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Abstract

Considering the problem of moduli for a germ of singular holomor-
phic foliation in C2 leads naturally to point out some of its analytical
invariants: the reduction of its singularities and the collection of its
projective holonomy representations. It is of interest to know whether
any coherent data of these invariants can be realized in a concrete
foliation. The aim of this paper is to provide the infinitesimal obstruc-
tions to this problem for dicritical foliations, in sharp contrast with
the non-dicritical case previously studied in [2].
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Introduction and main statements.

A germ of holomorphic foliation F in C2 is the data up to multiplica-
tion by a unity u ∈ O∗ of a germ of holomorphic 1-form at 0 ∈ C2

ω = a(x, y)dx + b(x, y)dy (1)

where a, b ∈ C{x, y}. A separatrix is a germ of analytical irreducible
curve S such that S\{0} is a union of leaves of F and a foliation is
non-dicritical when it has finitely many separatrix. From now on,
E : (M,D) → (C2, 0) denotes the process of reduction of singularities
of F (see [6] for precise definition and existence) where D refers to the
exceptional divisor E−1(0). By definition, the singularities along D
of the pull-back E∗F are reduced so that, under some local change of
coordinates, they belong to the following list
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1. λxdy + ydx + · · · terms of higher order, λ 6∈ Q−,

2. xdy + . . . terms of higher order.

In the second case, the singularity is said to be a saddle-node. The
formal normal form for such a singularity is given in [7]: up to a formal
change of coodinates, the singularity is given by the following 1-form

(ζxp − p)ydx + xp+1dy, p ∈ N∗, ζ ∈ C.

The invariant curve {x = 0} is the strong invariant curve and {y = 0}
the weak one. If the germ of the divisor D is the weak invariant curve,
then the singularity is said to be a tangent saddle-node. Following [7],
we recall that F is in the second class when none of the singularities
of E∗F are tangent saddle-nodes.

Theorem (Realization theorem, [2]). Let F0 be a germ of non-
dicritical foliation in the second class and E0 : (M0,D0) → (C2, 0)
its process of reduction. Let Et be any topologically trivial deformation
of E0. Then, there exists an isoholonomic deformation Ft of F0 such
that Et is precisely the process of reduction of Ft.

Roughly speaking, an isoholonomic deformation is a topologically triv-
ial deformation, which lets invariant the projective holonomy represen-
tations (see [5][2] for more details). Hence, this theorem ensures the
existence of a germ of foliation with process of reduction prescribed pro-
vided that the data of its projective holonomy representations comes
from a non-dicritical foliation. This work is intended as an attempt to
show how the above statement strongly depends on the non-dicritical
assumption.

We follow [4] in calling M-simple a germ of foliation, regular after
blowing-up the origin whose closure of any invariant curve is an an-
alytic curve passing through the origin. In this situtation, there is a
finite number of invariant curves, called the exceptional leaves, which
are tangent to exceptional projective line arising from the blowing-
up. Any other invariant curve is transversal to the divisor. Thus, a
M-simpe foliation is dicritical.
We can now formulate our main result

Theorem. Let F be a M-simple foliation with at least four exceptional
leaves. Then, there exists a topologically trivial deformation of the
process of reduction of F , which cannot be realized as an isoholonomical
deformation of F .

The proof is based on the concept of balanced equation of the sepa-
ratrix developed in the first section. Second section establishes the
existence of infinitesimal obstructions in the realization problem for
dicritical foliations in the second class: the basic ingredient is the bal-
anced equation of separatrix. Last section contains the proof of the
above result.
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1 Dicritical foliations in the second class.

1.1 Multiplicity of a dicritical foliation.

In this section, we establish a link between the multiplicity

ν0(F) = min(ord(a), ord(b)),

F given by (1), and some numerical invariants produced by the process
of reduction of F .

The valence v(D) of an irreducible component D of D is the num-
ber of irreducible components of D, which intersect D. The integer
vd̄(D) refers to the non-dicritical valence, which is the number of non-
dicritical components intersecting D. In what follows, M stands for
the sheaf O-modules generated by the global sections E∗h with h ∈ O2

and h(0) = 0. It is a simple matter to get the following decomposition

M = O



−
∑

D∈Comp(D)

ν(D)D



 ,

where Comp(D) refers to the set of irreducible components of D. In
this way, we obtain an integer ν(D) that is known as the multiplicity
of D. This is also the multiplicity of a curve whose strict transform by
E is smooth and attached to a regular point of D.

