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I Introduction - Linear Model

In a standard linear model, we have at our disposal (Xi, Yi) supposed to be linked with

Yi = X
t
i θ0 + εi, 1 ≤ i ≤ n.

We aim to recover the unknown θ0.
Generically, (εi)1≤i≤n is assumed to be i.i.d. replications of a centered and squared
integrale noise

E[ε] = 0 E[ε2] <∞

From a statistical point of view, we expect to find among the p variables that describe X

important ones. Typical example:

Yi expression level of one gene on sample i
Xi = (Xi,1, . . . , Xi,p) biological signal (DNA micro-arrays) observed on sample i
Discover a cognitive link between DNA and the gene expression level.
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I Introduction - Micro-array analysis - Biological datasets

One measures micro-array datasets built from a huge amount of profile genes expression. Number
of genes p (of order thousands). Number of samples n (of order hundred).

Diagnostic help: healthy or ill?

Select among the genes meaningful elements?

Find an algorithm with good prediction of the response?
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I Introduction - Linear Model

From a matricial point of view, the linear model can we written as follows:

Y = Xθ0 + ε, Y ∈ Rn, X ∈ Mn,p(R), θ0 ∈ Rp

In this lecture, we will consider situations where p varies (typically increases) with n.
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I Introduction - Linear Model

Standard approach:

n >> p

The M.L.E. in the Gaussian case is the Least Squares Estimator:

θ̂n := arg min
β∈Rp

‖Y −Xβ‖22,

given by

θ̂n = (X
t
X)
−1
X
t
Y

Proposition

θ̂n is an unbiased estimator of θ0 such that

If ε ∼ N (0, σ2):
‖X(θn−θ0)‖22

σ2
∼ χ2

p

E
[
‖X(θn − θ0)‖22

n

]
=
σ2p

n

Most of the time,
‖X(θn−θ0)‖22

n is generally neglictible comparing to σ2p
n

Main requirement: XtX must be full rank (invertible)!
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I Introduction - Trouble with large dimension p >> n

XtX is an p× p matrix, but its rank is lower than n. If n << p, then

rk(X
t
X) ≤ n << p.

Consequence: the Gram matrix XtX is not invertible and even very ill-conditionned (the
most of its eigenvalues are equal to 0!)

The linear model θ̂n completely fails.

One standard “improvement”: use the ridge regression with an additional penalty:

θ̂
Ridge
n = arg min

β∈Rp
‖Y −Xβ‖22 + λ‖β‖22

The ridge regression is a particular case of penalized regression. The penalization is still
convex w.r.t. β and can be easily solved.

We will attempt to describe a better suited penalized regression for high dimensional
regression.

Our goal: find a method that permits to find θ̂n:

Select features among the p variables.
Can be easily computed with numerical softs.
Possess some statistical guarantees.
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I Introduction - Objective of high dimensional regression

Remark:

Inconsistency of the standard linear model (and even ridge regression) when p >> n.

E
[
X(θ̂n − θ)

]
9 0 when (n, p) 7−→ +∞ with p >> n.

Important and nowadays questions:

What is a good framework for high dimensional regression ? A good model is required.

How can we estimate? An efficient algorithm is necessary.

How can we measure the performances: prediction of Y ? Feature selection in θ? What are
we looking for?

Statistical guarantees? Some mathematical theorems?
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I Introduction - bias-variance tradeoff

In high dimension:

Optimize the fit to the observed data?

Reduce the variability?

Standard question: find the best curve... In what sense?

S. Gadat Big Data - Lecture 2



Introduction
Sparse High Dimensional Regression

Lasso estimation
Application

Motivation
Trouble with large dimension
Goals
Important balance: bias-variance tradeoff

I Introduction - bias-variance tradeoff

Several regressions:

Left: fit the best line (1-D regression)

Middle: fit the best quadratic polynomial

Right: fit the best 10-degree polynomial

Now I am interested in the prediction at point x = 0.5. What is the best?
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I Introduction - bias-variance tradeoff

If we are looking for the best possible fit, a high dimensional regressor will be convenient.
Nevertheless, our goal is to generally to predict y for new points x and the matching criterion is

C(f̂) := E(X,Y )[Y − f̂(X)]
2
.

