support of
the triangle Schauder functions). Furthermore, the length of the support of the triangle function
is 2−n so that :

∀k ∈
{

2n, . . . , 2n+1 − 1
}
∀t ∈ [0, 1] |ψk(t)| ≤ 2n/2

∫ t

0
uk(t)dt ≤ 2n/22−n ≤ 2−n/2.

It remains to understand the size of maximal value of 2n i.i.d. gaussian random variables.
Using the independence, we have

P
(

max
0≤k≤2n−1

|ξk| ≥
√

2n

)
= 1− P

(
max

0≤k≤2n−1
|ξk| ≥

√
2n

)
= 1− P(|ξ0| ≥

√
2n)2n .

For any a ∈ (0, 1), we have 1− na ≤ (1− a)n so that 1− (1− a)n ≤ na. It yields

P
(

max
0≤k≤2n−1

|ξk| ≥
√

2n

)
≤ 2nP(|ξ0| ≥

√
2n) ≤

2n+1
∫ +∞√

2n
e−u

2/2du
√

2π

≤ 2n+1

√
2π

∫ +∞

√
2n

u√
2n
e−u

2/2du

≤ 1√
πn

(
2

e

)n
.

Consequently, if An :=
{
ω : supt∈[0,1] |Xn

t | >
√

2n2−n/2
}
, the Borel-Cantelli Theorem leads to

P(lim supAn) = 0,

meaning that for almost surely ω, there exists nω such that we obtain that

∀n ≥ nω sup
t∈[0,1]

|Xn
t | ≤

√
2n2−n/2.

It implies the almost surely uniform convergence ofBn
t toward its limit on [0, 1]. From this uniform

convergence, we also conclude that t 7−→ Bt is a continuous process on [0, 1] with B0 = 0.
Point 2) : For any time t > 0, (Bt)t∈[0,1] is a limit of some Gaussian processes since (Bn

t )t∈[0,1]

are all continuous Gaussian processes. It is a classical result that the limit is still a Gaussian
process (see Dachuna-Castelle & Duflo). The argument relies on the multivariate characteristic
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function of a Gaussian process, which is completely described through its mean and covariance
matrix.

The computation of the covariance is more interesting. We begin by an important remark :

s ∧ t =

∫ 1

0
1[0,s](u)1[0,t](u)du.

We use here the Hilbert basis of L2([0, 1]) to get

∀(f, g) ∈ L2([0, 1])2 〈f, g〉 = 〈

∑
p≥0

hp

∫ 1

0
f(u)hp(u)du

 ,

∑
p≥0

hp

∫ 1

0
g(u)hp(u)du

〉
=

∑
p≥0

∫ 1

0
f(u)hp(u)du×

∫ 1

0
g(u)hp(u)du

Apply now this relation to f = 1[0,s] and g = 1[0,t] to obtain

s ∧ t = 〈1[0,s],1[0,t]〉 =
∑
p≥0

∫ s

0
hp(u)du

∫ t

0
hp(u)du =

∑
p≥0

ψp(s)ψp(t). (3.7)

Now, consider (s, t) ∈ [0, 1]2, and compute

E[B2
t ] = E

∑
n≥0

Xn
t

2

= E
∑
n≥0

[Xn
t ]2 =

∑
n≥0

E[Xn
t ]2,

where we use above the a.s. L2 convergence of the series, and the fact that from one frequency
to another, the random variables Xn

t are independent. Hence,

E[B2
t ] =

∑
n≥0

∑
2n≤k≤2n+1−1

ψ2
k(t) = t

where we used (3.7). In the same time, we also have

E[BtBs] =
∑
k≥0

∑
l≥0

E[ψk(t)ψl(t)ξkξl] =
∑
k≥0

ψk(t)
2 = s ∧ t.

Point 3) : The last point comes from the following remark.

Bn
t+s(ω)−Bn

t (ω) =
2n−1∑
k=0

[ψk(t+s)−ψk(t)]ξk(ω) =
2n−1∑
k=0

∫ t+s

t
uk(x)dxξk(ω) =

2n−1∑
k=0

∫ s

0
uk(t+x)dxξk(ω)

Now, from the construction of the Haar basis, the (uk)k≥0 are piecewise constant functions,
the gaussian random variables are i.i.d. and the law of ξk is equal to the law of −ξk. A direct
consequence, is that

L(Bn
t+s(ω)−Bn

t (ω)) = L(Bn
s (ω)).

(A picture would be helpful to fully understand the argument above.) �
It is important to point out that many applications involve the Brownian motion : in the

mathematical modelling of Financial series through stochastic differential equations and Ito’s
calculus with the Black-Scholes equations for example, in PDE with the Heat equations, in
Kinetic theory, . . . Figure 3.6 represents a typical trajectory of the Brownian motion between 0
and 1.
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Figure 3.6: Some trajectories of the Brownian motion, in a 1 and 2 dimensional space.

Extension to the real line Our construction of the Brownian motion is given for t ∈ [0, 1].
It is now easy to complement this construction and define a Brownian motion on R+. With the
third property of Theorem ??, we can first build a countable sequence of independent Brownian
motions, that are denoted ((Bt,k)t∈[0,])k≥N. Now, we define

.∀t ∈ R Bt =

nt∑
k=1

B1,k +Bt−nt,nt+1 where nt ≤ t ≤ nt + 1. (3.8)

Since for any integer k, we have B0,k = 0, the process t 7−→ Bt is still continuous on R. It is
an easy exercice to check that the process is also Gaussian with a covariance E[BtBs] = t ∧ s :
consider for example t ≥ s

EBtBs =
∑

1≤k≤nt

∑
1≤j≤ns

E[B1,kB1,j ] +

nt∑
k=1

E[B1,kBs−ns,ns+1

+

ns∑
j=1

E[B1,jBt−nt,nt+1 + E[Bt−nt,nt+1Bs−ns,ns+1].

We can now study all the situations (nt = ns or nt > ns) and check that

EBtBs = t ∧ s.

Lastly, the Markov property trivially holds from the construction (3.8).

The multi-dimensional Brownian motion The multi-dimensional Brownian motion is again
a stochastic process, indexed by a real time t ∈ R+ that belongs to Rd. We still use the nota-
tion Bt := (B1

t , . . . , B
d
t ) where d is the dimension of the space. Each coordinate Bj

t follows the
dynamic of a Brownian motion, independently of the other coordinates.
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3.5.4.3 The Brownian motion and the Laplacian

The purpose of this paragraph is to exhibit the strong link that exists between the Brownian
motion and the second order differential operator Laplacian. Let be given a standard Brownian
motion (Bt)t≥0. As a Markov process, it is possible to consider the infenitesimal evolution of Bt+h
knowing that Bt = x ∈ Rd. To do so, we consider a test function f ∈ C3(Rd,R) and introduce
the linear operator

Lt(f)(x) := lim
h→0

E[f(Bt+h)|Bt = x]− f(x)

h
.

It is easy to see that the above equality does not depend on t from the Markov property of
the Brownian motion (it is indeed the case for any Markov process). We are driven to the next
definition :

Definition 3.5.4 (Infinitesimal geenrator) The infinitesimal generator of the Brownian mo-
tion is defined as

∀f ∈ C3(Rd,R) L(f)(x) := lim
h→0

E[f(Bt+h)|Bt = x]− f(x)

h
.

Theorem 3.5.6 For any function f ∈ C3(Rd,R), we have

L(f)(x) =
1

2
∆f(x)

Proof : We introduce ξ as a standard Gaussian vector of Rd. Then, we have through a simple
Taylor formula

f(Bt+h) = f(Bt +
√
hξ) = f(Bt) +

√
h〈ξ,∇f(Bt)〉+ h

tξD2f(Bt)ξ

2
+O(h3/2).

Now, assume that f(Bt) = x and we obtain

E[f(Bt+h)|Bt = x]− f(x) =
√
hE〈ξ,∇f(x)〉+ hE

(
tξD2f(x)ξ

2

)
+O(h3/2).

The first order term vanishes since E[ξ] = 0 and the second order term can be detailed :

E
(
tξD2f(x)ξ

2

)
=

∑
1≤(i,j)≤d

E[ξjξi]D
2
i,jf(x) =

d∑
i=1

E[ξ2
i ]D2

i,if(x) = ∆f(x)

where we use from line to line that ξi and ξj are independent when i 6= j and the second moment
of a Gaussian r.v. is 1. We finally obtain

f(Bt+h) = f(Bt +
√
hξ) = f(Bt) + h

∆f(x)

2
+O(h3/2).

Passing to the limit, we get

L(f) =
1

2
∆f

�
It is valuable to point that the B.M. can be shown to be the only continuous Gaussian

stochastic process such that Cov(Xs, Xt) = s ∧ t. It is also important to say that the evolution
of the Markov process is completely characterized through the infenitesimal generator L applied
on a sufficiently rich class of function (its domain). This is far beyond the scope of this lecture,
but many details can be found in the classical book of Ethier & Kurtz (level Masters Degree
Lecture Notes).
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Figure 3.7: Projection on a closed convex set A and angle characterisation.

3.5.5 Geometric separation with hyperplanes

An important consequence of the projection theorem is the separation result described below,
which is the tool for optimization and economics applications. It is also useful in game theory.
Remind first the picture associated to the projection theorem (see Figure 3.7). Denote A the
convex set, and y = PA(x), an important feature is that the angle between x − y and z − y is
obtuse, whatever z is in A.

