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Abstract

This paper introduces an algebro-geometric setting for the space of bifurcation functions
involved in the local Hilbert’s 16th problem on a period annulus. Each possible bifurcation
function is in one-to-one correspondence with a point in the exceptional divisor E of the
canonical blow-up BIC

n of the Bautin ideal I . In this setting, the notion of essential per-
turbation, first proposed by Iliev, is defined via irreducible components of the Nash space
of arcs Arc(BIC

n, E). The example of planar quadratic vector fields in the Kapteyn normal
form is further discussed.

2010 Mathematics Subject Classification: 34C07, 14E18

1. Introduction

In full generality, this paper deals with bifurcation theory of polynomial planar vector
fields Xλ depending of a set of parameters λ= (λ1, ..., λn) ∈�. We assume that the “center
set” of vector fields Xλ having a center is an affine algebraic variety defined by an ideal in
the ring of polynomials in λ (the so called Bautin ideal associated to Xλ).

In the history of bifurcation theory, many reductions of bifurcation problems have been
made “by hand” and sometimes without the need of full justifications. It turns out that in
this context the Nash space of arcs/jets often provides the right setting.
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2 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

We still remain to a very elementary level for specialists of algebraic geometry, although
it seems interesting to propose here a first application of Nash space of arcs to complex/real
foliations and bifurcation theory.

1·1. Hilbert’s 16th problem on a period annulus

An open period annulus � of polynomial planar vector field Xλ0 is a union of periodic
orbits of Xλ0 , which is homeomorphic to the standard annulus S1 × (0, 1), the image of
each periodic orbit being a circle. We consider an unfolding Xλ of Xλ0 which depends on
finitely many parameters {λ= (λ1, ...λn) ∈�⊂R

n}, where � belongs to a small ball cen-
tered at λ0 in the parameter space Rn . The (infinitesimal) 16th Hilbert problem on the period
annulus � is to find an uniform bound in λ, on the number of limit cycles of Xλ, which
tend to � as λ tends to λ0. The precise meaning of this is encoded in the notion of cyclic-
ity Cycl(�, Xλ0, Xλ) , which we define below, see 1·2. However, except in some particular
cases it is not even known whether such a bound exists, e.g. [5, 18, 21].

The reader can think, as possible examples, to perturbation of a quadratic center by a
quadratic planar vector field, which we revisit in Section 4.

Let � be an open transversal cross-section to Xλ0 on the open set �, �̄ ⊂�. We further
assume that Xλ0 is also transverse at the boundary points of �. For λ close to λ0, Xλ remains
transverse to � and there is an analytic first return map Pλ :� ×� �→�′, � ⊂�′, with
�′ ⊂�. The limit cycles of Xλ are in one-to-one correspondence with the fixed points of Pλ

and hence with the zeros of the displacement function

h �−→ F(h, λ)=Pλ(h)− h

in its domain of definition. The coefficients Fk(λ), (k > 1) of the analytic convergent series
(in h, coordinate on � so that 0 ∈�, h(0)= h0):

F(h, λ)=�+∞k=1 Fk(λ)(h − h0)
k, (1·1)

are analytic also in λ in a neighbourhood of λ0.
The infinitesimal 16th Hilbert problem on the period annulus � asks, alternatively, to find

a bound on the number of fixed points of the first return map h �→Pλ(h), which is uniform
in λ. In this context λ will belong to some sufficiently small neighbourhood of a given λ0,
which belongs to the center set.

The problem which we consider should not be confused with the study of the displace-
ment function on the closed period annulus �̄. In particular the study of F(h, λ) in a
neighbourhood of a polycycle, or a slow-fast manifold is beyond the scope of the paper.

1·2. Cyclicity

We follow [16, 21, 55]. As in Section 1·1, consider a family {Xλ}λ∈� of polynomial planar
real vector fields which depend analytically on finitely many parameters

{λ= (λ1, ...λn) ∈�⊂ (Rn, 0)}

and let �⊂R
2 be an open period annulus of Xλ0 . For an arbitrary compact set K ⊂� we

define its cyclicity Cycl(K , Xλ0, Xλ) as the maximal number of limit cycles of the vector
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Hilbert’s 16th problem and Nash space of arcs 3

Fig. 1. Period annuli.

field Xλ, which tend to K as λ tends to λ0. This allows to define the cyclicity of the open
period annulus � as

Cycl(�, Xλ0, Xλ)= sup
K⊂�

{Cycl(K , Xλ0, Xλ) : K is a compact} (1·2)

[16, definition 3].
The conjectural finiteness of the cyclicity of period annuli (closed or open) of polyno-

mial vector fields is a largely open problem, inspired by the second part of the 16th Hilbert
problem, see [55, Roussarie, section 2·2]. Throughout this paper we assume that

Cycl(�, Xλ0, Xλ) <∞. (1·3)

1·3. One-parameter unfoldings which maximise the cyclicity

Given an analytic family of vector fields {Xλ}λ∈� we may consider germ of analytic arcs

ε �→ λ(ε), λ(0)= λ0 (1·4)

and the induced one-parameter families of vector fields {Xλ(ε)}. Obviously we have

Cycl(�, Xλ0, Xλ(ε))≤Cycl(�, Xλ0, Xλ).

At a first sight, it is restrictive to study only one-parameter deformations (arcs in the param-
eter space). The following result shows that if we consider families of one-parameter
deformations (families of arcs in the parameter space), then the two approaches give the
same answer

THEOREM 1 ([16, 56]). Under the finiteness condition (1·3), there exists an analytic arc
(1·4) such that the equality holds

Cycl(�, Xλ0, Xλ(ε))=Cycl(�, Xλ0, Xλ).

The proof relies on two ingredients, the principalisation of the ideal of the center set by
blowup (see Section 2·1) and a global version of the Weierstrass preparation theorem,
applied to the displacement map F . This shows that the complement to the bifurcation set
of limit cycles (isolated zeros) is a sub-analytic subset of �. Applying the “curve selection
lemma” we obtain the analytic arc in question.

The main question addressed in our article is about how to construct all one-parameter
deformations, or arcs in the parameter space. As far, as we are interested in cyclicity, it
is clear that most of the one-parameter deformations are redundant. To avoid redundancy,
we shall consider only “essential” deformations , and moreover we shall organise them in
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4 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

algebraic families of one-parameter deformations. The key observation is that to parametrize
these families of arcs, we should use the associated bifurcation functions.

1·4. The bifurcation function of a one-parameter unfolding

Consider an one-parameter analytic unfolding Xε of the vector field with a center X0, that
is to say a perturbation of X0. The displacement function associated to Xε can be developed
in a power series in ε

F(h, ε)=�∞i=k Mi (h)εi , Mk 
= 0. (1·5)

The leading term Mk is called the bifurcation function, or k-th order Melnikov function,
associated to the unfolding Xε [12, 27, 61]. Let � be now a global cross-section of the
period annulus � of X0. The displacement function F(h, ε) is defined on an open, relatively
compact subset of �, depending on ε. An important feature of Mk is that, in contrast to
F(., ε), it can be defined on the whole open interval � and it is analytic on it [17].

Possible bifurcations of limit cycles from the ovals of X0 correspond to zeros of the dis-
placement function, and hence to zeros of the bifurcation function Mk on �. Thus, if Mk

is associated to an one-parameter unfolding, maximizing cyclicity of � with respect to Xλ,
then the zeros of Mk on � provide an upper bound to this cyclicity Cycl(�, Xλ0, Xλ). To
solve the infinitesimal 16th Hilbert problem on the open period annulus �, amounts to study
zeros of all bifurcation functions associated to arcs (1·4).

1·5. One-parameter perturbations as arcs on singular varieties

Given a perturbation Xε we associate a bifurcation function. To avoid redundancy, we
parameterise perturbations Xε by bifurcations functions, and ask for families of perturba-
tions Xε, which produce all possible bifurcation functions. Such remarkable families of
perturbations (if they exist!) were called “essential” by Iliev, and studied in detail in the
quadratic case [27]. Our approach fits into the Nash theory of arcs on singular varieties.
A perturbation Xε becomes an arc on the blow up of the Bautin ideal, related to the period
annulus �. The bifurcation functions are identified to the exceptional divisor of the blow
up. The Iliev essential perturbations turn out to be special irreducible components of the
associate Nash space of arcs.

1·6. Plan of the paper

The paper has three parts.
In Section 2 we describe some algebro-geometric background, needed to study the blow

up of an ideal via the Nash theory of arcs.
In Section 3 we develop a dictionary between Section 2 (Nash space of arcs) and the

problem, announced in the title of the paper : arcs are identified to one-parameter vector
fields Xε (perturbations), bifurcations functions are identified to points on an exceptional
divisor of blowup. As a byproduct we obtain finiteness results on the order of the bifurcation
(or Melnikov) functions, as well a geometric description of the Iliev essential perturbations.

In Section 4 we illustrate our approach on the family of plane quadratic vector fields in the
so called Kapteyn normal form. It tuns out that there are only five irreducible components
of the Nash space, corresponding to essential perturbations.
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Hilbert’s 16th problem and Nash space of arcs 5

2. Blow-up of an ideal and its space of arcs

2·1. Blow-up of an ideal

Let I = (v1, . . . , vN )⊂C[λ], λ= (λ1, ...λn) ∈Cn , be an ideal with zero set

Z(I )= {λ ∈Cn : v1(λ)= v2(λ)= · · · = vN (λ)= 0}.
The blowup BIC

n ⊂C
n × P

N−1 of Cn with center I is the Zarisky closure of the graph of
the map

C
n \ Z −→ P

N−1, λ �−→ [v1(λ) : · · · : vN (λ)] (2·1)

with projection on the first factor π : BIC
n→C

n . Here [v1(λ) : · · · : vN (λ)] is the projec-
tivisation of the vector (v1(λ), . . . , vN (λ)).

We say that π is the blow up map of C
n with center at I , and E = π−1(Z) is the

exceptional locus. Here Z and E are algebraic varieties, which are not necessarily smooth
manifolds. For every λ ∈ Z we denote by Eλ = π−1(λ) the fibre of E over λ. The fibre
Eλ ⊂ P

N−1 is a projective variety.
The above construction is in fact local, and moreover depends only on the ideal I , not on

the choice of generators (v1, ..., vN ), see [24, chapter II, 7]. Therefore, we may replace the
ideal I by the ideal sheaf I generated by I in the sheaf of rings of convergent power series
OCn . The blowup of the ideal sheaf I leads in a neighbourhood of a given point λ ∈ Z(I)

to a variety isomorphic to BIC
n in a neighbourhood of π−1(λ). The main property of the

blowup is the fact, that the restriction of the ideal sheaf I on it is principal. To be more
precise, define the inverse image ideal sheaf Ĩ of I by

Ĩ = π−1(I) ·OBIC
n

which is roughly speaking the pre-image of I on the surface BIC
n . Then

PROPOSITION 2. The inverse image ideal sheaf Ĩ on the blowup BIC
n is a principal

ideal sheaf.

