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Abstract

We consider the topological class of a germ of 2-variables quasi-homogeneous complex analytic function. Each

element f in this class induces a germ of foliation (df = 0) and a germ of curve (f = 0). We first describe the

moduli space of the foliations in this class and we give analytic normal forms. The classification of curves induces

a distribution on this moduli space. By studying the infinitesimal generators of this distribution, we can compute

the generic dimension of the moduli space for the curves, and we obtain the corresponding generic normal forms.
1

Introduction

From any convergent series f in C{x, y}, we can consider three different associated mathematical
objects: a germ of holomorphic function defined by the sum of this series, a germ of foliation
whose leaves are the connected components of the level curves f = constants, and an embedded
curve f = 0. Composing f on the left side by a diffeomorphism of (C, 0) may change the function
but nor the foliation or the curve. Multiplying f by an invertible function u may change the
function and the foliation but not the related curve. Therefore, there are three different analytic
equivalence relations:

• The classification of functions (or right equivalence):

f0 ∼r f1 ⇔ ∃φ ∈ Diff (C2, 0), f1 = f0 ◦ φ.

• The classification of foliations (or left-right equivalence):

f0 ∼ f1 ⇔ ∃φ ∈ Diff (C2, 0), ψ ∈ Diff (C, 0), ψ ◦ f1 = f0 ◦ φ.

• The classification of curves:

f0 ∼c f1 ⇔ ∃φ ∈ Diff (C2, 0), ∃u ∈ O2, u(0) 6= 0, uf1 = f0 ◦ φ.

In the same way, one can define topological classifications requiring only topological changes of
coordinates. In what follows, we are going to consider mostly the two last equivalence relations
for foliations and curves, since the comparison between the two first analytic classifications has
been studied in [1].

Finally, we emphasize that in our work, we will always require that the conjugacies that appear
above will respect a fixed numbering of the branches of f = 0.

∗The first author supported by the ANR under the project ANR-13-JS01-0002-01.
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A germ of holomorphic function fqh : (C2, 0) → (C, 0) is quasi-homogeneous if and only if fqh

belongs to its jacobian ideal J(fqh) = (
∂fqh
∂x ,

∂fqh
∂y ). If fqh is quasi-homogeneous, there exist

coordinates (x, y) and positive coprime integers k and l such that the quasi-radial vector field
R = kx ∂

∂x + ly ∂
∂y satisfies

R(fqh) = d · fqh,

where the integer d is the quasi-homogeneous (k, l)-degree of fqh [15]. In these coordinates, fqh
has some cuspidal branches and maybe axial branches, that is to say, fqh is written

fqh = cxn∞yn0

p∏

b=1

(yk + abx
l)nb (1)

where c is a non vanishing complex number and the multiplicities satisfy n0 ≥ 0, n∞ ≥ 0 and
nb > 0. The complex numbers ab are non vanishing numbers such that ab 6= ab′ . Using a
convenient analytic change of coordinates, we may suppose that a1 = 1.
A germ of holomorphic function f is topologically quasi-homogeneous if the function f is topo-
logically conjugated to a quasi-homogeneous function fqh, that is to say there is a continuous
right-equivalence between f and fqh.

For any couple of coprime positive integers (k, l) with k < l and (p + 2)-uple (n) of integers in
N2×(N∗)

p
, (n) = (n∞, n0, n1, n2, · · · , np) we consider the topological class T(k,l),(n) of fqh defined

in (1), that is the set of all functions topologically conjugated to fqh. The first aim of this paper
is to describe the moduli space defined by the quotient

M(k,l),(n) = T(k,l),(n)/∼

where ∼ refers to the left-right analytical equivalence. We give the infinitesimal description of
this moduli space by making use of the cohomological tools considered by J.F. Mattei in [13]:
the tangent space to the moduli space is given by the first Cěch cohomology group H1(D,ΘF ),
where D is the exceptional divisor of the desingularization of fqh, and ΘF is the sheaf of germs

of vector fields tangent to the desingularized foliation F̃ induced by dfqh = 0. Using a particular
covering of D, we give a triangular presentation of the C-space H1(D,ΘF ) in Theorem (1.3).
This description leads us to consider triangular analytic normal forms

Na = xn∞yn0

p∏

b=1

(yk +
∑

{(b,d),Φ(b,d)∈T}∪{(1,kl)}

ab,dm
d)nb (2)

by perturbing the topological normal form (1) with some monomials md following an algorithm
described in the subsection (1.2), in which the precise meaning of the indexation Φ(b, d) is
defined. This family of analytic normal forms turns out to be semi-universal as established in
Theorem (1.10). In this way, we obtain a local description of M(k,l),(n). We finally give a global
description of this moduli space in Theorem (1.15) and Theorem (1.16) by proving that any
function in T(k,l),(n) is actually conjugated to some normal form Na , and that the parameter a
is unique up to some weighted projective action of C∗. All the results of this first part can be
extended to the generic Darboux function:

f (λ) = fλ1

1 · · · fλp
p

with complex multiplicities λi. Nevertheless, we do not insert this extension here, since we have
previously explain in [8] how to perform it in the topologically homogeneous case.

The second part of our work is dedicated to the study of the moduli space of curves in the quasi-
homogeneous topological class. This problem is a particular case of an open problem known as
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the Zariski problem. It has only a very few answers: Zariski [17] for the very first treatment of
some particular cases, Hefez and Hernandes [5, 6] for the irreducible curves, Granger [9] in the
homogeneous topological class and [2] for some results which are particular cases of our present
result. Our strategy that we already introduced in a previous work [8], differs from all this works:
we consider the integrable distribution C on the moduli space of foliations M(k,l),(n) induced by
the equivalence relation ∼c: two foliations represented by two points in M(k,l),(n) are in a same
orbit of this distribution if and only if they induce the same curve up to analytic conjugacy.
Studying the family of vector fields that induce the distribution C on M(k,l),(n), we compute the

dimension of the generic strata of the moduli space of curves M(k,l),(n)/C in Theorem (2.7). We
also give an algorithm in order to construct the corresponding generic normal forms in Theorem
(2.8).
Since the cohomological description of the moduli space of foliations is known for a general one-
form, we may expect that this strategy can be develop in a general topological class.

In order to keep a sufficiently readable text, we have postponed a lot of technical computations
in appendix A.

We thank Jean-François Mattei for helpful discussions, and for suggesting improvements on a
first version of this work.
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1 The moduli space of foliations

In this section, we will consider a function f in the class T(k,l),(n). The (k, l)-degree of a monomial
xmyn is km+ ln. It induces a valuation on C{x, y} denoted by νk,l.

Let f be a function in the topological class T(k,l),(n). We know, from a theorem of Lejeune-
Jalabert [10] that the desingularization process of f is identical to that of fqh, that is to say:
after a sequence of blowing-ups E, the exceptional divisor D is a chain of components isomorphic
to P 1(C), the strict transform of the cuspidal branches intersect the same component Dc, the
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principal component, and the strict transform of the axes, if they appear, intersect the end
components of this chain : see Appendix A, and figure (2).

Lemma 1.1 (Prenormalization). There exists some coordinates (x, y) such that f is written

f(x, y) = cxn∞yn0
(
yk + xl + · · ·

)n1
(
yk + a2x

l + · · ·
)n2

· · ·
(
yk + apx

l + · · ·
)
np

where c is a non-vanishing complex number, ab, b = 2, . . . , p are non-vanishing complex numbers
with ab 6= ab′ 6= 1, and the dots are terms of (k, l)-degree greater than kl.

Proof. Let f be a function topologically conjugated to fqh. The number of branches, and their
multiplicities are topological invariants. Therefore, we consider the following irreducible decom-
position of f :

f = fn∞

∞ fn0

0 fn1

1 · · · fnp
p .

Since f has the same desingularization process as fqh, if n0 > 0 or n∞ > 0, the strict transform
of the corresponding branches appear on the end components. Therefore, their blowing-down
are smooth transverse branches at 0, and we can choose coordinates (x, y) such that

f = xn∞yn0fn1

1 · · · fnp
p .

Now, the strict transform of the other branches meet the principal component Dc. Using the
blown-down formulas of proposition (3.2) in Appendix A, we obtain that:

fi = αiy
k + βix

l + · · ·

with αi 6= 0 and βi 6= 0. By factorizing αi in each component fi we obtain the existence of a
non-vanishing constant c and a family of p non-vanishing complex number ab, b = 1, . . . , p such
that

f = cxn∞yn0
(
yk + a1x

l + · · ·
)n1

· · ·
(
yk + apx

l + · · ·
)
np

where the dots are terms of (k, l)−degree greater than kl. Finally, by applying a final change of
coordinates of the form (x, y) → (αx, y), we can suppose that a1 = 1.

Unless any precision is given, from now on, we will only consider system of coordinates (x, y)
such that the function f ∈ T(k,l),(n) has an expression as in the above lemma.

1.1 The infinitesimal description

Since the transverse structure of a foliation defined by a function is rigid, i.e. completely given
by the discrete data of the multiplicities, any topologically trivial deformation is an unfolding as
defined in [13]. We know from the same reference that the tangent space to the moduli space
of unfoldings of a germ of analytic foliation F is the vector space: H1(D,ΘF), where ΘF is

the sheaf on D of germs of holomorphic vector fields tangent to the desingularized foliation F̃ .
Furthermore, this vector space is a finite dimensional one, whose dimension δ is obtained by a
formula involving the multiplicities of the foliation at the singular points appearing at each step
of the blowing up process. In the present topological class, we will give an alternative description
of this tangent space which will allow us to construct normal forms.

Let f be in T(k,l),(n). We consider the saturated foliations F and F̃ induced by df and E∗df ,
where E is the desingularization morphism of f .

Notation 1.2.

1. We define two integers ε0 and ε∞ in {0, 1} as follows: if n0 > 0 then we set ε0 = 1, else
we set ε0 = 0. We define ε∞ the same way but relative to n∞.
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2. Let (u, v) be the unique couple of integers defined by the Bézout identity

uk − vl = 1 with 0 ≤ u < l, 0 ≤ v < k.

