Big Data - Lecture 2
 High dimensional regression with the Lasso

S. Gadat

Toulouse, Octobre 2014

Big Data - Lecture 2
 High dimensional regression with the Lasso

S. Gadat

Toulouse, Octobre 2014

Schedule

1 Introduction

- Motivation
- Trouble with large dimension
- Goals
- Important balance: bias-variance tradeoff
(2) Sparse High Dimensional Regression
- Sparsity
- Inducing sparsityLasso estimation
- Lasso Estimator
- Solving the lasso - MM method
- Statistical results
(4) Application

I Introduction - Linear Model

- In a standard linear model, we have at our disposal (X_{i}, Y_{i}) supposed to be linked with

$$
Y_{i}=X_{i}^{t} \theta_{0}+\epsilon_{i}, 1 \leq i \leq n
$$

We aim to recover the unknown θ_{0}.
Generically, $\left(\epsilon_{i}\right)_{1 \leq i \leq n}$ is assumed to be i.i.d. replications of a centered and squared integrale noise

$$
\mathbb{E}[\epsilon]=0 \quad \mathbb{E}\left[\epsilon^{2}\right]<\infty
$$

- From a statistical point of view, we expect to find among the p variables that describe X important ones. Typical example:
- Y_{i} expression level of one gene on sample i
- $X_{i}=\left(X_{i, 1}, \ldots, X_{i, p}\right)$ biological signal (DNA micro-arrays) observed on sample i
- Discover a cognitive link between DNA and the gene expression level.

I Introduction - Micro-array analysis - Biological datasets

One measures micro-array datasets built from a huge amount of profile genes expression. Number of genes p (of order thousands). Number of samples n (of order hundred).

Diagnostic help: healthy or ill?

- Select among the genes meaningful elements?
- Find an algorithm with good prediction of the response?

I Introduction - Linear Model

From a matricial point of view, the linear model can we written as follows:

$$
Y=X \theta_{0}+\epsilon, \quad Y \in \mathbb{R}^{n}, X \in \mathcal{M}_{n, p}(\mathbb{R}), \theta_{0} \in \mathbb{R}^{p}
$$

In this lecture, we will consider situations where p varies (typically increases) with n.

I Introduction - Linear Model

Standard approach:

- $n \gg p$
- The M.L.E. in the Gaussian case is the Least Squares Estimator:

$$
\hat{\theta}_{n}:=\arg \min _{\beta \in \mathbb{R}^{p}}\|Y-X \beta\|_{2}^{2}
$$

given by

$$
\hat{\theta}_{n}=\left(X^{t} X\right)^{-1} X^{t} Y
$$

Proposition

$\hat{\theta}_{n}$ is an unbiased estimator of θ_{0} such that

- If $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right): \frac{\left\|X\left(\theta_{n}-\theta_{0}\right)\right\|_{2}^{2}}{\sigma^{2}} \sim \chi_{p}^{2}$

$$
\mathbb{E}\left[\frac{\left\|X\left(\theta_{n}-\theta_{0}\right)\right\|_{2}^{2}}{n}\right]=\frac{\sigma^{2} p}{n}
$$

- Most of the time, $\frac{\left\|X\left(\theta_{n}-\theta_{0}\right)\right\|_{2}^{2}}{n}$ is generally neglictible comparing to $\frac{\sigma^{2} p}{n}$

Main requirement: $X^{t} X$ must be full rank (invertible)!

I Introduction - Trouble with large dimension $p \gg n$

- $X^{t} X$ is an $p \times p$ matrix, but its rank is lower than n. If $n \ll p$, then

$$
r k\left(X^{t} X\right) \leq n \ll p
$$

- Consequence: the Gram matrix $X^{t} X$ is not invertible and even very ill-conditionned (the most of its eigenvalues are equal to 0 !)
- The linear model $\hat{\theta}_{n}$ completely fails.
- One standard "improvement" : use the ridge regression with an additional penalty:

$$
\hat{\theta}_{n}^{\text {Ridge }}=\arg \min _{\beta \in \mathbb{R}^{p}}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}
$$

The ridge regression is a particular case of penalized regression. The penalization is still convex w.r.t. β and can be easily solved.

