Construction of foliations with prescribed separatrix.

Yohann Genzmer \dagger
\dagger I.M.T., Université Paul Sabatier 118 Route de Narbonne 31062 Toulouse Cedex
(e-mail: genzmer@math.ups-tlse.fr) (Received 25/05/06)

Abstract. We build a germ of singular foliation in \mathbb{C}^{2} with analytical class of separatrix and holonomy representations prescribed. Thanks to this construction, we study the link between the moduli space of a foliation and the moduli space of its separatrix.

Introduction.

Considering the problem of moduli for a germ of singular holomorphic foliation \mathcal{F} in \mathbb{C}^{2} leads naturally to point out many kinds of topological and analytical invariants. The invariants of first kind come from the reduction of singularities $E:(\mathcal{M}, \mathcal{D}) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ of the foliation:

1. the topological class of the manifold \mathcal{M}; this invariant is a combinatorial one;
2. the analytical class of the pointed divisor \mathcal{D};
3. the analytical class of the manifold \mathcal{M};

The invariants of second kind are more related to the foliation itself: the collection of projective holonomy representations defined over each component of the divisor \mathcal{D}, the so called holonomy pseudo-group. A natural problem is to know if a coherent data of above invariants correspond to a concrete foliation. The first step toward this question is a theorem of A. Lins-Neto [7], which establishes the possibility of constructing a foliation with the invariant (1) and projective holonomy prescribed. In his thesis [12], M. Seguy shows that it is possible to fix the invariant (2). The aim of this article is to prove that one can even prescribe the invariant (3) and the holonomy invariants in the construction of a foliation.
The first three sections of this paper are devoted to prove the above result. The main tool of our construction is the equisingular unfolding of foliations. Basically, it is a deformation of foliation obtained as the family of planar sections of a codimension one foliation on a manifold of higher dimension. Such deformation is topologically trivial and preserves the holonomy. It was introduced in [8] to study the local moduli space of a foliation. It is not easy to find in a constructive way a non
analytically trivial deformation of this type: except in the very special case where the foliation admits a first integral, no example is known. One is lead to study the cohomological interpretation in order to build non-trivial equisingular unfoldings. In the first section, we fix a manifold \mathcal{M}, which is built over the reduction tree of a foliation and we define a very special class of manifold denoted by $\operatorname{Glu}_{0}(\mathcal{M}, \mathcal{U}, Z)$ related to \mathcal{M}. In the second section, \mathcal{M} is supposed to be foliated by \mathcal{F}. A property of cobordism type is pointed out and allows us to detect the existence of a foliation on any element of $\operatorname{Glu}_{0}(\mathcal{M}, \mathcal{U}, Z)$. This foliation will automatically be linked to \mathcal{F} by an equisingular unfolding. The theorem (3.1) states that, under the general hypothesis of being of second kind (2.2), the cobordism property holds for any element of $\mathrm{Glu}_{0}(\mathcal{M}, \mathcal{U}, Z)$. In the third section, we deduce the following result from the cobordism property

Theorem 0.1. Let \mathcal{F} supposed to be of second kind. If \mathcal{M} and \mathcal{M}^{\prime} are topologically equivalent then there exists an holomorphic foliation on \mathcal{M}^{\prime} linked to \mathcal{F} by equisingular unfolding.

A trivial but maybe more explicit corollary of the above theorem is the following:

THEOREM 0.2. Let ω_{0} be a germ of singular holomorphic 1 -form of second kind at $0 \in \mathbb{C}^{2}$ and $E: \mathcal{M} \rightarrow \mathbb{C}^{2}$ its singularities reduction. For any blowing-up process E^{\prime} with same dual tree as E, there exists a 1-form ω^{\prime} at $0 \in \mathbb{C}^{2}$ linked to ω by an equisingular unfolding such that the reduction of singularities of ω^{\prime} is exactly E^{\prime}.

The last section is devoted to studying the relations between the moduli of a foliation and its invariant analytical curves, the so called separatrix. After establishing a property of finite determination, we use the existence theorem to prove the following

THEOREM 0.3. Let \mathcal{F}_{0} be a non-dicritical generalized curve at $0 \in \mathbb{C}^{2}$. For any curve $S \subset \mathbb{C}^{2}, 0$ topologically equivalent to $\operatorname{Sep}\left(\mathcal{F}_{0}\right)$, there exists a germ of foliation \mathcal{F} at $0 \in \mathbb{C}^{2}$ topologically equivalent to \mathcal{F} with $\operatorname{Sep}(\mathcal{F})=S$.

