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Introduction.

In its whole generality, the study of the analytical classification of sin-
gularities of codimension one complex foliations may be reduced to the
following question: given a germ of singular foliation F, describe as
precisely as possible the quotient of its topological class up to the equiv-
alence relation of analytical conjugacy, thus describe the following set

M (F) :=

{
F

′

∼top F
}/

F
′
∼ana F.

Let us be more specific: two germs of foliations F and F
′
are topologically

equivalent if there exists a germ of homeomorphism ψ ∈ Homeo (Cn, 0)

that sends any leaf of F to a leaf of F
′
, that is ψ∗F = F

′
. We will denote

this situation by

F
′

∼top F.

They are analytically equivalent if ψ can be chosen analytical. In that
case, we will denote

F
′

∼ana F.

In that case, the relation between F and F
′

can be written in a more
explicit way. Let ω and ω

′
two holomorphic 1- forms defining respec-

tively F and F
′

. Then the map ψ is an analytical conjugacy if and only
if there exists a germ of unity u such that

{
ψ∗ω = uω

′

u (0) 6= 0

Indeed, if γ :
(
Cn−1, 0

)
→ Cn is invariant hypersurface of F, that is

γ∗ω = 0, then ψ(−1) ◦γ is an invariant hypersurface for ω
′

because the
following equalities hold:

γ∗u ◦ψ(−1) ×
(
ψ(−1) ◦ γ

)∗
ω

′

= γ∗ω = 0
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Describing M (F) is an extremely tough problem. Therefore, in a first
moment, our objective is to understand the local structure of this space
around the point [F] which is the analytical class of F. A standard ap-
proach to study such a local problem is to classify the small deformations
of F up to analytical equivalence for deformations. A first approach would
be to deform F by considering a germ of analytic family of holomorphic
1- forms ωt, t ∈ (C, 0) that coincides with ω when the parameter t is
equal to 0. However, there is no reason for such a deformation to stay
in the topological class of F ! Indeed, we have to restrict ourselves to
the deformations that preserve the topological type of F. There is the
intervention of the unfoldings of foliations. This special kind of deforma-
tions will always be topologically trivial, and thus will fix the topological
class. In the course of the lecture, we will give a complete classification
of germs of unfoldings of foliations up to the analytical equivalence of
unfoldings, and, in this way, we will be able to describe the local structure
of M (F).

Nevertheless, unfoldings are really tough to construct. Indeed, the situa-
tion is a priori desperate. Except when the foliation F admits some kind
of first integral - a situation which is highly not generic -, we are unable
to give any explicit example. Hence, the question is, how a mathemati-
cal object so poor in example can be of any help ? The answer is that
thanks the cohomological tool, we will be allowed to analyze deeply how
unfoldings are build. One objective of this lecture could be to convince
you that such an inflexible tool is actually useful and powerful.
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1. Basic concepts.

A foliation of a manifold M can be defined as a special system of charts
on M. Since we are going to deal only with codimension one foliations,
we do not want introduce this general point of view and we will see
a foliation as the data of a family of holomorphic 1−forms (ωi)i∈I,
ωi defined on an open set Ui, such that the union of the Ui’s cover
the whole manifold except maybe a closed sub-manifold. Moreover, the
following properties are required:

• ωi never vanishes on Ui and ωi∧dωi = 0. The latter condition
is the integrability condition.

• on Ui ∩ Uj, there exists a non-vanishing function fij such that
ωi = fijωj.

We prefer the latter point of view because it highlights the fact that
a foliation is given by a partial differential equation of order one. The
integrability ensures that the above definition of foliation coincides with
the standard one. This coincidence of definitions is the object of the
next section.

1.1. Integrability.

1.1.1. Flow of a vector field. Let X be a germ of vector field in (Cn, 0)

X =
∑

ai (x)
∂

∂xi
.
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The flow at time t of X is the map defined by

x 7→ e(t)Xx

where e(t)Xx is by definition the value at time t, γ (t), of a solution γ (s)
of the system {

γ
′
(s) = X (γ (s))

γ (0) = x
.

In view of the theorem of Cauchy-Lipschitz, the flow is well defined for
t small enough. It can be also defined by the following formula,

x 7→ e(t)X · x =
∞∑

k=0

tk
Xk · x

k!
.

Indeed, one has
(
e(t)X · x

) ′
= X

(
e(t)X · x

)
and e(0)X · x = x. The proof

of the lemma given below is just a formal computation that relies on the
fact that if [X, Y] = X · Y − Y · X = 0 then for any k and k

′
one has

XkYk
′

= Yk
′

Xk

Lemma 1. Let X and Y be two commuting vector fields, that is [X, Y] =

0. Then their flow commute, i.e., for any t and t
′

we have

e(t)X ◦ e

(

t
′
)

Y
= e

(

t
′
)

Y
◦ e(t)X.

When [X, Y] 6= 0, one can express the composed flow e(1)X ◦ e(1)Y as
the flow of a well defined vector field. This is the Campbell-Hausdorff
formula1:

Theorem 2. (Campbell-Hausdorff Formula) Let X and Y two vector
fields. Then

e(1)X ◦ e(1)Y = e(1)〈X,Y〉

where

〈X, Y〉 = X+ Y +
1

2
[X, Y] +

1

12
[X, [X, Y]] −

1

12
[Y, [X, Y]] + · · · .

1See for instance [21]
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In particular, if [X, Y] = 0 then 〈X, Y〉 = X + Y. This formula is very
important and is a deep result although it may appeared simply as a
technical lemma. There are explicit expressions of 〈X, Y〉, for instance
the formula of Dynkin [22]:

〈X, Y〉 =
∑

m≥1

(−1)m−1

m

∑

pi+qi>0


X, · · · , X
︸ ︷︷ ︸

p1 times

, Y, · · · , Y
︸ ︷︷ ︸

q1 times

, · · · , X, · · · , X
︸ ︷︷ ︸

pm times

, Y, · · · , Y
︸ ︷︷ ︸

qm times




∗

p1!q1! · · ·pm!qm!

where [X1, X2, · · · , Xp]∗ = [X1, [X2, [· · · , Xp]] · · · ] .

1.1.2. Integrability. As already mentioned, a smooth codimension one
foliation can be defined as a system of local charts x = (x1, x2, · · · , xn)
such that the changes of coordinates are written x→ (h (x1) , . . .). The
leaves of the foliation are locally defined by x1 = cst. It can also be
defined by an holomorphic germ of 1−form Ω such that Ω (0) 6= 0, with
the condition Ω∧ dΩ = 0. Below, we explain why these two definitions
are equivalent.

Theorem 3. (Lie [21]) A germ of smooth foliation can be equivalently
defined by

(1) A local chart x = (x1, x2, · · · , xn) such that x1 = cst are the
leaves.

(2) A germ of 1−form Ω = u (x)dx1 with u (0) 6= 0.
(3) A germ of 1−form Ω such that Ω (0) 6= 0 and Ω∧ dΩ = 0.

Proof. The equivalence between (1) and (2) is obvious, the implication
(2) =⇒ (3) also. It remains to proof that (3) =⇒ (2): let us write

Ω =

n∑

i=1

ai (x) dxi.

We can suppose that a1 (0) 6= 0. Let us consider the family of vector
fields defined by

Xi =
∂

∂xi
−
ai (x)

a1 (x)

∂

∂x1
.
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These vector fields are tangent to the one form Ω. Let us consider the
application

Φ (x) = e(x2)X2 ◦ · · · ◦ e(xn)Xn (x1, 0, . . . , 0) .

The hypothesis Ω ∧ dΩ = 0 implies that [Xi, Xj] = 0 for any i 6= j.
Hence, the map Φ can be also written

e(xσ(2))Xσ(2) ◦ · · · ◦ e(xσ(n))Xσ(n) (x1, 0, . . . , 0)

for any permutation σ. The integral curve of ∂
∂xi

consists in the curve

defined by xj = cstj for j 6= i. If we fix xj for j 6= i and make vary xi
then Φ (x) moves along the integral curve of Xi: indeed, we can write

Φ (x) = e(xi)Xi ◦ψ (x1, 0, . . . , 0) .

and it is easily seen that ψ (x1, 0, . . . , 0) does not depend on xi. Thus
the map satisfies Φ∗Xi = ui

∂
∂xi

for some function ui. Hence, we have

Φ∗Ω

(
∂

∂xi

)
= 0

for any i ≥ 2. Therefore, Φ∗Ω can be written Φ∗Ω = u (x) dx1. Now,
any change of chart Ψ = (Ψ1, · · · , Ψn) satisfies

Ψ∗dx1 ∧ dx1 =
∑ ∂Ψ1

∂xi
dxi ∧ dx1 = 0,

hence Ψ1 depends only on x1. �

1.2. Object of interest in this lecture. In this lecture, we consider a
germ of foliation F given by an holomorphic 1-form ω with an isolated
singularity in

(
C2, 0

)
. The 1-form ω is the following expression

ω = a (x, y) dx+ b (x, y) dy

where a and b belongs to C {x, y} whose disc of convergence has a
strictly positive radius. Since, the singularity is isolated, a and b have
no common factor. The multiplicity of F is defined as the integer

(1.1) ν0 (F) = ν0 (ω) = min (ν0 (a) , ν0 (b)) .
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A leaf is a curve γ : U ⊂ C → C2 that lies in the open set of definition
of ω such that γ∗ω = 0, i.e., if γ (t) = (x (t) , y (t)) then

a (x (t) , y (t)) x
′

(t) + b (x (t) , y (t))y
′

(t) = 0 for all t ∈ U.

Figure 1.1. Example of real trace of singularities in C2.

Thus, the leaves of the foliation can be also seen as solutions of the first
order differential equation

dy

dx
= −

a (x, y)

b (x, y)
.

A separatrix of is an irreducible curve S that is analytic at the origin of(
C2, 0

)
such that S\0 is invariant by F.

Theorem 4. (C. Camacho, P. Sad [4]) The foliation F admits at least
one separatrix.

It may happen that there is an infinite number of separatricies, for in-
stance when ω = xdy−ydx. We refer to this case as the dicritical case.
In this lecture,

All foliations are supposed to be non-dicritical.

Our main problem is to classify foliations, and so 1−forms up to the
analytical equivalence, thus to describe the following set

M (F) :=

{
ω

′
∼top ω

}/
ω

′

∼ana ω.
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where ω
′

∼ana ω means there exist ψ and u with ψ∗ω = uω
′

. Here,
ψ∗ω stands for the pull-back 1−form: if ω = a (x, y) dx + b (x, y) dy
and ψ = (ψ1, ψ2) then

ψ∗ω = a (ψ1, ψ2) dψ1 + b (ψ1, ψ2) dψ2

=

(
a (ψ1, ψ2)

∂ψ1

∂x
+ b (ψ1, ψ2)

∂ψ2

∂x

)
dx

+

(
a (ψ1, ψ2)

∂ψ1

∂y
+ b (ψ1, ψ2)

∂ψ2

∂y

)
dy.