The proof is essentially tautological [24, II, proposition 7·13(a)]. A hint to the proof is
provided by the next two basic examples.

Example 1. If I = (λ1, λ2) then the blowup BIC
2 is a smooth surface covered by two charts

U1 = {(λ1, λ2, ν) ∈C3 : λ1 = νλ2}, U2 = {(λ1, λ2, μ) ∈C3 : λ2 =μλ1}
identified by the relation νμ= 1. The inverse image ideal sheaf of the ideal sheaf I on the
surface BIC

2 =U1 ∪U2 is principal. More precisely, on the chart U1 we have (λ1, λ2)= (λ2)

(because λ1 = νλ2) and on the chart U2 we have (λ1, λ2)= (λ1) (because λ2 =μλ1).

Example 2. For the ideal I = (λ1, λk+1
2 ), k ≥ 1, the blowup BIC

2 is a surface, covered by
two charts

U1 = {(λ1, λ2, ν) ∈C3 : λ1 = νλk+1
2 }, U2 = {(λ1, λ2, μ) ∈C3 : λk+1

2 =μλ1}
identified by the relation νμ= 1. The inverse image ideal sheaf (λ1, λk+1

2 ) is principal on
BIC

2. More precisely, on U1 it is generated by λk+1
2 and on U2 it is generated by λ1. The

fibre E = E0 is P1 but in contrast to the case k = 0, the surface BIC
2 ⊂C

2 × P
1 is singular
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6 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

at a single point λ1 = λ2 =μ= 0 : we get the singularity of type Ak{
(λ1, λ2, ν) ∈C3 : λ1μ= λk+1

2

}
which is the basic example in which the Nash space of arcs is easily computed, see [52,
p.36] or [38, example 9].

We resume the analytic counterpart of the above claims as follows. Let Iλ0 be the germ
of ideal defined by I at the point λ0 ∈ Z , and u′1, u′2, . . . , u′k ′ ∈ Iλ0 be a set of germs of
analytic functions, which generate Iλ0 . We may repeat the above construction to the graph of
the map

U −→ P
k ′−1

λ �−→ [u′1(λ) : u′2(λ) : · · · : u′k(λ)],
where U is a suitable neighbourhood of λ0, by taking its closure X ′ ⊂U × Pk ′−1 in com-
plex topology. Similarly, if u′′1, u′′2, . . . , u′′k ′′ is another set of generators of Iλ0 , then we may
construct the blowup X ′′ ⊂U × Pk ′′−1, provided that U is a suitable neighbourhood of λ0.

PROPOSITION 3. The blowups X ′ and X ′′ are analytic sets and there is an analytic
isomorphism f : X ′ → X ′′ such that:

(i) f commutes with the projection maps

π ′ : X ′ −→U, π ′′ : X ′′ →U, π ′ = π ′′ ◦ f :
(ii) f induces a linear isomorphism between the fibres

(π ′)−1(λ0)⊂ P
k ′ and (π ′′)−1(λ0)⊂ P

k ′′ .

Proof. Let

u′ = (u′1, u′2, . . . , u′k ′), u′′ = (u′′1, u′′2, . . . , u′′k ′′) (2·2)

be two sets of germs of analytic functions at λ0 generating Iλ0 . There exist matrices

a′ = (a′i j ), a′′ = (a′′ks) (2·3)

with coefficients in Oλ0 and such that

u′′ = u′a′, u′ = u′′a′′. (2·4)

Let λ= λ(ε) be an arc centered at λ0, and

u′(λ(ε))= εk ′ p′(1+ O(ε)), u′′(λ(ε))= εk ′′ p′′(1+ O(ε)) (2·5)

where p′, p′′ are non-zero vectors. It follows from (2·4), (2·5) that k ′ = k ′′ and

p′′ = a′(λ0)p′, p′ = a′′(λ0)p′′.

2·2. The Nash space of arcs

Suggested references to this section are [38, 40, 41, 52]. Let X be an algebraic variety
(possibly singular). A formal arc α is a parameterised formal curve

ε−→ α(ε) ∈ X. (2·6)
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Hilbert’s 16th problem and Nash space of arcs 7

The set of k-jets of such arcs is an algebraic variety Xk , and there is a canonical projection
Xi→ X j for i ≥ j . The projective limit Arc(X)= lim←− Xi is therefore a proalgebraic variety,
called the Nash space of arcs on X .

Let Xsing be the singular locus of X , or more generally, any algebraic subset of X . A
formal arc α centered at Xsing is a parameterised formal curve

ε−→ α(ε) ∈ X, α(0) ∈ Xsing (2·7)

which meets Xsing at ε= 0. The space of all such formal arcs is a proalgebraic variety defined
similarly, as a projective limit of k-jets of arcs, centered at Xsing. It is denoted Arc(X, Xsing).

In this section we assume that X = BIC
n , and E = π−1(Z(I )) is the exceptional locus of

the blow-up.
A general arc α ∈ Arc(BIC

n, E) is not contained in E , so it can be described by its pro-
jection on the λ-plane λ(ε)= π(α(ε)) and vice versa. Of course, the topology on the space
of arcs π(α(ε)) is the one, induced by the topology on the space of arcs on BIC

n . The arc

ε−→ λ(ε)

is a formal parameterised curve on C
n , which meets the zero locus Z(I ) at ε= 0, and is not

contained in Z(I ). The exceptional locus E will be in general a complicated singular set,
which can be studied by further desingularisation of BIC

n . But is it possible to describe the
geometry of E without doing this? It turns out that, as suggested by Nash, it is enough to
study all arcs passing through a point P ∈ E .

PROPOSITION 4. P ∈ E if and only if there is an analytic arc

C, 0−→C
n : ε �−→ λ(ε) (2·8)

not contained in the zero set Z = Z(I ), such that λ(0) ∈ Z and

P = lim
ε→0
[v1(λ(ε)) : · · · : vN (λ(ε))]. (2·9)

Proof. Let P ∈ E and consider a resolution of BIC
n :

RIC
n π̃−→ BIC

n π−→C
n. (2·10)

By this we mean that RIC
n is a smooth variety, and the projection π̃ is a bi-rational

morphism, which is bijective over the complement BIC
n \ E . Let P̃ ∈ π̃−1(P) be some pre-

image of P on RIC
n . As the latter is smooth, then there exists an arc α̃ :C, 0→ RIC

n with
α̃(0)= P̃ , not contained in the divisor π̃−1(E). Then the projection of the arc α̃ on BIC

n is
an analytic arc α which meets E at P , and the projection π(α(ε))= λ(ε) is an analytic arc
on C

n with λ(0)= π(α(0)) ∈ Z .

The existence of the limit (2·9) is equivalent to the existence of a natural number k ≥ 1
such that

(v1(λ(ε)), . . . , vN (λ(ε)))= εk(1+ O(ε))p, (2·11)

where p ∈CN is a non-zero vector whose projectivisation is the point P . The construction
of k is local, so we could replace the generators v1, v2, . . . , vN by their localisations at λ0 in
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8 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

Iλ0 . We can even replace v1, v2, . . . , vN by another set of generators of the localised ideal
Iλ0 . It follows from the proof of Proposition 3 that:

COROLLARY 1. Given an arc α ∈ Arc(BIC
n, Eλ0) the number k defined in (2·11) does

not depend on the choice of generators of the germ of ideal Iλ0 defined by I at the
point λ0.

Definition 1 (Iliev numbers). Given an arc α ∈ Arc(BIC
n, E), we call k = k(α) defined in

(2·11), the order of α at the center P = α(0). Let P ∈ E be fixed, and let kP be the minimal
order which an arc α centred at P , can have

kP = min
α(0)=P

k(α).

For a given fixed λ∗ ∈ Z(I ) define further

k∗ = sup
π(P)=λ∗

kP (2·12)

and

kmax = sup
P∈E

kP = sup
λ∗∈Z

k∗. (2·13)

Such numbers are further called Iliev numbers. The next result says that all these numbers
are finite

THEOREM 5.

kmax <∞.

Proof. Let us suppose that (2·10) is a strong resolution, in the sense that π̃−1(E) is a divisor
with simple normal crossing. The inverse image ideal sheaf

Ĩ = (π ◦ π̃)∗ I

is locally principal and locally monomial, and its zero locus is just π̃−1(E). Thus in a neigh-
borhood of each point P̃ ∈ π̃−1(E) we can find local coordinates zi and natural numbers ci ,
such that the ideal sheaf Ĩ is generated by �i z

ci
i . We define the order of vanishing, or order

of the locally principal ideal sheaf Ĩ = (π ◦ π̃)∗ I at P̃ to be

ordP̃ Ĩ =
∑

i

ci .

As π̃−1(E) is a subvariety of RIC
n , then it has a finite number of irreducible components,

locally defined by zci
i = 0. It follows that the number

max-ord :=max{ordP̃ Ĩ : P̃ ∈ π̃−1(E)}
is finite.

Let P ∈ E and P̃ be a pre-image of P under π̃ as in the proof of Proposition 4. Consider
an arc α̃ which coincides with a general straight line through P̃ in local coordinates zi . The
local principality of Ĩ implies that

(ṽ1(α̃(ε)), . . . , ṽN (α̃(ε)))= εk(1+ O(ε))p, (2·14)
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Hilbert’s 16th problem and Nash space of arcs 9

where k =∑
i ci ≤max-ord, vi ◦ π ◦ π̃ = ṽ, and p is a non-zero vector. The projection of

the arc α̃ under π ◦ π̃ on C
n gives an analytic arc ε→ λ(ε), such that

(v1(λ(ε)), . . . , vN (λ(ε)))= εk(1+ O(ε))p

(with the same k as in (2·11)) and P is the projectivisation of p. The number max-ord is
therefore an upper bound for the number kP . As max-ord does not depend on P , then the
finiteness of the Iliev numbers is proved.

Definition 2. We define Mk ⊂ Arc(BIC
n, E) to be the set of arcs of order at most k, that is

to say

(v1(λ(ε)), . . . , vN (λ(ε)))= εi (1+ O(ε))pα

where i ≤ k and pα ∈CN is a non-zero vector.