3. We denote by νc the multiplicity of the desingularized foliation on the principal component
Dc of the exceptional divisor. According to Proposition (3.4) in Appendix A, we have

νc = klp− k − l+ kε∞ + lε0.

4. Let T be the triangle in the real half plane (X,Y ), Y ≥ 0, delimited by

kX − (k − v)(Y − νc) > 0

lX − (l − u)(Y − νc) < 0

The summit of this triangle is (0, νc). The directions of the non horizontal edges are given
by the vectors

~x = (k − v, k) and ~y = (l − u, l).

Theorem 1.3. There is an explicit linear isomorphism Ψ between H1(D,ΘF ) and the C-vector
space freely generated by the set of integer points ei,j = (i, j) in the triangle T.

The expression of Ψ is given in the proof below. We give a presentation of the tangent space
to the moduli space of a function in the topological class: (k, l) = (3, 5), p = 4, n0 = n∞ = 0,
n1, . . . , n4 arbitrary, obtained by this theorem in Appendix B, Figure (3).

Proof. Let us consider θf the vector field with an isolated singularity defined by

θf =
1

g.c.d.
(

∂f
∂x ,

∂f
∂y

) ·

(
−∂f

∂x

∂

∂y
+
∂f

∂y

∂

∂x

)
. (3)

Let {U0, U∞} be the covering of the exceptional divisor introduced in the Appendix A. From
proposition 3.6, we know that this covering is acyclic with respect to the sheaf ΘF . Therefore
we have

H1(D,ΘF) =
ΘF(U0 ∩ U∞)

ΘF(U0)⊕ΘF(U∞)
.

In order to compute each term of this quotient, we consider the principal chart (xc, yc) defined
near the central componentDc defined in Appendix A. The domain of this chart contains U0∩U∞.
The vector field

θis =
E∗θf
yνcc

has isolated singularities and defines F on U0 ∩ U∞. Therefore we have ΘF(U0 ∩ U∞) =
O (U0 ∩ U∞) · θis, and each θ in ΘF (U0 ∩ U∞) can be written

θ =


 ∑

i∈Z,j∈N

λi,j x
i
cy

j
c


 · θis.

By the local monomial expression of E given by proposition 3.2 in Appendix A, these vector
fields θ blow down on meromorphic vector fields with poles on the axes:

E∗θ =
∑

i∈Z, j∈N

λi,j x
li−(l−u)(j−νc)y−ki+(k−v)(j−νc) · θf .
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Let us prove that θ has an holomorphic extension on U0 if and only if

−ki+ (k − v)(j − νc) < 0 =⇒ λi,j = 0. (⋆)

If such an extension is possible, then θ has no pole along the curve y = 0 whose strict transform
belongs to U0, thus the property (⋆) holds. On the converse, if the property (⋆) is satisfied, then
the multiplicity νD1

(θ) of θ along the component D1 which meets the strict transform of the
x-axis is positive. Indeed, after a standard blow-up, we find

νD1
(θ) ≥ min

λi,j 6=0
{(l − k)i+ (j − νc)(k − v − l+ u)} ≥ 0

Now, the intermediate multiplicities νDi(θ), 1 < i < c are also positive. This is a consequence of
the relations

νD2
(θ) = e1νD1

(θ), νDi+1
(θ) = eiνDi(θ)− νDi−1

(θ), i = 2, . . . , c− 1

which can be obtained by a similar argument as in proposition 3.4. Here, −ei is the self-
intersection of the component Di. Since ei ≥ 2 for i = 1, . . . , c− 1, we have

νD2
(θ) ≥ νD1

(θ), νDi+1
(θ)− νDi(θ) ≥ νDi(θ)− νDi−1

(θ), i = 2, . . . , c− 1

which proves that νDi(θ) is positive for any i = 1, . . . , c. In the same way, an element θ in
ΘF(U0 ∩ U∞) belongs to ΘF(U∞) if and only if

li− (l − u)(j − νc) < 0 =⇒ λi,j = 0.

Therefore, there is a linear isomorphism Ψ between the C-space freely generated by the integer
points ei,j in T and H1 (D,ΘF) defined by:

Ψ :
∑

(i,j)∈T

λi,jei,j 7−→




 ∑

(i,j)∈T

λi,jx
i
cy

j
c


 · θis


 . (4)

This representation gives us a direct formula for the dimension δ of H1(D,ΘF), by counting the
integers points in the above triangle. In order to give an explicit formula, we need the following
fact:

Lemma 1.4 (and notations). The number of integer points in an open interval ]a, b[ is given
by ]b] − [a[, where [a[ stands for the usual integer part n of a: n ≤ a < n + 1, and ]b] is the
”strict” integer part m of b defined by m < b ≤ m+ 1.

Since the intersections of the horizontal levels j with the boundary of T are respectively given
by k−v

k (j − νc) and
l−u
l (j − νc), we obtain

Proposition 1.5. The dimension of H1(D,ΘF ) is

δ =

νc∑

j=0

(]
l − u

l
(j − νc)

]
−

[
k − v

k
(j − νc)

[)
.

Example. For the topological class given by (k, l) = (3, 5), p = 4, without axis, by counting
the integers points in figure (3) in Appendix B, or applying the previous formula, we obtain that
δ = 78.
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1.2 Construction of the local normal forms

We will construct here analytic models for topologically quasi-homogeneous functions starting
from the topological normal form (1). Since it already appears (p − 1) analytic invariants that
are the values ab (the cross ratios between branches on the principal component), we have to
add δ − (p − 1) monomial terms of higher degrees. The construction to come is a priori based
upon some algorithmic but arbitrary choices. It will be justified by Theorem (1.10) in the next
section.

In our previous work in [8], for the homogeneous topological class, in which the topological
representative was p transverse lines, we straightened the fourth first lines on xy(y+x)(y+a4,1x),
we added the monomials a5,2x

2 to the fifth line, a6,2x
2 + a6,3x

3 to the sixth, and so on. We
generalize this triangular construction here by making use of the quasi-homogeneous (k, l)-degree.
Nevertheless, the choice of the monomials and their distribution between the branches is not so
obvious here.

The following algorithm will associate an analytic normal form starting from the previous trian-
gular presentation of the infinitesimal moduli space.
The figure (3) in Appendix B shows the procedure in order to construct the normal forms
associated to the topological class of

(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

.

The meaning of all the datas that appear on the figure will be detailed below.
The construction consists in two successive steps.

Step 1. Choice of the monomials.

Notation 1.6. For any d ≥ kl, there exists a unique monomial xiyj with quasi-homogeneous
(k, l)-degree d, such that j < k. We denote it the following way

md := xiyj ik + jl = d, j < k.

For (k, l) = (3, 5), we find m15 = x5, m16 = x2y2, m17 = x4y, m18 = x6,...

Therefore, to each horizontal line of index j in the triangle T, one can associate the monomial
md, d = kl + j. We put them on a column on the right side in Figure (3).

Step 2. Distribution of the monomials between the cuspidal branches. The link
between the monomial terms md and md+1 is the multiplication by the meromorphic monomial
term md+1/md. We encode this multiplication by a translation in T. We associate to the
multiplication by x (resp. y) the translation by ~x = (k − v, k) (resp. ~y = (l − u, l)). This choice
is suggested by the formulas of Proposition (3.2) in Appendix A. Thus to a degree d we associate
the translation in Z2 by the vector ~td defined by

~td = i~x+ j~y

where xiyj = md+1/md.

Lemma 1.7. For any d, ~td is either (1, 1) or (0, 1).

Proof. Let md = xiyj and thus ik + jl = d with 0 ≤ j < k. Suppose first that j − v ≥ 0. Then
md+1 = xi+uyj−v. Hence, in the the canonical basis, the components of ~td are

(i+ u− i) (k − v, k) + (j − v − j) (l − u, l) = (1, 1) .

7



If j − v < 0 then md+1 = xi+u−lyj+k−v . Indeed, we have 0 ≤ j + k − v < k and i + u − l ≥ 0
since from

(i+ u)k = kl + 1− (j − v) l > kl.

In this case, the components of ~td are

(u− l) (k − v, k) + (k − v) (l − u, l) = (0, 1) .

For (k, l) = (3, 5), the meromorphic monomials form a periodic sequence of lenght 3 generated
by: y2/x3, x2/y, x2/y. The successive translations are ~t15, ~t16, ~t17, ~t18 = ~t15 etc..., whose
components are (0, 1), (1, 1), (1, 1). We put the translations on a column on the right side of
Figure (3).

Now we consider all the parallel paths issued from the integer points (i, 0) on the horizontal axe,
under the action of the successive translations ~td. The point

(
−νc

k−v
k , 0

)
is the intersection of

the left edge of the triangle with this horizontal axe. We consider the p integer points:

M1 :=

(
[−νc

k − v

k
[+p, 0

)
, M2 :=

(
[−νc

k − v

k
[+p− 1, 0

)
, . . . , Mp :=

(
[−νc

k − v

k
[+1, 0

)
.

Notice that the (p− 1) last ones are inside the triangle, while the first one is outside.

Proposition 1.8. The p paths issued from the initial points Mi, i = 1, . . . , p, obtained by the
action of the successive translations ~td pass through all the integer points inside the triangle T.

Proof. Let in and jn such that mkl+n = xinyjn . Following the arguments in the proof of Lemma
(1.7), the sequence (in, jn) is explicitely defined by the following system





in = l + uan − (l − u) bn

jn = −van + (k − v) bn

ink + jnl = d0 + n

jn < k

where d0 = kl and (an, bn) is defined by (a0, b0) = (0, 0) and

(
an+1

bn+1

)
=

(
an
bn

)
+

(
1
0

)
if jn − v ≥ 0

=

(
an
bn

)
+

(
0
1

)
if jn − v < 0.

Notice that an is the number of translations of type (1, 1) occuring in a path of lenght n, and
corresponds to the horizontal component of the sum of the n first translations. We consider the
left side of the triangle given by the equation

ki− (k − v)j + νc(k − v) = 0

and its intersections (xn, n) with the horizontal levels j = n. We have

xn =
k − v

k
(n− νc).

We consider the path starting from the last integer point ([x0[+1, 0). The successive integer points
of this path are given by the sequence (pn, n) = ([x0[+1 + an, n). We claim that the moving
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point along this path does not go too far away from the left side of the triangle. More precisely,
we have:

(pn − xn) ∈]− 1, 1].