2. A first example « by hand ».

Let us consider a first example. Let F be a foliation given by a 1−form

ω = ω0 +ω1 + . . .

where ωi is the homogeneous part of degree i + 1. The 1−form ω0 is
the linear part and is written

ω0 = (ax+ by) dy+ (cx+ dy) dx.

with a, b, c and d complex numbers. Suppose that the matrix
(
a b
−c −d

)

has two eigenvalues λ1 and λ2 whose quotient is a complex number that
is not a real number. In this situation, we say that ω has an hyperbolic
singularity. In particular, the matrix A is diagonalizable since λ1 6= λ2:

hence, there exists P such that

(
λ1 0
0 λ2

)
= P−1AP. Consider the

linear automorphism defined by Φ (x, y) = P

(
x
y

)
. The pullback of

ω by Φ is written

Φ∗ω0 = λ1xdy+ λ2ydx.

Thus we have Φ∗ω
λ2

= λ1
λ2
xdy+ ydx+ · · · . Following Camacho-Sad, we

called the so defined ratio λ1
λ2

the residue of ω. The initial foliation F is

given in some coordinates by a 1−form

ω = λxdy+ ydx+ higher order terms.
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Lemma 5. Let ω = λxdy + ydx + · · · and ω
′

= λ
′

xdy + ydx + · · ·
be two hyperbolic singularities. If they are analytically equivalent, then
λ = λ

′

or λ = 1
λ
′ .

Proof. From the definition, there exist a conjugacy ψ and a unity such
that

(2.1) ψ∗ω = u×ω
′

.

Thus if we look to the linear part of the relation 2.1, from the remark

above, there exist a matrix P =

(
q r
s t

)
and a complex number w =

u (0, 0) 6= 0 such that

(
λ 0
0 −1

)
P = wP

(
λ

′

0
0 −1

)

(
λq λr
−s −t

)
= w

(
qλ

′
−r

sλ
′

−t

)
.

In particular, −t = −wt, hence w = 1 or t = 0. Suppose first, w = 1

then qλ = qλ
′
. If q = 0 then λr = −r implies r = 0 since λ 6= −1. But

q = r = 0 is impossible. Thus q 6= 0 and λ = λ
′

. If now t = 0, then we
have the system

λq = wqλ
′

λr = −wr

−s = wsλ
′

.

Since r 6= 0, w = −λ and thus −s = −sλλ
′

. However, s 6= 0 since
t = 0 therefore λλ

′

= 1. �

The next result is due to Koenigs and has been extended in higher di-
mension by Poincar.

Theorem 6. (Koenigs-Poincar [13]) The 1−formω is analytically equiv-
alent to its linear part.
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Proof. We give below two different nearly complete proofs.

[1]. Let us suppose that in some coordinates ω = ω0+ωN+ . . . where
ωN is homogeneous of degree N. Consider ΦN a biholomorphism that
is written ΦN = (x+AN, y + BN) where A and B are homogeneous of
degree N. Now, a simple computation ensures that

Φ∗
Nω = ω0

+

(
λx
∂BN

∂x
+ BN + y

∂AN

∂x

)
dx

+

(
y
∂AN

∂y
+AN + y

∂BN

∂y

)
dx+ωN + . . .

thus, we can make the term of order N disappear once A and B are
solutions of






(λi+ 1)bi + (i+ 1)ai+1 = −αi i = 0 . . . N− 1

(λ (N− i) + 1)ai + (N − i+ 1)bi+1 = −βi i = 0 . . . N − 1

(λN + 1)bN = −αN

λaN = −βN

where AN =
∑N
i=0 aix

iyN−i and BN =
∑N
i=0 bix

iyN−i, which can
clearly be solved for λ /∈ R. Thus there exist biholomorphisms Φ1 = Id,
Φ2, · · · and Φn such that

(Φ1 ◦Φ2 ◦ · · · ◦Φn)
∗ω = ω0 + ( terms of order n) .

Thus there is a formal change of coordinates

Φ̂ := lim
n→∞

Φ1 ◦Φ2 ◦ · · · ◦Φn

such that Φ̂∗ω = ω0. This formal map can be proved to be convergent
using standard techniques.2

[2] . From the theorem of Briot-Bouquet [17], there exist two smooth
transverse curves S1 ∪ S2 that are separatricies. If we choose these

2See for instance, Classification analytique des feuilletages holomorphes singuliers,
J. Mozo Monografias del IMCA, 2010
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two curves as axes of coordinates, the 1− form is written in these new
coordinates where S1 ∪ S2 = {xy = 0}

ω = λx (1+ a (x, y)) dy+ y (1 + b (x, y)) dx.

Let us consider a transverse curve T = {x = ǫ} . Let γ be the path defined
by γ (t) =

(
x (t) = ǫe2iπt, 0

)
. Using the theorem of Cauchy-Lipschitz,

there exists a unique solution y (t) of the differential equation

λx (t) (1 + a (x (t) , y (t)))y
′

(t) + y (t) (1+ b (x (t) , y (t))) x
′

(t) = 0

with y (0) = z. This solution is defined on a open segment [0, t0[. It
can be shown that for z small enough, t0 can b taken strictly greater
than 1 : indeed, since the coefficient on dx vanishes when y = 0, this is
a consequence of some a priori control. The point y (1) is denoted by
hF,T (z): the map z 7→ hF,T (z) is called the holonomy map of F. Using
the theorem of Cauchy-Lipschitz with parameters yields the analycity of
hF,T .

hF,T

F

γ(s)

Figure 2.1. The holonomy map

Now, we have the relation

hF,T (z)

z
= exp

(
∫1

0

y
′

(t)

y (t)
dt

)
= exp

(
−
1

λ

∫1

0

x
′

(t)

x (t)

1 + b (x (t) , y (t))

(1+ a (x (t) , y (t)))
dt

)
.

When z goes to 0, the solution y (t) goes uniformly to the zero solution.
Thus, using Lebesgue convergence theorem, we have

lim
z→0

hF,T (z)

z
= exp

(
−
1

λ

∫1

0

x
′

(t)

x (t)

1 + b (x (t) , 0)

(1 + a (x (t) , 0))
dt

)
= e−

2iπ
λ = η
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in view of the residues formula. Thus, we are led to the next relation

∣∣∣h ′

F,T (0)
∣∣∣ = |η| 6= 1.

since λ /∈ R. We are going to prove that there exists a germ of biholo-
morphism φ (z) = z+ · · · such that

φ ◦ hF,T = ηφ (z) .

We can suppose |η| < 1 considering h−1F,T if necessary. Let us write

hF,T (z) = ηz+
∑
i≥2 hiz

i and φ (z) =
∑
i≥1 liz

i. Thus

∑

i≥1

li


ηz+

∑

i≥2

hiz
i



k

= ηz+
∑

i≥2

liηz
i

∑

i≥2

li

(
η − ηi

)
zi =

∑

j≥2




j−1∑

k=1

lk
∑

i1+i2+...+ik=j

hi1 · · ·hik

︸ ︷︷ ︸
[hkF,T ]j



zj

Therefore, the coefficients li’s of φ have to satisfy the following linear
induction:

(2.2) ∀j > 0, lj =
1

η− ηj

j−1∑

k=1

lk

[
hkF,T

]
j
.

Now, for any 1 > η
′

> η, there exists a small neighborhood |z| < ǫ <

1 such that |hF,T (z)| < η
′

|z|. Hence, for any k ≥ 1,
∣∣hkF,T (z)

∣∣ <(
η

′
)k
ǫk. Using the Cauchy’s formula yields the following inequality

∣∣∣∣
[
hkF,T

]
j

∣∣∣∣ <
(
η

′
)k
ǫk−j.
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Now, suppose that for any l < j, we have |ll| < Aα
l for some constants

A and α . Then, introducing these inequalities in 2.2 gives us

|lj| <
1

η− ηj

j−1∑

k=1

Aαk
(
η

′
)k
ǫk−j <

2

η

A

ǫj
αη

′

ǫ
1−

(
αη

′
ǫ
)j

1 − αη
′

It is possible to choose α so that the inequality

2

η

A

ǫj
αη

′

ǫ
1 −

(
αη

′
ǫ
)j

1 − αη
′ < Aαj

holds: indeed, the quotient of the two members of the above inequality

is equivalent to cst ×
(
η

′
)j

while j goes to +∞: therefore, it tends to

zero. To finish the proof, consider the foliation Lλ given by,

ω = λxdy+ ydx.

Its holonomy computed on the transverse T is exactly hLλ,T : z → ηz.
The two holonomies hLλ,T and hF,T are conjugated by φ. We are going to
prove that this φ can be extended on a neighborhood of 0 in a conjugacy
of the foliations. Consider the fibration Π : (x, y) → x. On a small
neighborhood both foliations are transverse to this fibration. We make
the following construction: let (x, y) be a point in the neighborhood of
0. We consider a path γ in y = 0 that links x and ǫ. We can choose

γ (t) = (t |x| + (1 − t)ǫ) eitarg(x).

Let x̃ be the extremity of the lifting path of γ in the leaf of F. We
denote by Φ (x, y) the extremity of the lifting path of γ−1 in the leaf
of Lλ. It can be shown that Φ is bounded near x = 0 and thus can be
holomorphically extended in view of the Riemann extension result. The
biholomorphism Φ is the checked conjugacy. �

Lemma 7. The two forms λxdy + ydx and λ
′

xdy + ydx where λ and
λ

′
are complex number not real are topologically equivalent.

Proof. Let us consider the universal covering C2 → (C∗)2 defined by
(x, y) 7→ (ex, ey). The pullback of the two foliations as defined in the
lemma are linear foliations given by the level of the function λy+ x and
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λ
′

y + x. Let us consider C2 as R4. The leaves are 2 -planes given by
the cartesian equations:

{
ax1 − bx2 + y1 = c1

bx1 − ax2 + y2 = c2
and

{
a

′

x1 − b
′

x2 + y1 = c1

b
′
x1 − a

′
x2 + y2 = c2

where x = x1 + ix2, y = y1 + iy2,λ = a+ ib and λ
′
= a

′
+ ib

′
. Since

these two foliations are transverse to the fibration π : (x1, x2, y1, y2) 7→
(x1, y1), one can construct φ the following way: to any point p in a leaf

L, we associate the point p
′
at the intersection of the fiber π−1 (π (p))

and the leaf L
′
passing trough the intersection of L and π−1 (0). Since

φ preserves the fibration, it can be pushed down through the universal
covering in a conjugacy of the foliations that can be extended on a
neighborhood of 0. �

The proof of the next result is delicate and will not be given. It is a
corollary of the topological invariance of the multiplicity: this is not a
easy result. This had been proved by Camacho and Sad in [2].

Theorem 8. [2] Let F be a foliation topologically equivalent to the
foliation given by λxdy + ydx. Then F is given by a 1−form with a
linear part whose residue is a complex number not real.

In this section, we have proved that any hyperbolic singularity is analyti-
cally equivalent to the singularity given by some linear form λxdy+ydx
with λ /∈ R. We have also admit that any singularity topologically equiv-
alent to an hyperbolic one, is also hyperbolic. Finally, we have noticed
that if two 1−forms λxdy + ydx and λ

′

xdy + ydx led two analytically
equivalent foliation then λ = λ

′

or λ = 1
λ
′ . The conclusion of this

study is that the moduli space of any hyperbolic singularity is the quo-

tient C\R
/
λ ∼ 1

λ
. Therefore, we have identified the moduli space of a

hyperbolic singularity:

M (λxdy+ ydx = 0) ∼ H = {λ ∈ C|Im(λ) > 0} .