We get therefore a filtration M1 ⊂M2 ⊂ · · ·Mk ⊂ · · · of Arc(BIC
n, E)

PROPOSITION 6. The closure of Mk is a union of irreducible components of the arc
space Arc(BIC

n, E).

Proof. Given an arc α with projection π(α) : ε �→ λ(ε) we note that a continuous (in the
Nash topology on Arc(BIC

n, E)) deformation s→ αs of α induces a continuous defor-
mation of the projection ε �→ λ(ε) and therefore a continuous deformation of ε �→ v(ε)=
(v1(λ(ε)), v2(λ(ε)), . . . , vN (λ(ε))). Under such a deformation the order can not increase.
This shows, that for sufficiently small s the arc αs still belongs to Mk , and hence the
irreducible component of Arc(BIC

n, E) containing α0 belongs to Mk too.

The claim of the above Proposition can be reformulated as follows.

PROPOSITION 7. The order

Arc(BIC
n, E)−→N : α �−→ k(α)

is an upper semi-continuous function on Arc(BIC
n, E).

Example 3. We revisit the polynomial ideal I = (λ1, λk+1
2 )⊂C[λ1, λ2] from Example 2,

with the same notations. We have

M1 = {α : λ1(ε)= ελ
(1)

1 + ε2λ
(2)

1 + · · · , λ2(ε)= ελ
(1)

2 + ε2λ
(1)

2 + · · · , λ
(1)

1 
= 0}
and M1 is an irreducible component of the Nash space Arc(BIC

n, E), freely parameterised
by λ

(i)
1 , λ

( j)
2 , λ

(1)

1 
= 0. Similarly, for i = 2 the algebraic set M2 is an union of M1 and

M2 \M1 = {α : λ1(ε)= ε2λ
(2)

1 + · · · , λ2(ε)= ελ
(1)

2 + ε2λ
(2)

2 + · · · , λ
(2)

1 
= 0}.
We note that M2 \M1 is not in the closure of M1. Indeed, our arcs live on the blown-up
surface BIC

n , which in affine coordinates is λ1μ= λk+1
2 . For α0 ∈M2 \M1 with λ

(1)

2 
= 0
we have

ν(ε)= εk−1ν(k−1) + · · · , ν(k−1) 
= 0
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10 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

and for a small deformation s→ αs we shall still have λ
(1)

2 
= 0, ν(k−1) 
= 0 and hence
λ

(1)

1 = 0. Therefore M2 \M1 is another irreducible component of the Nash space
Arc(BIC

n, E). Similar considerations show that Mk+1 is an union of exactly k + 1
irreducible components Mi+1 \Mi of Arc(BIC

n, E), which are defined by the relations

Mi+1 \Mi = {(λ1(ε), λ2(ε)) : λ(0)

2 = 0, λ
(0)

1 = λ
(1)

1 = · · · = λ
(i)
1 = 0, λ

(i+1)

1 
= 0}
where i = 1, 2, . . . , k − 1 and

Mk+1 \Mk = {(λ1(ε), λ2(ε)) : λ(0)

2 = 0, λ
(0)

1 = · · · = λ
(k)

1 = 0, (λ
(k+1)

1 , λ
(1)

2 ) 
= (0, 0)}.
It is easily seen (by making use of the same deformation argument) that for i > k + 1

there are no new components in Mi , so the irreducible decomposition of Arc(BIC
n, E) has

exactly k + 1 irreducible components

Arc(BIC
n, E)=M1 ∪M2 \M1 ∪ · · · ∪Mk+1 \Mk .

As observed by Nash, it is a general fact that the arc space Arc(BIC
n, E) has finitely many

irreducible components. Thus, there exists k, such that the closure of Mk is Arc(BIC
n, E).

As the number k is not known, the description of these irreducible components may be
a formidable task, which is the content of the Nash problem. The description of Mkmax ,
however, will be sufficient for the purposes of this paper.

Consider the canonical projection map

πI : Arc(BIC
n, E)−→ E : α �−→ α(0).

which associates to an arc α on BIC
n its center α(0). It is an algebraic map, and the image

of each irreducible component of Arc(BIC
n, E) is a closed irreducible subset of E . Thus,

every point of E is in the image of some irreducible component of the arc space, possibly in
a non-unique way. This motivates the following:

Definition 3. A set M⊂ Arc(BIC
n, E) of irreducible components of Arc(BIC

n, E) is said
to be essential, provided that:

(i) πI (M)= E ;
(ii) M is minimal under inclusions.

Although each component of M depends on infinitely many parameters, only a finite
number of them are needed to specify the component, the other taking arbitrary complex (or
real) values. This fact is especially important in the applications. For instance, in Example
3, we have πI (Mi)= [1 : 0] ∈ P1 for i ≤ k and πI (Mk+1)= P

1 = E . Therefore the essential
set M is irreducible and equal to Mk+1 \Mk . An element of Mk+1 \Mk is written

λ1(ε)= λ
(k+1)

1 εk+1 + · · · , λ2(ε)= λ
(1)

2 ε1 + · · · , (λ
(k+1)

1 , λ
(1)

2 ) 
= (0, 0)

and the dots stay for arbitrary power series
∑

i≥k+2 λ
(i)
1 εi ,

∑
i≥2 λ

(i)
2 εi . The coefficients of

these series are non-essential in the sense that they are arbitrary and the corresponding center
α(0)= [λ(k+1)

1 : λ(1)

2 ] does not depend on them. This is not the case for the points on the
border M \ {M(k+1) \Mk} for which (λ

(k+1)

1 , λ
(1)

2 )= (0, 0).
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Hilbert’s 16th problem and Nash space of arcs 11

The notion of “essential set” of irreducible components of the arc space Arc(BIC
n, E)

is central for this paper, in the next section it will appear under the term “complete set of
essential perturbations”, as introduced first by Iliev [27].

3. Blow up of the Bautin ideal and the space of essential perturbations

In this section we describe a dictionary between the results of the preceding section, and
the 16th Hilbert problem on a period annulus. We use the notations of the Introduction.

3·1. The Bautin ideal

For an analytic real family of real analytic plane vector fields Xλ, such that Xλ0 has a
period annulus, consider the displacement function (1·1)

F(h, λ)=�+∞k=1 Fk(λ)(h − h0)
k,

defined in Section 1·1. If we assume that it is analytic in a neighbourhood of a point (λ0, h0)

then the analytic functions Fk = Fk(λ) define a germ of an ideal Bλ0 in the ring of germs of
analytic functions Oλ0 at λ0 ∈Rn . It is also clear, that the germs Bλ extend to some complex
neighbourhood U of λ0, on which they define an ideal sheaf B(U ) in the sheaf of analytic
functions O(U ). The ideal sheaf B(U ) is called the Bautin ideal, associated to the family
Xλ on U , see [33, section 12] for details.

In this section we assume that Xλ is the family of polynomial vector fields of degree at
most d with complex (or sometimes real) coefficients. Our results are easily adapted to the
case, when the family depends only analytically in the parameters, or even the vector fields
Xλ are only analytic too. The principal consequence of this assumption is, that our results
will be global. In particular the Bautin ideal will be polynomially generated. We can forget
the origine of our problem and investigate the zeros of the displacement function F(h, λ) in
regard to which we impose the following assumptions:

(i) there exists an open (in the complex topology) subset U ⊂C
n , on which the

coefficients Fk of the displacement function define an ideal sheaf

B(U )=∪λ∈UBλ;
(ii) the ideal sheaf B(U ) is polynomially generated : there exists a finite set of polyno-

mials v1, v2, . . . , vN ∈C[λ1, λ2, . . . , λn], which generate the germ Bλ, ∀λ ∈U .

Definition 4. The polynomial ideal

B= (v1, v2, . . . , vN )⊂C[λ1, λ2, . . . , λn]
is called the Bautin ideal, associated to the ideal sheaf B(U ) on the open set U .

The main example of Bautin ideal in the above sense is given by the case of a period
annulus of center type of a family of polynomial vector fields of fixed degree. If the cen-
ter point is placed at the origin, then the trace v1(λ)= TraceXλ(0) is a section of the sheaf
B(U ). It is well known that on the variety {λ ∈U : v1(λ)= 0} the ideal sheaf B(U ) is poly-
nomially generated, say, by v2, . . . , vN [33]. This shows that when {v1 = 0} is a smooth
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12 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

divisor (for instance TraceXλ(0) is linear in λ), then B(U ) is polynomially generated by
v1, v2, . . . , vN .

3·2. Displacement function F and the factors (
1, 
2, . . . , 
N )

Consider the displacement map in a neighbourhood of h0 ∈�, λ0 ∈U , defined by its
Taylor expansion

F(h, λ)=�+∞k=1 Fk(λ)(h − h0)
k .

As the ideal of coefficients Fk generates the germ of Bautin ideal Bλ0 which is polynomially
generated by v1, v2, . . . , vN , then

F(h, λ)=�N
j=1v j (λ)
 j (h, λ).

Consider an analytic deformation Xλ(ε) in a neighbourhood of λ0, where Xλ0 is a vector field
with a period annulus of closed orbits. Suppose further that Mk is the bifurcation function
associated to this deformation, that is to say

F(h, λ(ε))= εk Mk(h)+ O(εk+1).

PROPOSITION 8.

Mk(h)=
N∑

j=1

v
(k)

j 
 j (h, λ0), (3·1)

where v
(k)

j are polynomials in the coefficients of the series λ(ε), determined by the identities

v j (λ(ε))=�r≥0v
(r)

j εr (3·2)

and k = k(α) is the order of the arc α : ε �→ λ(ε), see Definition 1.

Remark 1. The claim generalises the Bautin’s fundamental lemma, as restated by C.
Chicone and M. Jacobs [9, lemma 4·1], see also [7]. Indeed, we do not suppose any spe-
cial properties of the polynomial generators (v1, v2, . . . , vN ). Note also that h0 does not
correspond to a singular point (a center) of the vector field Xλ0 which might not have a
center at all (see Figure 1).