This remark implies that the convex set A is entirely included in an half space defined by the
point y and the orthogonal direction x − y. A trivial consequence is that as soon as x /∈ A, we
can find a hyperplane that separates x and A.

Theorem 3.5.7 Let be given a closed convex set A of an Hilbert space H and x /∈ A, then we
can find r ∈ H such that

sup
z∈A
〈r, z〉 < 〈r, x〉.

Proof : The proof is immediate if we consider r = x− y 6= 0 with y = PA(x) as soon as x /∈ A.
The characterization of the projection is as follows :

∀z ∈ A 〈x− y, z − y〉 ≤ 0.

But the left hand side can be written as

∀z ∈ A 〈r, z − x+ x− y〉 = 〈r, z − x〉+ ‖r‖2.

We then obtain
∀z ∈ A 〈r, z〉 ≤ 〈r, x〉 − ‖r‖2.

Since r 6= 0, we obtain the result. �

The geometric interpretation is easy : an hyperplaneH is defined via a vector r and a constant
C such that the set of points ξ in H is in H iff

〈ξ, r〉 = C.

Moreover, the position of another point α with respect to the hyperplane is obtained through a
comparison of 〈α, r〉 with C. An easy consequence is that a suitable hyperplane is obtained by
taking the value of the constant C :

C = ‖r‖2/2,
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so that

〈r, x〉 = 〈r, r + y〉 = ‖r‖2 ≥ ‖r‖2/2.

In the meantime, when z ∈ A, we get

〈r, z〉 =
︷ ︸︸ ︷
〈r, z − y〉
≤0

+〈r, y〉 = −‖r‖2/2.

We can even push our analysis further, and consider now two convex sets A1 and A2 in an
Hilbert space and introduce the separation definition.

Definition 3.5.5 Two convex sets A1 and A2 are strictly separated by the linear form x 7−→
〈r, x〉 iff

sup
x1∈A1

〈r, x1〉 < inf
x2∈A2

〈r, x2〉

or

sup
x2∈A2

〈r, x2〉 < inf
x1∈A1

〈r, x2〉.

Roughly speaking, the convex sets A1 and A2 are separated by each hyperplane defined through
the linear form

〈r, x〉 = α,

when α belongs to the interval [supx2∈A2
〈r, x2〉; infx1∈A1〈r, x2〉].

A stricking property of convex separation is given below.

Corollary 3.5.3 If A1 and A2 are closed convex sets of an Hilbert space H with A2 compact.
A1 and A2 are separated iff they are disjoint.

Proof : The implication =⇒ is immediate. Conversely, assume that A1 and A2 are disjoint with
A2 compact and consider A1−A2 := {x1 − x2 : x1 ∈ A1, x2 ∈ A2}. This set is closed and convex
(left as an exercice to the reader). Moreover, 0 /∈ A1 − A2 since A1 and A2 are disjoint. Hence,
we can find r ∈ H such that

sup
z∈A1−A2

〈z, r〉 < 0.

But remark now that

sup
z∈A1−A2

〈z, r〉 = sup
x1∈A1,x2∈A2

〈x1 − x2, r〉 = sup
x1∈A1

sup
x2∈A2

〈x1 − x2, r〉

= sup
x1∈A1

〈x1, r〉+ sup
x2∈A2

〈−x2, r〉〉 = sup
x1∈A1

〈x1, r〉 − inf
x2∈A2

〈x2, r〉〉.

This ends the proof. �

We could push further the description of separation of convex sets in Hilbert spaces. Deeper
results will be encountered in the practical sessions associated to these lecture notes (Farkas
lemma, Caratheodory Theorem to name a few).

58



3.5.6 von Neuman’s minimax Theorem

3.5.6.1 Generic case

Let us consider two players P1 and P2, whose strategies are described in a set E1 and E2.
Given two strategies x ∈ E1 and y ∈ E2, the loss of player P1 is the reward of player P2 and
is defined in a function f(x, y). Of course, we assume here that no information about the choice
of P1 or the choice of P2 is available. We are going to show that under appropriate convexity
hypotheses :

sup
y∈E2

inf
x∈E1

f(x, y) = inf
x∈E1

sup
y∈E2

f(x, y).

In what follows, we will use

α := inf
x∈E

sup
y∈F

f(x, y) and β := sup
y∈F

inf
x∈E

f(x, y).

Note that without any assumptino on f , the Max-Min inequality is as follows.

Proposition 3.5.5 (Max-Min inequality)

β ≤ α
Proof : Define g : y 7−→ infx∈E1 f(x, y) and remark that g(y) ≤ f(x, y), ∀x ∈ E1. Taking the
supremum on y, we obtain supy∈E2

g(y) ≤ supy∈E2
f(x, y), ∀x ∈ E1. We thus obtain

sup
y∈E2

inf
x∈E1

f(x, y) ≤ sup
y∈E2

f(x, y), ∀x ∈ E1.

Taking the infimum on the right hand side, it leads to

sup
y∈E2

inf
x∈E1

f(x, y) ≤ inf
x∈E1

sup
y∈E2

f(x, y).

�

Let us briefly discuss on the assumptions needed to obtain the minimax result.
— HE : The sets E1 and E2 are compact and convex.

— Hf : The function f satisfies the following properties :

∀y ∈ E2 x 7−→ f(x, y) is convex and continuous.

∀x ∈ E1 y 7−→ f(x, y) is concave and continuous.
We can slightly weaken the assumption on the continuity of f and just handle semi-
continuity of f . For the sake of simplicity, we only deal here with the continuous case. We
can simply illustrate the payoff that players P1 and P2 could obtain in Figure 3.8.

Interpretation : The von Neumann result stands for the existence of an equilibrium (x∗, y∗)
in this two-players zero-sum game in the following sense : if the player controlling the strategy x
modifies his strategy when the player plays y∗, he increases his loss (what he is not supposed to
like !) : it is thus his interest to play x∗. Similarly, if the player controlling the strategy y modifies
his strategy when the first player plays x∗, the player diminishes his gain. This property of
equilibrium of saddle points justifies their use as a reasonable solution in a two-person zero-sum
game.

According to the assumptions above, we can state the general von Neumann theorem, whose
proof is omitted here and can be found in [J.P. Aubin, Applied functional analysis, Chapter 2].

Theorem 3.5.8 (von Neumann’s Theorem, Generic case) Under HE and Hf , we get

β = sup
y∈E2

inf
x∈E1

f(x, y) = inf
x∈E1

sup
y∈E2

f(x, y) = α
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Figure 3.8: Illustration of the payoff f : convex when y is fixed, concave when x is fixed.

3.5.6.2 Mixed strategies

We first describe the subcase of mixed strategies of the von Neumann result. We now imagine
that two persons are playing a zero-sum game with loss −f(i, j) for player 1 and reward f(i, j)
for player 2 and the set of strategies E1 and E2 is finite (and no longer convex). In this case,
the Max-Min inequality is always true

max
j

min
i
f(i, j) ≤ min

i
max
j
f(i, j),

but the converse inequality is false in general. For example, imagine that f is given as follows

P1 / P2 Strategy 1 Strategy 2 Strategy 3
Strategy 1 0 1 -1
Strategy 2 -1 0 1
Strategy 3 1 -1 0

It is an easy exercice to check that

max
j

min
i
f(ij) = −1 although min

i
max
j
f(ij) = 1.

Hence, in this example, we can remark that there does not necessarily exist an optimal strategy
for the second player : maxj mini f(i, j) is the best reward the second player could expect if the
first player discover its choice. The mixed situation occurs when now the choice of each player
becomes randomized with a probability distribution chosen by each player. Let us denote p1 and
p2 two probability distributions for the players 1 and 2. The expected loss of the first player is
then

EI∼p1,J∼p2f(I, J)

where I and J are independent random variables sampled with p1 and p2. We can make the
definition of the mean reward more explicit :

F (p1, p2) =

n∑
i=1

n∑
j=1

p1(i)p2(j)f(i, j). (3.9)

We will show below the von Neumann minimax Theorem, that proves the existence of an equili-
brium in the mixed strategies chosen by the two players, which is a saddle point of F . The two
players must then choose each one a precise couple of strategies (p∗1, p

∗
2) if they do not want to

“loose something".
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Theorem 3.5.9 (von Neumann mixed strategy minimax Theorem) For any loss/reward
function in a zero-sum two-player games, we have

max
p2

min
p1

F (p1, p2) = min
p1

max
p2

F (p1, p2) := F (p∗1, p
∗
2)

We present here a proof of Jean Ville (1938), that greatly simplifies the initial proof of von
Neumann and uses the separation theorem of convex sets, in the context of mixed strategies.
The cornerstone of the proof is Corollary 3.5.3, which may be view as an application of the
Hahn-Banach Theorem. We begin by the following lemma.

Lemma 3.5.2 Let (fi)1≤i≤p be linear forms on Rn such that

∀x ≥ 0 ∃i ∈ {1, . . . , p} fi(x) := 〈fi, x〉 ≥ 0.

Then, we can find a convex combination of the linear forms (fi)1≤i≤p such that

∀x ≥ 0 f(x) := 〈f, x〉 ≥ 0.

Note that a convex combination is

f =

p∑
i=1

λifi such that
p∑
i=1

λi = 1 with λi ≥ 0, ∀i ∈ {1, . . . , p}.

