
CLASSIFICATION OF ABSOLUTELY DICRITICAL FOLIATIONSOF CUSP TYPE.Y. GENZMER02/03/2012Abstra
t. We give a 
lassi�
ation of absolutely di
riti
al foliation of 
usptype, that is, the germ of singularities of 
omplex foliation in the 
omplexplane topologi
ally equivalent to the singularity given by the level of the mero-morphi
 fun
tion y
2+x

3

xy
.An important problem of the theory of singularities of holomorphi
 foliations inthe 
omplex plane is the 
onstru
tion of a geometri
 interpretation of the so-
alledmoduli of Mattei of these foliations [10℄. These moduli appear when one 
onsidersa very spe
ial kind of deformations 
alled the unfoldings. Basi
ally, the moduli ofMattei are pre
isely the moduli of germs of unfoldings of a given singular foliation.One of the major di�
ulty one meets looking at the mentionned geometri
 des
rip-tion is the la
k of basi
 examples in the litterature. A
tually, ex
ept when thefoliation is given by the level of an holomorphi
 fun
tion, there exist none exemple.The purpose of the following arti
le is not to solve the problem of Mattei even forthe 
lass of singularities we 
onsider here but to des
ribe this one as a

uratly aspossible in order to prepare the atta
k of the problem of moduli of Mattei.The absolutely di
riti
al foliations of 
usp type are good 
andidates to begin thisstudy for the following reasons:(1) their transversal stru
ture, whi
h usually is a very ri
h dynami
 invariant[9℄, is very poor and 
an be 
ompletely understood.(2) their number of Mattei moduli is 1.(3) the topology of their leaves is more or less trivial.Some results in the arti
le might be quite easily extended to a larger 
lass of abso-lutely di
riti
al foliations up to some te
hni
al and 
onfusing additions. The riskwould have been to miss the very �rst obje
tive of this paper, that is, to give anexample.A germ of singularity of foliation F in (C2, 0

) is said to be absolutely di
riti
alif there exists a sequen
e of blowing-up E su
h that E∗F is regular and trans-verse to ea
h irredu
ible 
omponent of the ex
eptionnal divisor E−1 (0). It is of
usp type if two su

essive blowing-up are su�
ient. In that 
ase the ex
eption-nal divisor E−1 (0) is the union of two irredu
ible 
omponents P1 (C) of respe
tiveself-interse
tion −2 and −1. We denote them respe
tively D2 and D1.1
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The expression 
usp type insists on the fa
t that the spe
ial leaf that passes troughthe singular point of the divisor is analyti
ally equivalent to the 
uspidal singularity
y2 + x3 = 0. The simplest example of an absolutely di
riti
al foliation is given bythe levels of the rationnal fun
tion near (0, 0)

f =
y2 + x3

xy
.We asso
iate to F a germ σ ∈ Di� ((D2, p) , (D1, p)) as in the pi
ture above. It isde�ned by the property that x ∈ D2 and σ (x) ∈ D1 belongs to the same lo
al leaf.This germ is 
alled the transversal stru
ture of F . This is the very �rst invariantof su
h a foliation. For the rationnal fun
tion above, the transversal stru
ture σredu
es to the identity map in the standard 
oordinates asso
iated to E.The main result of this arti
le is the following one: for any foliation F that isabsolutely di
riti
al of 
usp type we 
onsider it topologi
al 
lass Top (F) , that isthe set of all foliations topologi
ally equivalent to F . The moduli spa
e Top (F)/∼of F is de�ned as the quotient of Top (F) by the analyti
al equivalen
e relation.Now we have,Theorem 1. The 
lass Top (F) is equal to the set of all absolutely di
riti
al foli-ations and its moduli spa
e Top (F)/∼ 
an be identi�ed with the fun
tionnal spa
e

C {z} up to the a
tion of C∗ de�ned by
ǫ · (z 7→ f (z)) = ǫ2f (ǫz) .In this theorem, the germ of 
onvergent series f is the image of the transversalstru
ture σ by the S
hwarzian derivative S (σ) = 3

2

(

σ
′′′

σ
′

)

−
(

σ
′′

σ
′

)2

. A qui
k le
tureof the theorem would suggest that the transversal stru
ture σ is the sole invariantof the foliation, whi
h is not exa
tly true as it is highlighted in theorem (8).We have to mention that it does exists a lot of absolutely di
riti
al foliations. Fol-lowing a result due to F. Cano and N. Corral [3℄, the pro
ess E does not 
ontain anyobstru
tion to the existen
e of absolutely di
riti
al foliations. In other words, forany sequen
e of blowing-up E, there exists an absolutely di
riti
al foliation whoseasso
iated pro
ess of blowing-ups is exa
tly E.1. Topologi
al 
lassifi
ation.The topologi
al 
lassi�
ation is trivial as stated in a proposition to 
ome in the sensethat two absolutely di
riti
al foliations of 
usp type are topologi
ally equivalent.To prove this fa
t, we des
ribe below the model foliations from whi
h the absolutelydi
riti
al foliations are build. 2

ha
l-0

06
76

88
5,

 v
er

si
on

 1
 - 

6 
M

ar
 2

01
2



1.1. Model foliations. Let us 
onsider the following model foliations� F2 is given by the gluing of two 
opies of C2

C
2 = (x1, y1) C

2 = (x2, y2)glued by x2 = 1
y1

and y2 = y21x1 whose the neighborhood of x1 = y2 =

0 is transversaly foliated by y1 = cst and x2 = cst. Topologi
ally, thisis a foliated neighborhood of a Riemann surfa
e of genus 0 whose self-interse
tion is −2.� F1 is given by the gluing of two 
opies of C2

C
2 = (x3, y3) C

2 = (x4, y4)glued by x4 = 1
y3

and y4 = y3x3 whose the neighborhood of x3 = y4 =

0 is transversaly foliated by y3 = cst and x4 = cst. Topologi
ally, thisis a foliated neighborhood of a Riemann surfa
e of genus 0 whose self-interse
tion is 1.Following [2℄, any neighborhood of a Riemann surfa
e A of genus 0 embedded in amanifold of dimension two with A ·A = −2 (resp. −1) and foliated by a transverse
odimension 1 foliation is equivalent ot F2 (resp. F1). From this, it is easy toshow that any (C0, C∞, Cω
)

−isomorphism between two Riemann surfa
es A1 and
A2 as before 
an be extended in a neigborhood of A1 and A2 as a (C0, C∞, Cω