Proof. If

F(h, λ)=�+∞j=1u j (λ)(h − h0)
j ,

and u1, u2, . . . , uN ′ are generators of the localised Bautin ideal, then

F(h, λ)=�N ′
j=1u j (λ)� j (h, λ),

and

F(h, λ(ε))= εk ′
N ′∑

j=1

u(k ′)
j � j (h, λ0)+ O(εk ′+1),
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Hilbert’s 16th problem and Nash space of arcs 13

where

(u1(λ(ε)), · · · , uN ′(λ(ε)))= εk ′(1+ O(ε))(u(k ′)
1 , u(k ′)

2 , . . . , u(k ′)
N ′ )

and � j (h, λ0)= (h − h0)
j + · · · . According to Proposition 3, the blowup does not depend

on the generators. In particular if v1, v2, . . . , vN is another set of generators, and

(v1(λ(ε)), . . . , vN (λ(ε)))= εk(1+ O(ε))(v
(k)

1 , v
(k)

2 , . . . , u(k)

N )

then k = k ′, see (2·5). Using the isomorphism (2·4) we obtain the desired representation.

The above Proposition has several implications. It allows to identify every bifurcation
function M of order k to a point P ∈ Eλ0 by the correspondence

Mk −→ P = [v(k)

1 , v
(k)

2 : · · · : v(k)
n ] ∈ Eλ0 . (3·3)

The opposite is also true : given a point P ∈ Eλ0 , by Proposition 4, there is an arc from which
we reconstruct the bifurcation function M , hence

COROLLARY 2. The projectivised set of bifurcation functions associated to one - param-
eter deformations Xλ(ε) of the vector field Xλ0 is in bijective correspondence with the points
on the exceptional divisor Eλ0 . This correspondence is a linear isomorphism (by Proposition
3 (ii))

Let Vλ ⊂C
N be the vector space spanned by the set of points on the exceptional divisor

Eλ ⊂ P
N−1 in C

N .

COROLLARY 3. The space of all bifurcation functions associated to deformations Xλ(ε)

of the vector field Xλ0 span a vector space of dimension dim Vλ0 .

As we already noted in the preceding section, πI (Mkmax )= E , see also Definition 3. This
implies

COROLLARY 4. The minimal order of every bifurcation functions associated to λ0 is
bounded by kλ0 = supπ(P)=λ0

kP , and the number supλ∈U kλ is finite.

Definition 3 can be reformulated as follows:

Definition 5. A complete set of essential perturbations of a period annulus is a set M of
one-parameter deformations Xλ(ε) which, viewed as arcs, form an essential set of irreducible
components of the Nash space of arcs Arc(BIC

n, E). Each irreducible component of M is
referred to as an essential perturbation.

In his seminal paper, Iliev describes

“A set of essential perturbations which can realise the maximum number of limit
cycles produced by the whole class of quadratic systems” [27, page 22].

The property “to realise the maximum number of limit cycles”, however, is a consequence
of the fact, that the selected set of essential perturbations produces all possible bifurcation
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14 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

functions. To describe a set of essential perturbations, we need to study the Nash arc space
Arc(BIC

n, E) and select appropriate essential irreducible components. It is also clear from
Definition 3 that the number of essential perturbations is not smaller than the number of
irreducible components of the center variety V (I ). As we shall see in the next section, it can
be strictly bigger: the number of the irreducible components of the center set of quadratic
vector fields is four, but the number of essential perturbations is five.

For convenience of the reader we resume the correspondence between Section 2 and
Section 3 in the following table.

arcs in algebraic geometry bifurcation theory
parameter space {λ} space of plane vector fields Xλ

ideal I Bautin ideal B
variety V (I ) center set
blow up BIC

n of an ideal I blow up of the Bautin ideal
arc on the blow up BIC

n one-parameter deformation Xλ(ε)

order of an arc order of a bifurcation function
point on the exceptional divisor bifurcation function associated to Xλ(ε)

exceptional divisor set of all bifurcation functions
essential set of irreducible components
of the Nash space complete set of essential perturbations

4. Quadratic centers and Iliev’s essential perturbations

We revisit Iliev’s computations of essential perturbations with emphasis on Nash spaces
of arcs, as explained in the previous two sections. We focus on the Kapteyn normal form Xλ

(4·4) of quadratic systems, which we recall briefly.
A quadratic vector field near a center is conveniently written in complex notations z =

x + iy, see [61, Zoladek]:

ż = (i+ λ)z + Az2 + B | z |2 +Cz2, (4·1)

with λ, x, y ∈R, (A, B, C) ∈C3. The underlying real parameters of the planar vector field
are λ, a, a′, b, b′, c, c′ :

ẋ = λx − y + ax2 + bxy + cy2,

ẏ = x + λy + a′x2 + b′xy + c′y2,
(4·2)

with the linear relations:

a + ia′ = A+ B +C

b+ ib′ = 2i(A−C)

c+ ic′ = −A+ B −C,

A= 1

4
[a − c+ b′ + i(a′ − c′ − b)]
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Hilbert’s 16th problem and Nash space of arcs 15

B = 1

2
[a + c+ i(a′ + c′)]

C = 1

4
[a − c− b′ + i(a′ − c′ + b)].

With these variables the Bautin ideal is generated by the four polynomials (with real
coefficients):

v1 = λ

v2 = Im(AB)

v3 = Im[(2A+ B)(A− 2B)BC]
v4 = Im[(| B |2 − |C |2)(2A+ B)B

2
C].

The components are then given by:

LV : λ= B = 0

R : λ= Im(AB)= Im(B
3
C)= Im(A3C)= 0

H : λ= 2A+ B = 0

Q4 : λ= (A− 2B)= (| B | − |C |)= 0.

(4·3)

The above computation goes back essentially to Dulac and Kapteyn, see [57, 61]. The
usual terminology in the real case is, according to (4·3): Hamiltonian H , reversible (or sym-
metric) R, Lotka–Volterra LV and co-dimension four (or Darboux) Q4 component of the
center set, respectively. Another terminology is introduced in [33, section 13].

If we assume B 
= 0, performing a suitable rotation and scaling of coordinates, we can
suppose B = 2. Similarly if B = 0 but A 
= 0, we take A= 1 (LV), and when A= B = 0, we
take C = 1 (Hamiltonian triangle). In the case where B = 2, there is a center if and only if
the following conditions hold: (i) A=−1 (H), (ii) A= a and C = b are real (R), (iii) A= 4,
|C |= 2 (Codimension 4).

The list of quadratic centers looks hence as follows:

(i) ż =−iz − z2 + 2 | z |2 +(b+ ic)z2, Hamiltonian (H);
(ii) ż =−iz + az2 + 2 | z |2 +bz2, Reversible (R);

(iii) ż =−iz + z2 + (b+ ic)z2, Lotka-Volterra (LV);
(iv) ż =−iz + 4z2 + 2 | z |2 +(b+ ic)z2, | b+ ic |= 2, Codimension 4 (Q4);
(v) ż =−iz + z2, Hamiltonian triangle.

We can observe that up to a rotation and scaling of coordinates, H , R and LV can be
represented by planes and the “Codimension 4” stratum by a quadric (cf. Figure 2).

In fact, centers from (H) with c= 0 are also reversible. They belong to the intersection
(H)∩ (R) and can also be defined in (R) by a = 1. Note that centers from (Q4) such that
c= 0, b=±2 are also reversible. The Lotka–Volterra centers so that c= 0 are also
reversible. They form, together with the Hamiltonian triangle the degenerate centers:

(i) ż =−iz − z2 + 2 | z |2 +bz2, Reversible Hamiltonian (H)∩ (R);
(ii) ż =−iz + z2 + bz2, Reversible Lotka-Volterra (LV )∩ (R);

(iii) ż =−iz + 4z2 + 2 | z |2 +bz2, b=±2, (Q4)∩ (R);
(iv) ż =−iz + z2, (LV )∩ (H), Hamiltonian triangle.
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16 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

The Kapteyn normal form of the quadratic vector fields near a linear center is:

Xλ :
{

ẋ = λ1x − y − λ3x2 + (2λ2 + λ5)xy + λ6 y2,

ẏ = x + λ1 y + λ2x2 + (2λ3 + λ4)xy − λ2 y2.
(4·4)

It provides indeed a local affine chart of the space of quadratic vector fields (4·1) modulo
the action of C∗. The Kapteyn normal form, although simple, can be misleading, as pointed
out first by Zoladek [61, remark 2, page 238]. One should be very careful that they can be
compared with the previous complex parameters only under the extra condition Im(B)= 0.
Nevertheless, it is more convenient to use these Kapteyn parameters to compute effectively
the corresponding space of arcs and jets.

The relation between Kapteyn’s coefficients and the previous complex coefficients are
given by:

A= (λ3 − λ6 + λ4 − iλ5)/4

B = (λ6 − λ3)/2

C = [−(3λ3 + λ6 + λ4)+ (4λ2 + λ5)i]/4.

For this choice of parameters, the Bautin ideal B⊂K[λ1, λ2, λ3, λ4, λ5, λ6], where K=C

or R, is generated by

v1(λ)= λ1,

v2(λ)= λ5(λ3 − λ6),

v3(λ)= λ2λ4(λ3 − λ6)(λ4 + 5λ3 − 5λ6),

v4(λ)= λ2λ4(λ3 − λ6)
2(λ3λ6 − 2λ2

6 − λ2
2).

(4·5)

The affine algebraic variety defined by this ideal is denoted Z = Z(B) and called the
quadratic centre set. The variety displays four irreducible components Z = I1 ∪ I2 ∪ I3 ∪ I4:
three planes and one affine quadratic cone. When the base field is R their mutual position in
R

6 is shown on fig. 2. Note that I1 ∩ I2 , I2 ∩ I3, I3 ∩ I1 are two-planes, while I1 ∩ I2 ∩ I3 is
a straight line.

I1 : λ1 = 0, λ3 − λ6 = 0

I2 : λ1 = 0, λ2 = 0, λ5 = 0

I3 : λ1 = 0, λ4 = 0, λ5 = 0

I4 : λ1 = 0, λ5 = 0, λ4 + 5λ3 − 5λ6 = 0, λ3λ6 − 2λ2
6 − λ2

2 = 0.

(4·6)

These irreducible components coincide with LV , R, H and Q4 but only under the extra-
condition B ∈R∗. Indeed, a vector field which belongs to LV and H , so that A= B = 0 is
necessarily in R (it is the so-called Hamiltonian triangle). Still, if it belongs to I1 ∩ I3, then
λ3 = λ6, λ4 = λ5 = 0 but λ2 is not necessarily equal to 0 and it does not necessarily belongs
to I2.