Indeed, by solving the above system, we obtain an = −jn
k + nk−v

k . Therefore we have:

pn − xn = ([−νc
k − v

k
[+νc

k − v

k
+ 1) + (an − n

k − v

k
).

Clearly, the first part of the sum belongs to ]0, 1], and the second one, which equals to −jn
k belongs

to ]− 1, 0]. Therefore this path will catch all the first integer points of the triangle on each level
starting from the left side. If we consider the p parallel paths starting fromMi, i = 1, . . . , p, they
will catch all the integers points of the triangle, since on each level there is at most p points.

These p paths give us a unique way to distribute the monomials ab,dm
d on each branch, putting

the monomials encountered on the first path (starting from the right hand side) on the first
branch, and so on. With this path game, we do not miss any point of the triangle according
to the previous proposition. Each integer point of the triangle can be represented by the new
coordinates (b, d) where b is the index of a path or branch and d the index of a level, or degree.
From our construction, they are related to (i, j) by the change of indexation

(i, j) = Φ(b, d) =

([
−νc

k − v

k

[
+ p+ 1− b+

d−1∑

i=kl−1

αi , d− kl

)
, (5)

where αkl−1 = 0, and for i ≥ kl, αi is the horizontal component of ~ti.

To conclude, the general writing of the analytic normal forms for foliations defined by a function
in T(k,l),(n) obtained by our construction is the following definition

Definition 1.9. Let A be the following open set of Cδ

A = {(ab,d), Φ(b, d) ∈ T, ab,kl 6= 0, ab,kl 6= 1, ab,kl 6= ab′,kl for b 6= b′} .

Furthermore, we set a1,kl = 1. For a = (ab,d) ∈ A we define the analytic normal form Na by

Na = xn∞yn0

p∏

b=1


yk +

∑

{(b, d),Φ(b, d) ∈ T} ∪ {(1, kl)}

ab,dm
d




nb

(6)

Example. From the figure (3) in the Appendix B, the analytic normal form Na of the foliation
defined by a function f in the topological class (k, l) = (3, 5), p = 4, n = (n1, n2, n3, n4) are
given in the same Appendix: we add 2 monomials on the first branch, 16 on the second, 31 on
the third and 29 on the last one.

1.3 Local universality

The construction described in the previous section is justified, a posteriori, by the following
result. For any a ∈ A, we consider the saturated foliation Fa defined by the one-form dNa.

Theorem 1.10. For any a0 in A, the germ of deformation {Fa, a ∈ (A, a0)} is an equireducible
semi-universal unfolding among the equireducible unfoldings of Fa0 .
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This means that for any equireducible unfolding {Ft, t ∈ (T, t0)} where (T, t0) is a germ of
some space of parameters t = (t1, . . . , ts), such that Ft0 = Fa0 , there exists a map λ : T → A
with λ(t0) = a0 such that the family Ft is analytically equivalent to dNλ(t). Furthermore, the
universality means that the map λ is unique and the semi-universality only requires that the first
derivative of λ at t0 is unique.

Proof. Let E be the common desingularization map for each foliation Fa and F̃a the pull-back
of Fa by E. F̃a is also the saturated foliation defined by the one-form dÑa where Ña = Na ◦ E.
Let Θ0 be the sheaf on D = E−1(0) of germs of holomorphic vector fields tangent to the foliation

F̃a0 .

Lemma 1.11. Let U = {U0, U∞} be the covering of the exceptional divisor of E introduced in

the Appendix A (notations 3.1). Any unfolding of F̃a0 is locally analytically trivial on each open
set U0, U∞.

Proof. Suppose that the unfolding is given by a one-form

dF =
∂Ft

∂x
+
∂Ft

∂y
+

s∑

r=1

∂Ft

∂tr
,

such that dFt0 defines F̃a0 . Let m be a point of D, in some local chart (xi, yi) of D. For each
parameter tr, we can find a local vector field in some neighborhood Um of m

Xr = θr −
∂

∂tr
= (αr(xi, yi, t)

∂

∂xi
+ βr(xi, yi, t)

∂

∂yi
)−

∂

∂tr

such that d(F ◦ E)(Xr) = 0, which can also be written

θr(F ◦ E) =
∂

∂tr
(F ◦ E).

The existence of Xr is clear around a regular point of the foliation, and still true around a reduced
singular point: see [13]. The difference between two such local vector fields is a tangent vector

field to the foliation F̃a0 . Now, from Proposition (3.6) in Appendix A, we have H1(U0,Θ0) =
H1(U∞,Θ0) = 0. Therefore we can glue together these vector fields on U0 or on U∞. The
trivialization of the unfolding on U0 or U∞ in the direction ∂

∂tr
is obtained by integration of

these vector fields Xr.

For each parameter ab,d of the unfolding defined by dNa, a in (A, a0), the previous lemma proves
that there exist two vector fields θ0b,d in Θ0(U0) and θ

∞
b,d in Θ0(U∞) such that

θ0b,d(Ña0) =
∂Ña

∂ab,d

∣∣∣∣∣
a=a0

and θ∞b,d(Ña0) =
∂Ña

∂ab,d

∣∣∣∣∣
a=a0

. (7)

We call them ”trivializing vector fields in the direction ab,d”. We denote by ∂Fa

∂ab,d
the difference

θ0b,d − θ∞b,d in Θ0(U0 ∩ U∞) and by
[

∂Fa

∂ab,d

]
a0

its image in H1(D,Θ0), which does not depend on

the choice of the trivializing vector fields. We define a map from the tangent space to A at a0

into H1(D,Θ0) by

{
Ta0A −→ H1(D,Θ0)∑

(b,d) λb,d(a)
∂

∂ab,d
7−→

∑
(b,d) λb,d(a)

[
∂Fa

∂ab,d

]
a0

(8)

10



According to a theorem of J.F. Mattei ([13], Theorem (3.2.1)), the unfolding {Fa, a ∈ (A, a0)} is
semi-universal among the equireducible unfoldings if and only if this map is a bijective one. By
our construction, the dimension of Ta0A is equal to the one of H1(D,Θ0). Therefore it suffices

to prove that the cocycles
[

∂Fa

∂ab,d

]
a0

are independent. We denote by

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

the component of
[

∂Fa

∂ab,d

]
a0

on the element of the basis {ei,j} given by Theorem (1.3). These

numbers define a square matrix M of size δ = dimH1(D,Θ0), and we have to prove that it is an
invertible one, that will be done in two steps.

Step 1. Components of the cocycles on the first level d = kl.
According to our construction of the normal forms, the coefficient a1,kl is constant equal to 1.
Nevertheless, in order to perform calculus in a more symmetric way, we first consider here the
parameter a1,kl as a free parameter.

Proposition 1.12. The square matrix of size p defined by
(〈[

∂Fa

∂ab,kl

]

a0

, eΦ(b′ ,kl)

〉)

b,b′=1,...,p

is an invertible Vandermonde matrix.

Proof. We first compute the p components of degree kl of the trivializing vector fields θ0b,kl and
θ∞b,kl in the two charts (xc−1, yc−1) and (xc, yc) around (Dc, 0) and (Dc,∞), covering the principal
component Dc (see notations (3.1) in Appendix A). Notice that, from Proposition (3.2), we have

E∗R = xc−1
∂

∂xc−1
= yc

∂

∂yc
.

Therefore the R-degree is also the xc−1-degree or the yc-degree. In what follows, the dots stand
for terms of higher R-degree. We set nc :=

∑p
b=1 nb where the nb’s are the multiplicities of Na

on the cuspidal branches. We have

Ña(xc−1, yc−1) = xkn∞+ln0+klnc
c−1 yvn∞+un0+vlnc

c−1

p∏

b=1

(ab,kl + yc−1 + · · · )nb (9)

:= xmc−1P (yc−1) + · · · (10)

where m = kn∞ + ln0 + klnc, and P is a one variable polynomial. Now we have

∂Ña

∂xc−1
= mxm−1

c−1 P (yc−1) + · · · ,
∂Ña

∂yc−1
= xmc−1P

′(yc−1) + · · · , (11)

∂Ña

∂ab,kl
=

nbx
m
c−1P (yc−1)

ab,kl + yc−1
+ · · · (12)

Let us write

θ0b,kl =
xc−1

m
α0
b,kl(yc−1)

∂

∂xc−1
+ β0

b,kl(yc−1)
∂

∂yc−1
+ · · · .

Identifying the terms of lower xc−1-degree in equation (7) on U0, we obtain

α0
b,klP + β0

b,klP
′ =

nbP

ab,kl + yc−1
. (13)

11



From the solution (A0, B0) of the following Bézout identity in C[yc−1]:

A0P +B0P
′ = P ∧ P ′, deg(A0) < deg(P ′/P ∧ P ′), deg(B0) < deg(P/P ∧ P ′),

where P ∧P ′ stands for gcd(P, P ′), we obtain an holomorphic solution of equation (13) by setting

(
nbA0P

(P ∧ P ′)(ab,kl + yc−1)
,

nbB0P

(P ∧ P ′)(ab,kl + yc−1)

)
.

We may suppose that the solution (α0
b,kl, β

0
b,kl) coincides with this one. Indeed, one can check

that another choice for the solution of the Bézout identity differs from this one by a vector field
tangent (at the first order kl) to the foliation, holomorphic on U0. We can perform a similar
computation in the other chart (xc, yc) on (Dc,∞). We have:

Ña(xc, yc) = ykn∞+ln0+klnc
c x(k−v)n∞+(l−u)n0+(kl−ku)nc

c

p∏

b=1

(1 + ab,klxc + · · · )nb

:= ymc Q(xc) + · · ·

Setting θ∞b,kl = α∞
b,kl(xc)

∂
∂xc

+ yc

mβ
∞
b,kl(xc)

∂
∂yc

+ · · · , we have

α∞
b,klQ

′ + β∞
b,klQ =

nbxcQ

1 + ab,klxc
. (14)

By considering the solution (A∞, B∞) of the following Bézout identity:

A∞Q+B∞Q
′ = Q ∧Q′, deg(A∞) < deg(

Q′

Q ∧Q′
), deg(B∞) < deg(

Q

Q ∧Q′
)

we obtain an holomorphic solution of (14) on U∞ by setting:

α∞
b,kl =

nbxcQB∞

(1 + ab,klxc)(Q ∧Q′)
, β∞

b,kl =
nbxcQA∞

(1 + ab,klxc)(Q ∧Q′)
.