The following definition is introduced in [3]:

Definition 1.1. Let F be a germ of foliation given by a 1-form

ω = a(x, y)dx + b(x, y)dy

1. Let (S, p) be a germ of smooth invariant curve. If, in some co-
ordinates, S is the curve {y = 0} and p the point (0, 0), then the
integer ord0b(x, 0) is called the indice of F at p with respect to S
and is denoted by Ind(F , S, p).

2. Let (S, p) be a germ of smooth non-invariant curve. If, in some
coordinates, S is the curve {y = 0} and p the point (0, 0), then the
integer ord0a(x, 0) is called the tangency order of F with respect
to S and is denoted Tan(F , S, p).

The following equality is proved in [3] and specializes to a result of [1]
if F is non-dicritical.

Proposition 1.1 ([3]). The multiplicity of F satisfies the equality

ν0(F) + 1 =
∑

D∈Comp(d)

ν(D)ρ(D)

where

1. if D is non-dicritical, ρ(D) = −vd̄(D) +
∑

q∈D Ind(E∗F , D, q).

2. if D is dicritical, ρ(D) = 2 − vd̄(D) +
∑

q∈D Tan(E∗F , D, q).
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Note that this formula still holds if E is any morphism composed of
blowing-up.
We will consider a notion of balanced equation defined as follows. A
separatrix of F is said to be isolated if its strict transform by E is
attached to a non-dicritical component. When D is dicritical, we call
pencil of D the set of germs of invariant curves of F in (C2, 0), whose
strict transform is attached to D.

Definition 1.2. A complete system of separatrix is the union of two
germs of curves Z ∪ P where

1. Z is the union of isolated separatrix and, for each dicritical com-
ponent D with valence smaller than 2, 2 − v(D) curves of the
pencil of D.

2. P is the union of v(D) − 2 curves of the pencil of each dicritical
component D with valence bigger than 3.

A balanced equation of the separatrix is a germ of meromorphic func-
tion whose zeros and poles are respectively Z and P .

Note that the notion of balanced equation specializes to the standard
equation of separatrix if F is non-dicritical.

Let us denote by SNT (F) the set of tangent saddle-node singular
points of E∗F .

Proposition 1.2. Given any balanced equation of the separatrix F ,
we have

ν0(F ) = ν0(F) + 1 +
∑

s∈SNT (F)

∑

D∈V (s)

ν(D) (Ind(E∗F , D, s) − 1)

where V (s) refers to the set of irreducible components containing the
point s. In particular, the multiplicity of F does not depend on the
choice of Z and P .

Proof: Let us write F =
N

P
where N and P are holomorphic. The

foliations dN and dP are reduced by the morphism E. Applying (1.1)
to F , dN and dP yields

ν0(F) + 1 =
∑

D∈Comp(d)

ν(D)ρ(D), (2)

ν0(dN) + 1 =
∑

D∈Comp(d)

νN (D)ρN (D), (3)

ν0(dP ) + 1 =
∑

D∈Comp(d)

νP (D)ρP (D). (4)

Since the multiplicities of the components only depend on E, for any
component D of D

ν(D) = νN (D) = νP (D).
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Now, when D is non-dicritical for F , proposition (??) leads to

ρ(D) = Iso(D) +
∑

q∈D∩SNT (F)

(Ind(E∗F , D, q) − 1),

where Iso(D) is the number of isolated separatrix attached to D. If
D is dicritical, νd(D) = v(D) and E∗F is transversal to D. It follows
that ρ(D) = 2 − v(D). By definition, if D is non-dicritical, ρN(D) is
equal to Iso(D). Moreover, if D is dicritical with v(D) ≤ 2, ρN (D)
is equal to 2 − v(D) = ρ(D). On any other component, the foliation
{dN = 0} does not have any isolated separatrix and ρN (D) vanishes.
Substituting these equalities into (3) gives

ν0(N) = ν0(dN) + 1 =
∑

D ∈ Comp(d)
D non-dicritical or
D dicritical and v(D) ≤ 2

ν(D)ρ(D) +

∑

D ∈ Comp(d)
D non-dicritique

ν(D)
∑

q∈D∩SNT (F)

(Ind(E∗F , D, q) − 1). (5)

Since E∗F is reduced, for any point q in a dicritical component

Tan(E∗F , D, q) = 0.

Hence, for any dicritical components with valence greater than 3, the
equality ρP (D) = −ρ(D) holds. If not, ρP (D) vanishes. Proceeding
analogously to (5), we obtain

ν0(P ) = ν0(dP ) + 1 = −
∑

D ∈ Comp(d)
D dicritical and v(D) ≥ 3

ν(D)ρ(D). (6)

The proposition is the combination of relations (5) and (6).