We consider the blowup of the Bautin ideal B which is the graph of the map

C
6 −→ P

3

λ �−→ [v1 : v2 : v3 : v4]
(4·7)
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Hilbert’s 16th problem and Nash space of arcs 17

Fig. 2. Sketch of the mutual position in R
6 of the irreducible components I1, I2, I3, I4 of the real center

set (4·6).

with projection

π :C6 × P
3 −→C

6

and exceptional divisor E = π−1(Z(B)), see (2·1). As E is identified to the set of bifurca-
tion functions, and arcs to one-parameter perturbations Xλ(ε), we construct a set of essential
perturbation in the sense of Definition 5 and Definition 3. This computation breakes into two
steps:

(i) find a minimal list of families of perturbations Xλ(ε) which project under πI to the
exceptional divisor E , see Definition 3;

(ii) check whether the essential perturbations are irreducible components of the corre-
sponding Nash arc space.

The first step, can be found in [7, theorem 6], where ten families of perturbations were
identified, which produce all possible bifurcation functions. As we shall see below, only
five of them are irreducible components of the Nash space, the others are contained in their
closures. These essential perturbations are denoted below

Arc(I1), Arc(I2), Arc(I3), Arc(I4), Arc(I1 ∩ I3)

and correspond respectively to the Lotka–Volterra, reversible, Hamiltonian, co-dimension
four, and Hamiltonian triangle strata of the centre set. This remarkable geometric fact has an
analytic counterpart: only bifurcation functions corresponding to the five irreducible com-
ponents of the Nash space have to be considered, as far as we can obtain all the others by
taking suitable limits. For instance, the bifurcation functions corresponding to the arc space
Arc(I1 ∩ I2) (reversible Lotka–Volterra systems) can be obtained as appropriate limits of
bifurcation functions associated to Arc(I1), in contrast to bifurcation functions associated to
Arc(I1 ∩ I3) which can not be obtained as such limits. The reason is that Arc(I1 ∩ I2) is in
the closure of Arc(I1), while Arc(I1 ∩ I3) is a distinct irreducible component of the Nash arc
space of the blowup of the Bautin ideal (and hence is not in the closure of Arc(I1)). This
confluence phenomenon was observed by Iliev in [27, corollary 1].

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004119000239
Downloaded from https://www.cambridge.org/core. Bibliotheque de Mathematiques, on 04 Oct 2019 at 21:57:42, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004119000239
https://www.cambridge.org/core


18 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

Table I. The exceptional divisor Eλ∗ when λ∗ is a smooth point

λ∗ ∈ I1 λ∗ ∈ I2 λ∗ ∈ I3 λ∗ ∈ I4

Eλ∗ = P
1 Eλ∗ = P

2 Eλ∗ = P
2 Eλ∗ = P

3

4·1. Smooth points of the center set Z(B)

The base field in this section is C. It is straightforward to check that a point on the centre
set Z(B)= I1 ∪ I2 ∪ I3 ∪ I4 (4·6) is smooth, if and only if it belongs to some Ii but does not
belong to Ii ∩ I j , j 
= i . Smooth points were called “generic” in [27], and we denote this set
Z(B)reg.

Let λ∗ ∈ Z(B)reg. The localised Bautin ideal Bλ∗ defined by the polynomials (4·5) is
radical and generated by:

(i) λ1, λ3 − λ6 if λ∗ ∈ I1;
(ii) λ1, λ2, λ5 if λ∗ ∈ I2;

(iii) λ1, λ4, λ5 or λ∗ ∈ I3;
(iv) λ1, λ5, λ4 + 5λ3 − 5λ6, λ3λ6 − 2λ2

6 − λ2
2 if λ∗ ∈ I4.

The exceptional divisor Eλ∗ is isomorphic to the corresponding exceptional divisor of one
of the blowups:

λ−→ [λ1 : λ3 − λ6]
λ−→ [λ1 : λ2 : λ5]
λ−→ [λ1 : λ4 : λ5]
λ−→ [λ1 : λ5 : λ4 + 5λ3 − 5λ6 : λ3λ6 − 2λ2

6 − λ2
2].

It is therefore straightforward to compute Eλ∗ , and it turns out that it is a projective space,
see table I, so the set of bifurcation functions is a vector space of dimension 2, 3, 3 and 4,
which is also the co-dimension of I1, I2, I3, I4 respectively. The center set at λ∗, and its blow
up along Eλ∗ , are smooth, so the arc space is easy to describe. An element of the Nash arc
space Arc(BIC

n, Eλ∗), I =B, λ∗ ∈ Z(B)reg is an arc

ε−→ (λ(ε), [v1(λ(ε)) : v2(λ(ε)) : · · · : v6(λ(ε))]) ∈C6 × P
5

λ(0)= λ∗
(4·8)

and it corresponds to the one-parameter family of vector fields Xλ(ε). The arc space
Arc(BBC

n, Eλ∗) has only one irreducible component corresponding to the irreducible
smooth divisor Eλ∗ . An essential family of arcs is a family parameterized by Eλ∗ and having
a minimal number of parameters. Thus, as essential family of arcs (4·8) we can take

λ(ε)= λ∗ + λ(1)ε, vi = vi(λ(ε)), (4·9)

where:

(i) λ(1) = (λ1,1, 0, 0, 0, 0, λ6,1) if λ∗ ∈ I1;
(ii) λ(1) = (λ1,1, λ2,1, 0, 0, λ5,1, 0) if λ∗ ∈ I2;

(iii) λ(1) = (λ1,1, 0, 0, λ4,1, , λ5,1, 0) if λ∗ ∈ I3;
(iv) λ(1) = (λ1,1, λ2,1, 0, λ4,1, λ5,1, 0) if λ∗ ∈ I4 .
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Hilbert’s 16th problem and Nash space of arcs 19

Fig. 3. The four irreducible components of the singular set {I2 ∩ I1} ∪ {I2 ∩ I3} ∪ {I2 ∩ I4} represented in
R

3 = I2.

The corresponding essential perturbations of the integrable quadratic vector field Xλ∗ take
the form as in [7, theorem 6]:

(i) Xλ∗ + ελ1,1

(
x

∂

∂x
+ y

∂

∂y

)
+ ελ6,1 y2 ∂

∂x
if λ∗ ∈ I1;

(ii) Xλ∗ + ελ1,1

(
x

∂

∂x
+ y

∂

∂y

)
+ ε(2λ2,1 + λ5,1)xy

∂

∂x
+ ελ2,1(x2 − y2)

∂

∂y
if λ∗ ∈ I2;

(iii) Xλ∗ + ελ1,1

(
x

∂

∂x
+ y

∂

∂y

)
+ ελ5,1xy

∂

∂x
+ ελ4,1xy

∂

∂y
if λ∗ ∈ I3;

(iv) Xλ∗ + ελ1,1

(
x

∂

∂x
+ y

∂

∂y

)
+ ε(2λ2,1 + λ5,1)xy

∂

∂x
+ ελ4,1xy

∂

∂y
if λ∗ ∈ I4

and the maximal order of the bifurcation function Mk is 1. We stress on the fact, that each of
the above four essential perturbations depends upon six parameters, given by λ(1) and by λ∗.
The center λ∗ is therefore not fixed, but belongs to the corresponding smooth stratum I j .

Finally, the deformations (4·9) form an irreducible component of the arc space, see
Proposition 6. Indeed, it is obvious that a small deformation of (4·9) leads to a family of
the same form, under the condition that λ∗ is a smooth point. We conclude that the above
families of vector fields are irreducible components of the Nash arc space, which we denote
for brevity

Arc(I1), Arc(I2), Arc(I3), Arc(I4).

4·2. Non-smooth points of the center set Z(B)

The base field in this section will be R. The singular part Z(B)sing of the real centre set
has five irreducible components given by three co-dimension four planes I1 ∩ I2, I1 ∩ I3 and
I2 ∩ I3, and the reducible set I4 ∩ I2. The latter is a union of two straight lines intersecting
at the origin. As I2 is a three-plane, then the vector spaces I1 ∩ I2, I2 ∩ I3, I2 ∩ I4 can be
represented in R

3 = I2 as on fig. 3. Z(B)sing is smooth, except along the line I1 ∩ I2 ∩ I3.
Thus, Z(B)sing is a disjoint union of five smooth varieties

{I1 ∩ I2} \ {I1 ∩ I2 ∩ I3}, {I2 ∩ I3} \ {I1 ∩ I2 ∩ I3}, {I3 ∩ I1} \ {I1 ∩ I2 ∩ I3}
{I1 ∩ I2 ∩ I3} \ {0}, {0}
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20 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

Table II. The exceptional divisor Eλ∗ when λ∗ ∈ Z(B)sing

λ∗ ∈ I1 ∩ I3 λ∗ ∈ I2 ∩ I1 λ∗ ∈ I2 ∩ I3

Eλ∗ = P
3 Eλ∗ = P

2 Eλ∗ = P
2

λ∗ ∈ I2 ∩ I4 λ∗ ∈ I1 ∩ I2 ∩ I3 λ∗ = 0

Eλ∗ = P
3 Eλ∗ = P

3 Eλ∗ = P
3

which we consider separately. For brevity, and if there is no confusion, we shall denote each
of the above sets by

{I1 ∩ I2}, {I2 ∩ I3}, {I3 ∩ I1}, {I1 ∩ I2 ∩ I3}, {0}.
The exceptional divisor Eλ∗ in each of the five cases is presented on table II (this
straightforward computation is omitted).

4·2·1. The essential perturbations of the center set I1 ∩ I3.
This is probably the most interesting case, for this reason we give more details. Let λ∗ be

a smooth point on the two-plane I1 ∩ I3 (that is to say, λ∗ 
∈ I1 ∩ I2 ∩ I3). As λ∗2 
= 0, then the
localized Bautin ideal Bλ∗ defined by the polynomials (4·5) is also generated by

λ1, λ5(λ3 − λ6), λ2
4(λ3 − λ6), λ4(λ3 − λ6)

2 (4·10)

which will be therefore used on the place of v1, v2, v3, v4, in order to blow up Bλ∗ . To the
end of the section, instead of (4·7), we consider the blowup

λ→ [
λ1 : λ5(λ3 − λ6) : λ2

4(λ3 − λ6) : λ4(λ3 − λ6)
2
]
. (4·11)

Using Proposition 4 we verify first, that Eλ∗ = P
3 and hence the vector space of bifurcation

functions is of dimension 4. A general arc centred at a general point P ∈ EI1∩I3 , EI1∩I3 =
∪λ∈I1∩I3 Eλ, is defined by (4·12), where λ∗ ∈ I1 ∩ I3 and

λ1 = ε3λ1,3 + O(ε4)

λ5 = ε2λ5,2 + O(ε3)

λ3 − λ6 = ε(λ3,1 − λ6,1)+ O(ε2)

λ4 = ελ4,1 + O(ε2)

(4·12)

with center

P = [
λ1,3 : λ5,2(λ3,1 − λ6,1) : λ2

4,1(λ3,1 − λ6,1) : λ4,1(λ3,1 − λ6,1)
2
]
.