3. Unfolding of germs of singular

foliations and equisingularity.

3.1. Basic definitions. Hereafter, we give the central definition of this
lecture. We follow the definition introduced in [15]

Definition 9. An unfolding of F with parameters in
(Cp, 0) is a germ of foliation F of

(
C2+p, 0

)
of codimen-

sion one such that

(1) the leaves of F\Sing (F) are transverse to the
leaves of the vertical foliation given by the fibers
of the projection on the space of parameters π :(
C2+p, 0

)
→ (Cp, 0) .

(2) if ν0 stands for the embedding ν0 :
(
C2, 0

)
→(

C2+p, 0
)
ν0 (x) = (x, 0) then ν∗0F = F.

To be more specific, we can also give this definition in terms of holo-
morphic 1−forms, which is absolutely equivalent to the one above.

Definition 10. An unfolding of ω with parameters in (Cp, 0) is a germ
of holomorphic 1-form Ω of

(
C2+p, 0

)
with

Ω = a (x, y, t)dx+ b (x, y, t)dy+

p∑

i=1

ci (x, y, t)dti

where t = (t1, . . . , tp) and

(1) Ω∧ dΩ = 0 ( the integrability condition ).
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(2) a (x, y, 0) = a (x, y) and b (x, y, 0) = b (x, y) ( the initial con-
dition ).

(3) the ideal (c1, · · · , cp) is a sub-ideal of the radical ideal
√

(a,b)
( the transversality condition ).

In this alternative definition, the first condition ensures that Ω induces a
foliation in C2+p, while the second condition, that this foliation restricted
to the fiber of π(−1) (0) coincides with the one defined by ω. Finally, the
third is equivalent to the transversality assumption of the first definition:
indeed the locus of tangency between the unfolding and the fibration
is the set of zeros of (a, b) . The hypothesis of transversality ensures
that Z (a, b) ⊂ Z (a, b, c1, . . . , cn) = Sing (F), which implies that ci ∈√

(a, b). The first condition is obviously the strongest one. Indeed,
suppose ω given. If one wants to unfold ω with one parameter, one has
to set Ω = ω + tη + cdt where η is a 1- form and c a function and
to solve the partial differential equation Ω ∧ dΩ = 0. Actually, we are
unable to give any solution to the latter equation except when ω has a
very simple form from the foliated point of view.

An unfolding induces in a very natural way a deformation in the standard
sense: indeed, one can set Ft = ν∗tF where νt :

(
C2, 0

)
→
(
C2+p, 0

)
,

νt (x) = (x, t). The transversality condition ensures that Ft is actually
a foliation. The family Ft is an analytical deformation of F0 = F. One
can also defined this deformation as the analytical family of 1−forms

ωt = ν
∗
tΩ = a (x, y, t)dx+ b (x, y, t)dy.

Example 11. The first family of examples comes from the classical
theory of singularities. Indeed, suppose that F is given by the level of an
holomorphic function f :

(
C2, 0

)
→ (C, 0) with an isolated singularity.

For any family of p functions g1, . . . , gp, we can set

F (x, y, t) = f (x, y) +

p∑

i=1

tigi (x, y) .

Ω = dF = df +

p∑

i=1

tidgi +

p∑

i=1

gidti
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Hence, the 1−form Ω is an unfolding of ω = df. For instance, on
can consider the deformation of the function (x, y) → xy defined by
F (x, y, t) = xy + tx2 = x (y+ tx) .This kind of explicit examples are
more or less the only known examples.

Figure 3.1. A picture of what looks like an unfolding.

Definition 12. Two unfoldings F and F
′

of F with parameter in (Cp, 0)
are said to be analytically ( topologically, formally, ... ) equivalent if
there exists a germ of biholomorphism Φ :

(
C2+p, 0

)
→
(
C2+p, 0

)
such

that

(1) Φ commutes with the projection π.
(2) Φ|π(−1)(0) = Id.

(3) Φ∗
F

′
= F.

We will denote

F ∼ F
′

In particular, an unfolding F of F with p parameters is said to be an-
alytically trivial if it is analytically equivalent to the trivial unfolding
F× (Cp, 0).

We can also make change in the space of parameter. Indeed, if F is an
unfolding with (Cp, 0) as space of parameters and Λ : (Cq, 0) → (Cp, 0)
an analytical map, we can consider the unfolding FΛ defined by

FΛ = (Id, Λ)∗ F.

The unfolding FΛ is an unfolding with (Cq, 0) as space of parameters.
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3.2. Equisingularity. According to a theorem due at first to Seidenberg
[20, 17], any germ of singularity of foliation admits a process of reduction
of its singularities: this is a map E : (A,D) →

(
C2, 0

)
3 composed of

a finite number of standard blowing up of points such that the pull-
back foliation E∗F has only reduced singularities, i.e., singularities of the
following kind:

(1) E∗F is locally smooth.
(2) E∗F is locally given by a 1−form ω̃ such that is some coordinates

the first jet of ω̃ is
(a) J1ω̃ = λxdy + ydx where λ ∈ C\Q−

(b) J1ω̃ = xdy

The exceptional divisor D is the pre-image of 0, D = E(−1) (0). For
example, the singularity called cusp ω = d

(
x2 − y3

)
= 2xdx − 3y2dy

can be reduced by three successive blowing-ups: to be more precise,
the reduction of the foliation is the same as the reduction of the curve
x2 − y3 = 0.

E0 E1 E2

Figure 3.2. Reduction of singularities of the cusp.

For a large class of foliations, this property holds:

Definition 13. A foliation is said to be of general kind4 when all the
singularities that appear in the reduction process belong to the class 1
or 2.(a) .

A foliation of general kind and its separatricies share the same process
of reduction [2, 16].

3The notation A refers to the fact that in french the manifold obtained after
reduction is often called Arbre de rduction.

4Also, called generalized curve.
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Now, given a unfolding F and the underling deformation Ft, one can
consider the family Et of associated process of reduction. The property of
equisingularity requires that this family of process depends continuously
on the parameter t. Hereafter, we are going to give a precise definition
but for the moment, let us give an example of what is not an equisingular
unfolding. We hope that the following simple example will be enough
to understand the sense of the equisingularity property since the precise
definition is a bit awkward.

Example 14. Consider the family of functions ft = x
(
ty+ x+ y2

)
for

t ∈ (C, 0) and the family of foliations given by ωt = dft. Then, for
t 6= 0, one blowing-up is enough to reduce the singularity of ωt whereas
ω0 needs two successive blowing-ups to be reduced. Here, the non-
equireducibility comes from the bifurcation of the singular locus when t
is near 0: actually, for t 6= 0 there are three singular points (0, 0) , (0,−t)

and
(
t2

8 ,−
t
2

)
that collapse while t goes to 0 . We could nearly adopt

the non-bifurcation property as the definition of equisingularity but, for
technical reason we choose the following definition:

Definition 15. An unfolding F of F with parameters in (Cp, 0) is said
equisingular if there exists a manifold A of dimension 2 + p which is a
neighborhood of a compact divisor D such that

(1) there is an holomorphic map Π : (A,D) → (Cp, 0) which is a
surjective submersion over (Cp, 0) whose fibers are transverse to
D and that is a surjective submersion on any irreducible compo-
nent of D.

(2) there is an holomorphic map E : (A,D) →
(
C2+p, 0

)
such that

(a) π ◦ E = Π where π :
(
C2+p, 0

)
→ (Cp, 0) defined by

π (x, t) = t.
(b) the leaves of E

∗
F are transverse to the fiber of Π.

(c) that for any t ∈ Cp,E|π(−1)(t)⊂A
is the process of reduction

of singularities of Ft.
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E

Figure 3.3. An unfolding and its process of reduction
of singularities.

If F is equisingular, then the singular locus Sing (F) of F is an irreducible
germ of smooth submanifold of dimension p. Up to some change of coor-
dinates, we can suppose that, in the coordinates (x, t) ∈ C2+p, Sing (F)
is equal to {x = 0} . Indeed, if the singular locus has a bifurcation, this
bifurcation still appeared after the reduction process, which is impossible
according to the local triviality property of unfolding, a property that we
will be proved below.

3.3. Fundamental properties. The following lemma is a fundamental
property

Lemma 16. [5] Let F be an unfolding of F, given by ω, with parameters
in (C, 0) . Let us write the 1− form defining F

Ω = a (x, y, t)dx+ b (x, y, t)dy+ c (x, y, t)dt.

Then F is analytically trivial if one of the following equivalent properties
is satisfied

(1) c ∈ (a,b)
(2) There exists a germ of vector field X such that Ω (X) = 0 and

Dπ (X) = ∂
∂t .



COHOMOLOGICAL TOOL IN THE STUDY OF COMPLEX FOLIATIONS. 26

Proof. The equivalence between the two properties is trivial. Suppose
now that F is analytically trivial. In view of the definition, there exists
Φ = (Φ1,Φ2, t) such that Φ∗Ω = uω where u is a unity. In particular,

a (Φ1,Φ2, t)
∂Φ1
∂t

+ b (Φ1,Φ2, t)
∂Φ2
∂t

+ c (Φ1,Φ2, t) = 0,

which ensures that c ∈ (a,b). Conversely, if c ∈ (a,b) we can set
X = u

∂
∂x + v

∂
∂y + ∂

∂t where ua + vb + c = 0. For t small enough, one

can consider the flow at time t of the vector field X. Let us consider now
Φ (x, y, t) = e(t)X (x, y, 0) : it is easily seen that Φ commutes with π, is
equal to Id when restricted to the fiber π−1 (0) and satisfies Φ∗X = u ∂

∂t

for some function u. Since Ω (X) = 0, one has Φ∗Ω
(
∂
∂t

)
= 0. Hence,

Φ∗Ω can be written

Φ∗Ω = a
′

(x, y, t)dx+ b
′

(x, y, t)dy.

The integrability of Φ∗Ω yields the relation

b
′ ∂a

′

∂t
= a

′ ∂b
′

∂t
.

Therefore, there exists a unity u such that a
′
= u (x, y, t) a (x, y, 0) and

b
′
= u (x, y, t)b (x, y, 0) . Hence, we are led to the relation

1

u
φ∗Ω = ω

which is the lemma. �

Corollary 17. Let F be an unfolding of F, given by ω, with parameter
in (Cp, 0) . Let us write the 1− form defining F

Ω = a (x, y, t)dx+ b (x, y, t)dy+

p∑

i=1

ci (x, y, t)dti.

Then F is analytically trivial if one of the following equivalent properties
is satisfied

(1) (c1, · · · , cp) ⊂ (a,b)
(2) There exists a family of germs of vector fields Xi such that

Ω (Xi) = 0 and Dπ (Xi) =
∂
∂ti
.
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We can be even more precise:

Proposition 18. Let F be an unfolding of F
with p parameter. Let T =

∑
ai (t)

∂
∂ti

be a

germ of non-vanishing vector field in (Cp, 0).
Let Σ be a germ of smooth hypersurface in
(Cp, 0) transverse to T. Let Λ be the projec-
tion of Cp to Σ along the leaves and iΣ the
embedding of Σ ⊂ Cp. Suppose that there ex-
ists a germ of vector field X tangent to F such
that Dπ (X) = T . Then we have the following
isomorphism of unfoldings

F ∼ FiΣ◦Λ

Σ

T

Cp

This proposition highlights the fact that T is a direction along which
the unfolding is trivial. The proof consists simply on making a change
of coordinates in the space of parameters so that T becomes ∂

∂t1
and

applying the previous results. Notice that since Dπ commutes with the

Lie bracket, if T and T
′

satisfy the hypothesis then
[
T, T

′
]

also. Thus,

the O(Cp,0)-modules generated by the set of regular vector fields along

which the unfolding is trivial is involutive5 and so defines a germ of
smooth foliation in (Cp, 0).

