
1 Sequential and reinforcement learning: Stochastic Optimization II

Sequential and reinforcement learning:
Stochastic Optimization II

Summary

This session describes the important and nowadays framework of
on-line learning and estimation. This kind of problem arises in
bandit games (see below for details) and in optimization of big data
problems that involve so massive data sets that the user cannot
imagine exploiting the entire data with a batch algorithm. Instead,
we are forced to use some subset of observations sequentially
to produce both : tractable algorithms, fast predictions, efficient
statistical estimators.

We will describe below some bandit algorithms for stochastic optimi-
zation when some important assumptions are made on the structure
of the optimization problem. These famous algorithms address a ty-
pical situation where we need to adjust sequentially our prediction
and our action according to online observations.

At last, we will briefly describe an ultimate method for solving the
minimization of a non convex function with multiple local traps, by
using simulated annealing. This problem will be illustrated on the
so-called travelling salesman problem.

1 Bandit games

1.1 Motivation
• You are in a casino and want to play with slot machines
• Each one can give you a potential gain, but these gains are not equivalent
• You sequentially play with one of the arms of the bandit machine

How to design a good policy to sequentially optimize the gain ?

This question is not so obvious because of the possibility you are offered to
sequentially adjust your choice of the arm you will play at each round. This
“toy” presentation can be indeed examplified in many concrete situations.

1.1.1 Clinical trials

Problem : Optimization of a sequence of clinical trials

Imagine you are a doctor :
• A sequence of patients visit you sequentially (one after another) for a

given disease
• You choose one treatment/drug among (say) 5 availables
• The treatments are not equivalent
• You do not know where is the best drug, but you observe the effect of

the prescribed treatment on each patient
• You expect to find the best drug despite some uncertainty on the effect

of each treatment
How can we design a good sequence of clinical trials ?

http://wikistat.fr


2 Sequential and reinforcement learning: Stochastic Optimization II

1.1.2 “Fast fashion” retailer

Imagine you are a firm solding clothes :

• A population of customers visit you sequentially each week/day
• You observe weekly/daily sales and measure item’s popularity
• You want to restock popular items and weed out unpopular ones on-line
• You expect to maximize your benefit while finding the best items

How can we design a good sequence of fast-fashion operations ?

1.1.3 “Web design”

Imagine you want to select a web page design

• A population of customers visit you sequentially (one after another)
• You randomly propose two designs a and b and measure design’s popu-

larity through the signups you obtain
• You want to propose the popular design to maximize your benefit

How can we build a good sequence of webpage propositions ?

1.1.4 Other motivating examples

• Pricing a product with uncertain demand to maximize revenue

• Trading (sequentially allocate a ratio of fund to the more efficient trader)
• Recommender systems :

— advertisement
— website optimization
— news, blog posts

• Computer experiments
— A code can be simulated in order to optimize a criterion
— This simulation depends on a set of parameters
— Simulation is costly and only few choices of parameters are possible

1.2 Why is this problem difficult ?

Needs a careful mathematical formalization :

What is the underlying optimization problem to be solved ?

The mathematical model probably involves both
• one exploration step (the problem of exploring many possible arms to

locate the optimal one)
• one exploitation step (the problem of playing as much as possible the

best possible arm)
A trade-off certainly exists between we will have only a finite number of plays
(say T in what follows). Hence, we have to manage both views :

Scientist : Explore new ideas / Businessman : Exploit best idea found so far

http://wikistat.fr


3 Sequential and reinforcement learning: Stochastic Optimization II

1.3 Mathematical definition

Environment :
• At your disposal : d arms with unknown parameters θ1, . . . , θd.
• For any time t, your choice is described by one action It ∈ {1 . . . , d}
• For any time t, you receive a reward, that depends on your choice It :

AItt

For example :
— it corresponds to the money obtained by sampling one specific slot

machine in a Casino, the number of the machine is It.
— it corresponds to the size of a tumor after choosing to test one drug

on a patient.