It is a quadratic loss here, and should be replaced by other criteria (in classification for example).
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I Introduction - bias-variance tradeoff

When the degree increases, the fit to the observed data (red curve) is always decreasing.

Over the rest of the population, the generalization error starts decreasing, and after
increases.

Too simple sets of functions cannot contain the good function, and optimization over simple
sets introduces abias.

Too complex sets of functions contain the good function but are too rich and generates high
variance.
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I Introduction - bias-variance tradeoff

The former balance is illustrated by a very simple theorem.

Y = f(X) + ε with E[ε] = 0.

Theorem

For any estimator f̂ , one has

C(f̂) = E[Y − f̂(X)]
2
= E

[
Y − E[f̂(X)]

]2
+ E

[
E[f̂(X)]− f̂(X)

]2
+ E [Y − f(X)]

2

The blue term is a bias term.

The red term is a variance term.

The green term is the Bayes risk and is independent on the estimator f̂ .

Statistical principle:

The empirical squared loss ‖Y − f̂(X)‖22,n mimics the bias.

Important need to introduce something a variance control of estimation

Statistical penalty to mimic the variance.

there is an important need to control the variance of estimation.
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Sparsity

An introductory example:

In many applications, p >> n but . . .

Important prior: many extracted feature in X are irrelevant for the response Y

In an equivalent way: many coefficients in θ0 are not ”almost zero” but ”exactly zero”.

For example, if Y is the size of a tumor, it might be reasonable to suppose that it can be

expressed as a linear combination of genetic information in the genome described in X.

BUT most components of X will be zero and most genes will be unimportant to predict Y :

We are looking for meaningful few genes
We are looking for the prediction of Y as well.
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Sparsity

Dogmatic approach:

Sparsity: assumption that the unknown θ0 we are looking for possesses its major coordinates
null. Only s of them are important:

s := Card {1 ≤ i ≤ p|θ0(i) 6= 0} .

Sparsity assumption:
s << n

It permits to reduce the effective dimension of the problem.

Assume that the effective support of θ0 were known, then

If S is the support of θ0, maybe XtSXS is full rank, and linear model can be applied.

Major issue: How could we find S?
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Sparsity

Signal processing: in the 1990’s, how could we find for high resolution 1,2,3 dimensional signals
sparse representations?

Before going further with data: understand what they represent and try to obtain a
naturally sparse representation?

How: wavelets decomposition in signal processing.

Sparse representation: Y. Meyer (among others)

Efficient algorithm: S. Mallat

Noise robustness and hard thresholding method: D. Donoho

S. Gadat Big Data - Lecture 2



Introduction
Sparse High Dimensional Regression

Lasso estimation
Application

Sparsity
Inducing sparsity

Sparsity
In statistics: in the 2000’s, from a redundant representation, how could we find a sparse
representation?

Statistics don’t manage to improve the representation of the primary features on the data!

Statistical estimator of the LASSO: R. Tibshirani , 1996.

Efficient algorithm to solve the LASSO with the LARS: Efron, Johnstone, Hastie,and
Tibshirani, 2002.

Another estimators: Dantzig Selector: Candes & Tao (2007). Boosting: Buhlmann & Yu
(2003).

Noise robustness and hard thresholding method: A. Tsybakov et al. (among others)

What is the LASSO method? How can we solve it? What about the statistical performances?
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`0 norm and convex relaxation

Ideally, we would like to find θ such that

θ̂n = arg min
θ:‖θ‖0≤s

‖Y −Xθ‖22,

meaning that the minimization is embbeded in a `0 ball.