- We will attempt to describe a better suited penalized regression for high dimensional regression.
- Our goal: find a method that permits to find $\hat{\theta}_{n}$:
- Select features among the p variables.
- Can be easily computed with numerical softs.
- Possess some statistical guarantees.

I Introduction - Objective of high dimensional regression

Remark:

Inconsistency of the standard linear model (and even ridge regression) when $p \gg n$.

$$
\mathbb{E}\left[X\left(\hat{\theta}_{n}-\theta\right)\right] \nrightarrow 0 \quad \text { when } \quad(n, p) \longmapsto+\infty \quad \text { with } \quad p \gg n
$$

Important and nowadays questions:

- What is a good framework for high dimensional regression ? A good model is required.
- How can we estimate? An efficient algorithm is necessary.
- How can we measure the performances: prediction of Y ? Feature selection in θ ? What are we looking for?
- Statistical guarantees? Some mathematical theorems?

I Introduction - bias-variance tradeoff

In high dimension:

- Optimize the fit to the observed data?
- Reduce the variability?

Standard question: find the best curve... In what sense?

I Introduction - bias-variance tradeoff

Several regressions:

- Left: fit the best line (1-D regression)
- Middle: fit the best quadratic polynomial
- Right: fit the best 10-degree polynomial

Now I am interested in the prediction at point $x=0.5$. What is the best?

I Introduction - bias-variance tradeoff

If we are looking for the best possible fit, a high dimensional regressor will be convenient.
Nevertheless, our goal is to generally to predict y for new points x and the matching criterion is

$$
C(\hat{f}):=\mathbb{E}_{(X, Y)}[Y-\hat{f}(X)]^{2}
$$

It is a quadratic loss here, and should be replaced by other criteria (in classification for example).

I Introduction - bias-variance tradeoff

- When the degree increases, the fit to the observed data (red curve) is always decreasing.
- Over the rest of the population, the generalization error starts decreasing, and after increases.
- Too simple sets of functions cannot contain the good function, and optimization over simple sets introduces abias.
- Too complex sets of functions contain the good function but are too rich and generates high variance.

I Introduction - bias-variance tradeoff

The former balance is illustrated by a very simple theorem.

$$
Y=f(X)+\epsilon \quad \text { with } \quad \mathbb{E}[\epsilon]=0
$$

Theorem

For any estimator \hat{f}, one has

$$
C(\hat{f})=\mathbb{E}[Y-\hat{f}(X)]^{2}=\mathbb{E}[Y-\mathbb{E}[\hat{f}(X)]]^{2}+\mathbb{E}[\mathbb{E}[\hat{f}(X)]-\hat{f}(X)]^{2}+\mathbb{E}[Y-f(X)]^{2}
$$

- The blue term is a bias term.
- The red term is a variance term.
- The green term is the Bayes risk and is independent on the estimator \hat{f}.

Statistical principle:

- The empirical squared loss $\|Y-\hat{f}(X)\|_{2, n}^{2}$ mimics the bias.
- Important need to introduce something a variance control of estimation Statistical penalty to mimic the variance.
there is an important need to control the variance of estimation.

Schedule

(1)

Introduction

- Motivation
- Trouble with large dimension
- Goals
- Important balance: bias-variance tradeoff

Sparse High Dimensional Regression

- Sparsity
- Inducing sparsityLasso estimation
- Lasso Estimator
- Solving the lasso - MM method
- Statistical results
(4) Application

Sparsity

An introductory example:

- In many applications, $p \gg n$ but...
- Important prior: many extracted feature in X are irrelevant for the response Y
- In an equivalent way: many coefficients in θ_{0} are not "almost zero" but "exactly zero".
- For example, if Y is the size of a tumor, it might be reasonable to suppose that it can be expressed as a linear combination of genetic information in the genome described in X. BUT most components of X will be zero and most genes will be unimportant to predict Y :
- We are looking for meaningful few genes
- We are looking for the prediction of Y as well.