)

−
onjuga
y of the foliations.1.2. Topologi
al 
lassi�
ation. Let us �rst re
all the following lemma:Lemma 2. Let σ be a germ in Di� (P1, a
), i.e., a germ of automorphism of aneighborhood of a in P1. Then there exists h a global homeomorphism of P1 su
hthat h and σ 
oin
ide in a neighborhood of a.Proof. Let S1 be a small 
ir
le around a in a domain where σ is de�ned. Its image

σ (S1) is a topologi
al 
ir
le. Consider S2 a se
ond 
ir
le su
h that the dis
 boundedby S2 
ontains S1 and σ (S1) . The two 
oronas bounded respe
tively by S1 and S2and σ (S1) and S2 are homeomorphi
. A
tually, there exists an homeomorphism h̃of the two 
oronas su
h that
h̃
∣

∣

∣

S2

= Id
h̃
∣

∣

∣

S1

= σ.Therefore, we 
an de�ne the homeomorphism h the following way: in the dis
bounded by S1, we set h = σ; in the 
orona bounded by S1 and S2, h = h̃;everywhere else we set h = Id. Clearly, h sati�es the properties in the lemma. �Proposition 3. Two absolutely di
riti
al foliations of 
usp type are topologi
allyequivalent. The 
lass Top (F) is equal to the set of all absolutely di
riti
al foliations.Proof. Let us 
onsider F0 and F1 two absolutely di
riti
al foliations of 
usp type.Applying if ne
essary a linear 
hange of 
oordinates to F0 for instan
e, we 
an sup-pose that both foliations are redu
ed by exa
tly the same sequen
e of two blowing-ups E. Let us write E−1 (0) = D2 ∪D1 and D2 ∩D1 = {p} . Let us 
onsider σ0 and
σ1 in Di� ((D2, p) , (D1, p)) the transversal stru
tures of F0 and F1. A

ording tothe previous lemma, there exist h an homeomorphism of D2 su
h that h = σ−1

0 ◦σ13
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in a neighborhood of p in D2. Sin
e, along D2 or D1 the foliations are transverse,there exist two homeomorphismsH0 and H1 de�ned respe
tively in a neighborhoodof D2 and D1 su
h that
H∗

0 (E
∗F0) = E∗F1 H∗

1 (E
∗F0) = E∗F1and H0|D2

= Id and H1|D1
= h. Sin
e h = σ−1

0 ◦σ1, the automorphism H1◦H
−1
0 of

E∗F0 let invariant ea
h leaf of E∗F0 . Now, adapting the argument of the previouslemma yields the existen
e of H a global homeomorphism of E∗F0 de�ned in aneighborhood of D1 letting invariant ea
h leaf su
h that H and H1 ◦H
−1
0 
oin
idein a neighborhood of p. Thus (H−1 ◦H1

)

◦H−1
0 is equal to Id in a neighborhood of p.Therefore the 
olle
tion H−1 ◦H1 and H0 glue in a global homeomorphism between

E∗F0 and E∗F1. This homeomorphism 
an be blown down in a neighborhood of
C2 and is a C0- 
onjuga
y of the foliations F0 and F1.Now, if F0 is topologi
ally equivalent to an absolutely di
riti
al foliation of 
usptype, a theorem of C. Cama
ho and A. Lins Neto and P. Sad [1℄ ensures that thepro
ess of redu
tion of F0 is the one of an absolutely di
riti
al foliation. Sin
e,they also shared the same di
riti
al 
omponents, F0 is absolutely di
riti
al of 
usptype. �2. Moduli spa
e.Consider a germ of biholomorphism φ written in the 
oordinates of the modelfoliations

(x3, y3) = φ (x1, y1) , φ (0, 0) = (0, 0) .Suppose that it send the foliation de�ned by y1 = cst to the one de�ned by y3 = cstand that the 
urve x1 = 0 is send to a 
urve transverse to x3 = 0. With su
h abiholomorphism we 
an 
onsider the foliation obtained by gluing the two modelsfoliations F2 and F1 with the appli
ation φ
D2 D1


φF F2 1Following a 
lassi
al result due to Grauert, this gluing is analyti
ally equivalentto the neighborhood of the ex
eptionnal divisor obtained by a standard pro
ess oftwo su

essive blowing-ups [8℄. The obtained foliation 
an be blown down in anabsolutely di
riti
al foliation of 
usp type at the origin of C2.Remark 4. Key remark. Two foliations obtained by su
h an above gluing with therespe
tive biholomorphisms φ and ψ are analyti
ally equivalent if and only if thereexists an automorphism Φ2 of the foliation F2 and Φ1 of the foliation F1 su
h that
φ = Φ1 ◦ ψ ◦Φ2.Let us �x σ ∈ Di� (C, 0). We 
onsider the following biholomorphisms

gσ (x1, y1) = (x1 + σ (y1) , σ (y1)) and Φα (x1, y1) = (x1 (1 + αy1) , y1)The 
omposition gσ ◦ φα send the foliation y1 = cst on it-self. Thus we 
an denoteby Fσ,α the foliation obtained by the above gluing4
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Fσ,α := F1

∐

F2/p ∼ gσ ◦ Φα (p).Now, moving the parameter α, we obtain an analyti
al family of absolutely di
riti
alfoliations. A
tually, the following property holds.Theorem 5. The germ of deformation (Fσ,α)α∈(α0,C)
for α in a neighborhood of

α0 in C is a germ of equisingular semi-universal unfolding of Fσ,α0 in the sense ofMattei [10℄. In parti
ular, for any germ of equisingular unfolding (Ft)t∈(Cp,0) with
p parameters su
h that Ft|t=0 ∼ Fσ,α0 there exists a map α : (C, α0) → (Cp, 0)su
h that for all t Ft ∼ Fσ,α(t).Before proving the above result, let us re
all that an unfolding of a given foliation
F is a germ F of 
odimension 1 foliation in (C2+p, 0

) transversal to the �ber ofthe proje
tion (C2+p, 0
)

→ (Cp, 0) , π : (x, t) → t su
h that F|π−1(0) ∼ F . Theequisingularity property is a quite te
hni
al property to state. However, it meansbasi
ally that the topology of the pro
ess of desingularization of the family offoliationF|t=α does not depend on α. For the details, we refer to [10℄.Proof. Step 1 - Let us prove that the deformation (Fσ,α)α∈(C,α0)
of Fσ,α0 is indu
edby an unfolding. We 
an make the following thi
k gluing