In the previous lecture, we have seen that it is a constrained minimization problem of a
convex function . . . A dual formulation is

arg min
θ:‖Y−Xθ‖2≤ε

{‖θ‖0}

But:

The `0 balls are not convex!
The `0 balls are not smooth!

First (illusive) idea: explore all `0 subsets and minimize! Bullshit since:

C
s
p subsets and p is large!

Second idea (existing methods): run some heuristic and greedy methods to explore `0 balls

and compute an approximation of θ̂n. (See next lecture)

Good idea: use a convexification of the ‖‖0 norm (also referred to as a convex relaxation
method). How?
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`0 norm and convex relaxation
Idea of the convex relaxation: instead of considering a variable z ∈ {0, 1}, imagine that z ∈ [0, 1].

Definition (Convex Envelope)

The convex envelope f∗ of a function f is the largest convex function below f .

Theorem (Envelope of θ 7−→ ‖θ‖0)

On [−1, 1]d, the convex envelope of θ 7−→ ‖θ‖0 is θ 7−→ ‖θ‖1.

On [−R,R]d, the convex envelope of θ 7−→ ‖θ‖0 is θ 7−→ ‖θ‖1
R .

Idea: Instead of solving the minimization problem:

∀s ∈ N min
‖θ‖0≤s

‖Y −Xθ‖22, (1)

we are looking for

∀C > 0 min
‖.‖∗0(θ)≤C

‖Y −Xθ‖22, (2)

What’s new?

The function ‖.‖∗0 is convex and thus the above problem is a convex minimization problem
with convex constraints.
Since ‖.‖∗0(θ) ≤ ‖θ‖0, it is rather reasonnable to obtain sparse solutions. In fact, solutions
of (2) with a given C provide a lower bound of solutions of (1) with s ≤ C.
If we are looking for good solutions of (1), then there must exists even better solution to (2).

S. Gadat Big Data - Lecture 2



Introduction
Sparse High Dimensional Regression

Lasso estimation
Application

Sparsity
Inducing sparsity

`0 norm and convex relaxation
Geometrical interpretation (in 2 D):

Left: Level sets of ‖Y −Xβ‖22 and intersection with `1 ball. Right: Same with `2 ball.
The left constraint problem is likely to obtain a sparse solution. Oppositely, the right constraint no!
In larger dimensions the balls are even more different:
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`1 penalty

Analytic point of view: why does the `1 norm induce sparsity?
From the KKT conditions (see Lecture 1), it leads to a penalized criterion

min
θ∈Rp:‖θ‖1≤C

‖Y −Xθ‖22 ⇐⇒ min
θ∈Rp

‖Y −Xθ‖22︸ ︷︷ ︸
Mimics the bias

+

Controls the variance︷ ︸︸ ︷
λ‖θ‖1

In the 1d case: argminα∈R
1
2 |x− α|

2
+ λ|x|︸ ︷︷ ︸

:=ϕλ(x)

:

The minimal value of ϕλ is reached at point x∗ when 0 ∈ ∂ϕλ(x∗). x∗ is minimal iff
x∗ 6= 0 and (x∗ − α) + λsgn(x∗) = 0.

x∗ = 0 and dϕ+
λ (0) > 0 and dϕ−λ (0) < 0.

Proposition (Analytical minimization of ϕλ)

x
∗
= sgn(α)[|α| − λ]+ = argmin

x∈R

{
1

2
|x− α|2 + λ|x|

}
For large values of λ, the minimum of ϕλ is reached at point 0.
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Lasso estimator

Taking all together, we introduce the Least Absolute Shrinkage and Selection Operator - LASSO:

∀λ > 0 θ̂
Lasso
n = arg min

θ∈Rp
‖Y −Xθ‖22 + λ‖θ‖1

The above criterion is convex w.r.t. θ.

Efficient algorithms to solve the LASSO, even for very large p.

The minimizer may not be unique since the above criterion is not strongly convex.