Sparsity

Dogmatic approach:

- Sparsity: assumption that the unknown θ_{0} we are looking for possesses its major coordinates null. Only s of them are important:

$$
s:=\operatorname{Card}\left\{1 \leq i \leq p \mid \theta_{0}(i) \neq 0\right\}
$$

- Sparsity assumption:

$$
s \ll n
$$

- It permits to reduce the effective dimension of the problem.
- Assume that the effective support of θ_{0} were known, then

$$
\begin{aligned}
& y=X \quad \beta \quad \Longrightarrow \quad y \quad y=X_{S} \quad \beta_{S}+\epsilon
\end{aligned}
$$

- If \mathcal{S} is the support of θ_{0}, maybe $X_{\mathcal{S}}^{t} X_{\mathcal{S}}$ is full rank, and linear model can be applied.

Major issue: How could we find \mathcal{S} ?

Sparsity

Signal processing: in the 1990's, how could we find for high resolution 1,2,3 dimensional signals sparse representations?

- Before going further with data: understand what they represent and try to obtain a naturally sparse representation?
- How: wavelets decomposition in signal processing.

- Sparse representation: Y. Meyer (among others)
- Efficient algorithm: S. Mallat
- Noise robustness and hard thresholding method: D. Donoho

Sparsity

In statistics: in the 2000's, from a redundant representation, how could we find a sparse representation?

- Statistics don't manage to improve the representation of the primary features on the data!
-

- Statistical estimator of the LASSO: R. Tibshirani, 1996.
- Efficient algorithm to solve the LASSO with the LARS: Efron, Johnstone, Hastie, and Tibshirani, 2002.
- Another estimators: Dantzig Selector: Candes \& Tao (2007). Boosting: Buhlmann \& Yu (2003).
- Noise robustness and hard thresholding method: A. Tsybakov et al. (among others)

What is the LASSO method? How can we solve it? What about the statistical performances?

ℓ^{0} norm and convex relaxation

- Ideally, we would like to find θ such that

$$
\hat{\theta}_{n}=\arg \min _{\theta:\|\theta\|_{0} \leq s}\|Y-X \theta\|_{2}^{2}
$$

meaning that the minimization is embbeded in a ℓ_{0} ball.

- In the previous lecture, we have seen that it is a constrained minimization problem of a convex function ... A dual formulation is

$$
\arg \min _{\theta:\|Y-X \theta\|_{2} \leq \epsilon}\left\{\|\theta\|_{0}\right\}
$$

But:

- The ℓ_{0} balls are not convex!
- The ℓ_{0} balls are not smooth!
- First (illusive) idea: explore all ℓ_{0} subsets and minimize! Bullshit since:

$$
C_{p}^{s} \quad \text { subsets and } \quad p \text { is large! }
$$

- Second idea (existing methods): run some heuristic and greedy methods to explore ℓ_{0} balls and compute an approximation of $\hat{\theta}_{n}$. (See next lecture)
- Good idea: use a convexification of the $\left\|\|_{0}\right.$ norm (also referred to as a convex relaxation method). How?

ℓ^{0} norm and convex relaxation

Idea of the convex relaxation: instead of considering a variable $z \in\{0,1\}$, imagine that $z \in[0,1]$.

Definition (Convex Envelope)

The convex envelope f^{*} of a function f is the largest convex function below f.