F := F1 × (C, α0)
∐

F2 × (C, α0)/(x1, y1, α) →
(

(gσ ◦ Φα0) ◦
(

Φ−1
α0

◦ Φα

)

(x1, y1) , α
)

.where Fi × (C, α0) stands for the produ
t foliation: its leaves are the produ
t of aleaf of Fi and of an open neighborhood of α0 in C. The 
odimension 1−foliation
F 
omes 
learly with a �bration de�ned by the quotient of the map π : (p, α) → αwhose �bers are transverse to the foliation. Thus, the above gluing is an unfolding.Now, the restri
tion F|π−1(α0)

= F1

∐

F2/(gσ ◦ Φα0)
is equal to Fσ,α0 . Finally, it isequisingular by 
onstru
tion. Thus, it satis�es all the properties of an equisingularunfolding in the sense of Mattei.Step 2 - Let us 
onsider the sheaf Θ whose base is the ex
eptionnal divisor

E−1 (0) = D = D2 ∪D1 of tangent ve
tor �elds to the foliation E∗Fσ,α0 and to thedivisor E−1 (0). The 
ohomologi
al group H1 (D,Θ) represents the �nite dimen-sionnal C-spa
e of in�nitesimal unfoldings. Following [10℄, there exists a Kodaira-Spen
er map like that asso
iate to any unfolding with parameter in (Cp, 0), itsKodaira Spen
er derivative whi
h is a linear map from CP to H1 (D,Θ). The un-folding is semi-universal as in the theorem above if and only if its Kodaira Spen
erderivative is a linear isomorphism.We 
onsider the 
overing of the ex
eptionnal divisor E−1 (0) by two open sets U1and U2 where U1 and U2 are respe
tively tubular neighborhood of D1 and D2. It isknown that this 
overing is a
y
li
 with respe
t to the sheaf Θ, i.e, H1 (Di,Θ) = 0.Therefore, following [7℄ to 
ompute the 
ohomologi
al group H1 (D,Θ) we 
an usethis 
overing, that is to say, the following isomorphism(2.1) H1 (D,Θ) ≃
H0 (U1 ∩ U2,Θ)

H0 (U1,Θ)⊕H0 (U2,Θ)
.In view of the glued 
onstru
tion of Fσ,α0 , a 0−
o
y
le X12 in H0 (U1 ∩ U2,Θ) istrivial in H1 (D,Θ) if and only if the 
ohomologi
al equation(2.2) X12 = X1 − (gσ ◦ Φα0)

∗
X25
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admits a solution where X1 ∈ H0 (U1,Θ) and X2 ∈ H0 (U2,Θ). Now, it is known[10℄[3℄ that the dimension of the C spa
eH1 (D,Θ) is 1. Thus, to prove the result, itis enough to show that the image of the deformation (Fσ,α)α∈(α0,C)
by the foliatedKodaira-Spen
er map is not trivial in H1 (D,Θ). The foliation Fσ,α is obtainedfrom Fσ,α0 by gluing with the automorphism

Φ−1
α0

◦ Φα (x1, y1) =

(

x1
1 + αy1
1 + α0y1

, y1

)

.Thus, its image by the Kodaira-Spen
er map is the 
o
y
le
∂

∂α
Φ−1

α0
◦ Φα

∣

∣

∣

∣

α=α0

=
x1y1

1 + α0y1

∂

∂x1Hen
e, the unfolding is semi-universal if and only if the equation(2.3) x1y1
∂

∂x1
+ · · · = X2 − (gσ ◦ Φα0)

∗X1has no solution. This equation 
an be more pre
isely written in the following way
x1y1

∂

∂y1
+ · · · = A2 (x1, y1)x1

∂

∂x1
− (gσ ◦ Φα0)

∗
(

A1 (x3, y3)x3
∂

∂x3

)where A1 and A2 are fun
tions de�ned respe
tively in U1 and U2. Let us writethe Taylor expansion of A2 =
∑

ij a
2
ijx

i
1y

j
1. In the 
oordinates (x2, y2) the fun
tion

A2 is written A2 =
∑

ij a
2
ijx

2i−j
2 yi2. Therefore, if a2ij 6= 0 then 2i − j ≥ 0 and themonomial term y1 
annot appear in the Taylor expansion of A2. In the same way,the Taylor expansion of A1 =
∑

ij a
1
ijx

i
3y

j
3, satis�es a1ij 6= 0 ⇒ i ≥ j. Sin
e X1vanishes along the ex
eptionnal divisor whose tra
e in U1 is the diagonal x3 = y3,we have A1 = (x3 − y3) Ã1. Thus, in the 
oordinates (x1, y1), X1 is written

X1 = Ã1 (x1 (1 + α0y1) + σ (y1) , σ (y1)) (x1 (1 + α0y1) + σ (y1))x1
∂

∂x1
.If Ã1 (0, 0) = 0 then the term y1x1

∂
∂y1

of the Taylor expansion of the 
o
y
le(2.3) 
annot 
ome from X1. However, if Ã1 (0, 0) 6= 0 then A1 
annot be global.Therefore, the equation (2.3) 
annot be solved, whi
h proves the result. �We observe that Fσ,α is an unfolding over the whole C. A
tually in the 
ourse ofthe above proof, we obtain a more pre
ise resultCorollary 6. More generally, for any germ of fun
tion A (x, y) with A (0, 0) 6= 0,the C-spa
e H1 (D,Θ) for the foliation
F1

∐

F2/(x1, y1) → (x1A (x1, y1) + σ (y1) , σ (y1)) .is generated by the 
o
y
le the image of x1y1 ∂
∂y1

through the isomorphism (2.1). Inparti
ular, any deformation of the form
ǫ→ (F1

∐

F2)ǫ/(x1, y1) → (x1Aǫ (x1, y1) + σ (y1) , σ (y1))where ∂Aǫ

∂y1
(0, 0) does not depend on ǫ is lo
ally analyti
ally trivial.As an easy 
onsequen
e of the 
orollary, we obtain a theorem of normalization ofthe 
onstru
tion of absolutely di
riti
al foliations of 
usp type.6
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Theorem 7. Any absolutely di
riti
al foliation of 
usp type is equivalent to some
Fσ,α.Proof. Let us 
onsider F an absolutely di
riti
al foliation of 
usp type and let E beits asso
iated redu
tion. Sin
e along ea
h 
omponent of the ex
eptionnal divisor thefoliation is purely radial, there exists two automorphisms Φ1 and Φ2 that 
onjugates
F respe
tively to the models F1 and F2 in the neighborhood of respe
tively D1 and
D2. The 
o
y
le of gluing is thus written Φ1 ◦ Φ