Predictions Xθ̂Lasson are always unique.

λ is a penalty constant that must be carefully chosen.

A large value of λ leads to a very sparse solution, with an important bias.

A low value of λ yields overfitting with no penalization (too much important variance).

We will see that a careful balance between s, n and p exists. These parameters as well as
the variance of the noise σ2 influence a “good ” choice of λ.

Alternative formulation:

θ̂
Lasso
n = arg min

θ∈Rp:‖θ‖1≤C
‖Y −Xθ‖22
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Solving the lasso

Algorithm to solve the minimization problem argminθ∈Rp ‖Y −Xθ‖22 + λ‖θ‖1︸ ︷︷ ︸
:=ϕλ(θ)

is needed.

An efficient method follows the method of ”Minimize Majorization” and is referred to as MM
method.

MM are useful for the minimization of a convex function/maximization of a concave one.

Geometric illustration

Idea: Build a sequence (θk)k≥0 that converges to the minimum of ϕλ.

A particular case of such a method is encountered with the E.M. algorithm useful for
clustering and mixture models.

MM algorithms are powerful, especially they can convert non-differentiable problems to
smooth ones.
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MM algorithm

1 A function g(θ, θk) is said to majorize f at point θk if

g(θk|θk) = f(θk) and g(θ|θk) ≥ f(θ), ∀θ ∈ Rp.

2 Then, we define
θk+1 = arg min

θ∈Rp
g(θ|θk)

3 We wish to find each time a function g(., θk) whose minimization is easy.
4 An example with a quadratic majorizer of a non-smooth function:

5 Important remark: The MM is a descent algorithm:

f(θk+1) = g(θk+1|θk) + f(θk+1)− g(θk+1|θk)
≤ g(θk|θk) = f(θk) (3)
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MM algorithm for the Lasso: Coordinate descent algorithm

1 Define a sequence (θk)k≥0 ⇐⇒ find a suitable majorization.

2 g : θ 7−→ ‖Y −Xθ‖2 is convex, whose Hessian matrix is XtX. Taylor expansion leads to

∀y ∈ Rp g(y) ≤ g(x) + 〈∇g(x), y − x〉+ ρ(X)‖y − x‖2,

where ρ(X) is the spectral radius of X.

3 We are naturally driven to upper bound ϕλ as

ϕλ(θ) ≤ ϕλ(θk) + 〈∇g(θk), θ − θk〉+ ρ(X)‖θ − θk‖22 + λ‖θ‖1

= ψ(θk) + ρ(X)

∥∥∥∥θ − (θk − ∇g(θk)ρ(X)

)∥∥∥∥2
2

+ λ‖θ‖1

4 To minimize the majorization of ϕλ, we then use the above proposition of soft-thresholding:

Define
θ̃
j
k := θ

j
k −∇g(θk)

j
/ρ(X).

Compute

θ
j
k+1 = sgn(θ̃

j
k)max

[
|θjk| −

2λ

ρ(X)

]
+
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Statistical results for the Lasso

Importance of the results: understand difficulties from a statistical point of view.

What could we expect? In expectation or with high probability:

Estimation/consistency: θ̂n ' θ0.

Selection/Support: Supp(θ̂0) ' Supp(θ0).

Prediction: n−1‖X(θ̂n − θ0‖22 ' s0/n

Statistical framework: we assume that εi ∼ N (0, σ2) (for the sake of simplicity).

High dimensional framework:

s is the sparsity of θ0.

n 7−→ +∞ with p = 0(en
1−δ

). It means that p may be much larger than n.

We are looking for a rate of convergence involving s, p and n.

Important thing: choice of λ (in terms of s, p, n and σ2).
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Basic considerations (I)

We won’t provide a sharp presentation of the best known results to keep the level understandable.

Important to have in mind the extreme situation of almost orthogonal design:

XtX

n
' Ip

.