In order to compute the cocycles, we give the expression of θ0b,kl in the chart (xc, yc). Since we

have xc−1 = xcyc, yc−1 = x−1
c , we obtain

∂

∂xc−1
= x−1

c

∂

∂yc
,

∂

∂yc−1
= −x2c

∂

∂xc
+ xcyc

∂

∂yc
.

Furthermore, by considering the reduced polynomials related to P and Q, we also have

P

P ∧ P ′
(yc−1) =

1

xp+2
c

Q

Q ∧Q′
(xc).

We obtain:

θ0b,kl =
nbx

−(p+2)
c Q/Q ∧Q′(xc)

(ab,kl + x−1
c )

[
m−1A0(x

−1
c )yc

∂

∂yc
+B0(x

−1
c )(−x2c

∂

∂xc
+ xcyc

∂

∂yc
)

]
+ · · ·

We consider now a vector field θis on U0∩U∞ tangent to the saturated foliation defined by dÑa,
with isolated singularities. Since

−
∂Ña

∂yc

∂

∂xc
+
∂Ña

∂xc

∂

∂yc
=
(
−mym−1

c Q(xc) + · · ·
) ∂

∂xc
+ (ymc Q

′(xc) + · · · )
∂

∂yc

12



we can choose

θis :=

(
−

Q

Q ∧Q′
+ · · ·

)
∂

∂xc
+

(
yc

Q′

mQ ∧Q′
+ · · ·

)
∂

∂yc
.

Let Φ0,∞
b,kl be the function such that θ0b,kl − θ∞b,kl = Φ0,∞

b,kl · θis. By computing the coefficient of

θ0b,kl − θ∞b,kl on ∂/∂xc, we have:

Φ0,∞
b,kl =

nbxc
1 + ab,klxc

[x−p
c B0(x

−1
c )−B∞(xc)].

The value of
〈[

∂Fa

∂ab,kl

]
a0
, eΦ(b′,kl)

〉
is by construction the coefficients on xic of the Laurent series

of Φ0,∞
b,kl where i is defined by Φ(b′, kl) = (i, 0) (i.e., from (5), i = [−νc

k−v
k [+p+1− b′). Thus we

only have to consider the meromorphic part of Φ0,∞
b,kl , i.e.:

nbxc
1 + ab,klxc

×
B0(xc)

x2pc
,

where B0(x) =
∑p

n=0 vnx
n is the polynomial function xpB0(x

−1). We have

xc
1 + ab,klxc

=
+∞∑

m=0

(−ab,kl)
mxm+1

c ,

B0(xc)

x2pc
=

p∑

n=0

vnx
n−2p
c .

Therefore, the coefficient of the Laurent series of Φ0,∞
b,kl in xic is

∑

(m + 1) + (n − 2p) = i

0 ≤ n ≤ p

nbvn(−ab,kl)
m = nb

p∑

n=0

vn(−ab,kl)
2p−1−n+i

= nbB0(−a
−1
b,kl)× (−ab,kl)

2p−1+i

Finally we obtain
〈[

∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
= Cb(−a

−1
b,kl)

b′ (15)

where Cb = nbB0(−a
−1
b,kl) × (−ab,kl)

(3p+[−νc
k−v
k [). This defines a Vandermonde matrix. Fur-

thermore, Cb = 0 if and only if B0(−ab,kl) = 0, which cannot happen: evaluating the Bézout
identity

A0
P

P ∧ P ′
+B0

P ′

P ∧ P ′
= 1

at y0 = −ab,kl, we would obtain a contradiction, since −ab,kl is a root of P . Moreover, ab,kl 6=
ab′,kl for b 6= b′, thus the Vandermonde matrix is invertible.

Step 2. Relationship between the components of the cocycles on different levels.

Lemma 1.13. If θ0b,kl, θ
∞
b,kl are trivializing vector fields on U0 (resp. on U∞) for the direction

∂
∂ab,kl

, then for any d > kl, the vector fields

m̃d

m̃kl
θ0b,kl,

m̃d

m̃kl
θ∞b,kl

are trivializing vector fields on U0 and U∞ for the direction ∂
∂ab,d

where m̃ = m ◦ E.
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Proof. Let Bb := yk +
∑

(b,d),Φ(b,d)∈T
ab,dm

d be the branch of index b, and B̃b := Bb ◦ E. Since
we have:

∂Ña

∂ab,d
= m̃dnb

Ña

B̃b

if θ0b,kl satisfies equation (7) for d = kl, then, given d > kl, m̃d

m̃kl θ
0
b,kl satisfies the trivializing

equation for the level d. Furthermore, this vector field is still holomorphic on U0. Indeed, from
the trivializing equation (7), we deduce that the multiplicity of the trivializing vector field θ0b,kl
on a component Di of D ∩ U0 is given by

νi(θ
0
b,kl) = νi(m̃

kl)− νi(B̃b) + 1.

The multiplicity of m̃d

m̃kl θ
0
b,kl on Di is thus equal to

νi

(
m̃d

m̃kl
θ0b,kl

)
= νi(m̃

d)− νi(m̃
kl) + νi(m̃

kl)− νi(B̃b) + 1

and therefore is still a positive number. The argument is similar for θ∞b,kl.

We consider the linear operator

Td :=
m̃d

m̃kl
× : Θ0(U0 ∩ U∞) −→ Θ0(U0 ∩ U∞).

induced by the previous Lemma. We can remark that when d runs over {kl, kl + 1, · · · } the
points Td · eΦ(b,kl) are exactly the paths introduced in the previous section, and the indexation
(i, j) = Φ(b, d) has been introduced such that

Td · eΦ(b,kl) = eΦ(b,d).

Proposition 1.14. Let d > kl be the index of an horizontal level in the half plane representing
Θ0(U0 ∩ U∞). For each b, b′ in 1, . . . , p, we have that

1. for any d′ such that kl ≤ d′ < d, one has

〈[
∂Fa

∂ab,d

]

a0

, eΦ(b′,d′)

〉
= 0.

2. the coefficient
〈[

∂Fa

∂ab,d

]
a0
, eΦ(b′,d)

〉
is constant with respect to d (i.e. constant along the

paths introduced in the previous section).

3. the coefficient
〈[

∂Fa

∂ab,d

]
a0
, eΦ(b′,d′)

〉
only depends on the variables ab′′ ,d′′ with

kl ≤ d
′′

≤ kl+ d
′

− d.

Proof. For b = 1, . . . , p, we have:

[
∂Fa

∂ab,kl

]

a0

=
∑

b′

〈[
∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
eΦ(b′,kl) + · · ·

where the dots correspond to components of higher level. Applying the linear operator Td, we
obtain:

[
∂Fa

∂ab,d

]

a0

=
∑

b′

〈[
∂Fa

∂ab,kl

]

a0

, eΦ(b′,kl)

〉
eΦ(b′,d) + · · ·
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which proves the statements (1) and (2). For the third point, we consider the meromorphic
function Φ0,∞

b,d defined by

θ0b,d − θ∞b,d = Φ0,∞
b,d θis (16)

where θis is the vector field with isolated singularities which generates the foliation on U0 ∩U∞,
introduced in step 1. Recall that the coefficient

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

is nothing but the coefficient of xicy
j
c in the Laurent development of Φ0,∞

b,d (see the proof of
proposition (1.12)). On the first level (d = kl), setting

θ∞b,kl =
(
θ∞b,kl

)
xc

∂

∂xc
+
(
θ∞b,kl

)
yc
yc

∂

∂yc
,

the second relation in (7) can be written

(
θ∞b,kl

)
xc

∂Ña

∂xc
+
(
θ∞b,kl

)
yc
yc
∂Ña

∂yc
=

∂Ña

∂ab,kl
. (17)

Now, extending the expression of the partial derivatives of Ña filtered by yc variable as in (11)
leads to expressions of the following form

yc
∂Ña

∂yc
= ymc A0(xc) + ym+1

c A1(xc) + ym+2
c A2(xc) · · ·

∂Ña

∂xc
= ymc B0(xc) + ym+1

c B1(xc) + ym+2
c B2(xc) · · ·

∂Ña

∂ab,kl
= ymc C0(xc) + ym+1

c C1(xc) + ym+2
c C2(xc) · · ·

where m is defined in (9). From the construction of the normal form Na, it can be seen that for
any i, Ai, Bi and Ci depend only on the variable ab′,d with kl ≤ d ≤ kl + i. Thus, if one filters
the equation (17) with respect to the yc variable, one can see that the solution θ∞b,kl shares the
same property of filtration, namely, if one writes

θ∞b,kl = (D0(xc) +D1(xc)yc + · · · )
∂

∂xc
+ (E0(xc) + E1(xc)yc + · · · )yc

∂

∂yc
,

then Di and Ei depend only on the variables ab′,d with kl ≤ d ≤ kl + i. The same remark can
be done for θ0b,kl using a filtration with respect to the xc−1 variable. Finally, since θis has also
the same property of filtration, the relation (16) implies that the jet of order i with respect to
the yc variable of Φ0,∞

b,kl depends only on the variables ab′ ,d with kl ≤ d ≤ kl + i. Now, since the

vertical component of Td is just a translation induced by ×yd−kl
c , this property propagates as in

the statement of (3).