−1
2 . Applying if ne
essary a globalautomorphism of Φ1 that let invariant ea
h leaf, we 
an suppose that Φ1 ◦Φ

−1
2 sendthe ex
eptionnal divisor x1 = 0 on the line x3 = y3. Sin
e the 
o
y
le 
onjugatesthe foliations F2 and F1, it 
an be written

(x1, y1) 7→ (x1A (x1, y1) + σ (y1) , σ (y1)) .for some σ ∈ Di� (C, 0) and some A ∈ C {x1, y1} with A (0, 0) 6= 0. Applying ifne
essary an automorphism of F2 de�ned by (ǫx3, ǫy3) for some ǫ 6= 0, we 
ansuppose that A (0, 0) = 1. Now we 
an write the 
o
y
le
(x1, y1) 7→

(

x1

(

1 + αy1 + Ã (x1, y1)
)

+ σ (y1) , σ (y1)
)

.where no term of the form ay1 appears in Ã. A

ording to the 
orollary, the defor-mation parametrized by ǫ and de�ned by the gluing 
o
y
le
(x1, y1) 7→

(

x1

(

1 + αy1 + ǫÃ (x1, y1)
)

+ σ (y1) , σ (y1)
)is lo
ally analyti
ally trivial. Thus the foliation obtained setting ǫ = 1 and ǫ = 0 areanalyti
ally equivalent and setting ǫ = 0 yields a 
o
y
le of the desired form. �The 
ouple (α, σ) is unique up to 
onjuga
ies �xing any point of the ex
eptionnaldivisor. However, on
e we authorize any kind of 
onjuga
ies, this 
ouple is notunique anymore. But the ambiguity 
an be des
ribed.Proposition 8. Two normal forms Fσ,α and Fγ,α

′ are 
onjugated if and only ifthere are two homographies h0 and h1 su
h that(2.4) 





σ = h1 ◦ γ ◦ h0

2
5

(

α− 3
2
σ
′′

(0)

σ
′ (0)

)

= 2
5

(

α
′

− 3
2
γ
′′

(0)

γ
′(0)

)

h
′

0 (0)−
h
′′

0 (0)

h
′

0(0)Proof. Step 1 - In view of our gluing 
onstru
tion and following the key re-mark (4), the existen
e of a 
onjuga
y implies that there exist two automor-phisms of respe
tively F2 and F1 written Φ2 = (x1A2 (x1, y1) , h0 (y1)) and Φ1 =
(x3A1 (x3, y3) , h1 (y3)) su
h that

(x1 (1 + αy1) + σ (y1) , σ (y1)) = Φ1 ◦
(

x1

(

1 + α
′

y1

)

+ γ (y1) , γ (y1)
)

◦ Φ2.First, we obviously get the following relation σ = h1 ◦ γ ◦ h0. Moreover, if we lookat the �rst 
omponent of the above relation we get
x1 (1 + αy1) + σ (y1) =

(

x1A2 (x1, y1)
(

1 + α
′

h0

)

+ γ ◦ h0

)

×

A1

(

x1A2 (x1, y1)
(

1 + α
′

h0

)

+ γ ◦ h0, γ ◦ h0

)7
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If we 
ompute the derivative ∂
∂x1

of the above relation and then set x1 = 0, we get
1 + αy1 = A2 (0, y1)

(

1 + α
′

h0

)

×
(

γ ◦ h0
∂A1

∂x1
(γ ◦ h0, γ ◦ h0) +A1 (γ ◦ h0, γ ◦ h0)

)(2.5)(1) Now, sin
e Φ1 preserve the 
urve y = x, we obtain
A1 (x, x) =

h1 (x)

xThus, A1 (0, 0) = h
′

1 (0) . Setting y1 = 0 in the relation above, we get
1 = A2 (0, 0)A1 (0, 0) . Therefore, A2 (0, 0) = 1

h
′

1(0)
. Now, let us write theTaylor expansion of A1

A1 (x3, y3) = h
′

1 (0) + rx3 + sy3 + · · · .Sin
e, A1 (x, x) = h1(x)
x

, we have r + s =
h
′′

1 (0)
2 . Now, the biholomor-phism (x3A1 (x3, y3) , h1 (y3)) is global: therefore, it 
an be push down andextended at the origin of C2 as a lo
al automorphism written

(x, y) 7→
(

xA1

(

x,
y

x

)

, h1

(y

x

)

xA1

(

x,
y

x

))

.The se
ond 
omponent of this expression is written
y

αx+ βy

(

h
′

1 (0)x+ rx2 + sy + · · ·
)where α = 1

h
′

1(0)
and β = −

h
′′

1 (0)

2h
′

1(0)
2 . It is extendable at (0, 0) if and only ifthe expression in parenthesis 
an be holomorphi
ally divided by αx + βy.Looking at the �rst jet of these expressions leads to

∣

∣

∣

∣

β α

s h
′

1 (0)

∣

∣

∣

∣

= 0 =⇒ s =
βh

′

1 (0)

α
= −

h
′′

1 (0)

2Finally, we have r = h
′′

1 (0) .(2) In the same way, let us write the Taylor expansion of A2 (x1, y1) =
1

h
′

1(0)
+

uy1 + vy21 + · · · . The se
ond 
omponent of the expression of Φ2 in the
oordinates (x2, y2) is y2x22h20 ( 1
x2

)

A2

(

y2x
2
2,

1
x2

) whi
h is equal to
y2

(α′x2 + β′)
2

(

αx22 + ux2 + v + y2 (· · · )
)where α′

= 1

h
′

0(0)
and β′

= −
h
′′

0 (0)

2h
′

0(0)
2 . Sin
e it is extendable at x1 = − β

′

α
′ ,there exists a 
onstant Γ su
h that (α′

x2 + β
′

)2

= Γ
(

αx22 + ux2 + v
)Hen
e, we have the equality u = 2αβ

′

α
′ = −

h
′′

0 (0)

h
′

0(0)h
′

1(0)
.Now, we 
an identi�ed the 
oe�
ient of the equation (2.5)8
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It is
α = A2 (0, 0)

(

γ
′

(0)h
′

0 (0)
∂A1

∂x1
(0, 0) +

h
′′

1 (0)

