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Abstract. We show that the center set of reversible cubic systems, close to
the symmetric Hamiltonian system x′ = y, y′ = x−x3, has two irreducible
components of co-dimension two in the parameter space. One of them
corresponds to the Hamiltonian stratum, the other to systems which are
a polynomial pull back of an appropriate linear system.
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1. Introduction. The paper is a contribution to the study of the center set
of plane polynomial cubic vector fields, in a neighbourhood of the symmetric
Hamiltonian cubic vector field X0

X0 :
{

ẋ = y,
ẏ = x − x3.

(1.1)

X0 is Hamiltonian, and has a first integral

H(x, y) =
1
2
y2 − 1

2
x2 +

1
4
x4.

Under a small analytic perturbation, the centers of X0 near (1, 0) and (−1, 0)
are either simultaneously destroyed, or simultaneously persistent. The set of
cubic vector fields close to X0 and having a center near (±1, 0) is the center set
C0. It is known that the center set is an algebraic set in the space of parameters,
but even the number of its irreducible components is unknown.
Recently, Iliev, Li, and Yu [4] studied special one-parameter families of per-
turbations of the form

Xε :
{

ẋ = y + εP (x, y),
ẏ = x − x3 + εQ(x, y), (1.2)
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where P,Q are arbitrary fixed real cubic polynomials. The displacement func-
tion near the singular points (±1, 0) has an analytic expansion

d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · (1.3)

where as usual h is the restriction of the Hamiltonian H on a cross-section
of the vector field. The so called Melnikov functions Mk vanish if and only if
the displacement map is the zero map, that is to say, the centers (1, 0) and
(−1, 0) are simultaneously persistent. It was shown then in [4, Theorem 1] that
if M1 = M2 = M3 = M4 = 0, then the displacement map is identically zero
and therefore Xε has a center near (1, 0) and (−1, 0). The set of such a system
is an algebraic set Cl contained in C. It turns out that Cl is a union of vector
spaces, and a vector field Xε which belongs to an irreducible component of
Cl is either Hamiltonian, or y-reversible, or x-reversible. It is clear that when
a vector field Xε is Hamiltonian, or y-reversible, then it has a center near
(±1, 0). If, however, the vector field is x-reversible, it does not follow that it
has a center near (±1, 0). Therefore, it makes sense to consider the case of
x-reversible systems separately.
The purpose of this paper is to give a complete description of the center set
C under the restriction that the vector field is x-reversible, that is to say,
the associated foliation by orbits is invariant under the involution (x, y) →
(−x, y). Our approach is the following. The invariance under x → −x suggests
to introduce the quotient vector field which is still polynomial and cubic. It
turns out that this new vector field is of Liénard type, whose centers were
extensively studied. We apply a classical result of Čerkas, revisited recently
by Chrystopher, see [1–3]. As a result, we obtain that the center set has two
co-dimension two smooth irreducible components which correspond either to
Hamiltonian systems, or to systems obtained as a polynomial pull back from
linear systems. From this, the result of the paper follows.

2. Statement of the results. Consider the following perturbed cubic system

Xλ :
{

ẋ = y + P (x, y),
ẏ = x − x3 + Q(x, y), (2.1)

where

P (x, y) =
∑

i+j≤3

aijx
iyj , Q(x, y) =

∑
i+j≤3

bijx
iyj ,

λ = {aij , bks} are small parameters. For λ = 0, the system X0 has a first
integral

H(x, y) =
1
2
y2 − 1

2
x2 +

1
4
x4

and two centers at (x, y) = (±1, 0) shown in Fig. 1. The perturbed vector
field Xλ has therefore a saddle, close to the origin (0, 0), as well as two anti-
saddles (centers or foci) close to (±1, 0). The anti-saddles near (±1, 0) are
either simultaneously centers, or saddles1.