At last, remind that a linear form is simply an element of the dual of Rn. In our simple case
here, a linear form x 7−→ fi(x) is just described by a vector of Rn, still denoted fi here.
Proof : We use a contradictory proof and assume that such a linear combination does not exist.
We define C1 as the convex enveloppe of the elements (fi)1≤i≤p.

C1 := Conv((fi)1≤i≤p) :=

{
p∑
i=1

λifi : λi ≥ 0, ∀i ∈ {1, . . . , p} and
p∑
i=1

λi = 1

}
In the meantime, define also C2 as

C2 := {f ∈ Rn : ∀x ≥ 0 〈f, x〉 ≥ 0} .

It is immediate to check that C1 and C2 are closed convex sets of Rn. If the conclusion of the
lemma is false, then C1 and C2 are disjoints and Corollary 3.5.3 then implies that we can find a
linear form that separates C1 and C2, meaning that a vector x∗ ∈ Rn exists such that

∀f ∈ C1 〈f, x∗〉 < α and ∀f ∈ C2 〈f, x∗〉 > α.

Since {0Rn} ∈ C2, we see that α < 0. Moreover, for all integers i, the vector λei (whose value is
0 at each coordinate, except at the i-th one with value λ) is in C2 as soon as λ ≥ 0.

Now, for any vector y /∈ {R+}n and an integer i such that ei(y) = yi < 0, we can find a
sufficiently large λ such that λei(y) < α, meaning that necessarily x∗ ∈ {R+}n. We then have
found x∗ such that

x∗ ∈ {R+}n and ∀f ∈ C1 f(x) < α < 0.

But of course, the initial linear forms (fi)1≤i≤p belongs to C1 (as a trivial convex combination)
and we have obtained

∀j ∈ {1 ≤ i ≤ p} fj(x
∗) < α < 0.

This is a contradiction with our assumption, and the Lemma is shown. �

We can state an easy consequence by applying the Lemma above to fi − φ and obtain the
next result.
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Proposition 3.5.6 Let be given a linear form φ : Rn −→ +∞ and a family of p linear forms
(fi)1≤i≤p such that

∀x ≥ 0 ∃ix : fi(x) ≥ φ(x),

then a convex combination ψ = λ1f1 + . . .+ λpfp exists such that ψ ≥ φ (everywhere).

It is now time to prove the main result of this paragraph.
Proof : [of Theorem 3.5.9] We prove the result with a potential number of choices for the two
players that may be different : n1 6= n2. Define P1 the set of probability distributions on the finite
set {1, . . . , n1} and P2 the set of probability distributions on the finite set {1, . . . , n2}. These two
sets are closed and convex.

Recall the of F given in (3.9) by

∀p1 ∈ P1 ∀p2 ∈ P2 F (p1, p2) =

n∑
i=1

n∑
j=1

p1(i)p2(j)f(i, j)

and denote gj(p1) =
∑n

i=1 p1(i)f(i, j). gj(p1) refers to the expected loss of the first player,
following a strategy given by p1, when the second player chooses j. The important fact is that
gj is a linear form from P1 to R.

The Fubini theorem leads to

F (p1, p2) =
n∑
j=1

p2(j)gj(p1).

It is immediate to check that

max
p2∈P2

F (p1, p2) = max
1≤j≤n

gj(p1), (3.10)

which means that if the player 2 knew the strategy p1 of the first player, it is optimal to choose a
“Dirac" measure as a strategy. If α = min

p1∈P1

max
p2∈P2

F (p1, p2), Equation (3.10) shows that α satisfies :

∀p1 ∈ P1 α ≤ max
p2∈P2

F (p1, p2) = max
1≤j≤n

gj(p1).

Therefore, we have

∀p1 ∈ P1 ∃j ∈ {1 . . . n2} such that gj(p1) ≥ α = α
n∑
i=1

p1(i) = αφ(p1),

where φ is the linear form of P1 defined by φ(p) = p(1) + . . .+ p(n1). We can apply Proposition
3.5.6 and obtain the existence of λ1, . . . , λn2 such that

λ1g1 + . . .+ λn2gn2 ≥ φ.

As a convex set of coefficients, we identify p∗2 := (λ1, . . . , λn2) as a probability distribution on
P2. We have shown

F (p1, p
∗
2) ≥ α.

This inequality being true whatever p1 is, we deduce that

min
p1∈P1

F (p1, p
∗
2) ≥ α,
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which in turn implies that
max
p2∈P2

min
p1∈P1

F (p1, p
∗
2) ≥ α.

This ends the proof. �

The minimax von Neumann theorem can also be demonstrated with the help of some fixed
point theorem or duality of linear optimization. It should be understood as the existence of a
uniquer saddle point of the function f with gap-free duality. We have chosen to present the proof
with a convex separation approach instead.

3.5.7 Characterisation of the Pareto optima

Consider now an n-person situation described when we are given a set of available strategiesX
for the n-uple of players, and some loss functions of the player i : x ∈ X 7−→ fi(x) ∈ R, i = 1 . . . , n
associated to each strategy x ∈ X. These loss functions permit to define a partial pre-ordering
for an n-uple :

∀(x, y) ∈ X ×X x . y ⇐⇒ ∀i ∈ {1 . . . n} fi(x) ≤ fi(y)

The purpose of Pareto’s optima is to distinguish the minimal elements for this pre-ordering.

Definition 3.5.6 (Pareto’s minimum) We shall say that x∗ is a weak Pareto minimum if
there exists no other strategy y ∈ X such that

y . x∗.

Here, the convex aggregation of each loss function will play a central role. It is possible to select
a Pareto minimum by minimizing on X a convex combination fλ of the initial loss functions :

fλ(x) :=

n∑
i=1

λifi(x).

We want to decipher the relationship between weak Pareto minimizer and minimizer of a convex
combination of loss functions. A first link is given below.

Proposition 3.5.7 If λ = (λ1, . . . , λn) ∈ {R∗+}n is a set of convex coefficients, then the following
assertion holds :

x∗ ∈ arg min fλ =⇒ x∗ is weakly Pareto optimal

Proof : Consider a convex set of coefficients λ = (λ1, . . . , λn) and its associated convex aggrega-
tion fλ. We assume that x∗ minimizes fλ that is not a weak Pareto minimum. From Definition
3.5.6, it means that a strategy y exists such that

∀i ∈ {1 . . . n} fi(y) < fi(x
∗).

We deduce that in this case, fλ(y) < fλ(x∗), which contradicts the definition of x∗. �

The reverse implication would be much more interesting. We will show that appropriate
convexity hypotheses imply the reverse implication, namely, that every weak Pareto minimum
can be obtained by minimizing a suitable loss function on X.

Theorem 3.5.10 Assume that
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— X is a convex subset of a vector space H
— each loss functions fi is convex.

Then
x∗ is weakly Pareto optimal =⇒ ∃λ ∈ Conv({R∗+}n) x∗ ∈ arg min fλ.

Proof : The proof is splitted in three parts.
— Let us define φ : x ∈ X 7−→ {f1(x), . . . , fn(x)} and the set of vectors

~φ(X)+ := φ(X) + {R∗+}n :=
{
φ(x) + u : x ∈ X,u ∈ {R∗+}n

}
It is easy to check that φ(y) ∈ ~φ(X)+ if and only if there exists a ∈ X such that
fi(y) > fi(a), forall i, if and only if y is not weakly Pareto optimal.
Hence, if x∗ is weakly Pareto optimal, then φ(x∗) /∈ ~φ(X)+.

— The set ~φ(X)+ is convex : consider two elements y1, y2 in ~φ(X)+ and α ∈ [0, 1], then

∃(x1, x2) ∈ X2, ∃(u1, u2) ∈ {R∗+}n×{R∗+}n y1 = φ(x1)+u1 and y2 = φ(x2)+u2

Then, we obtain that

αy1 + (1− α)y2 = αφ(x1) + (1− α)φ(x2) + αu1 + (1− α)u2.

Since φ = (f1, . . . , fn), each coordinate of φ is a convex function. It leads to

φ [αx1 + (1− α)x2] . αφ(x1) + (1− α)φ(x2)

A simple consequence is

αy1 + (1− α)y2 = φ [αx1 + (1− α)x2]

+ (αu1 + (1− α)u2)︸ ︷︷ ︸
belongs to{R∗+}n

+ [αφ(x1) + (1− α)φ(x2)− φ [αx1 + (1− α)x2]]︸ ︷︷ ︸
belongs to{R∗+}n︸ ︷︷ ︸

belongs to{R∗+}n

This proves that αy1 + (1− α)y2 ∈ ~φ(X)+, and ~φ(X)+ is thus a convex set.
— We will show that a vector λ∗ exists such that the conclusion of the Theorem 3.5.10 holds.

Remark that the two first points show that φ(x∗) does not belong to the convex set ~φ(X)+.
The separation result given in Theorem 2.1.3 applied to x = φ(x∗) and A = ~φ(X)+ states
that a linear form given by 〈λ∗, .〉 exists such that

〈λ∗, φ(x∗)〉 ≤ inf
v∈~φ(X)+

〈λ∗, v〉 (3.11)

= inf
x∈X,u∈{R∗+}n

[〈λ∗, φ(x)〉+ 〈λ∗, u〉]

= inf
x∈X
〈λ∗, φ(x)〉+ inf

u∈{R∗+}n
〈λ∗, u〉 (3.12)

Since infx∈X〈λ∗, φ(x)〉 ≤ 〈λ∗, φ(x∗)〉, Inequality (3.12) implies that

inf
u∈{R∗+}n

〈λ∗, u〉 ≥ 0

But we can also write infu∈{R∗+}n〈λ
∗, u〉 as

inf
u∈{R∗+}n

〈λ∗, u〉 = inf
u1>0...,un>0

(
n∑
i=1

λ∗iui

)
=

n∑
i=1

inf
ui>0

λ∗iui ≥ 0
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Hence, all real values λ∗i are all nonnegative (otherwise the infimum would be −∞) and

inf
u∈{R∗+}n

〈λ∗, u〉 = 0.