2
γ

′

(0)h
′

0 (0) + α
′

h
′

0 (0)h
′

1 (0)

)

+uh
′

1 (0)

=
3

2
γ

′

(0)h
′

0 (0)
h

′′

1 (0)

h
′

1 (0)
−
h

′′

0 (0)

h
′

0 (0)
+ α

′

h
′

0 (0) .Using the relation σ = h1 ◦ γ ◦ h0 the above equality 
an be formulated as in thetheorem.Step 2 - We suppose that the 
on
lusion of the statement is satis�ed. Let ussuppose that
h1 (z) =

z

α+ βz
h0 (z) =

z

a+ bzThen we set
A2 (x1, y1) = α+ 2

αb

a
y1 +

αb

a2
y21

A1 (x3, y3) =
α+ βy3

(α+ βx3)
2 .In view of the 
omputations done in the �rst step, the two automorphisms Φ1 and

Φ2 asso
iated to A1 and A2 
an be extended on U1 and U2, tubular beighborhoodof D1 and D2. Moreover, we obtain the following relation
(x1 (1 + αy1 +∆(x1, y1)) + σ (y1) , σ (y1))

= Φ1 ◦
(

x1

(

1 + α
′

y1

)

+ γ (y1) , γ (y1)
)

◦ Φ2where ∆ does not 
ontain any monomial term in y1. Now, using the proposition(6), we see that the deformation de�ned by
ǫ→ (x1 (1 + αy1 + ǫ∆(x1, y1)) + σ (y1) , σ (y1))is analyti
ally trivial, whi
h ensures the theorem. �Theorem 9. The moduli spa
e of absolutely di
riti
al foliations of 
usp type 
anbe identi�ed with the fun
tionnal spa
e C {z} up to the a
tion of C∗ de�ned by

ǫ · (z 7→ σ (z)) = ǫ2σ (ǫz) .Proof. We 
an 
onsider the following family parametrized by Di� (C, 0)
σ ∈ Di� (C, 0) → F

3
2

σ
′′

(0)

σ
′
(0)

,σ
.It is a 
omplete family for absolutely di
riti
al foliations of 
usp type: in any
lass of absolutely di
riti
al foliation of 
usp type there is one that is analyti
allyequivalent to one of the form F

3
2

σ
′′

(0)

σ
′
(0)

,σ
. Indeed, 
onsidering the foliation Fα

′
,γ ,we 
an 
hoose h0 su
h that 2

5

(

α
′

− 3
2
γ
′′

(0)

γ
′ (0)

)

h
′

0 (0)−
h
′′

0 (0)

h
′

0(0)
= 0. Therefore, setting

σ = γ ◦ h0 ensures that Fα
′
,γ and F

3
2

σ
′′

(0)

σ
′
(0)

,σ
are analyti
ally equivalent. Moreover,9

ha
l-0

06
76

88
5,

 v
er

si
on

 1
 - 

6 
M

ar
 2

01
2



if F
3
2

σ
′′

0
(0)

σ
′

0(0)
,σ0

and F
3
2

σ
′′

1
(0)

σ
′

1(0)
,σ1

are analyti
ally equivalent then there exists ǫ ∈ C∗and an homographie h1 su
h that(2.6) σ0 (z) = h1 ◦ σ1 ◦ (ǫz) .Indeed, the se
ond homographie h0 that appears in the proposition (8) has to belinear for the relations (2.4) ensures that h′′

0 (0) = 0. Thus, h0 is written z 7→ ǫzfor some ǫ. To simplify the relation (2.6), we use the S
hwartzian derivative whi
his a surje
tive operator de�ned by
S :







Di� (C, 0) → C {z}

y 7→ 3
2

(

y
′′′

y
′

)

−
(

y
′′

y
′

)2and satisfying the following property: the relation (2.6) is equivalent to S (σ0) (z) =
ǫ2S (σ1) (ǫz). Therefore, the moduli spa
e of absolutely di
riti
al foliation of 
usptype is identi�ed via the S
hwartzian derivative to the quotient of C {z} up to thea
tion of C∗ǫ · (z 7→ σ (z)) = ǫ2σ (ǫz) . �As mentionned in the introdu
tion, this theorem does not state that the transversalstru
ture σ is the sole analyti
al invariant of an absolutely di
riti
al foliation of
usp type. Indeed, the a
tion of the group of 
onjuga
ies a
t transversaly to thetransverse stru
tures σ and to the moduli of Mattei α. The family F

3
2

σ
′′

(0)

σ
′
(0)

,σ
is a
omplete tranversal set for this a
tion the group of 
onjuga
ies.Orbits of the a
tion of

α ∈ C

F
3
2

σ
′′

(0)

σ
′
(0)

,σ

σ ∈Di�(C,0)As a 
onsequen
e of the above des
ription of the moduli spa
e of absolutely di
riti
alfoliations, we should be able to prove the existen
e of a non algebrizable absolutelydi
riti
al foliation using te
hni
s developped in [6℄.3. Formal normal forms for 1-Forms.It is known [3℄ that the valuation of a 1-form ω with an isolated singularity de�ningan absolutely di
riti
al foliation of 
usp type is 3. Up to some linear 
hange of 
oor-dinates, we 
an suppose that the singular point of the foliation after one blowing-uphas (0, 0) for 
oordinates in the standard 
oordinates asso
iated to the blowing-up.Moreover, sin
e the foliation is generi
ally transversal to the ex
eptionnal divisorof the blowing-up of 0 ∈
(

C2, 0
), the homogeneous part of degree 3 of ω is tangentto the radial form ωR = xdy − ydx. Thus there exists an homogeneous polynomialfun
tion of degree 2 P2 su
h that

ω = P2ωR +
∑

i≥4

(Ai (x, y) dx+Bi (x, y) dy) .10
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After one blowing-up, the singular lo
us is given by the solutions of P2 (1, y) = 0and P2 (x, 1) = 0 in ea
h 
hart. Thus P2 is simply written ay2 for some 
onstant
a 6= 0. After on blowing-up (x, t) 7→ (x, tx), the linear part near (0, 0) of thepull-ba
k form is written

(

A4 (1, 0) + t
∂A4

∂t
(1, 0) + tB4 (1, 0)

)

dx+ xB4 (1, 0)dt+ xA5 (1, 0)dx.The absolutely di
riti
al property ensures that this linear part is non trivial andtangent to the radial ve
tor �eld tdx+ xdt. Hen
e, the following relations hold
A4 (1, 0) = A5 (1, 0) = 0 and ∂A4