�

1.2 Dicritical foliation in the second class.

Definition 1.3. F is in the second class when none of the singularities
of E∗F are tangent saddle-nodes.

The proposition to come follows easily of (1.2):

Proposition 1.3. Let F be a balanced equation of F . Then F is in
the second class if and only if ν0(F ) = ν0(F) + 1.

Our criterion agrees with the classical one for non-dicritical foliation
[7]. The balanced equation of the separatrix of a dicritical foliation
seems to be of independent interest. In what follows, we use it to
study the realization problem in the dicritical class.
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2 Analysis of dicritical obstructions.

2.1 Space of moduli of infinitesimal deformations.

The basic geometric ingredient of the proof of the realization theorem
(see the introduction) is an infinitesimal level result, which is an easy
consequence of the existence of the following exact sequence of sheaves
on M

0 → XF → X → OM → 0. (7)

Here, the fibre of X is the space of vector fields tangent to the total
transform by E of the separatrix of F at the origin of C2. The sheaf
XF is the sub-sheaf of X whose fibre is the space of vector field tangent
to the foliation E∗F . These two sheaves respectively correspond to the
space of moduli H1(X ) of infinitesimal deformations of M and to the
space of moduli H1(XF ) of infinitesimal isoholonomic deformations [5].
Since the first cohomology group of OM is trivial, one has the following
sequence

H1(XF ) → H1(X ) → 0

which is the starting point of the proof of the realization theorem.

In this section, we establish an analogue of the sequence (7) for dicrit-
ical foliations.

Proposition 2.1. The following conditions are equivalent:

1. F is in the second class.

2. Let F be a balanced equation for F . Let us denote by Z0 and Z∞

the respective strict transforms by E of the curves {F = 0} and
{F = ∞}. Let XZ0 be the sheaf of vector fields tangent to the
divisor D and to Z0. The sequence of sheaves

0 −→ XF −→ XZ0

E∗ ω
F

(·)
−−−−−→ O (−Z∞) −→ 0

is exact.

Let us first examine the multiplicity of the blown-up balanced equation
along any irreducible component of the divisor

Lemme 2.1. For any component D, we have the following alternative:

1. if D is non-dicritical, νD(F ) = νD(F) + 1,

2. if D is dicritical, νD(F ) = νD(F),

Here and subsequently, νD(F) refers to the multiplicity of the blown-up
E∗ω at a generic point of D where ω defines F in (C2, 0).

Proof: The proof is an induction on the height of the component D in
the blowing-up process. If D0 is the exceptional projective line arising
from the blowing-up of the origin, then νD0(F ) and ν0(F ) are equal;
if D0 is non-dicritical, νD0(F) = ν0(F) else νD0(F) = ν0(F) + 1.
Therefore, the lemma at height 1 is the proposition (1.3). Assume
the formula holds for height i and consider a component D of Di+1
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obtained by the blowing-up Ei of the point c ∈ Di. Let F i be the
divided blown-up1 of F by E∗i. Writing the expression of the blowing-
up at c yields

νD(F) = νc(E
i∗F) +

∑

Dc∈V(c)

νDc
(F) + ε(D), (8)

νD(F ) = νc(F
i) +

∑

Dc∈V(c)

νDc
(F ). (9)

Here and from now on, ε(D) is 0 if D is non-dicritical and 1 else. We
recall that V (s) refers to the set of irreducible components of D that
contain s.

1. V (c) consists of one component D0.

(a) D0 is non-dicritical: let Fc be the germ of meromorphic
function near the point c product of F i and of a germ of
equation of D0. By definition, Fc is a balanced equation for
Ei∗F . Proposition (1.3) gives

νc(Fc) = νc(E
i∗F) + 1. (10)

Now, the construction ensures the equality

νc(Fc) = 1 + νc(F
i
c ). (11)

Moreover, the induction hypothesis shows the relation

νD0(F ) = νD0(F) + 1. (12)

The relations (8), (9), (10), (11) and (12) give the result for
the component D:

νD(F ) = νD(F) + 1 − ε(D).

(b) D0 is dicritical: in that case, one has to choose for Fc

the germ F i
c . Once again, Fc is a balanced equation for

Ei∗F . Hence, νc(Fc) is equal to νc(E
i∗F) + 1. Therefore,

one gets the relation νc(Fc) = νc(F
i
c ). Under the induction

hypothesis, νD0(F ) and νD0(F) are equal. Combining the
previous relations yields

νD(F ) = νD(F) + 1 − ε(D),

D0 being dicritical, ε(D) vanishes.