From the inequality (3.11), we obtain that λ∗ 6= 0Rn and thus

‖λ∗‖1 =
n∑
i=1

|λ∗i | =
n∑
i=1

λ∗i > 0.

We now consider the vector of Rn :

λ̃ :=
λ∗

‖λ∗‖1
.

The great advantage of this normalized vector is that λ̃ ∈ {R+}n and
n∑
i=1

λ̃i =

n∑
i=1

λ∗i
‖λ∗‖1

=
‖λ∗‖1
‖λ∗‖1

= 1,

meaning that one can build a convex combination with the help of the set of coefficients
(λ̃1, . . . , λ̃n). We use again (3.12) to obtain

〈λ∗, φ(x∗)〉 ≤ inf
x∈X
〈λ∗, φ(x)〉

⇐⇒ 〈λ̃, φ(x∗)〉 ≤ inf
x∈X
〈λ̃∗, φ(x)〉

⇐⇒
∑n

i=1 λ̃ifi(x
∗) ≤ inf

x∈X

n∑
i=1

λ̃ifi(x)

⇐⇒ x∗ ∈ arg min fλ̃.

This last point ends the proof of the theorem. �

Let us briefly make two remarks. The cooperarice concepts of a solution in n-person games
consist of defining selection processes for Pareto minima. We shall briefly describe a procedure
for selecting a Pareto minimum. Let us denote by

αi := inf
x∈X

fi(x),

which represents the minimal loss of the i − th player (when he is the only one who plays).
Suppose that we are given a strategy x0 ∈ X such that

fi(x0) > αi,∀i ∈ {1 . . . , n}.

The following quantity measures the maximum size of relative losses of the players yielded by
the strategy x :

u(x) := max
1≤i≤n

fi(x)− αi
fi(x0)− αi

.

We can therefore build a weak Pareto minimum with the help of the next proposition.

Proposition 3.5.8 Let d := infx∈X u(x), then x∗ minimizes u on X iff

∀i ∈ {1, . . . , n} fi(x
∗) ≤ (1− d)αi + dfi(x0).

Moreover, x∗ is a weak Pareto minimum if X is compact and the functions (fi)1≤i≤n are conti-
nuous.
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Figure 3.9: Illustration of a possible set of weak Pareto minima (as a Pareto curve in bold line). The
point selected in bottom left is more or less the one built through the proof of Theorem 3.5.10.

Proof : Left to the reader. �

Of course, this selection depends (only) on the initial strategy x0 chosen in X. Remark that
in all this paragraph, nothing has been said about the uniqueness of Pareto weak minimum,
which is generally false. The set of Pareto weak minima is often a curve in X, as examplified by
Figure 3.9
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Chapitre 4

Fixed point theorems

The chapter is splitted in two parts. Section 4.1 presents the theoretical fixed point theorems
and pays a particular attention to the several assumptions needed to obtain these results (finite
dimensional space, compactness, . . . ). Section 4.2 is maybe much more interesting and proposes
some examples in several fields (game theory, economics, probability theory, Markov chains or
ordinary differential equation).

4.1 Fixed point theorems

The following results are stated for functions that act on a normed vector space f : E −→ E.

4.1.1 Banach-Picard’s Theorem

Theorem 4.1.1 (Banach-Picard) Let be given a Banach space (E, ‖.‖), A a closed set of E
and f a contracting map of A, meaning that :

∃k ∈ (0, 1) ∀(x, y) ∈ A2 ‖f(x)− f(y)‖ ≤ k‖x− y‖,

Then f admits a unique fixed point in A :

∃ !x ∈ E f(x) = x.

The assumptions above are absolutely necessary : for example consider A = (0, 1) and f(x) =
x/2, the function f is 1/2 Lipschitz and thus is a contracting map of A. But the unique fixed
point of f is 0 /∈ (0, 1). Similarly, if A = [0,+∞[ define f(x) =

√
1 + x2, we then have

|f(x)− f(y)| ≤ kx,y|x− y| with 0 ≤ kx,y ≤ 1.

It means that the contracting coefficient kx,y is each time stricly lower than 1 but tends to 1 as x
and y are going to infinity. Hence, this coefficient cannot be upper bounded by a number strictly
lower than 1 : the function f is not k-Lipschitz with k < 1 independent from x and y. In that
case, the Banach-Picard Theorem does not hold and we can check easily that indeed f does not
possess any fixed point :

x∗ =
√

1 + {x∗}2 =⇒ {x∗}2 = 1 + {x∗}2 =⇒ 0 = 1 . . .

We are now driven to the proof of Theorem 4.1.1.
Proof : Existence : Let be given any x0 ∈ A, we build the recursive sequence

∀n ∈ N xn+1 = f(xn).
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Since f : A −→ A, it is immediate to check that xn belongs to A for all n. Moreover, we can
write

‖xn − xn+1‖ = ‖f(xn−1)− f(xn)‖ ≤ k‖xn−1 − xn‖ . . . ≤ kn‖x0 − x1‖.
Consequently, the triangle inequality yields

∀(n, p) ∈ N ‖xn − xn+p‖ ≤
p−1∑
k=0

‖xn+k − xn+k+1‖

≤

(
p−1∑
k=0

kn+j

)
‖x0 − x1‖

=
1− kp

1− k
‖x0, x1‖

≤ kn

1− k
‖x0 − x1‖

This last upper bound trivially implies that (xn)n∈N is a Cauchy sequence and since A is a
Banach space, we deduce the convergence of this sequence towards x∗ in A.

Now, f is a continuous map (as a contracting map) and we obtain

lim
n−→+∞

f(xn)︸ ︷︷ ︸
:=xn+1

= f(x∗),

leading to
x∗ = f(x∗).

We conclude that one fixed point of f exists in A.
Uniqueness : Assume that two points (x∗1, x

∗
2) are fixed points of f . We can write :

‖x∗1 − x∗2‖ = ‖f(x∗1)− f(x∗2)‖ ≤ k‖x∗1 − x∗2‖,
meaning that

(1− k)‖x∗1 − x∗2‖ ≤ 0.

Since k ∈ (0, 1), it yields x∗1 = x∗2.
We now study the uniqueness property. �
Many generalizations of this theorem exist, some of them are useful in the Probability theory

field. In particular, we state the next consequence of the Banach-Picard Theorem. In what follows,
the notation fp refers to f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

p times

Corollary 4.1.1 Let be given A a closed subset of a Banach space (E, ‖.‖) and f : A→ A such
that an integer p exists with fp is a contracting map. Then f admits a unique fixed point.

Proof : We first apply the result of the Banach-Picard to the application fp, which is a contrac-
tion. Hence, a unique fixed point x∗ exists for fp.

Then, remark that any fixed point of f is necessarily a fixed point of fp and thus if a fixed
point of f exists, he is necessarily unique. Let us denote y = f(x∗), we have

fp(y) = fp+1(x∗) = f(fp(x∗)) = f(x∗) = y,

which shows that y is also a fixed point of fp. From the uniqueness property of the fixed point
of fp, we conclude that y = x∗, i.e.

x∗ = f(x∗).

�
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4.1.2 Brouwer’s Theorem

The Brouwer Theorem is a very strong result of Functional Analysis, the assumption are
clearly weaker than the assumptions of the Banach-Picard Theorem (the involved map is not
yet a contracting map). The important loss of the result is the uniqueness, which is not true
in the Brouwer Theorem. This theorem possesses many applications, among them the famous
Nash Theorem in Games Theory, the Perron-Frobenius Theorem in linear algebra and Markov
chains, some funny examples (Salop and Hotelling models rely on simple applications of Brouwer’s
result). We refer to Section 4.4.2 for examples.

We begin by the statement of the main result. In what follows, we will use the notation Bn
for the unit euclidean ball and Sn−1 for the unit euclidean sphere of Rn.

Theorem 4.1.2 (Brouwer’s Theorem - Unit ball) Every continuous function f : Bn −→
Bn has a fixed point.

We can illustrate the Brouwer Theorem through the historical example that made it possible
for Luitzen Egbertus Jan Brouwer to suspect the result to be true. The example related to the
cup of coffee movement is shown in Figure 4.1. 1

Figure 4.1: The cup of coffee example of function f of the unit ball with a fixed point. When turning
the coffee with a spoon, one point at the least seems immobile..

Of course, the geometry of the ball is important, and the result is no longer true for other
examples of domains as pointed by Figure 4.2.

But this result can be extended to various domains of Rn as follows.

Corollary 4.1.2 (Brouwer’s Theorem - Convex compact set) For any convex compact set
of Rn denoted C, if f : C −→ C is a continuous map, then f admits a fixed point.

Proof : [of Corollary 4.1.2] First, remark that C is bounded and can be included in an euclidean
ball with a radius sufficiently large R > 0. Then, considering the convex compact set CR :=
{x/R : x ∈ C} and the auxiliary map gR : x ∈ CR 7−→ g(Rx)/R ∈ CR, we see that a fixed point
of gR leads to a fixed point for g. Hence, without loss of generality, we can assume that R = 1,
i.e. C ⊂ Bn.