End of the proof of Theorem (1.10).
Notice first that the operator Td is ”quite well defined” in the cohomology group H1(D,Θ0): let
M2 = eΦ(2,kl), . . . ,Mp = eΦ(p,kl) be the roots of the paths indexed by the branches b = 2, . . . , p
and M1 the point under the root of the first branch (recall that this root is on the second
level since we set a1,kl = 1). If we pick a point on the first level outside M1,M2, . . . ,Mp, the
action of Td preserves the half planes corresponding to Θ0(U0) and Θ0(U∞). This is clear on
figure (3) and it is a consequence of Proposition (1.8): these paths cannot go back inside the
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triangle. Therefore the operator Td is well defined onH1(D,Θ0) excepted on the line generated by
M1 = eΦ(1,kl). We add this point to the triangle and now we can write the (δ+1)×(δ+1)-matrix

of the cocycles ∂Fa

∂a1,kl
,... ∂Fa

∂ap,kl
, ∂Fa

∂a1,kl+1
,..., ∂Fa

∂ap,kl+1
,... on {eΦ(b,d)}b,d, ordered by the lexicographic

order. According to the previous Proposition (1.12) and Proposition (1.14) this matrix is a block
triangular matrix:

V :=




(V1) 0 0 · · ·
× (V2) 0 · · ·
× × (V3) · · ·

× × ×
. . .




where V1 is the invertible Vandermonde matrix obtained in step 1, V2, V3... are sub-matrices
of consecutive lines and columns of V1 defined by the paths from the first level to the following
levels. Clearly since det(V ) =

∏
det(Vi) this matrix is an invertible one. Finally, since a1,kl = 1,

e1,kl /∈ T, the matrix M is obtained by deleting the first line and first column of V , and is still
an invertible one. �

1.4 The global moduli space of foliations

Proposition 1.15 (Existence of normal forms). For any f in T(k,l),(n), there exists a in A such
that f ∼ Na, where ∼ denotes the classification of foliations.

Proof. We can suppose that f is given under its prenormalization form (1.1). Therefore the
deformation defined by

fλ :=
1

λr
f
(
λkx, λly

)

where r = kn∞ + ln0 + klnc, (nc =
∑

b nb) is an equireducible unfolding of f0 = Na0
, a0 =

(1, a2, . . . , ap, 0, . . . , 0) ∈ A. Using theorem (1.10), we can ensure that for λ small enough, there
exists a ∈ A such that fλ ∼ Na. Furthermore, this deformation is analytically trivial for λ 6= 0,
since we construct it by a conjugacy. Therefore, f = f1 ∼ fλ, for λ small, and the proposition is
proved.

Let us consider the diffeomorphism: hλ(x, y) = (λkx, λly). We have:

Na ◦ hλ = λncNλ·a, with λ · a = λ · (ab,d) := (λd−klab,d).

As above, we have thus Na ∼ Nλ·a. Actually, this action of C∗ the only obstruction to the unicity
of normal forms:

Theorem 1.16 (Unicity of normal forms). Na ∼ Na′ if and only there exists a complex number

λ 6= 0 such that a
′

= λ · a.

Proof - Suppose that there exists a conjugacy relation

ψ ◦Na′ = Na ◦ φ. (18)

Following [1], we can suppose that ψ is an homothetie γId. We are going to reduce the proof to
the case where φ is tangent to the identity. Since the conjugacy preserves the numbering of the
branches, looking at the relation induced by (18) on the jet of smaller (k, l)-order, we can ensure
that the linear part of φ is written hλ = (λkx, λly) for some λ 6= 0. Then

Na ◦ φ ◦ h−1
λ = γNa′ ◦ h−1

λ = cNλ−1·a′

where c stands for some non vanishing number. Since φ◦h−1
λ is tangent to the identity, it appears

that c = 1. Thus, setting for the sake of simplicity a
′

= λ−1 · a
′

and φ = φ ◦ h−1
λ we are led to a

relation
Na′ = Na ◦ φ (19)
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where φ is tangent to the identity. The proof reduces to show that in the situation (19), we have
a = a′. Let X be a germ of formal vector field such that φ = eX . The vector field X can be
decomposed in the sum of its quasi-homogeneous components

X = Xν +Xν+1 + · · ·

Lemma 1.17. If Na ◦ e
Xν+··· = Na′ then for all b from 1 to p and all d ≤ kl+ ν− 1, ab,d = a′b,d.

Proof. We set:
Na = N (N)

a + · · ·+N (N+p−1)
a + N (N+p)

a + · · ·

where N = kn∞ + ln0 + klnc is the degree of the first quasi-homogeneous component of Na.
Since we have

eXν+···Na = Na +Xν ·Na + · · ·

we obtain N
(N+i)
a = N

(N+i)
a′ for i from 0 to ν− 1. The expression of N

(N+i)
a only depends on the

variables ab,d for d ≤ kl+ i. Finally we claim that N
(N+i)
a = N

(N+i)
a′ if and only if ab,d = a′b,d for

d ≤ kl+ i. This fact can be proved by induction on d ≤ kl+ i. It is obvious for d = kl. Suppose
that ab,d = a′b,d is true for d ≤ kl + j − 1 with j − 1 < i. Then we have:

∑

b

N
(N)
a

yk + ab,klxl
ab,kl+jm

kl+j =
∑

b

N
(N)
a

yk + ab,klxl
a

′

b,kl+jm
kl+j .

which implies that ab,kl+j = a′b,kl+j .

Now if ν ≥ pkl+ lǫ0 + kǫ∞ and Na ◦ e
Xν+··· = Na′ then according to the previous lemma, for all

b and d ≤ kl + pkl + lǫ0 + kǫ∞ − 1, ab,d = a
′

b,d. Since νc = pkl+ kǫ∞ + lǫ0 − k − l then

νc + kl− 1︸ ︷︷ ︸
bigger value of d

(b, d) ∈ T

< pkl+ kl + lǫ0 + kǫ∞ − 1.

Therefore we have a = a
′

. Thus, it remains to prove the following lemma:

Lemma 1.18. If Na ◦ e
Xν+··· = Na′ then ν ≥ pkl+ lǫ0 + kǫ∞.

Proof. It suffices to prove that ν < pkl+ lǫ0+ kǫ∞ leads to a contradiction. Since the conjugacy
φ does not modify the parameter ab,d for d ≤ kl + ν − 1 the first non trivial relation of the
smallest (k, l)-degree induced by (19) is written

Xν ·N (N)
a = −N (N+ν)

a +N
(N+ν)

a′ .

Dividing by N
(N)
a leads to

p∑

b=1

nb
Xν · (yk + ab,klx

l)

yk + ab,klxl
+ n∞

Xν · x

x
+ n0

Xν · y

y
= mkl+ν

p∑

b=1

−ab,kl+ν + a
′

b,kl+ν

yk + ab,klxl
.

We take the pull-back of the previous equality with respect to the map E and write it in the
coordinates (xc, yc). Since we are going to look at residus at xc = −a−1

b,kl, we only make appear
the terms having poles at these points:

· · ·+

p∑

b=1

nb
ab,klX̃ν · xc
1 + ab,klxc

= xν−iv−ju+ku
c

p∑

b=1

δb,kl+ν

1 + ab,klxc
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where X̃ν stands for the vector field E∗Xν

yν
c

, δb,kl+ν for the difference −ab,kl+ν + a
′

b,kl+ν and i, j

for the couple of integers such that mkl+ν = xiyj .
Since the integer ν − iv − ju + ku is non negative, evaluating the residue at −a−1

b,kl yields the
relation

nbab,klX̃ν · xc

(
−a−1

b,kl

)
=
(
−a−1

b,kl

)ν−iv−ju+ku

δb,kl+ν . (20)

A straightforward computation shows that X̃ν · xc is a polynomial function in xc that is written
the following way

1. if ǫ0 = 1 –that is if the curve y = 0 is invariant– or if ν+l
k is not an integer

X̃ν · xc =
∑

ν(1−u
l )≤w≤ν(1− v

k ), w∈N

pwx
w
c = x

[ν(1− u
l )]+1

c



[ν(1− v

k )]−[ν(1−u
l )]−1∑

w=0

qwx
w
c




2. else

X̃ν · xc =
∑

ν(1− u
l )≤w≤ν(1− v

k )+ 1
k , w∈N

pwx
w
c = x

[ν(1− u
l )]+1

c



[ν(1− v

k )+ 1
k ]−[ν(1−

u
l )]−1∑

w=0

qwx
w
c




Now, in view of the construction of the normal form, the coefficient δb,kl+ν has to be zero for

p− ♯Z ∩

]
k − v

k
(ν − νc),

l − u

l
(ν − νc)

[

values of the parameter b. Thus, according to (20), the polynomial function X̃ν ·xc has the same
number of non-vanishing roots among the values −a−1

b,kl, b = 1, . . . , p. This number is strictly

greater than the degree of the polynomial functions factorized in the above expressions of X̃ν ·xc.
Thus, the latter has to be the zero polynomial function. Therefore, looking again at the relation
(20) yields

∀b, δb,kl+ν = 0.

Hence, the vector field Xν has to be tangent to N
(N)
a which is a contradiction with the hypothesis

ν < pkl+ lǫ0 + kǫ∞.

Finally, we can summarize the previous results by

Theorem 1.19. The moduli space M(k,l),(n) is isomorphic to A/C∗ where the action of C∗ is
defined by

λ · a = λ · (ab,d) = (λd−kl · ab,d)

2 The moduli space of curves

Let C be the partition of M = M(k,l),(n) induced by the classification of curves ∼c.
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2.1 The infinitesimal generators of C

We first recall general facts proved in [8], which are valid in every topological class. Let F be a
foliation defined by an holomorphic function f (or more generally by any generic non dicritical
differential form ω), and let S be the curve defined by f = 0 (or by the separatrix set of ω). Let
E : M → (C2, 0) be the desingularization map of the foliation, and D its exceptional divisor.

We denote by f̃ , F̃ , S̃ the pull back by E on M of f , F or S. The tangent space to the point [S]
in the moduli space of curves (for ∼c) is the cohomological group H1(D,ΘS) where ΘS is the

sheaf on D of germs of vector fields tangent to S̃. The inclusion of ΘF into ΘS induces a map i:

H1(D,ΘF )
i

−→ H1(D,ΘS)

whose kernel represents the directions of unfolding of foliations with trivial associate unfolding
of curves.

Definition 2.1. An open set U of M is a quasi-homogeneous open set (relatively to f) if there

exists an holomorphic vector field RU on U such that RU (f̃) = f̃ .
We can always cover D by two quasi-homogeneous open sets U and V . The cocycle of quasi-
homogeneity [RU,V ] of F is the element of H1(D,ΘF) induced by RU −RV .