The fundamental properties that will allow us to use cohomological tools
is the local triviality of unfolding

Proposition 19. Let F be an equireducible unfolding of F with param-
eters in (Cp, 0). Suppose that F has a reduced singularity. Then F is
analytically trivial.

Proof. We consider each possible case for F

(1) If F is smooth then, in view of the definition, a (0, 0, 0) 6= 0 or
b (0, 0, 0) 6= 0. In any case, the ideal (a,b) is the whole space
C {x, y, t}. Thus, the ideal inclusion in corollary 17 is obvious.

5Involutive means invariant by Lie bracket.
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(2) Suppose now that F is singular with J0ω = λxdy+ydx. Then it
is known thatω admits two smooth and transverse separatricies.
From the equisingularity property, for any t small enough Ft
is also reduced and of same type. Hence, we get a analytical
family of curves that induces two smooth transverse invariant
hypersurfaces for Ω which are also transverse to the fibration π.
We can straightened these two hypersurfaces on xy = 0 with a
conjugacy that commutes with π. Hence, we can suppose that
Ω is written

Ω = xady+ ybdx+

p∑

i=1

cidti

where a and b are unity. But now, the transversality condition
ensures that (c1, · · · , cp) ⊂

√
(xa, yb) =

√
(x, y) = (x, y) =

(xa, yb). In view of corollary 17, the unfolding is trivial.
(3) Suppose finally that F is singular and that J0ω = xdy. Since,

dJ0ω = dx ∧ dy, we have dΩ = u (x, y, t) dx ∧ dy + · · · with
u (0, 0, 0) 6= 0. The integrability condition yields

uci ∈ (a,b).

This property is more general and known as the Kupka-Reeb
phenomena [12].

�

Thus we are able now to establishe the property announced in the intro-
duction: the topological triviality of unfolding.

Proposition 20. Let F be an equireducible unfolding with parameters
in Cp. Then F is topologically trivial.

Proof. Consider the reduction E of the singularities of the unfolding
F. Any singularity of E|∗

π−1(0)
F is reduced. Thus, we can cover the

exceptional divisor D with a covering {Ui}i∈I such that the unfolding is
trivial along Ui. Therefore, there exists a family of tangent holomorphic

vector fields
{
X
j
i

}

i∈I
defined on Ui such that Dπ

(
X
j
i

)
= ∂

∂tj
. Using a

C∞ partition of the unity adapted to the covering {Ui}i∈I, it is possible
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to glue together the vector fields Xji to get a global tangent C∞ vector

field Xj. Therefore, there exists a C∞ conjugacy defined on (A,D) that
conjugates the unfolding F and the trivial unfolding E|∗

π−1(0)
F× (Cp, 0).

This conjugacy can be push down as a conjugacy on C2\ {0} × (Cp, 0)

that can be extended continuously on
(
C2+p, 0

)
. �



4. Cech cohomology.

In this chapter, we would like to introduce the Cech cohomology for it
is going to be a central tool to analyze unfolding. The objective is not
to explore all the properties of this cohomology but only to mention its
main properties in order to make this lecture almost self contained. For
any precision, we refer to [8].

4.1. Sheaf of groups. Hereafter, we give the definition of sheaf of
group.

Definition 21. Let M be a topological space. A sheaf S is a the data
of a group S (U) for any open set U of M called the section of S over U
and of restriction functions ρUV : S (U) → S (V) for V ⊂ U such that

(1) For any W ⊂ V ⊂ U , we have ρUW = ρUV ◦ ρVW
(2) If σU ∈ S (U) and σV ∈ S (V) such that σU = σV on U ∩ V

then there exists σU∪V ∈ S (U ∪ V) with σU∪V |U = σU and
σU∪V |V = σV .

(3) If σ ∈ S (U ∪ V) satisfies σ|U = 0 and σ|V = 0 then σ = 0.

Example 22. Let M be any complex manifold. We consider the sheaf
OM of holomorphic function on M. In this case, OM (U) is the set of
holomorphic functions on U. The restriction map are simply the standard
restrictions. One can also consider the sheaf TM of holomorphic tangent
vector field. Here, the section over U has a structure of OM (U) module:
such a sheaf is called a sheaf of OM−modules. Finally, the last important
sheaf is the sheaf of OM-module of holomorphic p−forms Ωp (M) . Let
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us also mention the sheaf of locally constant functions with values in Z

or C.

4.2. Cech Cohomology for abelian group. Let M be a manifold and
S a sheaf on M. Let M =

⋃
i∈IUi a covering. For any k ≥ 0 we define

the set of k-cochains as the following set

Ck
(
M, {Ui}i∈I , S

)
=

∏

i0···ik

S (Ui0 ∩ · · · ∩Uik)

and a border operator by
(4.1)

δ
k
(σ) |Ui0

∩···∩Uik+1
=

k+1∑

j=0

(−1)
j
σ
(
Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩Uik+1

)∣∣∣
Ui0

∩···∩Uik+1

.

This operator satisifies the relation of complex

δk ◦ δk−1 = 0.

The Cech cohomology is then defined as follows

Definition 23. For any k ≥ 0

Hk
(
M, {Ui}i∈I , S

)
=

ker δk

imδk−1
=

{ the set of k− cocycles}

{the set of k− coboundary}
.

Moreover, taking the inductive limit on the system of coverings of M,
we define

Hk (M, S) = lim
{Ui}i∈I→

Hk
(
M, {Ui}i∈I , S

)

Let us describe the very first groups H0 and H1. By definition

H0
(
M, {Ui}i∈I , S

)
=

ker δ0

imδ−1
= ker δ0

and thus is equal to
{
(si)i∈I ∈

∏

i∈I

S (Ui)
∣∣∣δ0
(
(si)i∈I

)
= (si − sj) = 0

}
= S (M) .
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Hence, the first cohomological group in the sense of Cech is the set of
global sections of the sheaf defined over M. Now, we have also

H1
(
M, {Ui}i∈I , S

)
=

ker δ1

imδ0

which can be explicitely described as
{
(si1i2) ∈

∏
i1i2∈I2

S (Ui1 ∩Ui2) |si1i2 + si2i3 + si3i1 = 0
}

{
si1 − si2

∣∣∣(si1) ∈
∏
i1∈I

S (Ui1)
} .

Example 24. Let us consider the following problem: suppose that g
is an holomorphic function on a manifold M that never vanishes. We
would like to know if this function is the exponential of a function f. If
M is compact then g is a constant and the problem is trivial. Else, we
can cover M =

⋃
i∈IUi where Ui and all the intersections Ui ∩ Uj are

connected. For any Ui, there exists a function fi ∈ O (Ui) satisfying
g = efi . Thus on Ui ∩ Uj we have efi = efj and then fi = fj + 2iπkij
where kij ∈ Z. Clearly

kij + kjl + kli = 0.

Thus {kij} is a 1−cocycle with values in the sheaf of locally constant
integer functions. Suppose that kij is a coboundary: therefore, it can be
written

kij = ki − kj.

The family of functions fi − 2iπki can be glued in an holomorphic
function such that ef = g. Therefore, we get the following result: if
H1 (M,Z) = 0 or if M is compact then O∗

M = eOM .

4.2.1. Cech cohomology for non-abelian groups. For non abelian groups,
we can in a simple way define the first two groups of cohomology.

Definition 25. Let S be a sheaf of non-abelian group. We define

H0 (M, S, {Ui}) = S (M)

and

H1 (M, S, {Ui}) =
{(si1i2) |si1i2 ◦ si2i3 ◦ si3i1 = Id }

(sij) ∼
(
si ◦ sij ◦ s

(−1)
j

)∣∣∣ (si) ∈ C0
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With this naive approach, it is impossible to define in a coherent way
the cohomological groups for bigger orders.

4.3. Mayer-Vietoris Sequence.

Theorem 26. LetM be a manifold covered by a coveringM =
⋃
i∈IUi.

Then there exists an exact sequence

0 → H0 (M) →
⊕

i∈I

H0 (Ui) →
⊕

i,j∈I

H0 (Ui ∩Uj)

→ H1 (M) →
⊕

i∈I

H1 (Ui) →
⊕

i,j∈I

H1 (Ui ∩Uj) → . . .

In the case of a covering M = U1 ∪U2, the exact sequence is given by

0→ H0 (M) → H0 (U1)⊕H
0 (U2)

δ
−→ H0 (U1 ∩U2)

i
−→ H1 (M) → . . .

where δ (s1, s2) = s1 − s2 and i (s12) = [s12].

The proof of this result will not be given here because it is a bit technical
but not very deep: it requires to introduce the standard cohomology of
sheaves.

4.4. Long exact sequence associated to short one. Let S and S
′
two

sheaves of abelian groups : an application f from S two S
′
is a collection

of morphims of groups f(U) : S (U) → S
′
(U) that commute with the

maps of restriction. The kernel of such an application is defined as the
sheaves ker f whose sets of sections ker f (U) is the kernel of f (U). This

is a sheaves. Suppose that S ⊂ S
′

, the quotient S
′/
S is defined as the

sheaf whose set of sections S
′/
S (U) is the set of family (sVi)i∈I where

{Vi} is a covering of U such that

• sVi is a section of S
′
.

• the difference sVi − sVj is a section of S on Vi ∩ Vj.
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F or example, a global section of the quotient sheaf is a family si of local
sections of S

′

defined on Ui, M = ∪i∈IUi, such that si and sj are equal
modulo a section of S. In particular, the application

S
′

(M) −→ S
′/
S (M)

does not have to be onto: it is the case precisely when H1 (M, S) = 0.
More generally, we have

Theorem 27. Let S, S
′
and S

′′
three sheaves such that there exists an

exact sequence

0→ S → S
′ → S

′′ → 0.

Then there exists a long exact sequence in cohomology

0→ H0 (S) → H0
(
S

′
)
→ H0

(
S

′′
)

δ
−→ H1 (S) → H1

(
S

′
)
→ · · · .

This theorem is just an application of the Snake’s lemma. The map δ is

defined the following way: consider an element of s ∈ H0
(
S

′′
)
. It is a

family s = (si)i∈I of sections of S
′
for some covering {Ui}i∈I such that

si − sj = sij is a section of S. The class of [sij] in H1 (S) is exactly the
image δ (s).

Example 28. Let us consider the following exact sequence of sheaves
on any complex manifold:

0→ Z → O
e·
−→ O∗ → 0.

The morphism of sheaves of groups · 7→ e· is actually onto since it is
locally onto. The long exact sequence in cohomology associated to this
short one is

0→ Z → O (M) → O∗ (M) → H1 (M,Z) → · · · .

Thus we recover the following fact: if H1 (M,Z) = 0 then the map

O (M)
e·
−→ O∗ (M) is onto.



