VA ikiStat

Collaborative Filtering

Collaborative Filtering

Summary

We describe here the important principles of the collaborative filte-
ring problem. This a common modern problem for www firms (ama-
zon, netflix, movilens, . .. ). It involves unfortunately (or fortunately)
non trivial mathematical derivations that will be briefly presented.
This kind of problem also leads to complicated numerical tasks.

1 Introduction - Recommandation systems

1.1 Customer relationship management

The expansion rate of online e-commerce shops leads to very important hu-
man needs in marketing, especially for the CRM customer relationship ma-
nagement. It is maybe one of the most important massive data origin and the
data-scientist must in that case produce a quantitative scoring. In general, the
firms require a model that builds an appetance scoring for a product (see the
example of the studies Premium credit card Visa Premier and life insurance
products).

1.2 New challenges of on-line e-commerce

The on-line e-commerce introduces new challenges that will be referred to
in what follows as collaborative filtering (or filtering for short).

The filtering problem studies one way to select and recommend automati-
cally some goods or products to customers according to their former visits on
the website of the firm, and to the informations store in the cookies of their
browser. It is sometimes described as a recommandation system. !

In the next sessions, we will talk about two large families of problem dedi-
cated to filtering.

e The first one concerns batched strategies : the data scientist possesses a

1. The website site "PodcastScience" provides an introduction that is reasonnably complete on
the problem.
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FIGURE 1 — An example of movie recommandation problem.

large number of observations of the filtering problem and has to produce
a recommendation for each new customer described by some partial ob-
servations (involved in the problem). Hence, the problem involves a tra-
ditionnal learning set and predictions should be considered as optimizers
of the accuracy on a test set.

e The second one is more challenging and concerns on-line strategies :
the data scientist must develop and algorithm that sequentially adapts its
recommendation to a recursion of arrivals of new customers. It leads to
the so-called Bandit’s algorithms world.

In a sense, the major difference of these two problems can be illustrated as
follows. Imagine (X1,...,X,) is a set of n i.i.d. observations of the same
law £.. We aim to recover Ex ., [X]. The first approach relies on the batched

estimate :
n

which consistently estimates [E x .. ,,[X] under mild assumptions.

The second approach considers some sequential arrivals of the observations
(X;);j>1 and chooses to update from time to time its belief on Ex ., [X] with
a recursive formula :

My = Mp_1 + 77Lh(mn—1a Xn)-

For example, in the case of the estimation of Ex ,,[X], it is easy to see that

My = Mp_1 + 7[Xn - mn—l]-
n
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This formula looks like an explicit Euler step associated to a discretisation of
an ordinary differential equation, which is sometimes a gradient descent. Here,
it is the case while considering H(m) = Ex.,[X — m]? (see the Lecture 4).

1.3 Collaborative filtering

This problem has beeen largely popularized by the Netflix challenge : it
consists in finding a good proposal for a customer while observing its taste on
movies seen before. The tastes of the customers are evaluated by a mark bet-
ween | and 5 on each movie. Hence, the objective is to predict the mark of each
customer on unseen movies, unread books, . ... Most of the e-commerce im-
portant shops are running some algorithms of collaborative filtering (Amazon,
Fnac, Netflix, Youtube...).

Warning : Collaborative filtering algorithms are only based on the interac-
tions between customers and products (and not on additional informations).

The statistical methods generally belong to two large families :

e Neighborhoods methods : very elementary and based on similarity sco-
ring on customers (linear correlation, Spearman ranking...) or on pro-
ducts (see [2] and Sections 2 and 3).

e Latent factor models : a prior on a sparse representation of the problem
is assumed.

2 User-User filters

Main assumption : customers with a similar profile will have similar tastes.
For a customer u, the aim is to find a subset S, of customers with a close
profile and predicting the missing mark of a product 7 on customer u relies on
a convex linear aggregation of marks of customers in S,,.

2.1 A generic way to compute the prediction

If one aims to predict the mark on product ¢ by customer u, the prediction is
defined as
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FIGURE 2 — Schematic representation of the user/user filtering approach.

where s(u, u') is a proximity score between v and v’ and 7,/ ; is the rate given
by customer u’ on product ¢. Using canonical notations, 7,, refers to the average
rate (on all the available products) given by customer w.

Remark. — Subtracting the users mean rating 7,, compensates for differences
in users’ use of the rating scale (some users will tend to give higher ratings
than others).

To run (1), it is first necessary to define a similarity score s, and second to
choose a threshold in this score to keep the highest values and then determine
the subset S,,. The size of .S, can be arbritrary, or data driven according to a
cross validation strategy. The important question remains the computation of
the scores.
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2.2 Scores

DEFINITION 1. — [Pearson correlation coefficient] The Pearson score is defi-
ned as

Zzelml (Tuyi = Tu) (T, — To)

\/Zzel a1, (Tui — Tu) \/Zzef r, (T = T0)?

SPearson U ’U

)

where 1, ; refers to the rate obtained by product i for customer u. Of course,
7, IS the average rate given by customer u.