Reward distribution :
• Of course, the rewards cannot be reasonnably assumed to be determinis-

tic (otherwise I won’t be there to talk about it !)
• For a fixed choice of the arm i, the rewards are i.i.d.

(Ait)t≥0 ∼ νθi .

• Important assumption : the reward distribution νθ belongs to a parame-
tric family of probability distributions (Exponential, Poisson, . . . ).

• One typical example : the reward of arm i is distributed according to a
Bernoulli distribution B(θi) :

P[Ait = 1] = θi and P[Ait = 0] = 1− θi.

Expected reward : Since the reward of arm i are assumed i.i.d., the expec-
ted reward of arm i is given by

∀t ∈ N EAit = EAi

1.4 A simplification assumption

In what follows, we will restrict our lecture to the simplest case of Bernoulli
rewards νp = B(p) :

• you obtain a gain of 1 with probability p

• 0 otherwise (with probability 1− p).
We use now p instead of θ to refer to the unknown parameters.

What is unknown, the several probability of success : (p1, . . . , pd).

Without l.o.g., we assume that the first arm is the best one :

p1 > max
2≤j≤d

pj .

Admissible policy :
• The agent’s action follow a dynamical strategy, which is defined on-line :

It = π
(
A
It−1

t−1 . . . , A
I1
1

)
.

It means that at step t, we can use all the informations gathered from
time 1 to time t− 1 to make our decision It.

• The decision It can be driven either by
— a deterministic function
— a random function
of the information from 1 to t− 1.

Final goal : Maximize (in expectation) the cumulative rewards :

E

[
n∑
t=1

AItt

]
.

1.5 Regret of Bandit algorithms

We introduce the so-called cumulative pseudo-regret of any Bandit policy
that compares the average performance of the algorithm used with the one if
the optimal arm were known :

R̄n := max
1≤j≤d

E

[
n∑
t=1

(Ajt −A
It
t )

]
= p1n− E

[
n∑
t=1

AItt

]
,

Minimizing R̄n is equivalent to maximizing the average cumulative rewards of
the policy over the n first runs of the algorithm.

http://wikistat.fr


4 Sequential and reinforcement learning: Stochastic Optimization II

2 ε-greedy algorithm

2.1 Description of the algorithm

Widely used ε-greedy algorithm’98 :

• Consider ε > 0 and an initial guess of the ability of each arm :

p̂j(0) is a prior information on pj

If no information, sample pj at random for example at the initialization
step.

• Step t to t+ 1 :
— With probability 1 − ε, use (one of) the best arm according to the

belief you have at time t :

(p̂j(t))1≤j≤d.

— With probability ε/d, pick an arm uniformly among all possibles.
— Upgrade the estimators of the Bernoulli parameters with the empiri-

cal means :

p̂j(t+ 1) =
1

nj(t+ 1)

t+1∑
n=1

Anj 1arm j sampled at timen,

where nj(t+1) is the number of times arm j is used from 1 to t+1.
• Usually, ε = 0.1.

2.2 Pro and cons

Some interesting features of this method :

• Maybe the most simple algorithm to understand
• Maybe the most simple algorithm to program
• Maybe one of the most fastest algorithm to build a recommandation at

each step

But unfortunately :

A brief experiment with 5 Bernoulli reward probabilities :
[0.1, 0.1, 0.1, 0.1, 0.9]

• ε = 0.1 : Businessman and Learns slowly and Does well at the end
• ε = 0.5 : Scientist and Learns quickly but Does not exploit at the end

http://wikistat.fr


5 Sequential and reinforcement learning: Stochastic Optimization II

Whatever ε is, linear regret with n since the probability to select the best arm
does not tend to 1. This probability is indeed (d− 1)/d× ε > 0. The regret is
at the least

R̄n ≥ ε
d− 1

d
∆× n,

where
∆ = p1 −max

j≥2
pj .