Recall that H1(D,ΘF) has a natural structure of O2-module. We have:

Theorem 2.2. [8] The kernel of the map i is generated by the cocycle of quasi-homogeneity, i.e.:

ker(i) = {h · [RU,V ], h ∈ O2}.

Notice that the distribution induced by these directions is integrable and defines a singular
foliation C on A. The point corresponding to the topological model is a singular one: indeed,
this model is quasihomogeneous. Therefore the whole open set U = M is quasi-homogeneous,
and the cocycle [RU,V ] is trivial for this foliation.

LetXm,n be the vector fields onA generated by xmyn·[RU,V ]. Below, we describe some properties
of the distribution induced by the vector fields Xm,n.

Proposition 2.3.

1. The O2-generator of C is given by:

X0,0 = −
1

r

∑

Φ(b,d)∈T∪{(1,kl)}

(d− kl)ab,d

[
∂Fa

∂ab,d

]

a0

where r = kn0 + ln∞ + kl
∑p

b=1 nb

2. For any level d we denote by Xd
m,n the components of the vector field Xm,n on the subspace

Vect{eφ(b,d), b = 1, . . . , p}. For any m, n, Xm,n is quasihomogeneous with respect to the
degree induced by rX0,0. Indeed, we have

[rX0,0, Xm,n] = (km+ ln)Xm,n.

The coefficients of Xν
m,n are quasi-homogeneous with respect to the weight rX0,0 of degree

ν−km− ln−kl. In particular, they only depend on the variables ab,d with d ≤ ν−km− ln.

3. If we decompose the vector field X0,0

X0,0 = −
1

r

∑

d

∑

b

(d− kl)ab,d

[
∂Fa

∂ab,d

]

a0

= −
1

r

∑

i∈Z,j≥1


 ∑

0≤d−kl≤j

∑

b

(d− kl)ab,d

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉


︸ ︷︷ ︸
Γi,j(a)

ei,j .
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then the functions Γi,j (a) are algebraically independent.

4. The vector fields defined by

X̃m,n = akm+ln
2,kl+1Xm,n,

commute with X0,0. Therefore, they induce the distribution C on M.

Proof. 1. The proof is the same as the one of proposition (5.5) of [8] with a very slight change
where we replace (λx, λy) with (λkx, λly) .
2. The proof is also a slight generalization of the proof of Proposition (5.9) in [8].
3. Let us decompose the coefficient Γi,j (a)

Γi,j (a) =
∑

b

jab,kl+j

〈[
∂Fa

∂ab,kl+j

]

a0

, ei,j

〉

︸ ︷︷ ︸
Li,j

+
∑

0≤d−kl<j

∑

b

(d− kl) ab,d

〈[
∂Fa

∂ab,d

]

a0

, ei,j

〉

︸ ︷︷ ︸
Ri,j

.

Following, the proposition (1.14) the function
〈[

∂Fa

∂ab,kl+j

]
a0

, ei,j

〉
depends only on the vari-

ables ab′,kl with Φ(b′, d) = (i, j). The expression
〈[

∂Fa

∂ab,d

]
a0

, ei,j

〉
in Ri,j depends only on the

variables ab,d′ where d′ satisfies

0 ≤ d
′

− kl ≤ j − (d− kl) =⇒ d
′

≤ j + kl − (d− kl) < j + kl.

In view of the proposition (1.12), for a fixed value of j = J , the functions Li,J considered
as linear functions of the variables ab,kl+j are linearly independent because their matrix is an
extraction of consecutive rows and columns in the Vandermonde matrix of 1.12. Thus, they are
also algebraically independent as a whole. Now, let us consider an algebraic relation between
the functions Γi,j (a) given by a polynomial function P

(
{Xi,j}(i,j)∈T

)
where the Xi,j ’s are some

independent variables
P (Γi,j (a)) = 0.

Let J be the greatest integer such that there exists a point (i, J) in T and denote by

{(i0, J), (i1, J), . . . , (iq, J)}

the family of points in T at the level J . The relation P is written

P
(
{Γi,j (a)}j<J , Li0,J (a) +Ri0,J (a) , . . . , Liq,J (a) +Riq ,J (a)

)
= 0.

We fix all the variables ab,d with d−kl < J at a generic value. Then, the above relation becomes
an algebraic relation between the affine forms Li,J (a) +Ri,J (a). Let us decompose the relation
P as follows

P =
∑

I⊂{(ik,J)}k=0..q

QI (Xi,j)XI

where XI =
∏

(i,J)∈I Xi,J . Here, QI depends only on the variables Xi,j with j < J . Since, the

affine form Li,J (a) +Ri,J (a) are algebraically independent, for any I, we have

QI (Γi,j (a)) = 0,

which are algebraic relations between the functions Γi,j (a) with j < J . Therefore, an inductive
argument ensures that P has to be the trivial relation, which proves the property.
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4. We recall that the global moduli space of foliations is obtained from the local one by considering
the weighted action of C∗ on A which is also the flow ofX0,0. Since the X0,0-degree of the variable
a1,kl+1 is equal to 1, we have

[
rX0,0, a

km+ln
2,kl+1Xm,n

]
= rX0,0(a

km+ln
2,kl+1 )Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n]

= −(km+ ln)akm+ln
2,kl+1Xm,n + akm+ln

2,kl+1 [rX0,0, Xm,n] = 0.

2.2 The dimension of the generic strata

The dimension τ of the generic strata of the local moduli space of curves corresponds to the
codimension of the distribution C at a generic point of M. According to proposition 2.3, the
family of coefficients {Γij}i,j of X0,0 is functionally independent: thus, any family of r vector
fields in dimension r whose coefficients are chosen among the Γij ’s is generically free: indeed,
their determinant cannot identically vanish since it would produce a functional relation between
the Γij ’s. Thus, to compute the dimension of the generic strata, we just have to browse the
triangle of moduli and to compute at each level d how many moduli can actually be reached by
the vector fields Xm,n. For the following computations, we recommend to refer at each step to
the example presented in Appendix B, figure 3.

Let us denote by ν(Xm,n) = km+ ln+ kl+ 1 the order of Xm,n. By construction, ν(Xm,n)− kl
is the first level of the triangle of moduli on which Xm,n may have an action: indeed, since
Xm,n = xmynX0,0, its projections on the previous levels vanish. In most cases, Xm,n can be
used to kill a modulus which is exactly at its first level ν(Xm,n) − kl. However, in some cases,
Xm,n cannot be used this way because, for instance, the triangle of moduli has no modulus on
this particular level: therefore, we use Xm,n to kill a modulus on some level above. To take care
of all this possibilities, we introduce a decomposition by blocks of the triangle of moduli and we
prove some related arithmetical properties:

A block Bi in the triangle of moduli is a union of kl consecutive horizontal lines from the line of
index di = ikl+ 1, see Figure 3. We denote by

• nd the ”dimension” of the line of index d which means the number of integer points on this
line.

• Ni =
∑(i+1)kl

d=ikl+1 nd the dimension of the block Bi which is also the number of integer points
in the whole block.

• nmax
i = max{nd, d = ikl+ 1, . . . , (i+ 1)kl} which is the greatest dimension of a line in the

block Bi.

One can easily prove, by using the equations of the edges of the triangle, the following lemma
–see also figure 3– :

Lemma 2.4. 1. We have: Ni+1 = Ni − kl, nmax
i = p− i.

2. For each line of level d of the block Bi, nd = nmax
i or nmax

i − 1.

3. On the first line di of the block Bi, the number ndi reaches the maximum nmax
i .

We denote by:

• qd the number of vector fields Xm,n such that ν(Xm,n) = d

• Qi =
∑(i+1)kl

d=ikl+1 qd

• qmax
i = max{qd, d = ikl + 1, . . . , (i+ 1)kl}.

One can check a similar result to (2.4):
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Lemma 2.5. 1. We have: Qi+1 = Qi + kl, qmax
i = i.

2. For each line of level d of the block Bi, qd = qmax
i or qmax

i − 1.

3. On the first line di of the block Bi, the number qdi reach the maximum qmax
i .

We consider the maximal sequence of blocks Bi such that qmax
i = i < nmax

i = p − i, i.e. the
sequence B1, . . . , B]p/2], where ]p/2] is the strict integer part of p/2. We call critical block, the
block B p

2
when p is even or the unique block B1 that appears when p = 1. This block is going to

be analyzed independently. In figure 3, this block is the second one, and in figure 1, since p = 1,
this block is the sole block B1.
Consider a block Bi such that qmax

i > nmax
i . For each line of index d of this block, since qd = qmax

i

or qmax
i −1, we have: qd ≥ nmax

i ≥ nd. According to the previous functional independence of the
vector fields Xm,n, we can conclude that in this case, their action is transitive on such a block
and the block above.
In the critical block B p

2
or B1, the integers nd − qd for d = di, . . . , di + kl − 1 can only take

the values +1, 0 or -1, starting from the value 0 on the first level of the block. On the latter
level, the action of the Xm,n is thus transitive. We consider the first line of this block on which
nd − qd 6= 0:

• If we have nd − qd = +1, there remains one dimension which cannot be reached by the
action of the Xm,n. We have to count it in the codimension of the generic leaves of C.

• If nd− qd = −1, the action of the vector fields Xm,n is transitive on this level. Furthermore
we have an extra vector field Xm,n such that ν(Xm,n) = d whose higher components will
act on the higher levels. Suppose that there exists a level d′ > d such that nd′ − qd′ = +1.

Therefore, in order to compute the generic dimension of the distribution C on the critical block,
we have to introduce the following non commutative sum :

Definition 2.6. Let rd be a sequence taking its values in {−1, 0,+1}. The notation
∑̃

drd denotes
the value obtained by the following operations:

1. delete the values 0;

2. delete recursively the consecutive values (−1,+1) (but not the consecutive values (+1,−1));

3. after the two first steps, remains a sequence of n consecutive terms with value +1, followed

by m consecutive terms with value -1. We set:
∑̃

drd = n.

Example. In the critical block of Figure 3, the sequence of values nd − qd is:

{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}.

The extra vector field appearing on the 7th position acts on the next level. The next extra vector
fields are unuseful. Therefore, the number of free dimensions under the action of these vector
fields is ∑̃

{0,+1,+1, 0,+1, 0,−1,+1, 0,−1, 0,−1,−1, 0,−1}= 3.