DEFINITION 2. — [Spearman rank correlation coefficient] The Spearman rank
correlation is computed as

Zzel NI, (Tu ru)(f’m - fv)
\/Ezel NI, (Tui — Tu) \/ZZEI NI,

SSpea'r‘man u, U —
= )2
—Ty)

where T, ; refers to the rank of product i in the preferences of customer i (the
higher the score, the smaller the rank).

DEFINITION 3. — [Cosine similarity] This coefficient is based on a vectorial
space structure, it is computed as

{u, v)

scosine(u, 'U) = COS(’U,, U) =

lull-[loll”

where the unknown values of u and v are filled by 0 to compute this score.

On the very simple example of Figure 1, we aim to predict the score of
customer C' on movie e. The average known rate of C' is 3.667 and we use a
Pearson correlation coefficient with a neighborhood size of 2. We can check
that s(C, A) = 0.832 and S(C, D) = —0.515, leading to a predicted score of

Pee = 4.667.
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FIGURE 3 — Schematic representation of the Item/Item filtering approach.

2.3 Drawbacks

User-user collaborative filtering, while effective, suffers from scalability
problems as the user base grows. Searching for the neighbors of a user is an
O(IUl) operation (or worse, depending on how similarities are computing ? di-
rectly computing most similarity functions against all other users is linear in
the total number of ratings).

To extend collaborative filtering to large user bases and facilitate deployment
on e-commerce shops, it was important to develop more scalable approaches.
Rather than using similarities between users rating behavior to predict pre-
ferences, item- item filtering uses similarities between the rating patterns of
items. If two items tend to have the same users like and dislike them, then they
are similar and users are expected to have similar preferences for similar items.
In its overall structure, therefore, this method is similar to earlier content-based
approaches to recommendation and personalization, but item similarity is de-
duced from user preference patterns rather than extracted from item data.
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3 ltem ltem filters

Main assumption : the customers will prefer products that share a high simi-
larity with those already well appreciated. Prediction of product j : aggregate
with a linear convex combination of products S; that are closed to product j.

3.1 A generic way to compute the prediction

After collecting a set S of items similar to ¢, we can predict r,, ; as follows :

R Zjes s(i’j)rud

Tui = <57 2)
Ejes |S(Z7J)|

where s(i, 7) is a similarity score between product ¢ and j whereas S is a set
of products deduced from thresholding s(i, .).

This last prediction suffers from certain problems of normalization. For fur-
ther details, you are invited to read carefully the solutions proposed in [2].

3.1.1 ltem similarity

The item-item prediction process requires an item ?item similarity matrix S.

DEFINITION 4. — [Cosine similarity] Cosine similarity between items is the
most popular metric, as it is a simple fast and accurate estimator :

.o <riarj
s(i,7) = ————
©3) = Tl T

where again r; is the vector of rates obtained by product i filled by O in missing
values.

We can also propose to compute a Pearson correlation coefficient as it was
done above for the user/user filtering. Another approach relies on the Bayesian
paradigm.

DEFINITION 5. — [Conditional probability]
s(i,j) = P[j € Bli € B]

where B refers to the user’s purchase history.

On our simple example in Figure 1, we compute the rate of customer C' on
movie with a Cosine similarity and a neighborhood of size 2. We obtain

2 B s(b,e)rep + s(d,e)rc.a
e [s(b,e)] + [s(d, e)]
5% 0.607 + 2 % 0.382

0.607 + 0.382
= 3.84.

4 Non negative Matrix Factorisation

The so-called NMF method for collaborative filtering relies on a matricial
formulation of the problem. We call X the matrix of size n x p where n is the
number of customer and p the number of items. Before saying something about
its use for collaborative filtering, let us now provide briefly some insights on
this factorization.

41 SVD

There exists a very common factorization of X which is called the SVD.
This method involves a particular diagonal structure on one of the two ma-
trices, and a orthogonality constraint on the rows of the second. The mathema-
tical result states that if X € M,, ,(R) then

X =UDV™,

where U is a unitary matrix of size n X m, D is a n X p matrix with a non
negative diagonal, and V'* is the adjoint matrix of unitary matrix of size p X p.

4.2 NMF

The NMF is an alternative matrix factorization. X has to be approximated
by W x H where we are looking for a sparse structure on the data. This sparsity
is imposed by choosing W € M,, ,.(R) and H € M, ,(R), where r << nAp.
Moreover, we impose the constraint of positivity on W and H.

We can interpret the result of the NMF as follows : 7 is a list of latent factors
that are not observed and should be recover. It can be thought as a number of
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possible profiles of customers/clients couple.The real number w; ; is an appe-
tance score for customer ¢ to the latent factor j. Finally, h; ; represents the
proportion of item k involved in the latent factor j.