1this fact is obvious if the vector field Xλ is x-reversible, but holds true for arbitrary analytic
perturbations too



Centers of reversible cubic perturbations

Figure 1. The phase portrait of (1.1)

Figure 2. The phase portrait of the perturbed reversible sys-
tem (2.2) with two foci. The exterior period annulus persists

The center set C0 of small parameters λ for which the vector field has a center
near (±1, 0) is a germ of an analytic set in the space of parameters λ. The set
C0 is in fact algebraic, it is globally defined as the zero set of a finite family of
polynomials in λ, but its number of irreducible components is not known in
general (Fig. 2).
The purpose of the present paper is to describe C0 in the particular case when
Xλ is reversible in x. More precisely

Definition 1. The vector field (2.1) is said to be reversible with respect to
x provided that the involution x �→ −x sends Xλ to −Xλ, or equivalently
P (−x, y) = P (x, y), Q(−x, y) = −Q(x, y). The set of reversible cubic systems
(2.2) having a center near (±1, 0) is denoted by CR

0 .

The set XR
λ of vector fields reversible in x

XR
λ :

{
ẋ = y + PR(x, y),
ẏ = x − x3 + QR(x, y), (2.2)

is therefore parameterised by the space of special cubic polynomials PR, QR

of the form

PR(x, y) = a00 + a20x
2 + a21x

2y + a01y + a02y
2 + a03y

3, (2.3)

QR(x, y) = b10x + b11xy + b12xy2 + b30x
3, (2.4)
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where λ = {aij , bks} are small real parameters. The possible phase portraits
of the perturbed vector field XR

λ in the finite plane (that is to say, in a disc of
finite radius) is shown in Fig. 1, where there is some unknown number of limit
cycles. We note that the orbits which belong to the exterior period annulus
are always closed because the vector field XR

λ in consideration is reversible.
We have a strict inclusion CR

0 ⊂ C0 and CR
0 is an algebraic set in the parameter

space. We shall prove

Theorem 2.1. The center set CR
0 of reversible cubic systems XR

λ with a center
near (±1, 0) has two irreducible components of co-dimension two in the set
of polynomials (2.3), (2.4). The components correspond either to Hamiltonian
systems or to systems which are obtained as a polynomial pull back from an
appropriate linear system.

To explicitly describe CR
0 , we shall normalise Xλ first as follows. Note that

the affine transformations

(x, y) �→ (αx, y + β)

transform a reversible cubic system to a reversible cubic system of the same
form, and therefore act on the parameter space and the center set CR

0 .
Therefore, performing an appropriate affine change of x, y, we may assume
that XR

λ has a singular point at (1, 0) for all sufficiently small λ and by the
x-reversibility, it will have another singular point at (−1, 0). The normalised
vector field (2.2) takes the form

XR
λ :

{
ẋ = y + a20(x2 − 1) + a21x

2y + a01y + a02y
2 + a03y

3,
ẏ = x − x3 + b30(x3 − x) + b11xy + b12xy2,

(2.5)

(we denote the coefficients of this normalised reversible vector field by the
same letters aij). Theorem 2.1 is an obvious consequence of the following

Theorem 2.2. The system (2.5) has a non-degenerate real center at (±1, 0) if
and only if

2a20 + b11 = 0

and either

• a21 + b12 = 0 (Hamiltonian case), or
• (1 − b30)a02 = a20(2a21 − b12) (pull back case).

In the second case, the system (2.5) is a polynomial pull back of a linear system
under the map

(x, y) → (x2 − 1 + P2(x), y2), P2(y) =
1

b30 − 1
(b11y + b12y

2).

Note that the trace of XR
λ at (±1, 0) equals 2a20+b11. To determine the center

conditions of (2.5), we shall use the Cherkas-Christopher theorem which we
explain in the next section.
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3. The Cherkas-Christopher theorem. Consider the plane cubic differential
system {

ξ̇ = P3(y) + P1(y)ξ,
ẏ = −ξ − P2(y),

(3.1)

where

P1(y) = a0+a1y, P2(y) = b1y+b2y
2, P3(y) = c1y+c2y

2+c3y
3 ∈ R[y]. (3.2)

Upon substituting ξ → R(x, y) in (3.1), where R is a quadratic polynomial,
we get a new cubic system (3.1∗), which is a pull back of (3.1) under the
polynomial map (ξ, y) = (R(x, y), y). In such a way, centers of (3.1) produce
new centers of more general cubic systems.
In this section, we determine the necessary and sufficient conditions so that
the cubic system (3.1) has a non-degenerate singular point at the origin of
center type. We assume therefore, through this section, that (3.1) already has
a linear center at the origin, that is to say,

a0 − b1 = 0, c1 − a0b1 > 0. (3.3)