1. L.E.J. Brouwer, proving Alfred Renyi’s statement, “A mathematician is a machine for turning coffee into
theorems”.
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Figure 4.2: The Brouwer Theorem does not hold if the domain is unbounded or possesses some hole..

Let be given a continuous map g : C −→ C and define π as the projection of Rn on the
euclidean ball Bn. Since C is a convex compact set, then π is a continuous map and f = g ◦ π is
continuous from Bn to Bn. Hence, Theorem 4.1.2 implies that f has a fixed point :

∃x∗ ∈ Bn f(x∗) = x∗.

Now, remark that π(x∗) ∈ C and g(π(x∗)) ∈ C since g : C −→ C. An easy consequence of the
equality f(x∗) = x∗ is that in fact

x∗ ∈ C,

meaning that π(x∗) = x∗. Hence, g(x∗) = x∗ and x∗ is a fixed point of g. �
Before the proof of Theorem 4.1.2, we first show that it is enough to establish the Brouwer

Theorem for smooth functions of C∞(Bn, Bn). This is given by the next Lemma.

Lemma 4.1.1 Assume that every function of C∞(Bn, Bn) has a fixed point, then any function
of C0(Bn, Bn) has also a fixed point.

Proof : We consider a function g ∈ C0(Bn, Bn) and approximate g by a sequence of polynomials
such that

∀k ∈ N ‖g − Pk‖∞ ≤
1

k

If g : Bn −→ Bn, it is not true that Pk : Bn 7−→ Bn. However, we can easily modify Pk to do so
by considering :

Qk = (1 + 1/k)−1Pk,

since

∀x ∈ Bn |Qk(x)| = (1 + 1/k)−1|Pk(x)|
≤ (1 + 1/k)−1 [|g(x)|+ |Pk(x)− g(x)|]
≤ (1 + 1/k)−1 [1 + 1/k] ≤ 1
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Moreover, Qk is still an approximation of g :

‖Qk − g‖∞ =

∥∥∥∥ k

k + 1
Pk − g

∥∥∥∥
∞
≤
∥∥∥∥k(Pk − g)

k + 1
− g

k + 1

∥∥∥∥
∞

≤ k

k + 1
‖Pk − g‖∞ + ‖g‖∞(k + 1)−1

≤ k

k + 1
× 1

k
+

1

k + 1
=

2

k + 1
.

We can apply now the assumption to the map Qk : Bn −→ Bn and show that a sequence (xk)k∈N
exists such that

Qk(xk) = xk.

We then obtain
|g(xk)− xk| ≤

2

k + 1
,

Consider now an extraction and a sequence (xϕ(k))k∈N that converges to a limit point x∗ in Bn
(which is compact), it leads to

∃x∗ ∈ Bn g(x∗) = x∗.

�
A second important ingredient for the proof of Theorem 4.1.2 is the no-retractation Lemma,

which may be easily illustrated in dimension 2. The result seems quite logical : it is impossible to
press the whole ball Bn on its boundary Sn−1 in a differentiable way, without creating a “hole".
Even if intuitive, the proof of the no-retractation of the ball to the sphere is the main difficulty
of the proof of the Brouwer theorem.

Lemma 4.1.2 (No-retractation Lemma) There is no C1 function φ : Bn −→ Sn−1 such that
f(x) = x, ∀x ∈ Sn−1.

Proof :

Introduction of an auxiliary family of functions Assume that such a function f exists
and define (ft)t∈[0,1] as

∀t ∈ [0, 1] ft = tf + (1− t)IdBn .
This function ft is differentiable for any t ∈ [0, 1], and denoting dft denotes its derivative, we
then know that dft(x) is the tangent linear map of ft at point x.

Note that f0 = IdBn , which is an invertible application. Moreover, a simple computation
yields

∀x ∈ Bn ‖dft(x)− IdBn(x)‖ = t‖df(x)− IdBn(x)‖ ≤ t [‖df‖∞ + 1] ,

where ‖df‖∞ = supx∈Bn ‖df(x)‖ <∞ since f is C1. Consequently, we have

‖dft − Id‖ ≤
1

2
as soon as 0 ≤ t ≤ 1

2(‖df‖∞ + 1)

Writing now
dft = IdBn + dft − IdBn ,

it is easy to check that dft is invertible for t ∈
[
0, 1

2(‖df‖∞+1)

]
and as a continuous function of t

(for any x ∈ Bn) the determinant of dft(x) cannot change of sign (otherwise it would vanish and
then dft would be non invertible). Consequently, we have

∀x ∈ Bn ∀t ∈
[
0,

1

2(‖df‖∞ + 1)

]
det(dft(x)) > 0

71



Diffeomorphisms of the unit ball The family of functions (ft)t∈[0,1] are indeed smooth
diffeomorhisms of the unit ball when t is small enough. This can be seen as follows.

Pick t ∈
[
0, 1

2(‖df‖∞+1)

]
and assume that ft(x) = ft(y) and write that

∀(x, y) ∈ B2
n ‖x− y‖ ≤ ‖(ft(x)− x)− (ft(y)− y)‖ ≤ 1

2
‖x− y‖,

where the last inequality comes from the mean-value Theorem applied to x 7−→ ft− IdBn which
is differentiable and whose derivative has a norm lower than 1/2 when t ∈

[
0, 1

2(‖df‖∞+1)

]
. This

shows that x = y and ft is injective when t ∈
[
0, 1

2(‖df‖∞+1)

]
.

To show that ft is surjective, we study ft(B̊n). First, ft(B̊n) is an open set of B̊n (since ft is
locally invertible). The important point is that ft(B̊n) is also closed in B̊n. Consider (yn)n∈N ∈
ft(B̊n) such that yn −→ y∗ ∈ B̊n, we need to show that y∗ ∈ ft(B̊n).

A sequence (xn)n∈N exists such that yn = ft(xn). Since xn ∈ B̊n ⊂ Bn, we can extract a
convergent subsequence xϕ(n) −→ x∗. Obviously, we have

y∗ = ft(x
∗).

It remains to show that x∗ ∈ B̊n, otherwise x∗ ∈ Sn−1 and ft(x∗) = tf(x∗) + (1 − t)x∗ = x∗ ∈
Sn−1. It is impossible since y∗ /∈ Sn−1. Consequently, x∗ ∈ B̊n and y∗ ∈ ft(B̊n).

As a non empty closed an open set of B̊n, we then deduce that ft(B̊n) = B̊n and ft is a
surjection of B̊n. Since ft(x) = x for any x ∈ Sn−1, we conclude that ft(Bn) = Bn.

Conclusion We introduce

∀t ∈ [0, 1] k(t) =

∫
Bn

det(dft(x))dx.

Since t 7−→ ft is a degree 1 polynomial in t (in the space of applications), it is easy to see that
it is still the case for t 7−→ dft(x) (in the space of n × n matrices), whenever x is fixed in Bn.
Hence, while integrating over Bn, we deduce that the application t 7−→ k(t) is a degree n real
polynomial.

Moreover, ft is a C1 diffeomorphism of the unit ball Bn and a simple change of variable
x 7−→ ft(x) leads to

V ol(Bn) =

∫
Bn

1dy =

∫
f−1
t (Bn)

1(ft(x))| det(dft(x))|dx =

∫
Bn

| det(dft(x))|dx = k(t),

since the determinant is always positive.
We can now conclude that k is a real polynomial function of t, which is constant on the

interval
[
0, 1

2(‖df‖∞+1)

]
. Hence, k is a constant function of t, whatever t is. In particular

k(0) = k(1) =

∫
Bn

det(df(x))dx

but our baseline assumption on f yields that

∀x ∈ Bn ‖f(x)‖2 = 1.

Differentiating this relation with respect to x shows that

∀x ∈ Bn df(x)(f(x)) = 0 =⇒ det(df(x)) = 0.

72



Hence, k(1) = 0 6= k(0). We conclude that a such retractation does not exist. �
We are now driven to the proof of the Brouwer theorem.

Proof : [Of Theorem 4.1.2] The idea is relatively simple ! From Lemma 4.1.1, we it is enough to
establish the result for any function f of C∞(Bn). Hence, consider f ∈ C∞(Bn) that does not
possess any fixed point and build F as shown in Figure 4.3. Since x 6= f(x) for all x, we can
define the line Dx passing by x and f(x) and F (x) is the closest point of x on the line Dx that
intersect the sphere Sn−1.

Figure 4.3: The construction of F from the continuous function f .

It is an easy exercice to check that F is a C1 application from Bn to Sn−1 and

∀x ∈ Sn−1 F (x) = x.

Hence, F is a smooth retractation of the unit ball to the unit sphere. Such a function does not
exist, meaning that f possesses a fixed point. �

4.1.3 Schauder’s Theorem

The Schauder Theorem extends the result of the Brouwer fixed point Theorem to the situation
of infinite dimensional space. As usual, a common way to generalize a result from the finite
dimensional case to the infinite dimensional situation is to handle convex compact sets in Banach
spaces.

Theorem 4.1.3 (Schauder’s Fixed Point Theorem) Let E a Banach space and K ⊂ E a
convex and compact set. Then, every continuous function f : K −→ K has a fixed point.

Proof : First step : Compact covering
As a compact set, we can deduce that f is uniformly continuous on K (and not only conti-

nuous). Consequently, if we consider ε > 0, a δ > 0 exists such that

d(x, y) ≤ δ =⇒ d(f(x), f(y)) ≤ ε.