Theorem (Envelope of $\theta \longmapsto\|\theta\|_{0}$)

- On $[-1,1]^{d}$, the convex envelope of $\theta \longmapsto\|\theta\|_{0}$ is $\theta \longmapsto\|\theta\|_{1}$.
- On $[-R, R]^{d}$, the convex envelope of $\theta \longmapsto\|\theta\|_{0}$ is $\theta \longmapsto \frac{\|\theta\|_{1}}{R}$.

Idea: Instead of solving the minimization problem:

$$
\begin{equation*}
\forall s \in \mathbb{N} \quad \min _{\|\theta\|_{0} \leq s}\|Y-X \theta\|_{2}^{2} \tag{1}
\end{equation*}
$$

we are looking for

$$
\begin{equation*}
\forall C>0 \quad \min _{\|\cdot\|_{0}^{*}(\theta) \leq C}\|Y-X \theta\|_{2}^{2} \tag{2}
\end{equation*}
$$

What's new?

- The function $\|\cdot\|_{0}^{*}$ is convex and thus the above problem is a convex minimization problem with convex constraints.
- Since $\|.\|_{0}^{*}(\theta) \leq\|\theta\|_{0}$, it is rather reasonnable to obtain sparse solutions. In fact, solutions of (2) with a given C provide a lower bound of solutions of (1) with $s \leq C$.
- If we are looking for good solutions of (1), then there must exists even better solution to (2).

ℓ^{0} norm and convex relaxation

Geometrical interpretation (in 2 D):

Left: Level sets of $\|Y-X \beta\|_{2}^{2}$ and intersection with ℓ^{1} ball. Right: Same with ℓ^{2} ball. The left constraint problem is likely to obtain a sparse solution. Oppositely, the right constraint no! In larger dimensions the balls are even more different:

ℓ^{1} penalty

- Analytic point of view: why does the ℓ^{1} norm induce sparsity?
- From the KKT conditions (see Lecture 1), it leads to a penalized criterion

$$
\min _{\theta \in \mathbb{R}} \min _{:\|\theta\|_{1} \leq C}\|Y-X \theta\|_{2}^{2} \Longleftrightarrow \min _{\theta \in \mathbb{R}} p \underbrace{\|Y-X \theta\|_{2}^{2}}_{\text {Mimics the bias }}+\overbrace{\lambda\|\theta\|_{1}}^{\text {Controls the variance }}
$$

- In the 1d case: $\arg \min _{\alpha \in \mathbb{R}} \frac{1}{2} \underbrace{|x-\alpha|^{2}+\lambda|x|}_{:=\varphi_{\lambda}(x)}$:

- The minimal value of φ_{λ} is reached at point x^{*} when $0 \in \partial \varphi_{\lambda}\left(x^{*}\right) . x^{*}$ is minimal iff
- $x^{*} \neq 0$ and $\left(x^{*}-\alpha\right)+\lambda \operatorname{sgn}\left(x^{*}\right)=0$.
- $x^{*}=0$ and $d \varphi_{\lambda}^{+}(0)>0$ and $d \varphi_{\lambda}^{-}(0)<0$.

Proposition (Analytical minimization of φ_{λ})

$$
x^{*}=\operatorname{sgn}(\alpha)[|\alpha|-\lambda]_{+}=\arg \min _{x \in \mathbb{R}}\left\{\frac{1}{2}|x-\alpha|^{2}+\lambda|x|\right\}
$$

- For large values of λ, the minimum of φ_{λ} is reached at point 0 .

Schedule

(1)

Introduction

- Motivation
- Trouble with large dimension
- Goals
- Important balance: bias-variance tradeoff
(2) Sparse High Dimensional Regression
- Sparsity
- Inducing sparsity
(3) Lasso estimation
- Lasso Estimator
- Solving the lasso - MM method
- Statistical results
(4) Application

Lasso estimator

Taking all together, we introduce the Least Absolute Shrinkage and Selection Operator - LASSO:

$$
\forall \lambda>0 \quad \hat{\theta}_{n}^{\text {Lasso }}=\arg \min _{\theta \in \mathbb{R}^{p}}\|Y-X \theta\|_{2}^{2}+\lambda\|\theta\|_{1}
$$

The above criterion is convex w.r.t. θ.