∂t
(1, 0) + 2B4 (1, 0) = 0Finally, the form ω is written

ω = y2ωR +
(

−2αx3 + yQ2 (x, y)
)

ydx+
(

αx4 + yQ3 (x, y)
)

dy

+(A5 (x, y) dx+B5 (x, y) dy) + · · ·where α 6= 0.Proposition 10. The 1−form ω is formally equivalent to a 1−form written
y2ωR + αx3 (xdy − 2ydx) + ax3ydy

+
∑

n≥5

xn−1 ((anx+ bny) dx+ (cnx+ dny) dy)where a5 = 0. Moreover, this formal normal form is unique up to 
hange of 
oor-dinates tangent to Id.Proof. The a
tion of a 
hange of 
oordinates φn : (x, y) → (x, y) + (Pn, Qn) where
Pn and Qn are homogeneous polynomial fun
tions of degree n does not modify thejet of order n + 1 of ω. Moreover, the a
tion on the homogeneous part of degree
n+ 2 is written
Jn+2

(

φ∗
n
ω
)

= Jn+2ω

+y2
((

x
∂Qn

∂x
− y

∂Pn

∂x
+Qn

)

dx+

(

x
∂Qn

∂y
− x

∂Pn

∂x
+ Pn

)

dy

)We are going to verify that the linear morphism de�ned by
L : (Pn, Qn) 7→

(

x
∂Qn

∂x
− y

∂Pn

∂x
+Qn, x

∂Qn

∂y
− x

∂Pn

∂x
+ Pn

)from the set of 
ouples of homogeneous polynomial fun
tions of degree n to itself isa one to one 
orrespondan
e. To do so, let us 
ompute the kernel of this morphismand let us write Pn =
∑n

i=0 pix
iyn−i and Qn =

∑n
i=0 qix

iyn−i. The 
oe�
ients ofthe 
omponents of L (Pn, Qn) on the monomial term xiyn−i are
qi (i− 1)− pi+1 (i+ 1) i = 0..n− 1

qn (n− 1) i = n and
−pi (n− i− 1) + qi−1 (n− i+ 1) i = 1..n

p0 (n− 1) i = 0.11
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If (Pn, Qn) is in the kernel then qn = 0 and p0 = 0. Moreover, applying the aboverelation with i = 1 and i = n− 1 yields p2 = 0 and qn−2 = 0. Now for i = 1..n− 1but i 6= n− 2, a 
ombination of the relations above ensures that
0 = qi (i− 1)− qi (i+ 1)

n− i

n− i− 2
=

qi
n− i− 2

(2− 2n)Thus qi = 0 for i = 0..n − 1. Therefore (Pn, Qn) = 0 and L is an isomorphism.Thus, we 
an 
hoose φn su
h that
Jn+2

(

φ∗
n
ω
)

= xn−1 ((anx+ bny)dx + (cnx+ dny) dy) .Clearly the 
omposition φ2◦φ3◦· · · is formally 
onvergent, whi
h proves the propo-sition. �4. Absolutely di
riti
al foliation admitting a first integral.In this se
tion, we study absolutely di
riti
al foliations that admit a meromorphi
�rst integral. Su
h an existen
e 
an be 
ompletely red on the transverse stru
ture.Theorem 11. Let F be an absolutely di
riti
al foliation of 
usp type with σ astransverse stru
ture. Then F admits a �rst integral if and only if there exists twonon 
onstant rationnal fun
tions R1 and R2 su
h that
R1 ◦ σ = R2.Noti
e that the existen
e of R1 and R2 does not depend on the equivalen
e 
lass of

σ modulo homographies.Proof. Suppose that F admits a meromorphi
 �rst integral f . After blowing-up,the fun
tion f is a non 
onstant rationnal fun
tion in restri
tion to ea
h 
omponentof the divisor. Sin
e for any point p, p and σ (p) belongs to the same leaf, we have
f |D1

(p) = f |D2
(σ (p)) .Now, suppose there exist two rationnal fun
tion as in the lemma. A

ording tosome previous result, there exists α and γ su
h that the foliation F is analyti
allyequivalent to Fα,γ . The appli
ation σ and γ are linked by a relation of the form

h0 ◦ σ ◦ h1 = γwhere h0 and h1 are homographies. Thus, setting R̃1 = R1 ◦ h
−1
0 and R̃2 = R2 ◦ h1yields R̃1 ◦ γ = R̃2 where R̃1 and R̃2 are still rationnal. Now, let us go ba
k tothe 
onstru
tion of Fα,γ . We glue the models F1 and F2 around (x1, y1) = 0 and

(x3, y3) = 0 by
(x1, y1) 7→ (x3 = x1 (1 + αy1) + γ (y1) , y3 = γ (y1))Consider for F1 the �rst integral F1 (x1, y1) = R̃2 (y1) and for F2 the �rst integral

F2 (x3, y3) = R̃1 (y3). Then these two meromorphi
 �rst integrals 
an be glued ina global meromorphi
 �rst integral sin
e
F2 (x3, y3) = F2 (x1 (1 + αy1) + γ (y1) , γ (y1)) = R̃1 (γ (y1)) = R̃2 (y1) = F1 (x1, y1) .Thus the absolutely di
riti
al foliation admits a meromorphi
 �rst integral. �12
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In view of this result, it is easy to produ
e a lot of examples of absolutely di
riti
alfoliation admitting no meromorphi
 �rst integral setting for instan
e
σ (z) = ez − 1.Noti
e that the existen
e of the �rst integral depends only on the transversal stru
-ture σ and not on the value of the moduli of Mattei α. This is 
onsistent withthe fa
t that along an equiredu
ible unfolding the existen
e of a meromorphi
 �rstintegral for one foliation in the deformation ensures the existen
e of su
h a �rstintegral for any foliation in the deformation.Finally, sin
e the topologi
ally 
lassi�
ation of absolutely di
riti
al foliations istrivial, the above result produ
e a lot of examples of 
ouples of 
onjugated foliationssu
h that only one of them admits a meromorphi
 �rst integral.Hereafter we treated a spe
ial 
ase, that is when the transversal stru
ture σ is anhomography.Proposition 12. Let F be an absolutely di
riti
al foliation of 
usp type with an ho-mographi
 transversal stru
ture. Then, up to some analyti
al 
hange of 
oordinates,