In the meantime, we can apply the Borel Lebesgue property for this radius ε to the set K and
find a finite covering :

K ⊂ ∪kj=1B(xj , δ)
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In particular, we can introduce the vector space

L = span(f(xj), 1 ≤ j ≤ k),

which is finite dimensional. This permits to consider the K̃ = K ∩ L, which is now a convex
compact set included in a finite dimensional space.

Second step : Reduction to the finite dimensional case We aim to apply Brouwer’s result to
deduce the Schauder Theorem. This is not immediate and we have to first build some kind of
“triangle" (or Schauder) function. These functions are quite similar to the ones introduced for
the construction of the Brownian Motion, from a geometrical point of view at least. They are
built as follows :

∀j ∈ {1, . . . , k} φj(x) =

[
1− ‖x− xj‖

δ

]
+

,

where [.]+ denotes the positive part symbol. Remark that in particular, each φj satisfies

∀x ∈ B(xj , δ) φj(x) > 0.

Since (B(xj , δ))1≤j≤k is a δ-covering of K, we then deduce that

∀x ∈ K
k∑
j=1

φj(x) > 0,

and an artificial normalisation permits to define

ψj(x) =
φj(x)∑k
i=1 φi(x)

,

so that

∀x ∈ K
k∑
j=1

ψj(x) = 1.

We are naturally driven to approximate the initial function f using the normalized Schauder
triangle basis :

g(x) :=
k∑
j=1

ψj(x)f(xj).

It is obvious to see that g is a continuous map. Moreover, each f(xj) ∈ K̃ and for any x ∈ K,
the set (ψj(x))1≤j≤k forms a convex set of coefficients. From the convexity of K̃, we deduce that

∀x ∈ K g(x) ∈ K̃.

Third step : Application of Brouwer’s result We then apply the fixed point result of Brouwer
to the continuous map g|K̃ (the function g restricted to the set K̃). The set K̃ being convex,
compact and included in a finite dimensional space, we then deduce that

∃ y ∈ K̃ g(y) = y.

Now, we can compute

f(y)− y = f(y)− g(y)

= f(y)

 k∑
j=1

ψj(y)

−
 k∑
j=1

ψj(x)f(xj)


=

k∑
j=1

ψj(y) [f(y)− f(xj)]
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But remark that if ψj(y) 6= 0, then necessarily y ∈ B(xj , δ), and the uniform continuity of f
leads to

ψj(y) 6= 0 =⇒ |f(y)− f(xj)| ≤ ε.

Consequently, we get

|f(y)− y| ≤
k∑
j=1

ψj(y)|f(y)− f(xj)| ≤ ε
k∑
j=1

ψj(y) = ε.

Hence, for any m ∈ N, we have found ym in K such that

|f(ym)− ym| ≤ 2−m.

The compactness of K permits to extract a subsequence of (ym)m≥1 that converges towards
y∗ ∈ K, and the continuity of f then implies :

f(y∗) = y∗.

�

4.1.4 Kakutani’s Theorem

This paragraph is now dedicated to the study of the existence of a fixed point for a family
of applications (and not only one). Of course, to deal with this additional complexity, we have
to impose a restriction on the set of admissible applications we will consider. The Kakutani
Theorem involves a set of linear and continuous maps of a non-empty compact and convex set
K of any normed vector space (not necessarily Banach). All the structural hypothesis is brought
by the set K and the linearity assumption.

Theorem 4.1.4 (Kakutani’s fixed point theorem) Let E be a normed vector space and K
a non-empty compact convex subset of E. Consider F ⊂ Lc(E) a subset of continuous and linear
map of E and assume that F satisfies :

— ∀f ∈ F f(K) ⊂ K
— ∀(f, g) ∈ F 2 f ◦ g = g ◦ f

Then, there exists a common fixed point for all the applications of F :

∃x∗ ∈ K ∀f ∈ F f(x∗) = x∗.

Proof : We split the proof in three parts.
First part : singleton. We consider the case when F is reduced to a single application (denoted
f in what follows). In that simple case, pick any x0 ∈ K and define the sequence

un(x0) =
1

n

n−1∑
k=0

fk(x0).

Remark that un(x0) is a convex combination of the points fk(x0). Moreover, f(K) ⊂ K, which
in turn implies that

∀k ∈ N fk(x0) ∈ K.

We thus deduce that un(x0) ∈ K since K is a convex set. Moreover, the linearity of f implies
that

‖f(un(x0))− un(x0)‖ =
‖fn(x0)− x0‖

n
≤ δ(K)

n
−→ 0 as n −→ +∞.
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As a compact set, K has in particular a finite diameter δ(K), justifying the above limit. Lastly,
we can extract a convergent subsequence from (un(x0))n≥0, which necessarily converges towards
a fixed point of f since f is continuous.
Second part : finite number of linear maps. We establish the result using an induction argument
on the number of elements in F . Note that the first point shows that the result holds when n = 1.
Assuming that the result is true until integer n−1, we consider the case where F = {f1, . . . , fn}.
If we denote

K̃ := {x ∈ K : ∀j < n fj(x) = x} ,

we know that K̃ is compact (as a closed set of the compact set K). Moreover, K̃ is also convex
owing to the linearity of the applications (fj)1≤j≤n−1.

A key remark is that K̃ is stable through the action of fn, it is implied by the following
equality :

∀j ∈ {1 . . . , n− 1} ∀x ∈ K̃ fn(x) = fn(fj(x)) = fn ◦ fj(x) = fj ◦ fn(x),

leading to the fact that fn(x) is a fixed point of each fj , meaning that fn(x) ∈ K̃. Applying
now the first point to the linear map fn on the compact convex set K̃, we know that one point
x∗ ∈ K̃ exists such that fn(x∗) = x∗. It yields

∃x∗ ∈ K ∀j ∈ {1, . . . , n} fj(x
∗) = x∗.

Third part : extension to any family of linear maps.
For any f ∈ F , we introduce the notation

Kf := {x ∈ K : f(x) = x} .

We know that Kf is a closed convex set of K and the second point leads to

∀F ′ ⊂ F |F ′| <∞ =⇒ ∩f∈F ′Kf 6= ∅,

where |F ′| refers to the number of elements in the set F ′.
But we know that K is compact, meaning that from every covering with open sets, we can

extract a finite covering with open sets. Traducing this property with the complementary sets,
it means that for any family of closed sets Gi, i ∈ I whose intersection is empty, we have :

∩i∈IGi = ∅ =⇒ ∃I ′ ⊂ I |I ′| <∞ and ∩i∈I′ Gi = ∅.

Conversely, it implies that{
∀I ′ ⊂ I : |I ′| < +∞ ⇒ ∩i∈I′Gi 6= ∅

}
=⇒ ∩i∈IGi 6= ∅ (4.1)

Applying (4.1) to the closed sets Kf , we then deduce that

∩f∈FKf 6= ∅

It then permits to find x in K such that x ∈ Kf ,∀f ∈ F . �

4.2 Applications to Ordinary Differential Equations

Many applications exist in applied mathematics and economics of the fixed point theorems
stated above. We have chosen to detail some of them in O.D.E., P.D.E. and probability. Further
details will be provided in the developments of the Game Theory lecture (next semester) by
Jérôme Renault.
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4.2.1 The Cauchy-Lipschitz Theorem

The first applications is concerned by the existence and uniqueness of solution of ordinary
differential equations described by a Cauchy problem. Let be given a Banach space (E, ‖.‖) and
a continuous function f : R× E −→ E, we are interested in the solutions of

(P) : ẋ(t) = f(t, x(t)),∀t ≥ t0 with x(t0) = x0 ∈ E.

We first make the following assumption on the smoothness of f .

Definition 4.2.1 (Local Lipschitz application) A function f(t, u) is local Lipschitz with res-
pect to the variable u if and only if for all couple (t0, u0), a neighborhood V exists and a constant
k > 0 such that

∀(t, u1) ∈ V ∀(t, u2) ∈ V ‖f(t, u1)− f(t, u2)‖ ≤ k‖u1 − u2‖.

We can state the Cauchy-Lipschitz Theorem, which is an application of the Banach-Picard fixed
point result.

Theorem 4.2.1 (Cauchy-Lipschitz Theorem) Assume that f is local Lipschitz w.r.t. x and
continuous, then (P) has a unique local solution.

Proof : Introduction of a key application ϕ.
We will see all along the proof the meaning of unique local solution. Without loss of generality,
we can assume that t0 = 0. Consider x0 ∈ E, we know that an open neighborhood U of (0, x0)
exists such that

∀(t, x), (x, y) ∈ U2 ‖f(t, x)−f(t, y)‖ ≤ ‖f(t, x)−f(t, x0)‖+‖f(t, x0)−f(t, y)‖ ≤ 2kβ := M,

where β is the diameter of the second component of U and M = 2kβ.
From now on, we consider a small parameter h > 0, that will be chosen later and the time

window J refers to ]−h, h[. Similarly, B will denote the open ball of E centered at point x0 with
radius β. We consider F := C0(J, B̄). It is easy to check that (F , ‖.‖∞) is a metric space, where

∀f ∈ F ‖f‖∞ := sup
t∈J
‖f(t)‖.

Moreover, we have already seen that this kind of functional space is a Banach space (every
Cauchy sequence of F converges in F).

If we consider now the linear map φ such that

∀f ∈ F φ(f) = f(0) ∈ E,

it is immediate to check that ψ is continuous so that G := ψ−1({x0}) is closed in F and thus
complete.