2. V (c) consists of two components D0 and D1.

(a) D0 and D1 are non-dicritical: let Fc be the product of
F i and of a germ of equation for D0 ∪ D1. Since the func-
tion Fc is a balanced equation for Ei∗F , νc(Fc) is equal to

1
F

i =
E

∗i
F

hm
where m is the bigger power of an equation h of the local divisor, which

divides E
∗i

F .
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νc(E
i∗F)+1. Now, in view of our construction, we have the

equality νc(Fc) = 2 + νc(F
i
c ). Moreover, for any Dc ∈ V (c),

νDc
(F ) = νDc

(F) + 1. These equalities ensure that

νD(F ) = νD(F) + 1 − ε(D).

(b) D0 is dicritical and D1 is non-dicritical: this case may
be handled in much the same way.

�

Proof: (2.1) Let F be in the second class. It is clear that the kernel
of E∗ ω

F
(·) is XF . It remains to prove that E∗ ω

F
(·) is onto O(−Z∞).

In what follows, giving a local expression of E∗ ω
F

thanks to the lemma
(2.1), we solve the equation E∗ ω

F
(X) = g for g local section of O(−Z∞).

Throughout the proof, u stands for a germ of unity in O∗.

1. At a regular point of a non-dicritical component, which is neither
a zero nor a pole of F :

E∗ ω

F
=

u

x
dx, X =

g

u
x

∂

∂x
, O(−Z∞) = O.

2. At a point of a dicritical component, which is neither a zero nor
a pole of F :

E∗ ω

F
= udy, X =

g

u

∂

∂y
, O(−Z∞) = O.

3. At a singular point of a non-dicritical component or at singular
point of F , zero of F :

E∗ ω

F
= u

dx

x
+ v

dy

y
, X =

gx

u

∂

∂x
, O(−Z∞) = O.

4. At a regular point of F , zero of F :

E∗ ω

F
=

u

y
dy, X =

g

u
y

∂

∂y
, O(−Z∞) = O.

5. At a pole of F :

E∗ ω

F
= uydy, X =

g

uy

∂

∂y
, O(−Z∞) = (y)O.

Hence, in any case, the morphism E∗ ω
F

(·) is onto the sheaf O(−Z∞).
This ensures the exactness of the sequence.

�
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2.2 Infinitesimal obstructions.

The long exact sequence in cohomology associated to the short exact
sequence of sheaves in 2.1 is written

· · · → H1(D,XF ) → H1(D,XZ0) → H1(D,O(−Z∞)) → 0.

This thus proved the first statement of the following proposition.

Proposition 2.2. The space of infinitesimal obstructions to the re-
alization problem is the C-space of finite dimension H1(D,O(−Z∞)).
Its dimension is a topological invariant of the foliation.

Let us first consider a germ of curve S in (C2, 0) and S̃ the strict
transform of S by E. The morphism E is a composition E = E0 ◦
· · · ◦ EN where Ei is the elementary standard blowing-up of a point.
For any point c in a divisor (E0 ◦ · · · ◦ Ej)

−1(0), 0 ≥ j ≥ N , νc(S)
refers to the multiplicity at c of the strict transform of S with respect
to E0 ◦ · · · ◦ Ej . The following lemma may be establish in much the
same way as theorem (2.1.3) in [5]. For the convenience of the reader
we give a complete proof:

Lemme 2.2.

dimC H1(D,O(−S̃)) =
∑

c

vc(S)(vc(S) − 1)

2

Proof: The proof is an induction on the length of the blowing-up pro-
cess. Let E0 be the blowing-up of the origin. Let us consider the
canonical system of coordinates (x1, y1) and (x2, y2) in adapted neigh-
borhood of E−1

0 (0) such that the change of coordinates is written

y2 = y1x1, x2 =
1

y1
.

Let p be a reduced equation of P and p1 and p2 defined by

E∗p = x
ν0(p)
1 p1 E∗p = y

ν0(p)
2 p2.

Hence, we can describe the space of global sections

H0(V1,O(−S̃)) ' p1C[[x1, y1]]

H0(V1 ∩ V2,O(−S̃)) ' p1C[[x1]]((y1))

H0(V2,O(−S̃)) '







y
−ν0(p)
1

∑

i,j∈N2

aijx
j
1y

j−i
1

∣

∣

∣

∣

∣

∣

aij ∈ C







A simple computation shows the following isomorphisms

H0(V1 ∩ V2,O(−S̃))/⊕
i=1,2 H0(Vi,O(−S̃)) ' C

ν0(p)(ν0(p)−1)

2 .