- Efficient algorithms to solve the LASSO, even for very large p.
- The minimizer may not be unique since the above criterion is not strongly convex.
- Predictions $X \hat{\theta}_{n}^{\text {Lasso }}$ are always unique.
- λ is a penalty constant that must be carefully chosen.
- A large value of λ leads to a very sparse solution, with an important bias.
- A low value of λ yields overfitting with no penalization (too much important variance).
- We will see that a careful balance between s, n and p exists. These parameters as well as the variance of the noise σ^{2} influence a "good" choice of λ.

Alternative formulation:

$$
\hat{\theta}_{n}^{L a s s o}=\arg \min _{\theta \in \mathbb{R} p:\|\theta\|_{1} \leq C}\|Y-X \theta\|_{2}^{2}
$$

Solving the lasso

Algorithm to solve the minimization problem $\arg \min _{\theta \in \mathbb{R}} p \underbrace{\|Y-X \theta\|_{2}^{2}+\lambda\|\theta\|_{1}}_{:=\varphi_{\lambda}(\theta)}$ is needed.
An efficient method follows the method of "Minimize Majorization" and is referred to as MM method.

- MM are useful for the minimization of a convex function/maximization of a concave one.
- Geometric illustration

- Idea: Build a sequence $\left(\theta_{k}\right)_{k \geq 0}$ that converges to the minimum of φ_{λ}.
- A particular case of such a method is encountered with the E.M. algorithm useful for clustering and mixture models.
- MM algorithms are powerful, especially they can convert non-differentiable problems to smooth ones.

MM algorithm

(1) A function $g\left(\theta, \theta_{k}\right)$ is said to majorize f at point θ_{k} if

$$
g\left(\theta_{k} \mid \theta_{k}\right)=f\left(\theta_{k}\right) \quad \text { and } \quad g\left(\theta \mid \theta_{k}\right) \geq f(\theta), \forall \theta \in \mathbb{R}^{p}
$$

(2) Then, we define

$$
\theta_{k+1}=\arg \min _{\theta \in \mathbb{R}^{p}} g\left(\theta \mid \theta_{k}\right)
$$

(3) We wish to find each time a function $g\left(., \theta_{k}\right)$ whose minimization is easy.
(4) An example with a quadratic majorizer of a non-smooth function:

(5) Important remark: The MM is a descent algorithm:

$$
\begin{align*}
f\left(\theta_{k+1}\right) & =g\left(\theta_{k+1} \mid \theta_{k}\right)+f\left(\theta_{k+1}\right)-g\left(\theta_{k+1} \mid \theta_{k}\right) \\
& \leq g\left(\theta_{k} \mid \theta_{k}\right)=f\left(\theta_{k}\right) \tag{3}
\end{align*}
$$

MM algorithm for the Lasso: Coordinate descent algorithm

(1) Define a sequence $\left(\theta_{k}\right)_{k \geq 0} \Longleftrightarrow$ find a suitable majorization.
(2) $g: \theta \longmapsto\|Y-X \theta\|^{2}$ is convex, whose Hessian matrix is $X^{t} X$. Taylor expansion leads to

$$
\forall y \in \mathbb{R}^{p} \quad g(y) \leq g(x)+\langle\nabla g(x), y-x\rangle+\rho(X)\|y-x\|^{2}
$$

where $\rho(X)$ is the spectral radius of X.
(3) We are naturally driven to upper bound φ_{λ} as

$$
\begin{aligned}
\varphi_{\lambda}(\theta) & \leq \varphi_{\lambda}\left(\theta_{k}\right)+\left\langle\nabla g\left(\theta_{k}\right), \theta-\theta_{k}\right\rangle+\rho(X)\left\|\theta-\theta_{k}\right\|_{2}^{2}+\lambda\|\theta\|_{1} \\
& =\psi\left(\theta_{k}\right)+\rho(X)\left\|\theta-\left(\theta_{k}-\frac{\nabla g\left(\theta_{k}\right)}{\rho(X)}\right)\right\|_{2}^{2}+\lambda\|\theta\|_{1}
\end{aligned}
$$