COHOMOLOGICAL TOOL IN THE STUDY OF COMPLEX FOLIATIONS. 35

4.5. Acyclic covering and holomorphy domain. To compute the co-
homology of Cech is a priori a though problem since it is defined as an
inductive limit. However, if the covering has the property of acyclic-
ity then one can compute the Cech cohomology with respect to this
covering.

Theorem 29. [8] If M =
⋃
i∈IUi is an acyclic covering, i.e., for any

intersection Ui1i2···in = Ui1 ∩Ui2 ∩ · · · ∩Uin and any k ≥ 1, we have

Hk (Ui1i2···in , S) = 0

Then, there is a canonical isomorphism

Hk (M, S) ≃ Hk
(
M, {Ui}i∈I , S

)
.

It remains to find acyclic covering of a given manifold. It can be done
introducing the notion of holomorphy domain.

Definition 30. A domain U of Cn is a domain of holomorphy if and
only if for any point z0 in the boundary ∂U there exists an holomorphic
function on U that cannot be extended at z0.

Any open set of C is a domain of holomorphy since if z0 ∈ ∂U one
can consider the function f (z) = 1

z−z0
. This result is false in higher

dimension: for example, any open set U\m ⊂ Cp, p ≥ 2 where m ∈ U
is not an holomorphy domain: any holomorphic function defined in a
neighborhood of p except maybe at p can be actually extended at p.
This is the Hartogs lemma. We are going to use it a few times, thus we
mention it:

Theorem 31. Let f be an holomorphic function defined in a neighbor-
hood of (0, 0) in C2 except maybe at (0, 0). Then f can be extended
holomorphically at (0, 0).

Proof. This is a consequence of the Cauchy formula: for any (x, y) ∈
U ⊂ C2 we can set

f̃ (x, y) =
1

2iπ

∫

|ζ|=ρ

f (ζ, y)

ζ− x
dζ.
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The funciton f̃ is an holomorphic function in the whole U and coincides
with f whenever y 6= 0. Thus f = f̃ on U\ {(0, 0)}. �

To find acyclic covering, we can use the following result:

Theorem 32. [10, 6] Let M be a domain of holomorphy ( or more
generally a Stein space6 ) and S a coherent7 sheaf of OM−modules.
Then for any i ≥ 1

Hi (M,S) = 0.

This result is accepted without proof: it is very deep and tough one.

6see Complex algebraic and analytic geometry, J.P. Demailly
7The definition of coherent sheaf will not be given: this means more or less that

the sheaf of A-module has a finite rank that does not change with the fiber of the
sheaf.



5. Moduli of unfolding.

Let F be an unfolding with parameters in (Cp, 0) of F. Let E : (A,D) →(
C2+p, 0

)
be the process of reduction of F. We will denote E : (A,D) →(

C2, 0
)

the process of reduction of F. The tree (A,D) is embedded in
(A,D) as the fiber of π over the parameter 0. We consider the sheaf
Gp (F) of groups defined as follows: its base is the analytical space
D ⊂ A. For any U ⊂ D, a section of Gp (F) over U is a germ of
automorphism Φ defined in a neighborhood of U in A × (Cp, 0) such
that

(1) Φ commutes with the projection A× (Cp, 0) → (Cp, 0).
(2) Φ is equal to Id when t = 0.
(3) Φ lets invariant the trivial unfolding of F, i.e.,

Φ∗ (F× (Cp, 0)) = F× (Cp, 0) .

Notice that the conditions (2) and (3) imply thatΦ lets globally invariant
each leaf of F× (Cp, 0).

5.1. Cohomological interpretation for unfoldings. The cohomologi-
cal interpretation of unfoldings is contained in the following statement:

Theorem 33. [15] There is a one to one correspondence between the
set of analytical classes of equireducible unfoldings of F with parameters
in (Cp, 0) and H1 (D,Gp (F)).
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Proof. Let us consider an unfolding F with parameters in (Cp, 0). In view
of the proposition 19, one can cover D = ∪i∈IUi such that the unfolding
is analytically trivial along Ui. Therefore, there exists a local conjugacy
Φi defined in a neighborhood of Ui such that Φ∗

iF = F × (Cp, 0).

In particular, the application Φi ◦ Φ
(−1)
j , defined whenever Ui ∩ Uj is

not empty, is a section of Gp (F) over Ui ∩ Uj. Hence, the collection{
Φi ◦Φ

−1
j

}
defines a cocycle in Z1

(
D, {Ui}i∈I ,Gp (F)

)
and thus an

element of H1
(
D, {Ui}i∈I ,Gp (F)

)
= H1 (D,Gp (F)). Let us prove that

this construction is well defined and induces a one to one correspondence
with the set of analytical classes of equireducible unfoldings. Suppose,

first, that we choose some others trivializations Φ
′

i . Then Φi ◦
(
Φ

′

i

)−1

is an element of Gp (F) (Ui). Since holds the following equality

Φi ◦Φ
−1
j = Φi ◦

(
Φ

′

i

)−1
◦Φ

′

i ◦
(
Φ

′

j

)−1
◦Φ

′

j ◦ (Φj)
−1 ,

the two collections
{
Φi ◦Φ

(−1)
j

}
and

{
Φ

′

i ◦Φ
′(−1)
j

}
define the same

cohomological class. Therefore, the construction above defines an appli-
cation. Let us prove that the image of F depends only on its analytical
class. Suppose that F

′

and F are analytically equivalent: the associated
conjugacy φ can be lifted-up in a global conjugacy Φ defined from A to
A

′

, the respective trees associated to F and F
′

. Therefore, if {Φi}i∈I
is a family of trivializations for F then {Φi ◦Φ}i∈I is a family of trivial-

izations for F
′
. Hence, the two cocycles associated to F and F

′
can be

chosen equal.

In this way, we define a map from the set of analytical classes of equire-
ducible unfoldings of F with parameters in (Cp, 0) to the cohomological
group H1 (D,Gp (F)). It remains to prove that this correspondence is

one to one. It is clearly an embedding: indeed, suppose that F and F
′

induce two cocycles that are equivalent in H1 (D,Gp (F)). Then, there
exist a covering {Ui}i∈I and a 0−cocycle {ψi}i∈I such that

ψi ◦Φi ◦Φ
−1
j ◦ψ

(−1)
j = Φ

′

i ◦Φ
′(−1)
j .
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Thus, the family Φ
′(−1)
i ◦ ψi ◦ Φi defines a global conjugacy between

F and F
′
in their reduction trees. This conjugacy can be pushed down

using a standard argument of Hartogs: the pushed down conjugacy is
holomorphic on C2\ {0} × Cp since the blowing-up process realize the
following isomorphisms

A
′

\D
′

≃ A\D ≃ C2\ {0}×Cp.

Hence, following Hartogs lemma, it can be extended on (C2+p, 0).

To prove that the correspondence is onto, let us consider a 1-cocycle

{Φij}i,j ∈ Z
1
(
D, {Ui}i∈I ,Gp (F)

)
.

We construct a manifold Ã by gluing the family of products Ui×(Cp, 0)
with the identification defined by {Φij}i,j

Ã =
∐

i∈I

Ui × (Cp, 0) /x∼Φij(x).

Since, Φij lets globally invariant each leaf of the product foliation F ×

(Cp, 0), the manifold Ã admits a foliation of codimension 1 also con-
structed by a gluing trick

F̃ =
∐

i∈I

F|Ui
× (Cp, 0) /x∼Φij(x).

This manifold is equipped with a fibration Ã → (Cp, 0) whose fibers are

transverse to the foliation F̃. The foliated manifold Ã is the neighbor-

hood of a compact divisor D̃. A theorem of Grauert [9] ensures that the

manifold Ã is biholomorphic to a deformation of A. Let us denote this
deformation A. The manifold A comes with a codimension one foliation
that can be pushed down as a codimension one foliation F in

(
C2+p, 0

)
.

It is easily seen that F is an unfolding of F whose associated cocycle is
equivalent to the original cocycle {Φij}i,j. �

The interest of the previous result is limited for the space H1 (D,Gp (F))

has a very poor structure. At best, it is a set ! It does even not have
a natural topology. However, this result - and more precisely its proof -
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does produce a recipe to construct every unfoldings: glue together pieces
of trivial unfoldings with sections of Gp (F).

5.2. Foliated Kodaira-Spencer map. If H1 (D,Gp (F)) were a mani-
fold in the classical sense, the first question one would ask is: what is its
dimension ? This dimension would be also the dimension of the tangent
space TFH

1 (D,Gp (F)). To analyze what TFH
1 (D,Gp (F)) could be

we introduce the foliated Kodaira-Spence map: this name refers to the
construction of Kodaira and Spencer to analyze the deformations of the
complex structure of a compact manifold [11]. Let us consider a cocycle
{Φij}i,j in H1 (D,Gp (F)) and write

Φij (x, y, t) =
(
Φ1ij (x, y, t) ,Φ

2
ij (x, y, t) , t

)
.

Since Φij lets invariant the trivial unfolding F×(Cp, 0), one can see that
the vector field

∂

∂tk
Φij = Xij =

∂Φ1ij (x, y, t)

∂tk

∣∣∣∣∣
t=0

∂

∂x
+
∂Φ2ij (x, y, t)

∂tk

∣∣∣∣∣
t=0

∂

∂y

is tangent to F. Thus, the collection
{

∂
∂tk
Φij

}

i,j
defines a 1- cocycle

with values in the sheaf of tangent vector fields to F. We will denote

this sheaf TF. We let the reader verify that the class of
{

∂
∂tk
Φij

}

i,j
in

H1 (D,TF) does depend only on the class of {Φij}i,j ∈ H
1 (D,Gp (F)).

Therefore, for any unfolding F of F with p parameters, we obtain an
application

T0C
p ∂F
−→ H1 (D,TF) .

This map is called the Kodaira-Spencer map of the unfolding F.

Remark 34. The map ∂F can be also computed the following way: since
F is locally trivial after the process of reduction, there exist a covering

{Ui}i∈I of D and a family of vector fields Xji defined near Ui such that

X
j
i is tangent to the unfolding and satisfies Dπ

(
X
j
i

)
= ∂

∂tj
. The class

of the 1-cocycle Xji − X
j
l

∣∣∣
t=0

in H1 (D,TF) is the image of ∂
∂tj

by ∂F.
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Proposition 35. For any C-linear map from T0C
p to H1 (D,TF), there

exists an unfolding F of F with p parameters whose it is the Kodaira-
Spencer map.

Proof. Let us denote by Xkij the image of ∂
∂tk

by the given C−linear

application. The unfolding obtained thanks to the cocycle

Φij (x, y, t) =
(
e(t1)X

1
ij ◦ · · · ◦ e(tp)X

p
ij (x, y) , t

)

has the checked Kodaira-Spencer map. �

The geometrical meaning of the previous proposition is that one can
interpret the C-space H1 (D,TF) as the tangent space toH1 (D,Gp (F))

at F.

5.3. Moduli for infinitesimal unfolding of foliation. We want to give
a proof of the following result which is due to J.-F. Mattei: let F be a
general8 non dicritical foliation.

Theorem 36. [15] The C-space H1 (D,TF) has a finite
dimension equal to

δ (F) =
∑

c∈Σ

(νc − 1) (νc − 2)

2

where Σ is the set of singular points appearing in the
process of reduction and νc = νF (c) is the multiplicity
of the singular point c when it appeared in this process.
Moreover, an unfolding F is universal if and only its the
Kodaira-Spencer map is one to one.