F admits one of the following rationnal �rst integrals:(1) f = y2+x3

xy
.(2) f = y2+x3

xy
+ xProof. Let us 
onsider the following germ of family of meromorphi
 fun
tions with

(x, y, z) ∈
(

C3, (0, 0, 0)
) de�ned by

fz =
y2 + x3 + zx2y

xy
=
a

b
.For any z, the foliation asso
iated to fz is absolutely di
riti
al of 
usp type. Letus prove that this family is an equiredu
ible unfolding. We 
onsider the integrable

1−form Ω = adb− bda. It is written
(

2x3y + zx2y2 − y3
)

dx+
(

xy2 − x4
)

dy + x3y2dz.It de�nes an unfolding of the foliation given by f0 with one parameter. Its singularlo
us is the z−axes and it is transversal to the �bers of the �bration (x, y, z) 7→ z.On
e we blow-up the z−axe, in the 
hart E : (x, t, z) = (x, tx, z), the 1−form Ω iswritten
Ω̃ = t (1− zt)dx+

(

t2 − x
)

dt+ t2xdz.Therefore, the singular lo
us of the pull-ba
k foliation is still the z−axe in the
oordinates (x, t, z) and in a neighborhood of x = 0 the foliation Ω̃ is transverse tothe �bration z = cst. If we blow-up again the z-axe we �nd
(1− zx) dt+ (1− zt)dx+ txdzwhi
h is smooth. Sin
e the 
urve x = t = 0 is invariant and sin
e the foliation isstill transverse to the �bration z = cts, the unfolding is equisingular. Now, thisunfolding is analyti
ally trivial if and only if the monomial term x3y2 belongs tothe ideal generated by 2x3y+ zx2y2− y3 and xy2−x4 [5℄. Setting z = 0 this wouldimply that x3y2 ∈

(

2x3y − y3, xy2 − x4
) whi
h is impossible. Thus, this unfoldingis not analyti
ally trivial and sin
e the moduli spa
e of unfolding of absolutelydi
riti
al foliations is of dimension 1, it is also semi-universal.13
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Now, let us 
onsider a foliation F as in the proposition. Up to some linear 
hange of
oordinate, we 
an suppose that after the redu
tion pro
ess its singular point andits transversal stru
ture are the same as the fun
tion x2+y3

xy
that is to say (0, 0) andId in the standard 
oordinates asso
iated to the redu
tion pro
ess. Let us denoteby F0 the foliation given by x2+y3

xy
. We are going to 
onstru
t an unfolding from

F0 to F . As always sin
e the beginning of this arti
le, we denote by D1 and D2 thetwo ex
eptionnal 
omponent of the divisor. In the neighborhood of ea
h of them,both foliation are purely radial. Thus there exists two 
onjuga
y Φ1 and Φ2 de�nedin the neighborhood of respe
tively D1 and D2 su
h that
Φ∗

1F0 = F Φ∗
2F0 = F

Φ1|D1∪D2
= Id Φ2|D1∪D2

= Id .Sin
e, F0 and F have the same transversal stru
tures, the 
o
y
le Φ1 ◦ Φ−1
2 is agerm automorphism of F0 near the singular point of the divisor that lets �x thepoints of the divisor and that let globally �x ea
h leaf. It is easy to see that one 
an
onstru
t an isotopy from Φ1 ◦ Φ

−1
2 to Id in the group of germs of automorphismsof F0 near the singular point of the divisor that let �x ea
h point of the divisor andthat let globally �x ea
h leaf. Let us denote by Φt this isotopy satisfying Φ0 = Idand Φ1 = Φ1 ◦ Φ

−1
2 . The unfolding de�ned by the following glued 
onstru
tion

((F0, D1)× U)
∐

((F0, D2)× U)/(x, t) ∼ (Φt (x) , t).where U is an open neighborhood of {|t| ≤ 1} links F0 and F . The meromophi
 �rstintegral f0 of F0 
an be extended in a meromorphi
 �rst integral F of the whole un-folding [5℄. Thus F |t=1 is a meromorphi
 �rst integral of F . By equisingularityF |t=0and F |t=1 must have exa
tly the same number of irredu
ible 
omponents in theirzeros and in their poles, whi
h is the same number of irredu
ible 
omponents inthe zeros and in the poles of F . They also must have the same topology sin
e anunfolding is topologi
ally trivial. Thus the foliation F admits a meromorphi
 �rstintegral whose zero is exa
tly the leaf passing through the singular point of theex
eptionnal divisor and whose poles are the union of two smooth 
urves atta
hingrespe
tively to D1 and D2. Thererfore up to some 
hange of 
oordinates, we 
ansuppose that F has a meromorphi
 �rst integral of the form
f =

(

y2 + x3 +∆(x, y)
)a

xbycwhere the Taylor expansion of ∆(x, y) admits monomial term xiyj with 2i+ 3j >
6. The absolutely di
riti
al property ensures that a = b = c. Therefore, we 
ansuppose that a = b = c = 1. Let us denote by Λλ (x, y) the homothetie Λλ (x, y) =
(

λ2x, λ3y
). Composing by Λλ at the right of f yields

f ◦ Λλ

λ
=
y2 + x3 +∆λ (x, y)

xyFor any λ 6= 0, the foliation given by f and by f◦Λλ

λ
are analyti
ally 
onjugated.But the deformation given by λ → f◦Λλ

λ
is an equisingular unfolding of f0 sin
e

∆λ goes to 0 when λ→ 0. Using the semi-universality of the family introdu
ed atthe beginning of the proof, for λ small enough, there exists some α su
h that the14
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following 
onjuga
ies holds
f ∼

f ◦ Λλ

λ
∼ fα.Now if α = 0 then f is of type (1). If α 6= 0, applying some well-
hosen homothetie,we 
an suppose α = 1. And f is of type (2). �Remark 13. In the last part of this arti
le, we will prove that a
tually the two fun
-tions (1) and (2) of the previous result de�ne two foliations analyti
ally equivalent.It is possible to 
onstru
t some others examples of absolutely di
riti
al foliationsof 
usp type with a rationnal �rst integral: to do so, 
onsider a foliation of degree