(4) To minimize the majorization of φ_{λ}, we then use the above proposition of soft-thresholding:

- Define

$$
\tilde{\theta}_{k}^{j}:=\theta_{k}^{j}-\nabla g\left(\theta_{k}\right)^{j} / \rho(X)
$$

- Compute

$$
\theta_{k+1}^{j}=\operatorname{sgn}\left(\tilde{\theta}_{k}^{j}\right) \max \left[\left|\theta_{k}^{j}\right|-\frac{2 \lambda}{\rho(X)}\right]_{+}
$$

Statistical results for the Lasso

Importance of the results: understand difficulties from a statistical point of view.

What could we expect? In expectation or with high probability:

- Estimation/consistency: $\hat{\theta}_{n} \simeq \theta_{0}$.
- Selection/Support: $\operatorname{Supp}\left(\hat{\theta}_{0}\right) \simeq \operatorname{Supp}\left(\theta_{0}\right)$.
- Prediction: $n^{-1} \| X\left(\hat{\theta}_{n}-\theta_{0} \|_{2}^{2} \simeq s_{0} / n\right.$

Statistical framework: we assume that $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ (for the sake of simplicity).

High dimensional framework:

- s is the sparsity of θ_{0}.
- $n \longmapsto+\infty$ with $p=0\left(e^{n^{1-\delta}}\right)$. It means that p may be much larger than n.
- We are looking for a rate of convergence involving s, p and n.

Important thing: choice of λ (in terms of s, p, n and σ^{2}).

Basic considerations (I)

We won't provide a sharp presentation of the best known results to keep the level understandable.
Important to have in mind the extreme situation of almost orthogonal design:

$$
\frac{X^{t} X}{n} \simeq I_{p}
$$

Solving the lasso is equivalent to solving

$$
\min _{w} \frac{1}{2 n}\left\|X^{t} y-w\right\|_{2}^{2}+\lambda\|w\|_{1}
$$

Solutions are given by ST (Soft-Thresholding):

$$
w_{j}=S T_{\lambda}\left(\frac{1}{n} X_{j}^{t} y\right)=S T_{\lambda}\left(\theta_{j}^{0}+\frac{1}{n} X_{j}^{t} \epsilon\right)=
$$

Basic considerations (II)

We would like to keep the useless coefficients to 0 . It requires that

$$
\lambda \geq \frac{1}{n} X_{j}^{t} \epsilon, \forall j \in J_{0}^{c}
$$

The r.v. $\frac{1}{n} X_{j}^{t} \epsilon$ are i.i.d. with variance σ^{2} / n.
The expectation of the maximum of $p-s$ Gaussian standard variables $\simeq \sqrt{2 \log (p-s)}$.
It leads to

$$
\lambda=A \sigma \sqrt{\frac{\log p}{n}}, \quad \text { with } \quad A>\sqrt{2}
$$

Precisely:

$$
\mathbb{P}\left(\forall j \in J_{0}^{c}:\left|X_{j}^{t} \epsilon\right| \leq n \lambda\right) \geq 1-p^{1-A^{2} / 2}
$$