In the theorem universal means the following: for any other unfolding
G with n parameters, there exists a germ of function Λ : (Cn, 0) →(
Cδ(F), 0

)
such that

FΛ ∼ G.

In other words, any other unfoldings can be factorized through F.

8See the definition 13.
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Example 37. Let us compute the dimension δ(F) for the foliation given
by

ω = d
(
xy
(
y2 − x2

))
.

This foliation is reduced after on blowing-up: indeed, in the local chart,
the foliation is given by

E∗ω

x3
=
1

x3
d
(
x4t
(
t2 − 1

))
= 4t

(
t2 − 1

)
dx+ x

(
3t2 − 1

)
dt.

Thus, the singularity at (0, 0) is written −4tdx − xdt + . . . , so it is
reduced. This is the same for the other four singularities. Therefore, for
any singularity c obtained after the blowing-up, the multiplicity νF (c) is
equal to 1. Moreover, at the origin of C2, νF (0) is equal to 3. Therefore,
the checked dimension is equal to

dimCH
1 (D,TF) =

(3 − 1) (3− 2)

2
= 1.

Actually, the foliation given byω admits four separatricies that are trans-
verse: the only analytical invariant highlighted by the above computation
is the cross-ratio of the four points in the tangent cone of ω.

Example 38. One can also consider the double-cusp example

ω = d
((
x2 − y3

)(
y2 − x3

))
.

The dimension is 1. But in that case, the geometric interpretation of
this modulus is not as clear as in the previous example.

Proof. (Theorem 36) The proof is an induction on the length of the
process of reduction.
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cN

c1

U

U

U
0

1

N

Figure 5.1. Covering of the divisor for Mayer-Vietoris theorem.

The Mayer-Vietoris sequence associated to the above covering reduces
to the following exact sequence

0→ H1 (D0,TF) → H1 (D,TF) →
n⊕

i=1

H1 (Di,TF) → 0

which gives the dimension statement since

dimH1 (D,TF) = dimH1 (D0,TF) + dim

n⊕

i=1

H1 (Di,TF) .

Hereafter, we make the first step of the induction. Let us consider X a
vector field with an isolated singularity that is tangent to the foliation F.
Let E be the standard blowing-up of the origin of C2. We suppose that
E∗F is reduced. We consider the Stein9 covering D = U1 ∪U2 where in
each Ui, E is given by

E (x1, y1) = (x1, y1x1) and E (x2, y2) = (y2x2, y2)

with y2 = y1x1 and x2 =
1
y1

9A Stein covering is a covering where the open sets are Stein
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0

U1 U2

0

∞∞

Figure 5.2. Covering of D.

We have the following equalities

TF (U1) =


 ∑

(i,j)∈N2

aijx
i
1y
j
1


 E∗X

xν0−11

TF (U2) =


 ∑

(i,j)∈N2

bijx
i
2y
j
2


 E∗X

yν0−12

TF (U1 ∩U2) =


 ∑

(i,j)∈N×Z

cijx
i
1y
j
1


 E∗X

xν0−11

Moreover, there is no three intersection, thus we have the following
indentification

H1 (D0,TF) =
TF (U2 ∩U1)

TF (U1)⊕ TF (U2)
.

Hence, the dimension of this space is the number of obstructions in the
resolution of the cohomological equation

∑

(i,j)∈N×Z

cijx
i
1y
j
1 =

∑

(i,j)∈N2

bijx
j
1y
j−i−ν0+1
1 +

∑

(i,j)∈N×N

aijx
i
1y
j
1

This number is exactly (ν0−1)(ν0−2)
2

. Futhermore, the cohomological space
is generated as a finite dimensional C-space by the cocycles

xi1

y
j
1

(
E∗X

xν0−11

)
with 0 ≤ i ≤ ν0 − 3, 1 ≤ j ≤ ν0 − 2 − i
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Let us prove now that if the Kodaira-Spencer map is one to one then
the unfolding is universal. Let G be an other unfolding of F with m
parameters. We consider the cocycles defining G and F denoted by
g = {gij}ij and f = {fij}ij with

gij (x, y, s) =
(
g1ij (x, s) , , s

)

fij (x, y, t) =
(
f1ij (x, t) , t

)

where s ∈ Cm and t ∈ Cδ(F). We define a new a cocycle with m+ δ (F)
parameters by setting

f�g =
{
(x, s, t) →

(
f1ij

(
g1ij (x, t) , s

)
, s, t

)}
.

The unfolding F�G associated this cocycle has the following property

F�G|s=0 = G

F�G|t=0 = F.

Let us denote by T the embedding T (t) = (0, t). For any point (s0, t0)
in the space of parameters of F�G the Kodaira-Spencer map

∂F�G(s0,t0) : T(s0,t0)C
m+δ(F) → H1

(
D(s0,t0), TF�G|(s0,t0)

)

admits a kernel: the distribution so defined in
(
Cm+δ(F), 0

)
is involutive

and thus integrable10. Hence, it induces a germ of smooth foliation
N that has the following property: for any leaf L of N, the unfolding
F�G|L is analytically trivial. Denoting by N (0) the kernel of ∂F�G(0,0),
we have the following exact sequence:

0→ N (0) → T0C
m+δ(F) → H1 (D,TF) → 0.

Since, the application ∂F : T0C
δ(F) → H1 (D,TF) is bijective, the em-

bedding T : T0C
δ(F) → T0C

m+δ(F) is transverse to the direction N (0) of
the leaf of N passing through 0. Thus, the picture is the following:

10See the proposition 18
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s ∈ Cm

Λ

t ∈ Cδ(F)

N

Figure 5.3. Proof of the universality property.

Therefore, one can choose λ (s) = Λ (s, 0) where Λ is the projection

along the leaves from Cm to Cδ(F). �

5.4. A quick application.

Theorem 39. Let F a foliation given by the level of a function f. Sup-
pose that Sep (F) is a union of four smooth transverse curves. Then
there exists a system of coordinates (x, y) such that F is given by the
level of a function

fα = xy (y+ x) (y+ αx)

where α ∈ CP1\ {0, 1,∞} .

Proof. Let us consider the one parameter unfolding F given by

Ω = d (xy (y+ x) (y+ tx))

where t ∈ CP1\ {0, 1,∞} . We are going to prove that, for any point t0
the unfolding F with parameter t ∈ (C, t0) is universal. The multiplicity
of Ft0 = {dft0 = 0} is equal to three and the foliation is reduced after
one blowing-up. Hence, the dimension of H1 (D0,TFt0) is one and this

space is generated by 1
y1

(
E∗X
x2
1

)
. Therefore, it is enough to prove that the

Kodaira-Spencer map of F is not the null map. We are going to compute
the image of ∂

∂t
by ∂F using the remark 34. After one blowing-up, Ω is
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written

Ω = d
(
x41y1 (y1 + 1) (y1 + t)

)
= d

(
x41P (y1)

)

= x41P
′

(y1) dy1 + 4x
3
1P (y1) dx1 + x

4
1y1 (y1 + 1) dt

Let us find X1 = a
∂
∂x1

+b ∂
∂y1

+ ∂
∂t such that Ω (X1) = 0. It corresponds

to the equation

x1P
′

(y1)b+ 4P (y1)a + x1y1 (y1 + 1) = 0.

Consider a Bezout relation between P
′
and P, UP + VP

′
+ 1 = 0 where

the degree of U is one and the degree of V is 2. Then a solution of the
equation Ω (X1) = 0 is written

X1 =
1

4
x1y1 (y1 + 1)U

∂

∂x1
+ y1 (y1 + 1)V

∂

∂y1
+
∂

∂t
.

In the other chart one can choose

X2 = x
2
2 (x2 + 1) Ṽ

∂

∂x2
+
1

4
Ũx22 (x2 + 1)y2

∂

∂y2
+
∂

∂t

where Ũand Ṽ are polynomial functions, solutions of the Bezout relation
ŨQ+ ṼQ

′

+ 1 = 0 where Q = x2 (x2 + 1) (1 + tx2) and d°Ũ = 1. The
vector field X1 − X2 is tangent to the foliation F and is the image of ∂

∂t
by the Kodaira-Spencer map. There exists a function φ holomorphic on
U1 ∩U2 such that

X1 − X2 = φ
E∗X

x21
.

To evaluate the function φ, we look at the coefficient on ∂
∂y1

of X1−X2
and divide it by P (y1):

φ =
V (y1)

y1 + t
+

1

y21 (y1 + t)
Ṽ

(
1

y1

)
.

The non triviality of the Kodaira-Spencer map can be red in the coeffi-
cient of 1

y1
in the Laurent development of φ. This coefficient is tṼ

(
−1
t

)

and is not zero since Ṽ cannot vanish at −1
t

.

To finish the proof we make the following construction. Suppose that
the foliation F is given by a function f = f1f2f3f4. Since, f1 = 0 and
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f2 = 0 are smooth and transverse is it possible to choose them as axes.
Hence, in this new system of coordinates, the foliation F is given by

xy


y+ x+

n∑

i+j≥2

aijx
iyj




y + αx+

n∑

i+j≥2

bijx
iyj


 .

We can suppose that the perturbing part are polynomial functions thanks
to a result due to Mather [14]. Now let us consider the unfolding defined
by

Gaij,bij
(x, y) = d


xy


y + x+

n∑

i+j≥2

aijx
i
y
j




y+ αx+

n∑

i+j≥2

bijx
i
y
j




 .

It satisfies the following relation:

G0,0 (x, y) = d (xy (y+ x) (y+ αx)) .

According to the universality result, for aij and bij small enough, the
following isomorphism holds

Gaij,bij (x, y) ∼ xy (y+ x) (y+ αx) .

Now, the function Gaij,bij (x, y) verifies the next functional relation: for
any λ > 0

Gaij,bij (λx, λy) = λ
N
Gλ·aij,λ·bij (x, y)

with λ · aij and λ · bij goes to zero while λ tends to zero. Hence for λ
small enough, we conclude

Gaij,bij (x, y) ∼ Gaij,bij (λx, λy) = λ
N
Gλ·aij,λ·bij (x, y)

∼ xy (y+ x) (y+ αx) .

�

The function fα and its parameter are not unique: for example, if one
permutes the variables x and y, one can see that fα ∼ f 1

α
. Actually, for

any automorphism σ of S = P1\ {0, 1,∞} we have fα ∼ fσ(α). Thus, α

is unique in S
/
Aut (S), which is a ramified covering of S.



6. Moduli space of curve.

Let S be a germ of curve in
(
C2, 0

)
. We denote by M (S) the moduli

space of the curve S which is the set of curves topologically equivalent
to S up to analytical equivalence. I want to present an application of the
cohomological interpretation of unfoldings.

6.1. Finite determinacy for germs of curve. Let us consider a curve
S. For any blowing-up process E, we denote by Att (E, S) the set of points

E−1 (0)∩E−1 (S\0). If ES is the reduction process of S, we construct by
induction the following sequence of blowing-up process:

• ES0 = ES and

• ESn+1 is ESn ◦ E where E is the standard blowing-up with centers

at Att
(
ESn, S

)
.

We have the following result which is consequence of a standard result
due to Mather [14].