We decompose the desingularization morphism E = E0 ◦ E1 where
E0 is the first blowing-up of the origin. Let {s1, . . . , sn} refers to
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the intersection of D0 and the strict transform of P . We denote the
components of the exceptional divisor Di = E−1

1 (si). For i = 1, . . . , n,
consider Ui(ε) = B(si, ε), ε > 0 be a disc for any smooth metric on D0

such that Ui does not meet Uj for j 6= i. Let U0 be the complementary

of
⋃

i=1,...,4

B(si, ε/2). Finally, let us denote by Ui the open set E−1
1 (Ui).

The system {U0,U1, . . . ,Ui} provides a covering of the divisor D and
the Mayer-Vietoris sequence for the sheaf O(−S̃) is written

0 → N → H1(D,O(−S̃)) →
⊕

i

H1(Ui,O(−S̃)) →

⊕

ij

H1(Ui ∩ Uj ,O(−S̃)) → 0,

where N is given by
⊕

i

H0(Ui,O(−S̃)) →
⊕

ij

H0(Ui ∩ Uj ,O(−S̃)) → N → 0.

Since Ui∩Uj is Stein and O(−S̃) a coherent sheaf, H1(Ui∩Uj ,O(−S̃)) is
trivial. Moreover, the morphism E1 and the Hartogs argument induce
following isomorphisms

H0(Ui,O(−S̃)) ' H0(Ui,O(−S̃)),

H0(Ui ∩ Uj ,O(−S̃)) ' H0(Ui ∩ Uj ,O(−S̃)).

Hence, N is identified with H1(D0,O(−S̃)). All these remarks and
an inductive limit on the neighborhood of Di provide the next isomor-
phisms

H1(D,O(−S̃)) ' H1(D0,O(−S̃)) ⊕
⊕

i

H1(Di,O(−S̃)).

Therefore, the lemma is a straightforward computation from the hy-
pothesis of induction and the formula above.

�

Proof: (2.2) Applying the previous lemma with S = Z∞ yields the
finite dimension statement. Furthermore, looking at the formula, one
can see that this dimension depends only on the topology of the process
of reduction which is a topological invariant of the foliation [1].

�

3 The M-simple examples.

Let r and n ≥ 2 be positive integers and Fn,r1,...,rn
the foliation given

by the one form

xr+2d

(

xr+2 −
∑r+1

j=1 qjx
r+1−jyj

xr+1

)

.
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Let us suppose that Q(t) =
∑r+1

j=1 qjt
j satisfies Q′(t) =

∏n

i=1(t− tj)
rj .

In [4], Klughertz proved that these foliations are topological normal
forms for M-foliation. To be more specific, any M-foliation with n ex-
ceptional leaves tangent to the divisor with respective orders r1, . . . , rn

is topologically equivalent to a foliation Fn,r1,...,rn
. The position of the

tangency points t1, . . . , tn may be chosen arbitrarily. Since the dimen-
sion of H1(D,O(−Z∞)) is a topological invariant, one can compute
this dimension for the normal form in order to extend the result to any
M-foliation.

By a direct computation, one has ν0(Fn,r1,...,rn
) = r + 1. The folia-

tion is regular after one blowing and the exceptional divisor D0 is not
invariant. There are n integral curves Si, i = 1..n, which are tangent
to the divisor. In the canonical coordinates y = tx, x = x, the points
of tangency are given by t = tj and the rj are the respective order
of tangency. Hence, the foliation is completely reduced once one has
reduced the germ of curves Si ∪ (D0)ti

. Therefore, the foliation has n
isolated separatrix, which are the curves Si if viewed after one blowing.
Let us denote by hi a reduced equation of Si at the origin. One can
see that ν0(hi) = ri + 1. Futhermore, the component D0 is dicritical
with valence n. Let {αi}i=1..n−2 be n − 2 equations of curves of the
pencil of D0. By definition, the meromorphic function

F =
h1(x, y)h2(x, y) · · ·hn(x, y)

α1(x, y)α2(x, y) · · ·αn−2(x, y)

is a balanced equation for F . In particular, since ν0(αi) = 1,

ν0(F ) =

n
∑

i=1

ν0(hi) − (n − 2) =

n
∑

i=1

(ri + 1) − n + 2 = r + 2

Hence,
ν0(F ) = ν0(Fn,r1,...,rn

) + 1

which was predicted by (1.3). Moreover, in view of (2.2), the space

of obstructions is of dimension
(n − 2)(n − 3)

2
. Hence, for any M-

simple foliation F with at least 4 exceptional leaves, there exists a
deformation of the process of reduction, which cannot be followed by
an isoholonomic deformation of F . This completes the proof of the
main statement of this paper.
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