Clearly, P can take any value on P
3 except [∗ : ∗ : 1 : 0] and [∗ : ∗ : 0 : 1]. The missing point

[∗ : ∗ : 0 : 1] can be obtained as centre of the following arc:

λ1 = ε4λ1,4 + O(ε5)

λ5 = ε3λ5,3 + O(ε4)
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Hilbert’s 16th problem and Nash space of arcs 21

λ3 − λ6 = ε(λ3,1 − λ6,1)+ O(ε2)

λ4 = ε2λ4,2 + O(ε3), (4·13)

where

P = [λ1,4 : λ5,3(λ3,1 − λ6,1) : 0 : λ4,2(λ3,1 − λ6,1)
2].

Similar considerations are valid of course for the centres [∗ : ∗ : 1 : 0], which shows that
Eλ∗ = P

3.
It is easy to see, that the family of arcs (4·12) is an irreducible component of the arc

space. Indeed, under a small deformation such that λ∗ ∈ I1 ∩ I3, the degree of λi(ε) neither
decreases (the point P is general) neither increases (because of Proposition 6). We do not
leave the family of arcs (4·12). If we allow λ∗ ∈ I3, λ 
∈ I1 then we note that the dimension
of Eλ∗ drops by one, and taking a limit λ∗ → I1 ∩ I3 we can not obtain Eλ∗ = P

3.
Therefore (4·12) is an irreducible component of the arc space

Arc(BB, EI1∩I3), EI1∩I3 =∪λ∈I1∩I3 Eλ.

The family (4·13), however, is not an irreducible component, as it belongs to the closure of
the family (4·12). To see this we need to show that every arc (4·13) is a continuous limit
of arcs of the form (4·12). Recall that we deform arcs on the blowup surface Arc(BB, Eλ∗),
see (4·8), and continuity of the deformation means that the coefficients depend analytically
upon the deformation parameters [38, 43]. Consider now the family of arcs of the type
(4·14), parameterised by δ 
= 0:

λ1 = ε3(ε+ δ)(λ1,3 + · · · )
λ5 = ε2(ε+ δ)(λ5,2 + · · · )

λ3 − λ6 = ε(λ3,1 − λ6,1 + · · · )
λ4 = ε(ε+ δ)(λ4,1 + · · · ),

(4·14)

where the dots replace some convergent series vanishing for ε= 0. It follows from (4·14)
that

[λ1 : λ5(λ3 − λ6) : λ2
4(λ3 − λ6) : λ4(λ3 − λ6)

2]
= [λ1,3 + O(ε) : λ5,2(λ3,1 − λ6,1)+ O(ε)

: λ2
4,1(λ3,1 − λ6,1)δ + O(ε) : λ4,1(λ3,1 − λ6,1)

2 + O(ε)],
where O(ε) is also analytic in δ and λi, j . This family of arcs depends continuously on δ in
the topology of the arc space and hence the limit δ→ 0 can be taken. The center of (4·14) is
the point

P = [λ1,3 : λ5,2(λ3,1 − λ6,1) : λ2
4,1(λ3,1 − λ6,1)δ : λ4,1(λ3,1 − λ6,1)

2]
which tends to

P = [λ1,3 : λ5,2(λ3,1 − λ6,1) : 0 : λ4,1(λ3,1 − λ6,1)
2].

as δ tends to 0. Thus any arc of type (4·13) can be obtained as a continuous limit of an arc
of type (4·12), and hence belongs to the same irreducible component of the arc space.
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22 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

To resume, the above considerations show that the families of vector fields Xλ∗ , λ∗ ∈
I1 ∩ I3:

(i) Xλ∗ + ε3λ1,3

(
x ∂

∂x + y ∂

∂y

)
+ ε2λ5,2xy ∂

∂x + ελ6,1 y2 ∂

∂x + ελ4,1xy ∂

∂y ;

(ii) Xλ∗ + ε4λ1,4

(
x ∂

∂x + y ∂

∂y

)
+ ε3λ5,3xy ∂

∂x + ελ6,1 y2 ∂

∂x + ε2λ4,2xy ∂

∂y ;

(iii) Xλ∗ + ε4λ1,4

(
x ∂

∂x + y ∂

∂y

)
+ ε2λ5,2xy ∂

∂x + ε2λ6,2 y2 ∂

∂x + ελ4,1xy ∂

∂y

represent one irreducible component of the Nash space of arcs, centred at ∪λ∈I1∩I3 Eλ.
Therefore, this is an essential perturbation in the sense of Definition 5. For brevity, we denote
this irreducible component

Arc(I1 ∩ I3).

Note that maximal order of the bifurcation function Mk is 4 (contrary to what is affirmed in
[7]). In [29, 50, 62], it is shown that the bifurcation functions are linear combinations of four
integrals. The authors compute the bifurcation function up to order three. It is interesting to
note that the bifurcation functions of order three (represented by the family of arcs (4·12))
do not cover all possible linear combinations. It is indeed necessary to go to the order four
to cover all these combinations (represented by (4·13) and (4·14)).

4·2·2. Perturbations of the center set {I2 ∩ I1} ∪ {I2 ∩ I3} ∪ {I2 ∩ I4}, see Figure 3
In this section we note that the arc spaces corresponding to these sets are in the closure of

Arc(I1), Arc(I2), Arc(I3), Arc(I4).

Thus, there will be no new essential perturbations in our list.
As I2 is a three-dimensional real plane, then we can represent this singular set in R

3 = I2

as on Figure 3. Recall that according to our convention we assume that λ∗ 
∈ I1 ∩ I2 ∩ I3. The
localised Bautin ideal Bλ∗ defined by the polynomials (4·5) is generated by:

(i) λ1, λ5(λ3 − λ6), λ2(λ3 − λ6) if λ∗ ∈ I2 ∩ I1;
(ii) λ1, λ5, λ2λ4 if λ∗ ∈ I2 ∩ I3;

(iii) λ1, λ5, λ2(λ4 + 5λ3 − 5λ6), λ2(λ3λ6 − 2λ2
6 − λ2

2) if λ∗ ∈ I2 ∩ I4

and we consider instead of (4·7), the maps

λ−→ [λ1 : λ5(λ3 − λ6) : λ2(λ3 − λ6)]
λ−→ [λ1 : λ5 : λ2λ4]
λ−→ [λ1 : λ5 : λ2(λ4 + 5λ3 − 5λ6) : λ2(λ3λ6 − 2λ2

6 − λ2
2)].

As in the case I1 ∩ I3, we verify that the exceptional divisor Eλ∗ is equal to P
2, P2 and P

3

respectively.
Consider first the perturbations (4·8), where λ∗ ∈ I2 ∩ I1 and

λ1 = ε2λ1,2 + O(ε3)

λ2 = ελ2,1 + O(ε2)

λ5 = ελ5,1 + O(ε2)

λ3 − λ6 = ε(λ3,1 − λ6,1)+ O(ε2)

(4·15)
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Hilbert’s 16th problem and Nash space of arcs 23

with center

P = [λ1,2 : λ5,1(λ3,1 − λ6,1) : λ2,1(λ3,1 − λ6,1)].
A continuous deformation of this family of arcs is

λ1 = ε(ε+ δ)[λ1,2 + O(ε)]
λ2 = (ε+ δ)[λ2,1 + O(ε)]
λ5 = (ε+ δ)[λ5,1 + O(ε)]

λ3 − λ6 = ε[(λ3,1 − λ6,1)+ O(ε)]
(4·16)

which shows that the family (4·15) is in the closure of Arc(I1). Thus the exceptional divisor
EI1∩I2 is “described” by the closure of Arc(I1) and there is no new essential deformation
here.

The case λ∗ ∈ I2 ∩ I3 and

λ1 = ε2λ1,2 + O(ε3)

λ2 = ελ2,1 + O(ε2)

λ4 = ελ4,1 + O(ε2)

λ5 = ε2λ5,2 + O(ε3)

(4·17)

with center

P = [λ1,2 : λ5,2 : λ2,1λ4,1]
is studied similarly, it belongs to the closure of Arc(I2) and Arc(I3). Finally, we consider the
case

λ∗ = (λ1,0, λ2,0, λ3,0, λ4,0, λ5,0, λ6,0) ∈ I2 ∩ I4

and hence

λ1,0 = λ2,0 = λ5,0 = λ4,0 + 5λ3,0 − 5λ6,0 = λ6,0(λ3,0 − 2λ6,0)= 0.

We have to consider therefore two cases : λ6,0 = 0 or λ3,0 − 2λ6,0 = 0 (corresponding to the
two irreducible components of I2 ∩ I4). Suppose for instance λ6,0 = 0.

The family of perturbations

λ1 = ε2λ1,2 + O(ε3)

λ5 = ε2λ5,2 + O(ε3)

λ2 = ελ2,1 + O(ε2)

λ6 = ελ6,1 + O(ε2)

λ4 + 5λ3 − 5λ6 = ε(λ4,1 + 5λ3,1 − 5λ6,1)+ O(ε2)

λ3λ6 − 2λ2
6 − λ2

2 = ελ3,0λ6,1 + O(ε2)

(4·18)

with center

P = [λ1,2 : λ5,2 : λ2,1(λ4,1 + 5λ3,1 − 5λ6,1) : λ2,1λ3,0λ6,1].
describes the exceptional divisor Eλ∗ = P

3.
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24 J.–P. FRANÇOISE, L. GAVRILOV AND D. XIAO

Consider a small deformation in δ of the initial family (4·18) which is of the form

λ2 = (ε+ δ)[λ2,1 + O(ε)]
λ3λ6 − 2λ2

6 − λ2
2 = ε[λ3,1λ6,1 − 2λ2

6,1 − λ2
2,1 + 0(δ)] + O(ε2)

λ4 + 5λ3 − 5λ6 = ε(λ4,1 + 5λ3,1 − 5λ6,1)+ O(ε2)

λ1 = ε(ε+ δ)[λ1,2 + O(ε)]
λ5 = ε(ε+ δ)[λ5,2 + O(ε)].