From all the considerations above, we deduce the following:

Theorem 2.7. The dimension of the generic strata of the moduli space for curves is

τ =

d0+]p/2]+kl−1∑

d=d0

(nd − qd) +
∑̃dp/2+kl−1

d=dp/2

(nd − qd),

where nd =] v−k
k (νc − d+ kl)]− [u−l

l (νc − d+ kl)[, qd is the number of positive integer solutions

(m,n) of the equation km + ln + kl + 1 = d, and the second sum
∑̃

is defined above and only
appears if p is even or if p = 1 (in this case, we set d1/2 = kl).

Example. In the topological class (k, l) = (3, 5) and p = 4 of figure 3, we obtain τ = 35.
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2.3 Normal forms for curves

Theorem 2.8. We consider the reduced normal form

Na = xǫ∞yǫ0
p∏

b=1


yk +

∑

{(b, d),Φ(b, d) ∈ T} ∪ {(1, kl)}

ab,dm
d




obtained for the classification of foliations defined by topologically quasi-homogeneous functions.
We obtain a generic unique normal form Nb, b ∈ Cτ for the classification of curves by performing
the following operations on Na:

1. we set: a1,kl+1 = 1;

2. for each level d in a block Bi, i ≤]p/2], we set ab,d = 0 for the first qd coefficients starting
from the rightside of the line d;

3. for each level in the critical block Bp/2 (which appears if p is even), we consider the sequence
of number nd − qd (recall that in this block we have nd − qd ∈ {−1, 0,+1}).

• if nd − qd = 0, we vanish all the coefficients of the line;

• if nd − qd = +1, we set ab,d = 0 for the first coefficient starting from the right side of
the line d;

• for the first lines such that nd− qd = −1 and encountered in the sequence on some line
d, we set ab,d = 0 for the unique coefficient on this line. Furthermore, we set ab,d′ = 0
for the second coefficient on the next line d′ > d such that nd′ − qd′ = +1, if such line
exists.

• for the last line such that nd − qd = −1 without upper line d′ such that nd′ − qd′ = +1
we set ab,d = 0 for the unique coefficient on this line.

4. for each level d in a block Bi, i >]p/2], and every index b, we set ab,d = 0.

Proof. Since the projection X
(d1)
0,0 of X0,0 on the first line of the block B1 is the radial vector field

in the variables ab,d1
, its flow acts by homothety on this level and we can make use of its action

to normalize one coefficient to the value 1. We choose the first one starting from the right side.
On all the higher levels of index d > d1 and for the qd vector fields Xm,n such that ν(Xm,n) = d,
we have

X(d)
m,n =

∑

b

Γm,n(ad0
, ad1

)
∂

∂ab,d

in which Γm,n(ad0
, ad1

) only depends on the variables ab,d0
and ab,d1

. This is a consequence of the
relation Xm,n = xmyn ·X0,0 and of the proposition 1.14. Therefore this vector field is constant
with respect to the variables of the level d > d1. Its flow acts by translation and we make use of
this flow (and the independence property) to vanish qd coefficients.
In the critical block, if there is an extra vector field Xm,n on a line d such that nd − qd = −1, we

make use of the component X
(d′)
m,n to act on the next level d′ such that nd′ − qd′ = +1. Suppose

that this level is the next one (d′ = d + 1). This means that we have to consider the action of
the second non vanishing component of Xm,n. According to the proposition 1.14, this one will
depend on the variables ab,d0

, ab,d1
and ab,d1+1. If we have to skip two lines it will depend on the

variables ab,d0
, ab,d1

, ab,d1+1 and ab,d1+2, and so on. Therefore, it turns out that the components

of X
(d′)
m,n will only depend on variables ab,d with d < d′. Its flow still acts by translation and we

make use of it to vanish the second coefficient of this line.

We give in Appendix B the generic normal form obtained in the topological class (k, l) = (3, 5)
and p = 4.
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2.4 An example: the case yn + xn+1

In [17], O. Zariski computes the dimension of the generic stratum of the moduli space of the
curve

yn + xn+1 = 0

for n ≥ 2. We are going to apply our strategy to recover this dimension.
Let us consider k = n and l = n+1. In this situation, the fundamental Bezout relation is written

n · n− (n− 1) · (n+ 1) = 1.

Thus, u = n, v = n− 1, νc = n2 − n− 1, and the triangle T is delimited by the two lines

j − ni = n2 − n− 1

j − (n+ 1)i = n2 − n− 1.

On a level j, this triangle bounds an interval

]l(j), r(j)[=]−
n2 − n− 1− j

n
,−

n2 − n− 1− j

n+ 1
[.

For j ≥ 0, all these intervals have length less than 1, and we have:

l(j) ∈ Z ⇔ ∃α ∈ N, j = −1 + (α+ 1)n

r(j) ∈ Z ⇔ ∃α ∈ N, j = 1 + α(n+ 1).

Therefore, the interval ]l(j), r(j)[ contains an integer if and only if there exists α in N such that

1 + α(n+ 1) < j < −1 + (α+ 1)n.

Thus we have nj = 1 for the above values of the index j, and nj = 0 else. Now we have for each
k ≥ 0

ν(Xk,0)− d0 = kn+ 1, ν(Xk−1,1)− d0 = kn+ 2, · · · , ν(X0,k)− d0 = kn+ k + 1

where d0 = n(n + 1). This gives qj = 1 for the above values of the index j and 0 else. We
summarize these results in figure 1.

From the previous remarks the sequence nj − qj , j ≥ 0 takes the following values:

0,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=2,...,n−2

, 0, 0,−1,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=n+3,...,2n−2

, 0, 0,−1,−1,−1, 1, 1, . . . , 1︸ ︷︷ ︸
j=2n+4,...,3n−2

· · ·

Since there is only one branch, there is only one block and it is a critical block. Therefore we
have

τ = Σ̃j≥0(nj − qj) = (n− 4) + (n− 6) + (n− 8) + · · ·+ (0 or 1)

=
∑

α≥0

sup(n− 4− 2α, 0)

=
(n− 4)(n− 2)

4
if n is even

=
(n− 3)2

4
if n is odd

which are the formulas given in [17].
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X0,2

X1,1

X2,0

X0,1

X1,0

j = n − 2

j = n − 1

j = n + 2

j = n

j = n + 1

j = 2n + 3

j = 2n + 2

j = 2n + 1

j = 2n

j = 2n − 1

j = 2n − 2

j = 1 X0,0

Figure 1: The case yn + xn+1

3 Appendix A: reduction of singularities of a topologically

quasi-homogeneous function

Let f be a topologically quasihomogeneous function of weight (k, l) with p cuspidal branches, and
multiplicities (n∞, n0, n1, . . . , np). From Lemma (1.1), we can consider a system of coordinates
(x, y) such that f is written

f(x, y) = cxn∞yn0
(
yk + xl + · · ·

)n1
(
yk + a2,klx

l + · · ·
)n2

· · ·
(
yk + ap,klx

l + · · ·
)
np

where the dots contains terms of (k, l)-degree bigger than kl.
Let θf be the vector field with an isolated singularity defined by

θf =
1

g.c.d.
(

∂f
∂x ,

∂f
∂y

) ·

(
−∂f

∂x

∂

∂y
+
∂f

∂y

∂

∂x

)
(21)

The vector field θf can be also defined as a dual of the 1-form f red df
f for the standard volume

form dx ∧ dy

dx ∧ dy (θf , ·) = f red df

f
(22)

where
f red(x, y) = cxy

(
yk + xl + · · ·

) (
yk + a2,klx

l + · · ·
)
· · ·
(
yk + ap,klx

l + · · ·
)
.
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3.1 The desingularization

The desingularization of f is exactly the same as its topological quasihomogeneous model fqh

fqh(x, y) = cxn∞yn0
(
yk + xl

)n1
(
yk + a2,klx

l
)n2

· · ·
(
yk + ap,klx

l
)
np .

The process of desingularization E : M → (C2, 0) can be inductively described as follows: the
map E is written E1 ◦ Ẽ where

• E1 is the standard blow-up of (0, 0) in C2.

• Ẽ is the process of reduction of E∗
1fqh which is a quasi-homogeneous function of degree

(k, l − k).

Therefore, the process of desingularization will follow the Euclide algorithm for the couple (k, l).
In particular, the exceptional divisor is a chain of compact components CP

1 such that each of
them is linked exactly with two others except the extremal components. There is exactly one
component called the central component along which is attached the strict transform of the cus-
pidal branches of fqh.

0 0 0∞ ∞ ∞

x0y0
xc−1yc−1xc

ycxNyN

U∞ U0

Dc

Figure 2: Desingularization of a topologically quasi-homogeneous function.

In what follows we will keep the following notations:

Notation 3.1. • The integers u and v are defined by:

uk − vl = 1, 0 ≤ u < l, 0 ≤ v < k.

• The numbering D1, . . . , DN of the components of D is a geometric order of the chain, from
the one which contains the strict transform of y = 0, to the one which contains the strict
transform of x = 0. It is not the ”historical” order of the process.

• On each Di, we denote by 0 the intersection point with Di−1, or with the strict transform
of y = 0 for D1, and by ∞ the intersection with Di+1 or with the strict transform of x = 0
for DN .

• Each component Di is covered by two charts (xi−1, yi−1) and (xi, yi) whose domains Vi−1

and Vi contains (Di, 0) and (Di,∞). The change of coordinates are given by

xi−1 = xeii yi, yi−1 = x−1
i

where −ei is the self intersection of the component Di.

• On the principal component Dc, we choose the two charts such that each domain Vc−1, Vc,
contains all the strict transforms of the cuspidal branches.

• We define the covering of D by the two open sets:

U0 = ∪c−1
i=0Vi, U∞ = ∪N

i=cVi.
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Proposition 3.2. The desingularization map E is given in the chart (xc, yc) by

(x, y) = (xk−v
c ykc , x

l−u
c ylc).

The blowing down is given in this chart by:

xc =
xl

yk
, yc =

xu−l

yv−k
.