1 on P2. These are well-known [4℄: they have three singular points 
ounted withmultipli
ities and admit an integrating fa
tor. For instan
e, the foliation given inhomogeneous 
oordinates by the multivalued fun
tions
[x : y : z] →

xαyβ

zα+β
or [x : y : z] 7→

Q

z2where Q is a non-degenerate quadrati
 form is of degree 1. When α and β arerationnal numbers, the foliation admits a rationnal �rst integral. Now 
onsider twogeneri
 lines L1 and L2. Ea
h of them is tangent to one leaf of the foliation. We 
ansuppose that the tangen
y point is di�erent from the interse
tion point of L1 and
L2. Now, blow-up twi
e the tangen
y point on L1 and thri
e the tangen
y point on
L2. The �nal 
on�guration is the following

L 1

2L

−1

−2 −1

−2

−2

−1

−2

Thus, the divisor L1 ∪ L2 
an be 
ontra
ted toward a smooth algebrai
 manifold.The obtained singularity is naturally absolutely di
riti
al of 
usp type and admitsa rationnal �rst integral. For instan
e, if we 
onsider the foliation given in a�ne
oordinates by xy = cst and L1 : x + y = 1 and L2 : x − y = 1, the transversestru
ture is equivalent to σ (t) = t + 1 and thus the foliation is equivalent to thefun
tions of proposition (12). However, 
onsidering the foliation given by x+ y2 =

cst yields the transverse stru
ture t 7→ 1−
√
1+12t+4t2

2 whi
h is not an homography.5. Moduli of Mattei.5.1. The parameter spa
e of the unfoldings. As already explain, the defor-mation α→ Fα,σ is an unfolding with a set of paramater equal to C. It is a naturalproblem to ask if two parameters de�ne two foliations analyti
ally equivalent. Inorder to do so, we introdu
ed the following de�nition:De�nition 14. Let σ be an element of Di� (C, 0). An homography h with h (0) = 0is 
alled an homographi
 symetry of f if and only if there exists an homography h1su
h that(5.1) h1 ◦ σ ◦ h = σ.15
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We denote by H (f) the group of homographi
 symetries of f .The following result is probably known but we do not �nd any referen
e in thelitterature.Lemma 15. If H (f) is in�nite then f is an homography and H (f) is the wholeset of homographies �xing the origin.Proof. The relation (5.1) is equivalent to the fun
tionnal equation
f ◦ h (z) =

1

(h′)
2 f (z)where f = S (σ) is the S
hwartzian derivative of σ. Let us write h (z) = z

a+bz
and

f (z) =
∑

n≥1 fnz
n.(1) Suppose that h′

(0) is not a root of unity. Then applying the above relationat z = 0 leads to f (0) = 0. Now, we have
a2
∑

n≥1

fn
zn

(a+ bz)n
= (a+ bz)

4
∑

n≥1

fnz
n.An easy indu
tion on n show that for any n fn = 0, thus f = 0 and σ is anhomography.(2) Suppose now h

′

(0) = 1 then
∑

n≥0

fn
zn

(1 + bz)n
= (1 + bz)

4
∑

n≥0

fnz
nSuppose that b 6= 0. If for any n ≤ N − 1 we have fn = 0, let us have alook at the terms in xN+1 in the above equality. It is

−NbfN + fN+1 = 4bfN + fN+1Thus fN = 0. Whi
h, proves by indu
tion that f still is equal to zero.(3) If H (f) is in�nite, suppose it admits two elements h and g that did not
ommute, then [h, g] is tangent to Id but is not the Id . Thus using theabove 
omputation, f = 0.(4) Finally, if h′

(0) is a root of unity, it is easly seen that h◦(n) = Id where nis the smallest integer su
h that h′

(0)n = 1. Thus, suppose that the group
H (f) is abelian and any element of �nite order. We have an embedding

H (f) −→ A� (C)sin
e, the sole element tangent to Id is the identity itself. Therefore, H (f)
an be seen as abelian subgroup of A� (C). Hen
e, the group has a �x pointand 
an be seen as a subgroup of the linear transformations of C. Now letus write the relation on the S
hwartzian seen at ∞
f (1/ (1/h (1/z))) =

1

h′
(

1
z

)2 f

(

1

z

)

.Setting, u (z) = 1
z4 f

(

1
z

) yields u (az + b) = 1
a2u (z) . Sin
e, u = α

z4 + · · · we
an 
onsider the double primitive fun
tion U =
˜

u with U (∞) = 0. Thisis a univalued holomorphi
 fun
tion de�ned near ∞. Finally, the fun
tion
U satis�es the following fun
tionnal relation

U (az + b) = U (z) .16
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But in view of the dynami
s of Lin (C), it is 
lear that if H (f) is in�nitethen U = 
st and thus u = 0.
�In the 
ourse of the proof of the above result, we obtain the following resultCorollary 16. Let M be the quotient of C by the relation α ∼ α

′ if and only if
Fα,σ ∼ Fα

′
,σ then there is only two possibilities(1) M = {0} when σ is an homography - Fα,σ is then analyti
ally to y2+x3

xy
.(2) M = C/H where H is a �nite subgroup of A� (C).Genreri
ally, H is redu
ed to {Id}.As an obvious 
onsequen
e, the fun
tions obtained in proposition (12) de�ne twofoliations analyti
ally equivalent.5.2. Toward a geometri
 des
ription of the moduli of Mattei. It remainsto give a geometri
 interpretation of the parameter α. A promising approa
h is thefollowing. Near the singular point of the divisor, the leaf is 
onformally equivalentto a dis
 minus two points whi
h are the interse
tions between the leaf and theex
eptionnal divisor. If we 
onsider in the leaf a path linking this two points, weobtain after taking the image of this path by E, an asymptoti
 
y
le γ as de�nedin [11℄whi
h is not topologi
ally trivial.

γ

Therefore, 
onsidering the family of these 
y
les parametrized by a transversalparameter to the foliation yields a vanishing asymptoti
 
y
le. We 
laim that themoduli of Mattei should be asso
iated to the length of this vanishing asymptoti

y
le: more pre
isely, it should be 
omputed by the integral of some form alongthis vanishing 
y
le. A
tually, it easy to prove the following: let ω be a 1−formde�ning an absolutely di
riti
al foliation of 
usp type and let η be any germ of 1form. Then η is relatively exa
t with respe
t to ω, i.e., there exist two germs ofholomorphi
 fun
tions f and g su
h that
η = df + gωif and only if the integral of η along any asymptoti
 
y
le γ vanish. Thus, we thinkthat in a sense that has to be worked out, the moduli of Mattei should be 
omputedby the integral of some generator of the relative 
ohomology group of ω along theasymptoti
 vanishing 
y
le. 17
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