Theorem 40. [7] There exists an integer n depending only on the topo-

logical class of S such that for any curve S
′
topologically equivalent to

S, if

Att
(
ESn, S

)
= Att

(
ESn, S

′
)

then S and S
′
are analytically equivalent.

The proof consists in building two equations of S and S
′

, say, f = 0

and f
′
= 0 in C{x, y} such that f − f

′
∈ (x, y)N for N big enough:



COHOMOLOGICAL TOOL IN THE STUDY OF COMPLEX FOLIATIONS. 50

it ensures, following [14], that f and f
′

are analytically conjugated as

functions. Thus, the curves S = {f = 0} and S
′

= {f
′

= 0} are also
analytically conjugated.

6.2. Curves V.S. Foliations. The proof of the following result relies
deeply on the use of the unfoldings of foliations.

Theorem 41. [7] Let F be a general non dicritical foliation and S =

Sep (F). Then, the natural map between moduli spaces

M (F) −→ M (S)

is onto.

In this theorem the goal is to construct a foliation with a prescribed
set of separatricies. Once a curve S

′

is fixed in the topological class
of S, the difficult part of the statement is to find a foliation F

′
in the

topological class of F. The idea is to unfold F toward a foliation F
′

with S
′
as separatricies. The proof given below is not complete because

it is extremely technical, but my goal is only to convince you that the
unfoldings are useful tools.

Let E : (A,D) →
(
C2, 0

)
be the reduction of singularities of F . We

denote by O the sheaf of holomorphic functions on A with D as base
space: for any point p ∈ D, the stack Op is the set of germs of analytical
functions defined in a neighborhood of p in A. Let M be the subsheaf
of O defined by the pre-image of the maximum ideal at the origin of
C2. Finally, we denote by TS the sheaf of vector fields tangent to the
transform of S by E.

Lemma 42. For any integer n, the natural map induced by the inclusion
of sheaves TF ⊂ TS

H1 (D,MnTF) −→ H1 (D,MnTS)

is onto.

In a more concrete way, this lemma can be stated as follows: for any
1−cocycle Xij with values in MnTS there exist a cocycle Tij in MnTF
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and a 0-cocycle Xi in MnTS such that the following relation holds

Xij = Xi + Tij − Xj

Proof. Let ω be a 1-form with an isolated singularity that defines F at
the origin of C2. We consider the morphism E∗ω (·) as a sheaf morphism
from TS to O defined by

X 7→ E∗ω (X) .

Thus, we get an exact sequence of sheaves

0→ TS→ TF → O.

Let f be a reduced equation of the separatricies of S. We are going to
prove that the image of TF → O is equal to (E∗f)O. The proof can be
done locally. Let p be a point of D where E∗F is smooth. Let x = 0 a
local reduced equation of D at p and y a transverse coordinate. There
exists an integer m such that

E∗ω = u (x, y) xm−1dx E∗f = v (x, y) xm.

Let X be a section TS at p. If the vector field X is written

X = a (x, y) x
∂

∂x
+ b (x, y)

∂

∂y

Then, one computes

E∗ω (X) = u (x, y) xma (x, y) =
u (x, y)

v (x, y)
a (x, y)E∗f.

Thus, to reach any element α (x, y)E∗f of (f ◦ E)O, one can choose

X = α (x, y)
v (x, y)

u (x, y)
x
∂

∂x
.

The proof is exactly the same at any type of point of D as singular
points for F or singular points of D. The basic properties used here is
the correspondence between the multiplicities of E∗ω and E∗f which is
ensured by the general kind hypothesis - see for instance [2].

Hence, we have the following exact sequence of sheaves

0→ TS→ TF → (f ◦ E)O → 0.
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Therefore, by multiplying it by Mn, we get

0→ MnTS→ MnTF → Mn (f ◦ E)O → 0.

The long exact sequence in cohomology associated to short previous one
is the sequence

· · · → H1 (D,MnTS) → H1 (D,MnTF) → H1 (D,Mn (f ◦ E)O) → 0.

The last zero of this sequence comes from the fact that one can cover
D with Stein open sest with no 3 by 3 intersections. Now we are going
to prove that

H1 (D,Mn (f ◦ E)O) = 0.

First, we start with the proof that H1 (D,O) is equal to 0. This is an
induction on the length n of the reduction process. At step n = 1, it is
a computation of Laurent series. The induction uses the Mayer-Vietoris
sequence.

Case 1. n = 1. In this case, D = CP1 and D in cover by two Stein
open sets U1 and U2 with Stein neighborhood in A denoted by U1 ⊂
U1 and U2 ⊂ U2. These two neighborhoods some admit systems of
coordinates (x1, y1) and (x2, y2) such that x1 = y2 = 0 are local
equations of the trace of D. Moreover, on U1 ∩ U2, the change of
coordinates is written

x1 = y2x2

y1 =
1

x2

We can compute the cohomology group with this covering since the
open sets U1 and U2 are Stein. Hence, we have the following identifi-
cation

H1 (D,O) ≃ O (U1 ∩U2)
/
O (U1) + O (U2)

Now, the module O (U1 ∩U2) is the set of series
∑

(i,j)∈N×Z aijx
i
1y
j
1

while O (U1) and O (U2) correspond respectively to the series
∑

(i,j)∈N×N

aijx
i
1y
j
1 and

∑

(i,j)∈N×N

aijx
i
2y
j
2.
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Therefore the cohomological equation to solve is
∑

(i,j)∈N×Z

a12ij x
i
1y
j
1 =

∑

(i,j)∈N×N

a1ijx
i
1y
j
1 +

∑

(i,j)∈N×N

a2ijx
i
2y
j
2

=
∑

(i,j)∈N×N

a1ijx
i
1y
j
1 +

∑

(i,j)∈N×N

a2ijx
i
1y
i−j
1

which can always be solved for any data of a family
{
a12ij

}

ij
. Therefore,

we have the desired vanishing property

H1
(
P1,O

)
= 0

Case 2. n =⇒ n + 1. Let us consider the covering of D used in
the proof of the theorem 36. The Mayer-Vietoris sequence associated
to this covering yields the next exact sequence

0 → H0 (D,O) →⊕

i∈I

H0 (Ui,O)
⊕

H0 (U0,O) →
⊕

i∈I

H0 (U0 ∩Ui,O)

︸ ︷︷ ︸
=H1(D0,O)=0

→

H1 (D,O) →
⊕

i∈I

H1 (Ui,O)
⊕

H1 (U0,O)

︸ ︷︷ ︸
=0 ( hypothesis of induction )

.

Hence H1 (D,O) = 0.

Now, the sheaf Mn (f ◦ E) is generated by its global sections. Therefore,
we are finally led to

H1 (D,Mn (f ◦ E)O) = 0.

�

Let us denote by G
n (F) the sheaf of automorphisms of F that are equal

to Id on D, that leave invariant each leaf of F and that are tangent to
Id with orders define by the ideal sheaf Mn: if Φ is a section at p of
Gn (F) then the coordinates of Φ− Id belong to Mn. Let us denote also
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by G
n (S) the sheaf of automorphisms of S that are equal to Id on D

and that are tangent to Id with orders defined also by Mn.

Theorem 43. Let F be a general foliation and S = Sep (F). Then, the
natural map

H1
(
D,G1 (F)

)
−→ H1

(
D,G1 (S)

)

is onto.

The proof of this result is based upon the following remark: let us con-
sider a 1- cocycle {Φij}i,j∈I2 with values in G

1 (S). Suppose that Φij is

the flow e(1)Xij11 where Xij ∈ M1TS. In view of the lemma 42, Xij can
be written

Xij = Xi + Tij − Xj.

Suppose that all these vector fields commute then

Φij = e
(1)Xij = e(1)Xie(1)Tij

(
e(1)Xj

)(−1)
.

ThusΦij is in the image of the map of the theorem. However, the cocycle
Φij may not be in a flow. Moreover, there is no reason for the vector
fields appearing in the lemma 42 to commute. Actually, the proof is a
way two overcome these two difficulties using the Campbell-Hausdorff
formula12

Proof. Let us consider a 1-cocycle {Φij}i,j∈I2 with values in G
1 (S). Let

us consider a very big integer n. There exists a 1−cocycle Xij such that

Φij = e
(1)Xij ◦ Φ̃ij where Φ̃ij ∈ G

n (S) . Actually, one can write

Φij = Id +
∑

ν≥1

(
Φ1νij ,Φ

2ν
ij

)

and take Xij =
∑n
ν≥1Φ

1ν
ij

∂
∂x +Φ

2ν
ij

∂
∂y . Now let us consider, a cohomo-

logical relation given by the lemma 42 associated to Xij

Xij = Xi + Tij − Xj.

11This is really an assumption, for there are diffeomorphisms that are not the flow
of some vector fields

12See the first part.
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Then, composing the flow of each above vector fields yields the next
expression

e(1)Xij ◦ e−(1)Xie−(1)Tije(1)Xj = e(1)〈〈〈Xij,−Xi〉,−Tij〉,Xj〉.

Now in view of the Campbell-Hausdorff formula, one has

〈〈〈Xij,−Xi〉 ,−Tij〉 , Xj〉 = Xij − Xi + Tij + Xj︸ ︷︷ ︸
=0

−
1

2
[Xij, Xj] −

1

2
[Xij, Tij] +

1

2
[Xij, Xj] + · · ·

Moreover, this is an exercise to show the following inclusion:

[MnTS,MmTS] ⊂ Mm+nTS.

Therefore, 〈〈〈Xij,−Xi〉 ,−Tij〉 , Xj〉 belongs to M2TS. Thus

e(1)Xij = e(1)Xie(1)Tije−(1)Xj ◦ φ2ij

where φ2ij belongs to G
2 (S) . Then we do the same construction as

before:

φ2ij = e(1)X
2
ij ◦ φ̃2ij

X2ij = X2i + T
2
ij − X

2
j

e(1)X
2
ij = e−(1)X2

i e−(1)T2ije(1)X
2
j ◦ φ3ij.

Thus, we are led to

e(1)Xij = e(1)Xie(1)Tije−(1)Xj ◦φ2ij

= e(1)Xie(1)Tije−(1)Xje(1)X
2
i e(1)T

2
ije−(1)X2

j ◦ φ3ij ◦ φ̃
2
ij

= e(1)Xi+X
2
i e(1)Tij+T

2
ije(1)−Xj−X

2
j ◦ ∆ij ◦ φ

3
ij ◦ φ̃

2
ij︸ ︷︷ ︸

∈G3(S)

and so on. With a trivial induction on n, one gets the following state-
ment: for any n there exists a relation

Φij = e
Xi ◦ eTij ◦ eXj ◦Φnij

where Φnij ∈ G
n (S). To finish the proof, we use a stability argument

which is the lemma 44 given just below: it ensures that for n great
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enough, the cocycles eXi ◦eTij ◦eXj ◦Φnij and eXi ◦eTij ◦eXj are equivalent

as cocycles. Therefore, Φij is equivalent to eTij as cocycle, which is the
theorem. �

Lemma 44. (Stability) [18] For n big enough, the natural map

H1 (D,Gn (F)) → H1
(
D,G1 (F)

)

is the trivial map.

This lemma means more ore less that any unfolding tangent enough to
the trivial unfolding is actually analytically trivial. Its infinitesimal coun-
terpart is the following result: for n great enough the mapH1 (D,MnTF) →
H1 (D,TF) is the zero map. This result is a corollary of a more general
statement that one can find in [3].