Proof. We prove this result by an induction on the number of blowing up’s of the minimal
desingularization of f . For one blow-up, we have: k = l = 1, u = 1, v = 0 therefore, the
formula is valid in this case. After one blow-up E1, the germ of E∗

1f at its singular point along
the exceptional divisor is a quasi-homogeneous function in the class (k, l − k). Notice that if
uk− vl = 1 is the Bézout identity of (k, l), the corresponding Bézout identity for the new pair is
(u− v)k− v(l− k) = 1. Let us suppose that the formula of Proposition (3.2) is valid for the pair
(k, l − k). Therefore, after one blowing-up we have in the first chart

x1 = xk−v
c ykc , y1 = xl−k−u+v

c yl−k
c . (23)

Thus, we obtain:
x = x1 = xk−v

c ykc , y = x1y1 = xl−u
c ylc.

From this, we easily obtain the inverse formulas defining the blowing-down.

3.2 Computing multiplicities

We first recall the classical result which allows us to compute the multiplicities of a function
along the components Di of the exceptional divisor D of its desingularization [4]: we consider
the matrix of intersections J defined for i 6= j by Ji,j = 1 if the two components Di and Dj meet
together, Ji,j = 0 otherwise, and Ji,i = −ei, where −ei is the self intersection of each component.
For any component Di, let ni be the number of strict branches of f ◦ E meeting Di, counted
with their multiplicities, and let B be the column matrix induced by these numbers.

Proposition 3.3. The multiplicities mi of (f ◦ E) along each Di define a column matrix M
which satisfy

JM +B = 0.

In the quasi-homogeneous case, sinceD = D1∪· · ·∪Dc−1∪Dc∪Dc+1∪· · ·∪DN , the column matrix
B is here: (n0, 0, . . . , 0, nc, 0, . . . , 0, n∞)t, where nc =

∑p
b=1 nb is on index c. The intersection

matrix is given by:

J =




−e1 1 0 · · · 0
1 −e2 1 0 · · · 0
0 1 −e3 1 0 · · · 0
...
0 · · · 0 1 −eN−1 1
0 · · · 0 1 −eN




Therefore we obtain the multiplicities of f by M = −J−1B (see example below).

We compute now the multiplicities of the desingularized foliation, i.e. of the vector field E∗θf ,
where θf is the vector field (21) with isolated singularity, defining the foliation F .

Proposition 3.4. 1. The multiplicities νi of E
∗θf along each component Di define a column

matrix N which satisfy
JN + C = 0,

where C = (ε0 − 1, 0, . . . , 0, p, 0, . . . , 0, ε∞ − 1)t, with p on index c.
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2. The multiplicity of E∗θf on the principal component Dc of D is

νc = klp− k − l+ kε∞ + lε0.

3. The multiplicities of E∗θf on the (y0 = 0) (strict transform of the x-axis) and on (xN = 0)
(strict transform of the y-axis) are ε0 − 1 and ε∞ − 1.

Proof. Let V = (vi) be the multiplicities of E∗dx ∧ dy along each Di. From

E∗(dx ∧ dy)(E∗θf , ·) = (f red ◦ E)d(f ◦ E)/(f ◦ E)

we obtain:
vi + νi = ri + (mi − 1)−mi = ri − 1

where ri = ν(f red ◦E,Di). We consider the ”axis function”: a = xy. Let A = (ai) be the column
matrix of multiplicities of a ◦E along each Di. We claim that vi = ai − 1. Indeed, let (xi, yi) be
the chart induced by (x, y) and E around the origin of Di. Since E is here monomial in these
coordinates, there exist positive integers p, q, r, s, such that:

E∗dx ∧ dy = a ◦ E · E∗(
dx

x
∧
dy

y
) = a ◦ E · (ps− qr)

dxi
xi

∧
dyi
yi

from which we deduce vi = ai− 1. Therefore we obtain A+N = R, where R, A are the matrices
of multiplities of (f red ◦E) and a ◦E along each Di. Now, from the previous proposition applied
to the functions f red and a we have: JR + Bred = 0, with Bred = (ε0, 0, . . . , 0, p, 0, . . . , 0, ε∞)t

and JA+B′ = 0 where B′ is the column matrix such that b′i = 1 for i = 1 or i = N and b′i = 0
otherwise. We obtain:

JN = J(R −A) = −Bred +B′ = −C.

For the principal component, by making use of the formulas of proposition (3.2), we obtain:

νc = νyc(E
∗θf ) = rc − 1− vc = (klp+ kε∞ + lε0 − 1)− (k + l− 1)

= klp+ kε∞ + lε0 − k − l.

On the branch (y0 = 0), we have νy0
(E∗f red) = ε0 and νy0

(a ◦ E) = 1. Therefore,

νy0
(E∗θf ) = νy0

(
E∗f red df

f

)
− νy0

(E∗dx ∧ dy) = ε0 − 1.

We obtain the multiplicity on (xN = 0) by a similar computation.

Example. For (k, l) = (3, 5), the matrix of intersections is:

J =




−3 1 0 0
1 −1 1 0
0 1 −2 1
0 0 1 −3




and we have B = (n0, nc, 0, n∞)t, where nc =
∑p

b=1 nb, and C = (ε0 − 1, p, 0, ε∞ − 1). Therefore
we obtain:

M =




2n0 + n∞ + 5nc

5n0 + 3n∞ + 15nc

3n0 + 2n∞ + 9nc

n0 + n∞ + 3nc


 ; N =




2ε0 + ε∞ + 5p− 3
5ε0 + 3ε∞ + 15p− 8
3ε0 + 2ε∞ + 9p− 5
ε0 + ε∞ + 3p− 2


 .

The multiplicity of the foliation on the principal component D2 is

νc = 5ε0 + 3ε∞ + 15p− 8.
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3.3 Acyclic covering of D for the sheaf ΘF

We consider the covering {U0, U∞} defined in (3.1).

Lemma 3.5. There exists a global section T0 (resp. T∞) of the sheaf ΘF of germs of vector
fields tangent to E∗F on U0 (resp. U∞) which admits only isolated singularities.

Proof. From Proposition (3.4), the following holomorphic vector fields

θ0 =
E∗θf

xν10 y
ε0−1
0

, θi =
E∗θf

x
νi+1

i yνii
, i = 1, . . . , c− 1,

have isolated singularities. We claim that they glue together on their common domains, defining
a global section T0 of ΘF on U0. Indeed, from the previous relation JN + C = 0, we have :

−e1ν1 + ν2 + ε0 − 1 = 0

νi−1 − eiνi + νi+1 = 0, i = 2, . . . , c− 1

Therefore, using the change of coordinates between two consecutive charts, we have

xν21 y
ν1
1 = y−ν2

0 xν10 y
e1ν1
0 = xν10 y

ε0−1
0

x
νi+1

i yνii = y
−νi+1

i−1 xνii−1y
eiνi
i−1 = xνii−1y

νi−1

i−1 , i = 1, . . . , c− 1.

The proof is similar for constructing T∞ on U∞.

Proposition 3.6. We have H1(U0,ΘF) = H1(U∞,ΘF) = 0.

Proof. The previous section T0 with isolated singularities allows us to identify the sheaf ΘF |U0
to

OM |U0
. Since the Chern class of each branch is negative, a direct computation with the change

of charts shows that H1(U0,OM ) = 0. The proof is similar for U∞.

4 Appendix B: normal forms for (k, l) = (3, 5) and p = 4

According to the figure draw below, the analytical normal form for the topological class of

(
y3 + x5

)n1
(
y3 + a2x

5
)n2
(
y3 + a3x

5
)n3
(
y3 + a4x

5
)n4

is given by the following family of functions with 78 parameters
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Na =
(
y3 + x5 + a1,16x

2y2 + a1,19x
3y2
)n1

×
(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,21x
7 + a2,22x

4y2 + a2,23x
6y + a2,24x

8 + a2,25x
5y2 + a2,26x

7y

+a2,28x
6y2 + a2,29x

8y + a2,31x
7y2 + a2,34x

8y2
)n2

×
(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,27x
9 + a3,28x

6y2 + a3,29x
8y + a3,30x

10 + a3,31x
7y2 + a3,32x

9y

+a3,33x
11 + a3,34x

8y2 + a3,35x
10y + a3,36x

12 + a3,37x
8y2 + a3,38x

11y

+a3,39x
13 + a3,40x

9y2 + a3,41x
12y + a3,43x

10y2 + a3,44x
13y + a3,46x

12y2

+a3,49x
13y2

)n3
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y + a4,36x
12 + a4,38x

11y + a4,39x
13 + a4,41x

12y

+a4,42x
14 + a4,44x

13y + a4,45x
15 + a4,47x

14y + a4,48x
16 + a4,50x

15y

+a4,51x
17 + a4,53x

16y + a4,54x
18 + a4,56x

17y + a4,59x
18y
)n4

.

Moreover, the normal forms for the generic curve are given by the 35-parameters family

Na =
(
y3 + x5 + x2y2

)
×

(
y3 + a2,15x

5 + a2,16x
2y2 + a2,17x

4y + a2,18x
6 + a2,19x

3y2 + a2,20x
5y

+a2,23x
6y
)
×

(
y3 + a3,15x

5 + a3,16x
2y2 + a3,17x

4y + a3,18x
6 + a3,19x

3y2 + a3,20x
5y

+a3,21x
7 + a3,22x

4y2 + a3,23x
6y + a3,24x

8 + a3,25x
5y2 + a3,26x

7y

+a3,28x
6y2 + a3,29x

8y
)
×

(
y3 + a4,15x

5 + a4,17x
4y + a4,18x

6 + a4,20x
5y + a4,21x

7 + a4,23x
6y

+a4,24x
8 + a4,26x

7y + a4,27x
9 + a4,29x

8y + a4,30x
10 + a4,32x

9y

+a4,33x
11 + a4,35x

10y
)
.
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−
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Figure 3: Moduli triangle of the topological class (k, l) = (3, 5) and p = 4
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ton. Contribution à l’étude des singularités du point de vue du polygone de Newton, Univer-
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2, Astérisque S.M.F. 261 (2000)

[13] J.F. Mattei -Modules de feuilletages holomorphes singuliers: I équisingularité, Invent. Math.
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