(4·19)

The family (4·19) induces a continuous deformation of (4·8) which shows that (4·18) is
in the closure of (4·19). The case λ3,0 − 2λ6,0 = 0, λ6,0 
= 0 is analogous. We conclude that
EI2∩I4 is described by (the closure of) Arc(I4), and there is no new essential perturbation
here.

4·2·3. Perturbations of the center set {I1 ∩ I2 ∩ I3}
The center set

{I1 ∩ I2 ∩ I3} = {λ1 = λ2 = λ3 − λ6 = λ4 = λ5 = 0}
is a straight line and we assume that λ3 
= 0. The localised Bautin ideal Bλ∗ defined by the
polynomials (4·5) is also generated by

λ1, λ5(λ3 − λ6), λ2λ4(λ3 − λ6)(λ4 + 5λ3 − 5λ6), λ2λ4(λ3 − λ6)
2 (4·20)

or equivalently

λ1, λ5(λ3 − λ6), λ2λ
2
4(λ3 − λ6), λ2λ4(λ3 − λ6)

2. (4·21)

Therefore, instead of (4·7), we use the map

λ−→ [λ1 : λ5(λ3 − λ6) : λ2λ
2
4(λ3 − λ6) : λ2λ4(λ3 − λ6)

2]. (4·22)

The family (4·8), where λ∗ ∈ I1 ∩ I2 ∩ I3 and induced by

λ1 = ε4λ1,4 + O(ε5)

λ5 = ε3λ5,3 + O(ε4)

λ2 = ελ2,1 + O(ε2)

λ4 = ελ4,1 + O(ε2)

λ3 − λ6 = ε(λ3,1 − λ6,1)+ O(ε2)

(4·23)

with center

P = [λ1,4 : λ5,3(λ3,1 − λ6,1) : λ2,1λ
2
4,1(λ3,1 − λ6,1) : λ2,1λ4,1(λ3,1 − λ6,1)

2]
describes an open dense subset of Eλ∗ = P

3.
There is a continuous deformation of (4·8) induced by the deformation

λ1 = ε3(ε+ δ)[λ1,4 + O(ε)]
λ5 = ε2(ε+ δ)[λ5,3 + O(ε)]
λ2 = (ε+ δ)[λ2,1 + O(ε)]
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Hilbert’s 16th problem and Nash space of arcs 25

λ4 = ελ4,1 + O(ε2)

λ3 − λ6 = ε(λ3,1 − λ6,1)+ O(ε2) (4·24)

which shows that this family (4·23) belongs to the closure of Arc(I1 ∩ I3), and again there is
no new essential perturbation.

4·2·4. Perturbations of the linear center λ∗ = 0
Consider finally the singular point λ∗ = (0, . . . , 0) on the center set Z(B), which

corresponds to the linear center

X0 =−y
∂

∂x
+ x

∂

∂y
.

This point is the intersection of the four centre sets I1, I2, I3 and I4, and we shall show that
Arc(I1 ∩ I2 ∩ I3 ∩ I4) is in the closure of Arc(I1 ∩ I2 ∩ I3).

Let us recall, that the localized Bautin ideal at the origin is generated by the polynomials

v1(λ)= λ1,

v2(λ)= λ5(λ3 − λ6),

v3(λ)= λ2λ4(λ3 − λ6)(λ4 + 5λ3 − 5λ6),

v4(λ)= λ2λ4(λ3 − λ6)
2(λ3λ6 − 2λ2

6 − λ2
2).

The family (4·8)

ε−→ (λ(ε), [v1(λ(ε)) : v2(λ(ε)) : · · · : v6(λ(ε))])
induced by

λ1 = ε6λ1,6 + O(ε7)

λ2 = ελ2,1 + O(ε2)

λ3 = ελ3,1 + O(ε2)

λ4 = ελ4,1 + O(ε2)

λ5 = ε5λ5,5 + O(ε6)

λ6 = ελ6,1 + O(ε2)

λ4 + 5λ3 − 5λ6 = ε3(λ4,3 + 5λ3,3 − 5λ6,3)+ O(ε4)

(4·25)

with center

P = [
λ1,6 : λ5,5(λ3,1 − λ6,1) : λ2,1λ4,1(λ3,1 − λ6,1)(λ4,3 + 5λ3,3 − 5λ6,3)

: λ2,1λ4,1(λ3,1 − λ6,1)
2(λ3,1λ6,1 − 2λ2

6,1 − λ2
2,1)

]
describes an open subset of the exceptional divisor Eλ∗ = P

3. The closure of the set of centres
P equals Eλ∗ .

We shall show that a general arc (induced by) (4·25) has a suitable deformation (4·25δ),
continuous in the topology of the Nash arc space, which is of the form (4·23). It is moreover
a continuous deformation in the sense of the arc space topology.
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We define first λδ
3 = λ3(ε)+ δ, λδ

6 = λ6(ε)+ δ, and λδ
2 = λ2. As λ3λ6 − 2λ2

6 − λ2
2 as a

power series in ε has a double zero at ε= 0, then we obtain

λδ
3λ

δ
6 − 2(λδ

6)
2 − λ2

2 = (λ3 + δ)(λ6 + δ)− 2(λ6 + δ)2 − λ2
2

= [ε2 + ε1(δ)ε+ ε2(δ)][p2(δ)+ O(ε)],
where ε1(δ), ε2(δ), p2(δ) are analytic functions in δ, and

ε1(0)= ε2(0)= 0, p2(0)= λ3,1λ6,1 − 2λ2
6,1 − λ2

2,1.

We define λδ
4 in such a way, that

λδ
4 + 5λ3 − 5λ6 = ε[ε2 + ε1(δ)ε+ ε2(δ)][p1(δ)+ O(ε)],

where p1(δ) is analytic in δ and

p1(0)= λ4,3 + 5λ3,3 − 5λ6,3.

Finally, the power series X δ, λδ
5 are defined similarly by the conditions

X δ = ε4[ε2 + ε1(δ)ε+ ε2(δ)][λδ
1,6 + O(ε)]

λδ
5 = ε3[ε2 + ε1(δ)ε+ ε2(δ)][λδ

5,5 + 0(ε)],
where λδ

1,6, λδ
5,5 depend analytically in δ and λ0

1,6 = λ1,6, λ0
5,5 = λ5,5. The δ-family of arcs

(4·25δ) induced by the power series δ→ λδ
i has a center

Pδ = [λδ
1,6 : λδ

5,5(λ3,1 − λ6,1) : λ2,1λ
δ
4,1(λ3,1 − λ6,1)p1(δ)

: λ2,1λ
δ
4,1(λ3,1 − λ6,1)

2 p2(δ)].
This completes the proof that Arc(I1 ∩ I2 ∩ I3 ∩ I4) is in the closure of Arc(I1 ∩ I2 ∩ I3),

so there is no new essential perturbation again.
To the end of this section we discuss the bifurcation functions in the quadratically

perturbed linear center in the context of the inclusion

Arc(I1 ∩ I2 ∩ I3 ∩ I4)⊂ Arc(I1 ∩ I2 ∩ I3). (4·26)

The set I1 ∩ I2 ∩ I3 ∩ I4 is just one point (the linear center), I1 ∩ I2 ∩ I3 is a two-plane
representing “Hamiltonian triangles”, that is to say, Hamiltonian systems in which the
Hamiltonian is a product of three linear factor. The inclusion (4·26) means that a bifurcation
function of the perturbed linear centre is either a limit, or a limit of derivatives of bifur-
cation functions, related to the Hamiltonian triangle case. Recall, that in the Hamiltonian
triangle case, we have three bifurcation functions which are complete elliptic integrals of
first, second and third kind, and the fourth one is an iterated integral of length two [27].
After “taking the limit” the Hamiltonian takes the form h = x2 + y2 and the genus of inte-
grals drop to zero. As we shall see, they become polynomials of degree at most four in h,
vanishing at the origin. This is the content of the classical theorem of Zoladek [61, theorem
4] which we recall now. Denote by P the Poincaré return map associated to the perturbed
linear center, parameterized by the Hamiltonian h = (x2 + y2)/2. Then

P(h)− h = 2πv1h(1+ O(λ))+ v2h2(1+ O(λ))+ v3h3(1+ O(λ))+ v4h4(1+ O(λ)).
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By abuse of notations here v2, v3, v4 are the polynomials above, but up to multiplication by
a non zero constant.

O(λ) means a convergent power series in h whose coefficients are analytic in v1, poly-
nomial in v2, v3, v4 and belong to the ideal generated by v1, v2, v3, v4 in R[v2, v3, v4]{v1}.
This last property is crucial for the computation of the bifurcation functions. We conclude
that every bifurcation function is a polynomial of the form c1h + c2h2 + c3h3 + c4h4.

In [28], Iliev extended Zoladek’s theorem to perturbations of the harmonic oscillator of
any degree using the algorithm of [12]. A complete presentation of this result is reproduced
in the book [54]. In this book, on page 474, the author writes:

we believe that every row in table 1 will stabilize at some value N (n) for all k ≥ K (n)

This is indeed a consequence of the Theorem 5 of our paper. It applies as well to the
perturbation of the Bogdanov–Takens Hamiltonian and the table 4·2, [94, p. 477].

5. Conclusion and perspectives

To conclude, we resume the main new points of our approach and discuss further possi-
ble developments, for instance, to the local Hilbert’s 16th problem on a period annulus for
polynomial perturbations of any degree.

(1) In this paper, we have represented the set of bifurcation functions (Melnikov func-
tions of any order) by the exceptional divisor E of the canonical blow-up of the Bautin ideal
(cf. Proposition 3) and define the corresponding Iliev number k , Definition 1. In the partic-
ular case of the Kapteyn normal form of quadratic deformations, we have checked that this
set is always a vector space (or equivalently that Eλ is always a projective space). Is it true
in general for a polynomial perturbation of any degree?

(2) Our setting allows a quick and systematic computation of the maximal order of the
bifurcation function. It does not provide of course a priori information on the number of
zeros of this bifurcation function. Many other techniques have been developped for solving
this final step. Finding an explicit integral and an integrating factor for the perturbed center
allows to represent the bifurcation function as an (iterated) integral over the level set of
the first integral (cf. [12, 17]). In the known cases, this bifurcation function is a solution of a
differential system and techniques like Chebycheff systems, argument principle can be used.
For instance, this number of limit cycles is 2 for generic perturbations of a Hamiltonian
in I3 ([18]). It is 2 in the perturbation of a generic Lotka–Volterra system in I1 and 3 for
the Hamiltonian triangle in I1 ∩ I3 ([29, 50, 62]), it is less than 5 in the case of generic
perturbation of I4 ([20, 58]). The case of the perturbation of a generic reversible center in I2

is still open. By our setting, we know that computation of the first order bifurcation function
is enough in that case.