We expect that $S T_{\lambda} \longmapsto I d$ to obtain a consistency result. It means that $\lambda \longmapsto 0$, so that

$$
\frac{\log p}{n} \longmapsto 0
$$

Lasso consistency - One result

Theorem

Assume that $\log p \ll n$, that all matrix X has norm 1 and $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then under a coherence assumption on the design matrix $X^{t} X$, one has
i) With high probability, $J\left(\hat{\theta}_{n}\right) \subset J_{0}$.
ii) There exists C such that, with high probability,

$$
\frac{\left\|X\left(\theta_{n}-\theta_{0}\right)\right\|_{2}^{2}}{n} \leq \frac{C}{\kappa^{2}} \frac{\sigma^{2} s_{0} \log p}{n}
$$

where κ^{2} is a positive constant that depends on the correlations in $X^{t} X$.
One can also find results on the exact support recovery, as well as some weaker results without any coherence assumption.
N.B.: Such a coherence is measured through the almost orthogonality of the colums of X. It can be traduced in terms of

$$
\left|\sup _{i \neq j}\left\langle X_{i}, X_{j}\right\rangle\right| \leq \epsilon
$$

Short example with the R software

CRAN software: http://cran.r-project.org/web/packages/lars/
R Code:
library(lars)
data(diabetes)
attach(diabetes)
fit $=\operatorname{lars}(x, y)$
plot(fit)
Lars algorithm: solves the Lasso less efficiently than the coordinate descent algorithm.

Typical output of the Lars software:

- The greater ℓ^{1} norm, the lower λ
- Sparse solution with small values of the $\|.\|_{1}$ norm.

Removing the bias of the Lasso (I)

Signal processing example:

We have $n=60$ noisy observations $Y(i)=f(i / n)+\epsilon_{i} . f$ is an unknown periodic function defined on $[0,1]$, sampled at points $(i / n) . \epsilon_{i}$ are independent realizations of Gaussian r.v. We use the 50 first Fourier coefficients:

$$
\varphi_{0}(x)=1, \quad \varphi_{2 j}(x)=\sin (2 j \pi x) \quad \varphi_{2 j+1}(x)=\cos (2 j \pi x)
$$

to approximate f. The OLS estimator is

$$
\hat{f}^{O L S}(x)=\sum_{j=1}^{p} \hat{\beta}_{j}^{O L S} \varphi_{j}(x) \quad \text { with } \quad \hat{\beta}^{O L S}=\arg \min _{\beta} \sum_{i=1}^{n}\left(Y_{i}-\sum_{j=0}^{p} \beta_{j} \varphi_{j}(i / n)\right)^{2}
$$

The OLS does not perform well on this example.

Removing the bias of the Lasso (II)

We experiment here the Lasso estimator with $\lambda=3 \sigma \sqrt{\frac{2 \log p}{n}}$ and obtain

- Lasso estimator reproduces the oscillations of f but these oscillations are shrunk toward 0 .
- When considering the initial minimization problem, the ℓ^{1} penalty select nicely the good features, but introduces also a bias (introduces a shrinkage of the parameters).
- Strategy: select features with the Lasso and run an OLS estimator using the good variables.

Removing the bias of the Lasso (III)

We define

$$
\hat{f}^{\text {Gauss }}=\pi_{\hat{J}_{0}}(Y) \quad \text { with } \quad \hat{J}_{0}=\operatorname{Supp}\left(\hat{\theta}^{\text {Lasso }}\right)
$$

where $\pi_{\hat{J}_{0}}$ is the \mathbb{L}^{2} projection of the observations on the features selected by the Lasso.

The Adaptive Lasso is almost equivalent:

$$
\beta^{\text {Adaptive Lasso }}=\arg \min _{\beta \in \mathbb{R}^{p}}\left\{\|Y-X \beta\|_{2}^{2}+\mu \sum_{j=1}^{p} \frac{\left|\beta_{j}\right|}{\left|\hat{\beta}_{j}^{\mathrm{Gauss}}\right|}\right\}
$$

This minimization remains convex and the penalty term aims to mimic the ℓ^{0} penalty. The Adaptive Lasso is very popular and tends to select more accurately the variables than the Gauss-Lasso estimator.