Solving the lasso is equivalent to solving

min
w

1

2n
‖Xty − w‖22 + λ‖w‖1

Solutions are given by ST (Soft-Thresholding):

wj = STλ

(
1

n
X
t
jy

)
= STλ

(
θ
0
j +

1

n
X
t
jε

)
=
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Basic considerations (II)

We would like to keep the useless coefficients to 0. It requires that

λ ≥
1

n
X
t
jε, ∀j ∈ J

c
0 .

The r.v. 1
nX

t
jε are i.i.d. with variance σ2/n.

The expectation of the maximum of p− s Gaussian standard variables '
√

2 log(p− s).
It leads to

λ = Aσ

√
log p

n
, with A >

√
2.

Precisely:

P
(
∀j ∈ Jc0 : |Xtjε| ≤ nλ

)
≥ 1− p1−A

2/2
.

We expect that STλ 7−→ Id to obtain a consistency result. It means that λ 7−→ 0, so that

log p

n
7−→ 0
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Lasso consistency - One result

Theorem

Assume that log p << n, that all matrix X has norm 1 and εi ∼ N (0, σ2), then under a
coherence assumption on the design matrix XtX, one has

i) With high probability, J(θ̂n) ⊂ J0.
ii) There exists C such that, with high probability,

‖X(θn − θ0)‖22
n

≤
C

κ2

σ2s0 log p

n
,

where κ2 is a positive constant that depends on the correlations in XtX.

One can also find results on the exact support recovery, as well as some weaker results without any
coherence assumption.
N.B.: Such a coherence is measured through the almost orthogonality of the colums of X. It can
be traduced in terms of

| sup
i6=j
〈Xi, Xj〉| ≤ ε.
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Short example with the R software
CRAN software: http://cran.r-project.org/web/packages/lars/
R Code:
library(lars)
data(diabetes)
attach(diabetes)
fit = lars(x,y)
plot(fit)
Lars algorithm: solves the Lasso less efficiently than the coordinate descent algorithm.

Typical output of the Lars software:

The greater `1 norm, the lower λ

Sparse solution with small values of the ‖.‖1 norm.
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Removing the bias of the Lasso (I)
Signal processing example:

We have n = 60 noisy observations Y (i) = f(i/n) + εi. f is an unknown periodic function
defined on [0, 1], sampled at points (i/n). εi are independent realizations of Gaussian r.v. We use
the 50 first Fourier coefficients:

ϕ0(x) = 1, ϕ2j(x) = sin(2jπx) ϕ2j+1(x) = cos(2jπx),

to approximate f . The OLS estimator is

f̂
OLS

(x) =

p∑
j=1

β̂
OLS
j ϕj(x) with β̂

OLS
= argmin

β

n∑
i=1

(Yi −
p∑
j=0

βjϕj(i/n))
2
.

The OLS does not perform well on this example.
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Removing the bias of the Lasso (II)

We experiment here the Lasso estimator with λ = 3σ
√

2 log p
n and obtain

Lasso estimator reproduces the oscillations of f but these oscillations are shrunk toward 0.

When considering the initial minimization problem, the `1 penalty select nicely the good
features, but introduces also a bias (introduces a shrinkage of the parameters).

Strategy: select features with the Lasso and run an OLS estimator using the good variables.
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Removing the bias of the Lasso (III)
We define

f̂
Gauss

= πĴ0
(Y ) with Ĵ0 = Supp(θ̂Lasso

),

where πĴ0
is the L2 projection of the observations on the features selected by the Lasso.

The Adaptive Lasso is almost equivalent:

β
Adaptive Lasso

= arg min
β∈Rp

‖Y −Xβ‖22 + µ

p∑
j=1

|βj |
|β̂Gauss
j |


This minimization remains convex and the penalty term aims to mimic the `0 penalty.
The Adaptive Lasso is very popular and tends to select more accurately the variables than the
Gauss-Lasso estimator.
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