The cohomological part of the proof is established. Now, let us present
the geometric part of the proof: let S

′
be a curve topologically equivalent

to S = Sep (F). It is known that in this situation, the process of reduction

of S
′
and S have the same topological type. In particular, they have the

same dual graph [23]. Let us consider a bijection σ between there dual
graphs. Let us denote by D the exceptional divisor of the reduction
process of F. For any d ⊂ D irreducible, we will denote by

Σd (F) = Σd (S)

the set of singular point of E∗S ∪D. The proof of the result consists in
unfolding the foliation F toward a foliation with S

′

as separatricies: we
make this construction with two consecutives unfoldings.

(1) First, we move the of Σd(S) to put them in the same position

as Σσ(d)

(
S

′
)
.

(2) Then, we deform the separatricies obtained after the first step

to reach exactly S
′
. The cohomological properties established

before are going to be used here.

All these deformations have to be unfoldings. The first result we use is
due to M. Seguy [19]:
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Theorem 45. There exists an unfolding F of F with parameter in t ∈ U
that is open neighborhood of D such that

(1) F0 = F

(2) for any irreducible component d of the exceptional divisor of the
reduction F1 there exists a biholomorphism hd : d→ σ (d) such

that hd (Σd (F1)) = Σσ(d)

(
S

′
)
.

To prove this result, let us first mention the following lemma.

Lemma 46. Let a1 (s) , · · · , an (s) be a family of functions with val-
ues in CP1 such that ai (s) 6= aj (s) for any s. There exists a C∞

diffeomorphism from M = C̃2 × D to itself that sends the graph of

ai (s) ∈ CP1 ⊂ C̃2 onto the horizontal line ai (0)× D and that is holo-
morphic near each graph of ai.

Proof. We can coverM with a finite number of open set Ui i = 1 . . . n+
1 such that for i = 1 . . . n Ui is a small neighborhood of Si withUi∩Uj =
∅. The open setUn+1 is a neighborhood of the complementary of ∪ni=1Ui
that does not meet any graph Si. On each Ui it is possible to find an
holomorphic vector field Xi tangent to Si such that π∗Xi =

∂
∂t where

t ∈ D. Using a unity partition adapted to the chosen covering, one can
glue the Xi’s in a C∞ vector field X that is tangent to the curves Si and
projected on ∂

∂t
. The C∞ diffeomorphism (z, t) →

(
e(t)X (z, 0) , t

)
the

desired properties. �

Using the lemma, we are going to perform the proof of the theorem 45
is the case of one blowing-up. The general case is a simple induction on
the length of the process.

Proof. (Theorem 45). Suppose that F is reduced after one blowing-up
and let consider a set B of points distinct from Σd (F). Let us consider
the manifold M and the diffeomorphism Φ build in the previous lemma
applied to graphs Si that links the set of points Σd (F) and B. The
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manifold M is foliated by F × D. Let us consider a system of foliated
charts on the complementary of the singular locus Sing

(
F× D

)
:

(
ζi1, ζ

i
2, t
)

such that the foliation is given locally by ζ2 = cst. We complete this
system of charts with any chart (ζc1, ζ

c
2, t) in the neighborhood of the

singular points c of Sing
(
F× D

)
. Finally, we fix a transverse fibration

ρ :M→ CP1×D. Let us consider the following system of charts on M

M̃ :

{(
ζi1 ◦Φ ◦ ρ, ζi2, t

)
in M minus the singular locus

(ζc1, ζ
c
2, t) ◦Φ else

.

One can verify that this system induces a complex structure onM, equips
this manifold with a foliation still given by the equation ζi2 = cst and
that the application Φ

∣∣
CP1×D becomes a biholomorphism. Using the

Grauert theorem [11, 9] on the uniqueness of the complex structure of a

neighborhood of CP1 of self-intersection −1, we obtain that the manifold

M̃ is biholomorphic to C̃2 × D equipped with the standard complex

structure. We denote by G this biholomorphism. If we contract C̃2×D,

we obtain a foliation F and an application hd = G◦Φ
∣∣∣CP1×{1} that satisfy

the desired properties. The proof of the general case is an induction on
the length of the reduction process. �

To finish the proof of the theorem 41, we make the following construc-
tion. According to the above theorem of Seguy, we can suppose that
for any component d of the exceptional divisor of the reduction of F

- here we take a process of blowing-up that is actually a tree of finite
determinacy for S using the theorem 40- there exists a biholomorphism
hd : d→ σ (d) that conjugates the singular locus. Each map hd can be
extended in a small neighborhood of d and sends the trace of D ∪ S on
the trace of D

′
∪ S

′
.
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di d ′
i

hij

Figure 6.1. Semi-local conjugacy between the trees.

We still denote this extended map hd. Thus, the family of applications
defined by

hij = hdi ◦ h
(−1)
dj

is a cocycle that satisfies the following construction: if (A,D) is the tree

of reduction of F and
(
A

′
,D

′
)

the one of S
′
then

(
A

′

,D
′
)
≃

∐
iUi
/
x ∼ hdi ◦ h

(−1)
dj

(x)

We can suppose that the cocycle
{
hdi ◦ h

(−1)
dj

}

i,j
belongs to G

1 (S): we

will omit the proof of this fact for it is technical and not very relevant.
Therefore, the theorem is a consequence of the proposition 43: indeed,
in view of this proposition, there exist a 1-cocycle {φij}i,j ∈ G

1 (F) and

a 0- cocycle {ψi}i ∈ G
1 (S) such that

hdi ◦ h
(−1)
dj

= ψi ◦ φij ◦ψ
(−1)
j .

Hence, we have the following isomorphism
∐
iUi
/
x ∼ hdi ◦ h

(−1)
dj

(x)
{ψi}i
≃

∐
iUi
/
x ∼ φij (x).

Since the cocycle {φij}i,j lets invariant each leaf of the foliation F, the

manifold
(
A

′

,D
′
)

admits a foliation defined by

∐
i F|Ui

/
x ∼ φij (x).
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According to [1],the map Φij is a flow: actually, it can be written

Φij(x) = e
(τ(x))Xij · x

where τ is a function. The Grauert theorem and the finite determinacy
for curve ensure that this foliation can be pushed down in an holomor-
phic foliation in a neighborhood of

(
C2, 0

)
with a set of separatricies

analytically equivalent to S
′

. Moreover, this foliation is topologically
equivalent to F as it is an unfolding of F defined by

ǫ ∈ [0, 1] −→
∐
i F|Ui

/
x ∼ e(ǫτ(x))Xij · x.



7. Exercises.

Exercise 1. Prove the lemma 1.

Exercise 2. Let X be a germ of vector field in (Cn, 0) with X (0) = 0.
Show that for any r > 0 there exists an neighborhood of 0 such that the
flow (t, x) → e(t)X is defined for (t, x) ∈ Dr ×U.

Exercise 3. We consider the foliation given by the one formω = x2dy−
(y− x) dx. Show that {x = 0} is the only separatrix.

Exercise 4. Show that the multiplicity as defined in 1.1 is an analytical
invariant: for any φ ∈ Diff

(
C2, 0

)
we have ν0 (φ

∗F) = ν0 (F) .

Exercise 5. (∗) Proof the formula of Dynkin.

Exercise 6. Give an explicit expression of the topological conjugacy
constructed in the lemma 7.

Exercise 7. In this exercise, we propose an alternative proof of the
linearization of the holonomy map f = hF,T .

(1) Show that we can suppose,
∣∣∣f ′′ (0)

∣∣∣ < 2ǫ |η| (1− |η|) for some

ǫ. Deduce that on a small disc around 0 we have |f (z)| <
|η||z|

1−ǫ(1−|η|)|z|
.

(2) Compute the nth iterative composition of x → |η|x
1−ǫ(1−|η|)x

. De-

duce that the family of holomorphic functions f(n)(z)
ηn is normal.



COHOMOLOGICAL TOOL IN THE STUDY OF COMPLEX FOLIATIONS. 62

(3) Using the theorem of Montel13 on the Cesaro sum 1
n

∑N
n=1

f(n)(z)
ηn ,

prove the linearization result.

Exercise 8. Let consider the deformation ωt = xdy+ tydx. Show that
this deformation cannot be induced by an unfolding.

Exercise 9. Let F be the foliation defined by ω = x3d
(
y2−x3

x2

)
.

(1) Compute the reduction of singularities of ω.
(2) Let F be defined by Ω = ω + x3dt. Show that F is an un-

folding in the sense of the definition 9. Show that F is not
equisingular.14

Exercise 10. Compute the reduction of the singularity of the double cusp
ω = d

((
x3 − y2

) (
x2 − y3

))
. More generally, describe the reduction of

the singularities of ω = d (xp − yq) where p∧ q = 115

Exercise 11. Write down explicitly the proof of the proposition 18.

Exercise 12. Show that the operators defines in 4.1 satisfies δk◦δk−1 =
0.

Exercise 13. Prove the theorem 27 with the Snake lemma applied to
the following commutative diagram

C0 (M,S) → C0
(
M,S

′
)

→ C0
(
M,S

′′
)

↓ ↓ ↓
C1 (M,S) → C1

(
M,S

′
)

→ C1
(
M,S

′′
)

↓ ↓ ↓
C2 (M,S) → C2

(
M,S

′
)

→ C2
(
M,S

′′
)

...
...

...

.

13See for instance Complex and real analysis of W. Rudin.
14Look at the transversality property of E∗F where E is the common reduction of

all the Ft’s.
15Begin with p = 2 and q = 3. For the general case, introduce the Euclid

algorithm between p and q.
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Exercise 14. Show that the class of the cocycle defined by the formula
5.2 depends only on the class of {Φij} and not on the choice of the
representative element.

Exercise 15. Prove the remark 34.

Exercise 16. (∗) For the double cusp in the example 38, prove that
the dimension of the moduli space is one using the formula 36. Show
that the unfolding defines by Ω = d

(
(1+ t)

(
x3 − y2

) (
x2 − y3

))
for

t ∈ (C, 0) is universal.

Exercise 17. (∗∗) Suppose that ω admits an non analytically trivial
unfolding Ω with one parameter such that the induced deformation Ωt

is analytically trivial as a deformation. Show that ω admits an integral
factor, i.e., there exists a function f such that d

(
ω
f

)
= 0.

Exercise 18. If S = CP1\ {0, 1,∞}, describe Aut (S) and S
/
Aut (S)

16.

Exercise 19. (∗) Prove the following result of Mather: if f and g are
two germs of analytical function in

(
C2, 0

)
with an isolated singularity

at 0 such that f−g ∈ (x, y)N for N great enough, then they analytically
equivalent, i.e., there exists a germ of conjugacy Φ such that f = g ◦Φ.

(1) Show that for N great enough (x, y)N ⊂
(
∂f
∂x ,

∂f
∂y

)
.

(2) Let us consider F = tf + (1 − t) g. Prove that ∂F
∂t ∈

(
∂F
∂x ,

∂F
∂y

)
.

17 Deduce that there exists a germ of vector field X = a ∂
∂x +

b ∂
∂y

+ ∂
∂t

such that dF (X) = 0.

(3) Conclude.

16Aut (S) is finite.
17Use the Nakayama lemma, see for instance Algebra of E. Artin.
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