We introduce now the key application ϕ : u ∈ G 7−→ ϕ(u) ∈ G, defined as

∀t ∈ J ϕ(u)(t) := x0 +

∫ t

0
f(s, u(s))ds.

It is rather evident that for any choice of u ∈ G, ϕ(u) is a continuous function of t when t ∈ J .
Moreover, ϕ(u)(0) = x0. It remains to remark that ∀t ∈ J

‖ϕ(u)(t)− x0‖ ≤
∫ t

0
‖f(s, u(s))‖ds ≤ |t− t0| × sup

(s,x)∈J×B̄
‖f(s, x)‖ ≤ h× [ sup

|s|≤h
‖f(s, x0)‖+M ].
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It means that if h is chosen so that h× [sup|s|≤h ‖f(s, x0)‖+M ] ≤ β, then ϕ(u) ∈ G as soon as
u ∈ G. Consequently, we can find h small enough such that G is stable through the action of ϕ.

Application of the Banach-Picard Theorem.
We are turned to the application of a fixed point result. In this view, remark that ϕ can be seen
as a contraction, ∀(u, v) ∈ G2, we have

‖ϕ(u)−ϕ(v)‖∞ = sup
t∈J

∥∥∥∥∫ t

0
f(s, u(s))− f(s, v(s)ds

∥∥∥∥ ≤ ∫ h

0
‖f(s, u(s))−f(s, v(s)‖ds ≤ kh‖u−v‖∞.

Consequently, if h is chosen so that kh < 1 (say 1/2 for example), then ϕ is a contracting map
of (G, ‖.‖∞). The Banach-Picard Theorem then implies that a unique fixed point of ϕ exists in
G. And it is easy to check that such a fixed point satisfies (P) ! �

Remark 4.2.1 We omit in this paragraph many interesting stuff on the theory of maximal so-
lutions. Let’s just remark that indeed, the Cauchy-Lipschitz Theorem states the existence and
uniqueness of solution locally around each initial conditions of a Cauchy problem. Nothing is
said about the existence of a global solution on a given interval time [0, T ]. To extend a local
solution to a global one, some non-explosion criterion are generally needed to obtain a such
existence.

At last, remark that the local Lipschitz condition is unavoidable to obtain the local uniqueness
of solution : consider for example the problem

ẋ(t) =
√
x(t) with x(0) = 0,

has a constant solution x(t) = 0, for all time t ≥ 0. But another solution exists around t = 0
since we can formally write

ẋ(t)√
x(t)

= 1 =⇒
(√

x(t)
)′

=
1

2
,

so that x(t) = t2

4 is also solution around 0.

4.3 Applications to Markov chains

4.3.1 The Perron-Frobenius Theorem

Let us now describe important applications in the field of Markov chains : we start with a
general result of Linear Algebra with first “restrictive assumptions".

Theorem 4.3.1 Consider a matrix M ∈Mn,n(R) such that

∀(i, j) ∈ {1 . . . , n}2 Mi,j > 0.

Then M has at least one strictly positive eigenvalue.

Proof : We consider the set

S = {x ∈ Rn ∀i : xi ≥ 0 and ‖x‖1 = 1} ,

and we define the application

f : x ∈ S −→ Mu

‖Mu‖1
∈ S
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It is possible to check that f is well defined and continuous on S since

‖Mu‖1 =

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Mi,juj

∣∣∣∣∣∣ ≥ ‖u‖1 ×m,
where m = infi,jMi,j . Moreover, S is a closed compact set of Rn. It is also convex since it is an
intersection of convex sets. At last, we have

∀u ∈ S f(u) = v satisfies ∀i vi ≥ 0 and ‖v‖1 = 1.

Hence, the Brouwer Theorem implies that f possesses a fixed point in S. It means that a
vector u ∈ S exists such that

f(u) = u⇐⇒Mu = ‖Mu‖1u.

Written in a different way, u is an eigenvector ofM whose eigenvalue is positive with all coordinate
positive. �

4.3.2 Finite state Markov chains

Notation 4.3.1 (State space) We denote E a finite state space, of size N in what follows.

Definition 4.3.1 (Markov chain with transition matrix Q) A sequence of r. v. (Xn)n is
an homogeneous Markov chain, valued in E and of transition matrix Q if L(Xn+1 |Fn) =
L(Xn+1 |Xn) and

P[Xn+1 = j|Xn = i] := Qi,j .

You can observe an example of a graph representation of a Markov chain in Figure 4.4.

Figure 4.4: An example of Markov chain representation with a state space of size 3. Each edge of the
directed graph is weighted by the probability transition obtained in the transition matrix.

In what follows, we will assume that (Xn)n is an irreducible Markov chain, meaning that

∀(x, y) ∈ E ∃nx,y | Q
nx,y
x,y > 0.

Notation 4.3.2 (Pµ and Eµ) We will denote as Pµ and Eµ the probability and conditional ex-
pectations given the fact that X0 is sampled according to the distribution µ.

Notation 4.3.3 (µg) For any real function g defined on E, µg is the mean of g according to
µ :

µg :=
∑
x∈E

µ(x)g(x) = EY∼µg(Y ).
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Notation 4.3.4 (µQ) The left multiplication of the matrix Q by a vector µ of RN corresponds
to

∀i ∈ [1, N ] (µQ)(j) =
N∑
i=1

µ(i)Qi,j

This notation makes sense in particular when µ is a probability distribution : indeed we can show
that µQ is the distribution of the random variable X1 when X0 ∼ µ and (Xn)n∈N is a Markov
chain of transition Q.

Notation 4.3.5 (Qf) When f is a function of E, we denote Qf the right multiplication of Q
by f :

∀x ∈ E (Qf)(x) =
n∑
j=1

Qx,jf(j)

This corresponds to the action of the transition matrix Q on f and we obtain in Qf(x) the
average value of f(X1) when X0 = x.

In this lecture, we will be interested in the long time behaviour of the chain (Xn)n. This
asymptotic behaviour is described by the evolution of the distribution of Xn at time n, which is
denoted µn. As pointed above, µn := µn−1Q = . . . = µQn where µ = L(X0).

Definition 4.3.2 (Invariant measure π) We will say that π is an invariant measure of (Xn)n∈N
if it satisfies the fixed point equation

πQ = π.

In the sequel, we will be interested to the situations where π is not uniformly zero, and can be
normalized in a probability distribution.

When E is finite and irreducible, we will show that a unique invariant measure exists for the
Markov chain. Such a result could be generalized in many different settings (continuous state
space, continuous time Markov chain). At last, the stability of the Markov chain (Xn)n∈N consists
in looking at the evolution of a distance between the law at time n and this invariant measure π
when n −→ +∞.

4.4 Invariant measures (E fini)

Lemma 4.4.1 (Existence of invariant measure, finite case) When E is finite, there exists
at least one invariant measure of the homogeneous Markov chain with transition matrix Q.

Proof : The proof is easy : consider the application f : µ 7−→ µQ, where µ belongs to the
simplex of probability distribution over E, which is denoted S. This simplex S is closed, convex
and compact (as a bounded set of a finite dimensional space). Moreover, f(S) ⊂ S and the
Brouwer Theorem states that f has a fixed point on S. This fixed point is an invariant measure
for Q. �

Another important point is about the positivity of all invariant measures of irreducible chains.

Lemma 4.4.2 If Q is irreducible, then for any invariant measure π we have π(x) > 0, ∀x ∈ E.

Proof : As a probability distribution, one point x0 ∈ E exists such that π(x0 > 0. Now, we can
link any point y ∈ E with a path starting at x0 and ending at y within a finite number of steps
since the chain is irreducible. We know that π = πQk, for any integer k. Hence

π(y) = (πQnx0,y)(y) ≥ π(x0)Qnx0,y(x0, y) > 0.

This concludes the proof. �
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Definition 4.4.1 (Dirichlet forms) Let be given a measure π, we define the Dirichlet form
associated to the chain Q as

E(f) :=
1

2

∑
(x,y)∈E2

π(x)Q(x, y)[f(x)− f(y)]2 =
1

2
Eπ
(
[f(X1)− f(X0)]2

)
.

Lemma 4.4.3 If f is an harmonic function (i.e. satisfying Qf = f) and if Q is irreducible,
then f is constant over E.

Proof : We know that the invariant measure π > 0 over E since the chain is irreducible. We
compute the Dirichlet form and obtain :

2E(f) = Eπf2(X1) + Eπf2(X0)− 2Eπf(X1)f(X0)

= 2[πf2 − π(f(Qf))]

= 2[πf2 − π(f2)]

= 0

Hence, an Harmonic function f has a null Dirichlet form and from the initial expression, we see
that

Q(x, y) > 0 =⇒ f(x) = f(y).

Moreover, we can find a path that link x to y since Q is irreducible, and this path has a positive
probability. It means that f is constant. �

Using this Lemma, we can prove now the important baseline Theorem of irreducible Markov
chains on finite state space models.

Theorem 4.4.1 If E is finite and Q irreducible, the there exists a unique invariant measure for
the Markov chain Q.

Proof : We know that one invariant distribution exists from Lemma 4.4.1. Moreover, every
invariant measure satisfies π = πQ and πt is an eigenvector of Qt, whose eigenvalue is equal to
1.