To recover both W and H, we introduce the minimization problem

W,H>0,rk(W)=r,rk(H)=r

3)

where (A1, A2) are penalization parameters and P(.) is a penalty function indu-
cing sparsity. The function L measures the accuracy of the prediction of X by
W H. It can involve the Frobenius norm or the Kullback-Leibler divergence :

Lgrobenius(A, B) = Tr((A— B)"(A — B))

and
Lir(A B) =) [Ai;log(Ai;/Bi;) — Xij + Bi ]
i,j
Note that the minimization of (3) does not always lead to a well posed problem
since every matrix D of size r X r with non negative coefficients verifies

X ~WD™'DH.

However, some efficient algorithms may be found (essentially projected gra-
dient descent and alternate least square (ALS) minimization). The last ap-
proach is based on the remark that when H is fixed, the problem is convex on
W and can be solved by semidefinite programming. Fortunately, the NMF pa-
ckage of IR propose 11 methods, among them 9 are based on the initial contri-
butions of Lee and Seung [3].

4.3 Application to recommandation

Assume now that X possesses some missing values, denoted “?” in what
follows. A natural extension to the variationnal minimization problem (3) is

i Xu v LuRv 2 4
Wzo,Hzo,rrlIcl(li?v)/\rk(H)gr XZ:;H[ ’ ] @

An alternative formulation can be though as follows :

rk(Z).

min
Z: T x, e [Xuw—Zu0]?<6

®)

4.4 A brief toy example

Follow the roadmap of Section 2

5 Convex relaxation of the rank function
5.1

We end the lecture with some considerations on the model involved in (3).
If we think about the Lasso relaxation of the ¢y norm, it may be possible to
obtain a similar relaxation for the rank function, since it is the may source of
“non convexity”. Recall first the “dual” criterion described above

Relaxation

rk(Z). (©)

min
ZZZXM #7 [Xu,v—Zu,w]?<0

Even intractable, [1] shows that it is possible to recover efficiently the missing
values of X with such a low rank factorization of X as soon as the dimensio-
nality is balanced as follows : the number of observed values should not be too
small :

(3,7) = Xi; #? >> kn'?log(n).

But the problem is still NP hard. A recent work [4] proposes to use the
convex enveloppe function of the rk function. This function is given by the
so-called nuclear norm, denoted || Z||. :

1Zll.:= > A=Tr(vVZ*2),

XeSp(Z)

where \/Z*Z is the positive semidefinite matrix B such that B> = Z*Z.
The important point is that this nuclear norm is convex, and permits to use
the machinery of convex optimization toolbox for obtaining reasonnably good
statistical algorithms in efficient computation time.

We refer to the Soft Impute method introduced in [4] for an implementation
of the following convex program :

. _ 2
min > Kuw = Zuowl® + A Z] (7

Xouo??
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Note that this looks very similar to the variationnal formulation of the Lasso.
The penalty term is governed by A, a positive coefficient that induces the spar-
sity of the model. The highest A, the smaller the rank of Z.

5.2 Soft-imput package
5.2.1 First round

A very brief example, which is stupid at the present moment...

Loading the package.

require (softImpute)

Simulating a pure uniformly random database with missing values.

set.seed (1011)

x=matrix (rnorm(30),6,5)

X[sample (1:30,10, replace=FALSE) ]=NA
X

Using Soft-Impute package.

fits=softImpute (x, trace=TRUE, type="svd")
fits

Since this is a small matrix, it has solved it using repeated SVDs. There is
no penalization here (A = 0), and by default the rank was taken to be 2. Since
there is no penalization, if the rank was given to be min(m, n), then there is no
restriction, and any values for the missing data would give the same minimum
loss of 0. In other words, either penalization, or a rank restriction (or both) are
needed for sensible imputation.

We can also use the ALS approach (non convex problem).

fita=softImpute (x, trace=TRUE)
fita2=softImpute (x, rank.max=3, lambda=1.9, trace=TRUE)

fits2S$d

We can impute the missing values using complete(), which returns the full
matrix :

complete (x,fits2)

5.2.2 Second round

We are now interested in a situation where the completion makes sense, i.e.,

when the matrix X is described by

X = WH,

where W is a n X r non-neagtive matrix and H is a r X p matrix, where r
stands for the rank of the matrix X, that quantifies the degree of variability in
the set of observations

set.seed (1978)
r=4

n=20

=25
prop=0.01

w=matrix (abs (rnorm(80)),n, r)
H=matrix (abs (rnorm(100)),r,p)

X=w%*%H

Z=X

X[sample (l:n*p, floor (n*pxprop), replace=FALSE) ] =NA

Let s try several possible factorizations with different possible values of 7.

#SVD
fits2=softImpute (X, trace=TRUE, type="svd")
#Completion

Zpred=complete (X, fits2)

(z-Zpred) /abs (Z)

#SVD
fitsd=softImpute (X, rank=4, type="svd")
#Completion

Zpred=complete (X, fits4)

(Z-Zpred) /abs (Z)
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Impressive improvement! :-] Further details may be found in the
Hastie’s webpage https://web.stanford.edu/~hastie/swData/
softImpute/vignette.html!
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