In view of our computations, we conjecture that if there is a uniform bound N for the
number of zeros of the bifurcation functions associated to a family of arcs A, then the number
of zeros of the bifurcation functions associated to arcs which belong to the closure A of A is
also less than N .

For the Hamiltonian non-generic cases, the intersection I2 ∩ I3 has been fully covered by
many contributions including [31, 46], [10, 26], as well as the intersection I1 ∩ I3, [59, 60]
and the cyclicity is 2, except for the Hamiltonian triangle [29].

For the generic cases of I1 ∩ I2, the bound is 2 (cf. [45]).
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Henryk Zoladek conjectured in ([61], p. 244) that

The maximal number of limit cycles appearing after perturbation of the system with
center as a function of a point of the center manifold is equal to the maximum of the
values of the number of zeroes of bifurcation function in a neighborhood of the point
in the center manifold.

This conjecture can be reformulated in restriction to each components of the Nash space of
arcs Arc(BIC

n, E).

(3) Our setting is well adapted to discuss the confluence phenomenon that we mention
in the beginning of paragraph 4. To explain it in more detail, let us consider first a smooth
point p of the stratum I2 of the centre manifold. Corresponding to the center p, there is an
associated logarithmic integral H and an integrating factor M . It is enough to consider a
bifurcation function of order 1 and it can be represented as a Melnikov-Pontryagin integral
over the closed level sets H = h. For the essential perturbation defined in Section 4·1, this
bifurcation function can be written as:

M1(h)= λ1 J1(h)+ λ2 J2(h)+ λ5 J5(h). (5·1)

The set of generic reversible centers can be parametrised by (after a scaling of coordinates,
assume B = 2, then A= a ∈R, C = b ∈R):

ż =−iz + az2 + 2 | z |2 +bz2. (5·2)

Note that LV ∩ R or I1 ∩ I2, cannot be described in this chart. The intersection I2 ∩ I3 is
given by a =−1 and the intersection I2 ∩ I4 by a = 4, b=±2.

Consider now, generic centers on I2 ∩ I3. We have checked that the family of arcs (4·17)
can be used. This means that bifurcation function of second order are enough and that the
associated arcs can be described as limits of arcs for I2 (or I3). Explicit computations of
Iliev show that when a =−1, the integral I5 vanishes and that the second order bifurcation
function can be choosen as:

M2(h)= λ1 J1(h)+ λ2 J2(h)+ λ5
d

da
J5(h) |a=−1 . (5·3)

This is an example of what could be called a confluence phenomenon. Consider next,
centers on I2 ∩ I4. In that case, we have shown that the arcs (4·18) can be used, and in
particular that second-order bifurcation functions are enough. But we have also shown that
the family of arcs (4·18) can be represented as a limit of the family of arcs (4·19), which are
of the type associated with I4. The explicit computation made by Iliev in that case matches
the deformation of arcs and yields:

M2(h)= λ1 J1(h)+ λ2 J2(h)+
[
λ4

d

db
J5(h)+ λ5

d

da
J5(h)

]
|a=4,b=±2. (5·4)

Similar computations can be made in the case I1 ∩ I2. A center which is in LV
corresponds to B = 0, A= 1 (after a scaling) and C = b+ ic:

ż =−iz + z2 + (b+ ic)z2. (5·5)

Consider a smooth point p of the stratum I1 of the centre manifold. Corresponding to
the center p, there is an associated logarithmic integral H and an integrating factor M . It is
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enough to consider a bifurcation function of order 1 and it can be represented as a Melnikov–
Pontryagin integral over the closed level sets H = h. For the essential perturbation defined
in Section 4·1, this bifurcation function can be written as:

M1(h)= λ1 J1(h)+ λ2 J2(h)+ λ3 J3(h). (5·6)

The generic centers of I1 ∩ I2 corresponds to c= 0. Iliev showed that J2(h) vanishes on
c= 0. The deformation of arcs (4·15) into (4·16) corresponds to the confluence observed by
Iliev [27, corollary 1] :

M2(h)= λ1 J1(h)+ λ2
d

dc
J2(h) |c=0 +λ3 J3(h). (5·7)

(4) We expect many further developements, for instance for Abel equations [6], or
quadratic double centers [1, 2, 22, 23, 32, 44], where the Bautin ideal is explicitly known.

Appendix A. Logarithmic first integral and integrating factor

For completeness, we reproduce bellow the original result of Dulac, classifying centers of
quadratic plane vector fields. We give then its modern geometric counterpart - Theorem 9.
Namely, consider the 12-dimensional vector space Q of polynomial one-forms

ω= P(x, y)dx + Q(x, y)dy,

where P, Q are polynomials of degree two. Each ω defines a quadratic vector field

X = Q
∂

∂x
− P

∂

∂y
.

Suppose that X (or ω) is real and has a a center. In this case, near the center critical point
in R

2 we have an analytic first integral having a Morse critical point. More generally, we
say that a complex analytic plane vector field X (or ω) has a Morse critical point, provided
that in a neighbourhood of some singular point it has an analytic first integral with Morse
critical point. This notion generalizes the notion of a center, and has a meaning for vector
fields with complex coefficients. The Dulac’s Theorem classifies complex quadratic vector
fields having a Morse critical point. A modern account of this is given in Cerveau and Lins
Neto [8], and we reproduce it here

THEOREM (Dulac [11]). Let X be a complex quadratic vector field with associated
one-form ω. X has a Morse critical point, if and only if ω falls in one of the following
12 cases:

(a) ω= dq, deg q = 3;

(b) ω= p1 p2 p3 · η, η= λ1
dp1

p1
+ λ2

dp2

p2
+ λ3

dp3

p3
, deg p1 = deg p2 = deg p3 = 1;

(c) ω= p1 p2 · η, η= λ1
dp1

p1
+ λ2

dp2

p2
, deg p1 = 2, deg p2 = 1;

(d) ω= p1 p2 · η, η= λ1
dp1

p1
+ λ2

dp2

p2
+ dq, deg p1 = deg p2 = deg q = 1;

(e) ω= p1 p2 · η, η= λ1
dp1

p1
+ λ2

dp2

p2
+ d

q

p1
, deg p1 = deg p2 = deg q = 1;
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(f) ω= p3 · η, η= dp

p
+ d

q

p2
, deg p= 1, deg q = 2;

(g) ω= p2 · η, η= dp

p
+ d

q

p
, deg p= 1, deg q = 2;

(h) ω= p · η, η= dp

p
+ dq, deg p= 1, deg q = 2;

(i) ω= p · η, η= dp

p
+ dq, deg p= 2, deg q = 1;

(j) ω= f g · η, η= 3
d f

f
− 2

dg

g
, deg f = 2, deg g= 3.

In the first three cases (a), (b), (c) and in the last one (j) the one-form ω can be written as

ω= f1... fs

(
�s

i=1λi
d fi

fi

)
, (A·1)

where fi are polynomials with suitable complex coefficients. The first integral f of (A·1)
is of logarithmic type f = f λ1

1 ... f λs
s . Following Movasati [51], for given positive integers

d1, ..., ds , we denote by L(d1, ..., ds) the set of polynomial one-forms ω0 (A·1), where fi are
complex polynomials of degree di , λi ∈C, i = 1, ..., s. The algebraic closure L(d1, ..., ds)

of L(d1, ..., ds) is then an irreducible algebraic subset of the vector space of polynomial
one-forms of degree at most d =�s

i=1di − 1. It is a remarkable fact, that one-forms of type
(d), (e), (f), (g), (h), (i) above are limits of one-forms from the sets (a), (b), (c), (j). This leads
to the following simpler formulation of the Dulac’s theorem, which is implicit in Zoladek
[61, theorem 1], and explicit in Lins Neto [47, theorem 1·1].

THEOREM 9. Let QC be the 12-dimensional complex vector space of quadratic plane
differential systems. The algebraic closure of the subset of quadratic systems having a Morse
critical point is an algebraic subset of QC with irreducible decomposition as follows

L(3),L(2, 1),L(1, 1, 1),L(3, 2)∩ QC.

The usual terminology for these four components in the real case is, according to
(4·3) : Hamiltonian H =L(3)∩ QR , reversible R =L(2, 1)∩ QR, Lotka-Volterra LV =
L(1, 1, 1)∩ QR and co-dimension four Q4 =L(3, 2)∩ QR component of the center set,
respectively. Another terminology is introduced in [33, section 13].

Some more explanation should be given about Q4. In that case, associated with | B |=|C |
there is a parameter α = cos(ξ/2) so that:

f2 = x2 + 4y + 1

f3 = αx(x2 + 6y)+ 6y + 1,
(A·2)

and it can be checked that the form ω0 = 3 f3df2 − 2 f2df3 is of degree 2.

Sketch of the proof of Theorem 9. Let X be a quadratic differential system with associated
one-form ω. The cases (a), (b), (c), (j) correspond obviously to ω in

L(3),L(1, 1, 1),L(2, 1),L(3, 2)∩ QC.
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When the parameter ε tends to 0, the one-form

ωε = p1 p2(1+ εq)

(
λ1

dp1

p1
+ λ2

dp2

p2
+ 1

ε

d(1+ εq)

1+ εq

)
∈L(1, 1, 1)

tends to

ω0 = p1 p2 · η0, η0 = λ1
dp1

p1
+ λ2

dp2

p2
+ dq

which shows that in the case (d) the one-forms ω belong to L(1, 1, 1). Similarly, the one-
form ωε = p1 p2(p1 + εq) · ηε ∈L(1, 1, 1) where

ηε = λ1
dp1

p1
+ λ2

dp2

p2
+ 1

ε

(
d(p1 + εq)

p1 + εq
− dp1

p1

)

tends to the form

ω0 = p1 p2 · η0, η0 = λ1
dp1

p1
+ λ2

dp2

p2
+ d

q

p1
, deg p1 = deg p2 = deg q = 1.

This shows that in the case (e) the one forms ω belong to L(1, 1, 1). The remaining cases
(f)-(i) are treated in a similar way, and they all belong to L(1, 2).

Finally, the irreducibility of the algebraic sets L(3),L(2, 1),L(1, 1, 1) follows from the
fact that they are naturally parameterised by the coefficients of the polynomials pi and the
exponents λ j . The irreducibility of L(3, 2)∩ QC follows from the parameterisation (A·2).
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