2.3 ε-greedy improvement

The idea is to adjust the behaviour of the algorithm with a suitable annealing
on ε all along the iterations of the algorithm. It can be shown (see [7]) that a
suitable scheme is :

∀n ≥ 1 εn = 1 ∧
{
c
d

∆2n

}
,

where c is a non-negative constant and ∆ is an unknown parameters that in-
volves the difference ability between the two best optimal arms :

∆ = p1 −max
j≥2

pj .

In practice, ∆ is unknown but may be estimated on-line. It can be easily shown
that in that case

R̄n ∼ ∆−2 log n,

which is the optimal rate that can be achieved when the distributions do not
change with n (see [5] for the optimality of this bound).

3 Optimistic algorithms

3.1 Rough description

“Optimal” algorithms may be produced by using an optimistic approach.
These optimistic algorithms are the so-called Upper Confidence Bound me-
thods (UCB for short). They have been introduced in 1985 in [5]. One of the
recent advances on these methods may be found in [2].

We propose a description of the general principle of the algorithm.

Strategy :
• Build a confidence bound around each empirical estimation of the pro-

bability of success

p̂i(t) ∈ [li(t);ui(t)],∀1 ≤ i ≤ d

• at time t, select the arm with the highest upper confidence bound :

It = arg maxui(t).

• Get the reward, and update the empirical estimator and the confidence
bounds

p̂i(t+ 1) ∈ [li(t+ 1);ui(t+ 1)]

3.2 Pro and Cons

UCB-like algorithm are shown to be optimal and satisfy

lim sup
n−→+∞

R̄n
log n

≤
∑
p<p1

1

2(p1 − p)
,

when the distributions of success are kept fixed with the horizon n. Hence,
they are (minimax) optimal with respect to the lower bound on all possible
strategies (see [5]).

Moreover, they also achieve a distribution free upper bound on the regret
which is also optimal (see [1]).

∀(p1, . . . , pd) ∈ [0, 1]d R̄n .
√
d log(d)n

http://wikistat.fr


6 Sequential and reinforcement learning: Stochastic Optimization II

4 Narendra Shapiro algorithm

4.1 Initial algorithm (1969)

The so-called Narendra-Shapiro bandit algorithm (NSa for short) was intro-
duced in [6]. It defines a probability vector of Sd

Xt = (X1
t , . . . , X

d
t ) |

d∑
j=1

Xj
t = 1.

Idea : Use Xt to sample one arm at step t and then upgrade this probability
Xt.

4.1.1 Two arm NSa

• In the two-armed situation with p2 < p1, denote Xt = (xt, 1− xt)
• Xt(1) = xt is the probability to choose the first arm at step t.
• Xt(2) = 1− xt is the probability to choose the second arm at step t.
• Upgrade formula

xt+1 = xt +


γt+1(1− xt) if arm 1 is selected and wins
−γt+1xt if arm 2 is selected and wins
0 otherwise

• Common step size :

γt = (1 + t/C)
−α

, α ∈ (0, 1) with large enough C.

• Same idea :
— If you win : reinforce the probability to sample It w.r.t. the remaining

weights (Xj
t )j 6=It and decrease the probability to sample the other

arms accordingly.
— If you loose (AItt = 0) : do nothing.

4.1.2 Multi-armed arm NSa

Multi-armed situation, It : arm sampled at time t, AItt : obtained reward.
Upgrade

∀j ∈ {1 . . . d} Xj
t = Xj

t−1 + γt

[
1{It=j} −X

j
t−1

]
AItt

To sum up :
• If you win : reinforce the probability to sample It and decrease the pro-

bability of others.
• If you loose (AItt = 0) : do nothing.

Unfortunately, this algorithm does not perform very well from the regret view-
point : it has a strictly positive probability to converge towards a wrongly opti-
mal arm, leading to a linear regret.

4.2 Two armed over-penalized NSa (2018)

To bypass the difficulty of convergence towards a wrong target, we increase
the exploration of the algorithm by adding a penalty effect to reinforce the
escape from local traps (see [3]).