Moreover, Lemma 4.4.3 shows that the eigenspace of Q associated to the eivenvalue 1 has a
dimension equal to 1 (and only contains the constant functions). Since Q and Qt possess the same
spectral structure (same dimension of eigenspaces), we can deduce that Qt has an eigenspace
associated to the eigenvalue 1 of dimension 1. In such a case, there exists only one invariant
distribution. �

Small illustrations :
Exercice Consider the chain over E = {0, 1} such that

Q =

(
1− a a
b 1− b

)
.

1/ Identify the invariant measure.
2/ We fixed X0 ∼ µ. Prove that

P(Xn = 0) =
b

a+ b
+ (1− a− b)n

(
µ(0)− b

a+ b

)
.

3/ Recover the expression of the invariant distribution.
Many deep developments can be obtained following this introduction to the Markov evolu-

tions. We advise interested readers to continue in a Master 2 in applied mathematics...
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4.4.1 Partial Differential Equations and Schauder’s result

Many applications not shown here, may be encountered in an Master 2 lecture in applied
mathematics...

4.4.2 Application to game theory : the Nash equilibrium Theorem

4.4.2.1 Description

In game theory, the Nash equilibrium definition refers to a situation of non-cooperative game.
It refers to a situation of n players with n ≥ 2. A Nash equilibrium is a kind of equilibrium in
the game where each player has chosen a strategy and no player can benefit from a modification
of his strategy while the others keep their strategy unchanged.

Say differently, in the 2 players situations, A and B are in Nash equilibrium if A is taking
the best decision he can knowing the strategy of B and in the same way B is taking the best
decision he can knowing the strategy of A. In the case of a number n > 2 of players, a situation
is in a Nash equilibrium if for any player i ∈ {1, . . . , n}, the player Pi is choosing the best action
he can knowing the other choices of the other player.

One famous example of Nash equilibrium is the prisoner’s dilemma : two criminals are arrested
by the police and each one is isolated in a room. The police asks each prisoner to choose a
strategy :

— betray the other criminal by saying that the other criminal has committed the crime
— cooperate and keep silent

The “outcome" of each prisoner is decided as follows :
— If the 2 criminals betray, then they are charged by 2 years of prison
— If the 2 criminals keep silent, then they are charged by 1 year of prison
— If one criminal (A) keeps silent and the other B betrays A, then B will be set free while

A will be charged of 3 years.
It is easy to see that a Nash equilibrium of such a game exists : a mutual betrayal is the
“optimal" choice for the two criminals. The dilemma then is that mutual cooperation yields a
better outcome than mutual defection but it is not the rational outcome because from a self-
interested perspective, the choice to cooperate, at the individual level, is irrational.

4.4.2.2 Mathematical approach

We now provide a mathematical definition of the problem and its resolution. We denote by
(S, f) a couple of S = (S1, . . . , Sn) set of n strategies, Si corresponding to the possible choices
offered to player i and f is an application that computes the n rewards associated to a set of
strategies chosen by the n players :

∀x = (x1, . . . , xn) ∈ S1 × S2 × . . .× Sn : f(x) = (f1(x), . . . , fn(x)).

Each value fi(x) corresponds to the reward (outcome) obtained by player i with the set of
strategies x = (x1, . . . , xn).

Definition 4.4.2 (Nash Equilibrium) A Nash Equilibrium x? is a n couples x? = (x?1, . . . , x
?
n)

such that
∀i ∈ {1 . . . n} ∀xi ∈ Si fi(x

?) ≥ fi(xi, x?−i).

Remark 4.4.1 Note that the Nash equilibrium is different from a Pareto optima. You can for
example consider the prisoner dilemma example : the Pareto optimal of the game is to cooperate
for the 2 criminals while the Nash equilibrium corresponds to the radical inverse choice : mutual
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betrayal. The difference comes from the cooperation involved in the Pareto situation while the
Nash equilibrium refers to non-cooperative games.

Several games are possible, some of them are of the type pure-strategy (one strategy in Si is
chosen by player i). Some other games are related to mixed-strategy : player i chooses a strategy
in Si randomly, according to a probability distribution πi on Si. The global strategy is then
π = π1× . . .×πn (tensor product corresponding to an independent choice of each player). The
mean outcome of the game for player i is

EX∼π[fi(X)],

where X is a n-valued random variable sampled according to π.

4.4.2.3 Nash’s Theorem

The famous Nash result dates back from 1950 (PhD) and 1951 (the original famous paper in
Annals of Maths). We can state this result as follows.

Theorem 4.4.2 (Nash theorem) If each Si is finite, every n-persons game with mixed stra-
tegies has as least one Nash equilibrium.

Proof : First claim, notations : We will establish the result using the Brouwer theorem (as it
was done in the original paper of Nash). We introduce the notation : x = (xi, x−i), where :

— x is a global choice of the n players
— xi is the choice of player i
— x−i refers to the choice of the players except i

Since we deal now with mixed-strategies, the strategy of player i is denoted by πi. Similarly, the
strategy of the other players is denoted by π−i.
Second claim, compactness : From the finiteness of each set of pure strategy Si, we know that
Π(Si) is a compact set, where Π(Si) refers to the set of probability distribution over Si.
Third claim, gain function : The gain function measures the increase of efficiency from a mixed
strategy to a pure one :

∀a ∈ Si ri(π, a) := 0 ∧ ui(a, π−i)− ui(π),

when the player i decides to switch his decision from πi to a. The function g(π) = (g1(π), . . . , gn(π))
defined by

∀a ∈ Si gi(π)(a) := πi(a) + ri(π, a),

satisfies : ∑
a∈Si

gi(π)(a) =
∑
a∈Si

πi(a) +
∑
a∈Si

ri(π, a) = 1 +
∑
a∈Si

ri(π, a).

Since each gain function is positive, we conclude that∑
a∈Si

gi(π)(a) ≥ 1 > 0.

Fourth step, fixed point argument : We define the function f = (f1, . . . , fn) : Π −→ Π by

∀a ∈ Si fi(π)(a) =
gi(π)(a)∑
a∈Si gi(π)(a)
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It is easy to check that fi(π)(.) defines a probability distribution on Si and thus induces a mixed
strategy for player i. Moreover, fi is a continuous function of π because

∑
a∈Si gi(π)(a) ≥ 1 > 0.

At last, Π is a compact convex set. Thus, the Brouwer theorem may be applied : a fixed point
π? of f exists and satisfies

f(π?) = π?.

Fifth step, key relationship : We now show that π? is a Nash equilibrium. For this purpose, it is
enough to show that each gain function is uniformly zero :

∀i ∈ {1 . . . n} ∀a ∈ Si ri(π
?, a) = 0,

meaning that each player has no benefit from moving its strategy from π?i to a pure strategy.
Conversely, we assume that the gain functions are not uniformly zero :

∃i0 ∈ {1, . . . , n} ∃a ∈ Si0 ri0(π?, a) > 0.

It means that
K :=

∑
a∈Si0

gi0(π?)(a) > 1.

Now, we use the fixed point caracterisation :

π? = f(π?) =⇒ π?i0 = fi0(π?)

=⇒ π?i0 =
gi0(π?)

K

=⇒ π?i0 =
π?i0 + ri0(π?, .)

K

=⇒ πstari0 =
1

K − 1
ri0(π?, .).

Hence, π?i0 is proportional to the gain ri0(π?, .).

In particular, for a pure strategy a ∈ Si0 , if ri0(π?, a) > 0, then

ri0(π?, a) = ui0(a, π?−i0)− ui0(π?)

and in that case
π?i0(a)ri0(π?, a) = πsi0tar(a)

[
ui0(a, π?−i0)− ui0(π?)

]
Assume now that ri0(π?, a) = 0, since π?i0 is proportional to the gain ri0(π?, .), the relationship

π?i0(a)ri0(π?, a) = π?i0(a)
[
ui0(a, π?−i0)− ui0(π?)

]
still holds because π?i0(a) = 0. In all cases, we deduce that

∀a ∈ Si0 π?i0(a)ri0(π?, a) = π?i0(a)
[
ui0(a, π?−i0)− ui0(π?)

]
Sixth step, Nash equilibrium : We obtain a contradiction as follows. Using that the average value
of ui0 is the sum over all the strategies in Si0 , we get :

0 = [ui0(π?i0 , π
?
−i0)− ui0(π?i0 , π

?
−i0)]

=

∑
a∈Si0

π?i0(a)ui0(a, π?−i0)

− ui0(π?i0 , π
?
−i0)

=
∑
a∈Si0

π?i0(a)
[
ui0(a, π?−i0)− ui0(π?i0 , π

?
−i0)

]
.
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Now, the key identity obtained in the fifth point yields

0 =
∑
a∈Si0

π?i0(a)ri0(π?, a),

and the fact that ri0(π?, .) = (C − 1)π?i0 leads to

0 = (C − 1)
∑
a∈Si0

π?i0(a)2.

Since π?i0 is a probability distribution over Si0 and C > 1, the above sum cannot be zero. We
then obtain our contradiction. �

We should now provide an additional remark : the proof of the Nash theorem relies on the use
of a key application from the set of mixed strategy into the same set and on the Brouwer theorem.
Indeed, a much more simpler proof is possible using a corollary of the Kakutani theorem, that
states a fixed point result for set-valued function.

As a conclusion, we should highlight the fact that the above proof is not yet constructive :
it does not provide an algorithmic way to find a Nash equilibrium, even with an approximation
argument. However, it is possible to write the equilibrium condition for mixed strategy and then
solve these Nash equilibrium conditions by brute force resolutions.
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