Substituting ξ = u − P2(y) in (3.1), we get

udu + [u ((a0 − b1) + (a1 − 2b2)y) + (c1 − a0b1)y
+ (c2 − a0b2 − a1b1)y2 + (c3 − a1b2)y3

]
dy = 0,

which is the polynomial foliation of the Liénard equation{
ẏ = u,
u̇ = −q(y) − up(y), (3.4)

where

p(y) = a0 − b1 + (a1 − 2b2)y, (3.5)
q(y) = (c1 − a0b1)y + (c2 − a0b2 − a1b1)y2 + (c3 − a1b2)y3. (3.6)

The center set of the above Liénard system is well known, see [1,3]. It has
a center at the origin if and only if the primitives P (y) =

∫
p(y)dy and

Q(y) =
∫

q(y)dy have a common composition factor W (y) with a Morse crit-
ical point at the origin. Therefore a0 − b1 = 0, W = P , and there exists a
degree two polynomial Q̃ such that Q(y) = Q̃(W (y)).The latter is equivalent
to the condition that Q is even when p �= 0. In the case p = 0, the system is
obviously Hamiltonian. We summarise the result in the following

Theorem 3.1. The system of Liénard type (3.1) has a non-degenerate center
at the origin if and only if

a0 − b1 = 0, c1 − a0b1 > 0

and either

• a1 − 2b2 = 0 (Hamiltonian case), or
• c2 − a0(a1 + b2) = 0 (pull back case).
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4. Proof of Theorem 2.2. The substitution ξ = x2 − 1 takes the system (2.5)

(y + a20(x2 − 1) + a21x
2y + a01y + a02y

2 + a03y
3)dy

− (x − x3 + b30(x3 − x) + b11xy + b12xy2)dx = 0

to the Liénard form (3.1)

(ξ + P2(y))dξ + (P3(y) + P1(y)ξ)dy = 0,

where

P1(y) =
2

1 − b30
(a20 + a21y),

P2(y) =
1

b30 − 1
(b11y + b12y

2),

P3(y) =
2

1 − b30
((1 + a01 + a21)y + a02y

2 + a03y
3).

Applying Theorem 3.1 with

a0 =
2a20

1 − b30
, a1 =

2a21

1 − b30
,

b1 = − b11
1 − b30

, b2 = − b12
1 − b30

,

c1 =
2(1 + a01 + a21)

1 − b30
, c2 =

2a02

1 − b30
, c3 =

2a03

1 − b30
,

we obtain the equation for the center set CR
0 for the normalised reversible

vector field (2.5).
Finally, to find the first integral in the logarithmic case, we recall that (2.5) is
a polynomial pull back under u = x2 − 1 + P2(y) of the Liénard system

{
ẏ = u,
u̇ = −q(y) − up(y), (4.1)

where (in the pull back case)

p(y) = (a1 − 2b2)y,

q(y) = (c1 − a0b1)y + (c3 − a1b2)y3.

As (4.1) is also y-reversible, it is a pull back of the following linear system
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{
v̇ = 2u,
u̇ = −(c1 − a0b1) − (c3 − a1b2)v − u(a1 − 2b2),

(4.2)

under the map y → v = y2. This completes the proof of Theorem 2.2.
We note finally that the system (4.2) (as any non-degenerate linear system)
has a logarithmic first integral of the form lα1 lβ2 where l1, l2 are linear functions
in λ, u and α, β are suitable complex numbers. Although (4.2) has a Darboux
type first integral, it has no center, except in the Hamiltonian case a1−2b2 = 0.
The reversible vector field XR

λ also has a first integral of Darboux type (pull
back of the Darboux first integral of the linear system), but its centers near
(±1, 0) are of pull back type. An explicit computation of this integral in some
cases can be found in [4, Section 5]. Thus the centers we have found are both
of pull back and Darboux type. In the Zoladek’s classification of (known) cubic
centers, they appear as CD

(8)
4 [5,6]. �
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