5 Homework project

5.1 Feature of a good homework

Length limitation : 20 pages !
Deadline : 25th of March.
Group of 2 students allowed.

http://wikistat.fr


7 Sequential and reinforcement learning: Stochastic Optimization II

• This report should be not too long : strictly less than 20 pages, including
the references.

• The work relies both on a numerical implementation part (with either R,
Matlab or Python) and on a description of the algorithms behaviour on
your report, with experiments and theoretical insights.

The report should be organized as follows

1. First motivate the problem with a concrete application and propose a
reasonable modelling.

2. Second, the report should explain the mathematical difficulties to solve
the model and some recent developments to bypass these difficulties.
You can also describe the behaviour of some algorithms.

3. Third, the report should propose :
• numerical simulations using packages found on the www or your

own experiments.
• some sketch of proofs of baseline theoretical results
• a discussion part that present alternative methods (with references),

exposing pros and cons of each methods.

You can choose to only exploit a subsample of the proposed references,
as soon as the content of your work is interesing enough. You can also
complement your report with a reproducible set of simulations (use R, Matlab
or Python please) that can be inspired from existing packages. (If packages are
not public, send the whole source files). These simulations are not accounted
in the 20 pages of the report.

The report files should be named lastname.doc or lastname.pdf and expected
in my mailbox before 25th of March.

And to do this, anything is fair game (you can do what you want and find
sources everywhere, but take care to avoid a plagiat !)

5.2 Roadmap of your study and report

Section 1
• Explain and motivate the problem.
• Find a concrete example and a real database on www.

Section 2
• Fill the missing details of the algorithms briefly described in these slides.
• Explain the theoretical/numerical advantages of the methods.
• What is the Lai and Robbins lower bound result ?
• Find and describe another algorithm (that is not shown here).

Section 3
• Implement the previous algorithms with your own scripts (don t use any

package) on situations where you receive parametric rewards in typical
families (Bernoulli, Exponential, . . . ). The implementation is generally
easy.

• Comment on the several features of the algorithms you implement.
• Handle the real dataset example. This time you can use packages !

Références
[1] Jean Yves Audibert et Sébastien Bubeck, Regret Bounds and Minimax Po-

licies under Partial Monitoring, Journal of Machine Learning Research 11
(2010), 2635–2686.

[2] O. Cappé, A. Garivier, O. Maillard, R. Munos et G. Stoltz, Kullback-
Leibler Upper Confidence Bounds for Optimal Sequential Allocation, An-
nals of Statistics 41 (2013), 1516–1 541.

[3] S. Gadat, F. Panloup et S. Saadane, Regret bound for Narendra-Shapiro
bandit algorithms, Stochastic Processes and Applications (2016).

[4] Gittins J.C., Bandit Processes and Dynamic Allocation Indices, Journal of
the Royal Statistical Society. Series B (Methodological) 41 (1979), 148–
177.

[5] T.L. Lai et H. Robbins, Asymptotically efficient adaptive allocation rules,
Advances in Applied Mathematics 6 (1985), 4–22.

[6] K. S. Narendra et I. J. Shapiro, Use of stochastic automata for parameter
self-optimization with multi-modal perfomance criteria, IEEE Trans. Syst.
Sci. Cybern. 5 (1969), 352–360.

[7] Auer P., Cesa Bianchi N. et Fischer P., Finite-time Analysis of the Multiar-
med Bandit Problem, Machine Learning 47 (2002), 235 ?256.

http://wikistat.fr

	Bandit games
	Motivation
	Clinical trials
	``Fast fashion'' retailer
	``Web design''
	Other motivating examples

	Why is this problem difficult?
	Mathematical definition
	A simplification assumption
	Regret of Bandit algorithms

	-greedy algorithm
	Description of the algorithm
	Pro and cons
	-greedy improvement

	Optimistic algorithms
	Rough description
	Pro and Cons

	Narendra Shapiro algorithm
	Initial algorithm (1969)
	Two arm NSa
	Multi-armed arm NSa

	Two armed over-penalized NSa (2018)

	Homework project
	Feature of a good homework
	Roadmap of your study and report