The previous theorem can be expressed in terms of moduli spaces: the natural map $\mathrm{M}(\mathcal{F}) \rightarrow \mathrm{M}(\operatorname{Sep}(\mathcal{F}))$ is onto, where $\mathrm{M}($.$) refers to the moduli space.$

1. The categories $\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$.

The aim of this section is to describe a family of sub-categories in the marked trees category (1.1). These categories are built thanks to a gluing process (1.3) over a fixed tree and present some good computational properties (1.5).
1.1. The marked trees category. A blowing-up process over \mathbb{C}^{2} is a commutative diagram
where \mathcal{M}^{j} is an analytical two-dimensional manifold; Σ^{j} is a finite subset of the exceptional divisor $\mathcal{D}^{j}:=\left(E^{1} \circ \cdots \circ E^{j}\right)^{-1}\left(S^{0}\right) ; E^{j+1}$ is the standard blowing-up centered at S_{j}. The set Σ_{j} is called the set of singular points. The set of irreducible components of \mathcal{D}^{j} is denoted by $\operatorname{Comp}\left(\mathcal{D}^{j}\right)$. The integer h is called height of the blowing-up process and $\left(\mathcal{M}^{h}, \mathcal{D}^{h}, \Sigma^{h}\right)$ the top of the process. The composed map $E_{h}:=E^{1} \circ \cdots \circ E^{h}$ is called the total morphism of the process.
Blowing-up process appears naturally in the desingularization theory. This article focus on isolated singularities of holomorphic foliations in \mathbb{C}^{2}. In this context, the Seidenberg's theorem $[\mathbf{1 3}][\mathbf{1 0}]$ states that there exists a blowing-up process $\left(E^{j}, \mathcal{M}^{j}, \Sigma^{j}, S^{j}\right)_{j=1 \ldots h}$ reducing the singularities of \mathcal{F}. A singularity of foliation is reduced when given by a holomorphic 1 -form with linear part

$$
\lambda x \mathrm{~d} y+\beta y \mathrm{~d} x, \quad \beta \neq 0 \quad \frac{\lambda}{\beta} \notin \mathbb{Q}_{<0}
$$

In the previous diagram, Σ^{j} refers to the singularities of $E^{j^{*}} \mathcal{F}$ and S^{j} to the nonreduced ones. The foliation $E^{h^{*}} \mathcal{F}$ is required to have only reduced singularities.
More generally, we call tree a triplet $(\mathcal{M}, \mathcal{D}, \Sigma)$, where \mathcal{M} is a two dimensional holomorphic manifold germ with a closed normal crossing curve \mathcal{D}. Each irreducible component of \mathcal{D} is biholomorphic to $\mathbb{P}^{1} ; \Sigma$ is a finite subset of \mathcal{D} that contains the singular locus of \mathcal{D}. Let us denote by $\langle\mathcal{M}, \mathcal{D}\rangle$ the matrix

$$
\left[<D, D^{\prime}>\right]_{D, D^{\prime} \in \operatorname{Comp}(\mathcal{D})}
$$

where $<D, D^{\prime}>$ is the intersection number of the components D and D^{\prime}. It's called the tree intersection matrix.

The marked tree notion was introduced in [12] in order to compare the foliation semi-local invariants. Let $\left(\mathcal{M}_{0}^{h}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$ be the top of a blowing-up process. We call indexation of $(\mathcal{M}, \mathcal{D}, \Sigma)$ related to $\left(\mathcal{M}_{0}^{h}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$ a couple of two bijections

$$
\sigma: \Sigma_{0}^{h} \xrightarrow{\sim} \Sigma \quad \kappa: \operatorname{Comp}\left(\mathcal{D}_{0}^{h}\right) \xrightarrow{\sim} \operatorname{Comp}(\mathcal{D})
$$

such that for any irreducible component $D \subset \mathcal{D}_{0}^{h}, \sigma\left(D \cap \Sigma_{0}^{h}\right)=\kappa(D) \cap \Sigma$. Moreover, let us denote by $\Sigma \check{\times} \mathcal{D}$ the following set

$$
\{(s, D) \mid s \in D\} \subset \Sigma \times \operatorname{Comp}(\mathcal{D})
$$

Definition 1.1. A marking of $(\mathcal{M}, \mathcal{D}, \Sigma)$ related to $\left(\mathcal{M}_{0}^{h}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$ is an indexation (σ, κ) such that κ conjugates the intersection matrix:

$$
\left[<\kappa(D), \kappa\left(D^{\prime}\right)>\right]_{D, D^{\prime} \in \operatorname{Comp}\left(\mathcal{D}_{0}^{h}\right)}=\left\langle\mathcal{M}_{0}^{h}, \mathcal{D}_{0}^{h}\right\rangle
$$

The marked weighted dual tree, denoted by $\mathbb{A}^{*}[\mathcal{M}, \mathcal{D}, \Sigma]$, is a couple of data: the weighted dual graph whose incidence matrix is the intersection matrix and the tree indexation. Two marked weighted dual trees are topologically equivalent when there exists a bijection between the two graphs which respect the intersection matrix and the indexations. Two trees with topologically equivalent marked weighted dual trees are topologically equivalent as topological spaces. Two trees $(\mathcal{M}, \mathcal{D}, \Sigma)$ and $(\mathcal{N}, \mathcal{E}, \Delta)$ with marking (σ, κ) and (ρ, θ) are conjuguated when there is a biholomorphism germ H defined on a neighborhood of \mathcal{D} such that:

1. $H(\mathcal{D})=\mathcal{E}, \quad H(\Sigma)=\Delta$;
2. $\quad H^{*} \sigma=\rho, \quad H^{*} \kappa=\theta$.

The assumption (2) is called marked conjugation compatibility. Let us denote by $\mathfrak{A}(\mathcal{M}, \mathcal{D}, \Sigma)$ the category of marked trees by $(\mathcal{M}, \mathcal{D}, \Sigma)$ with marked compatible conjugation as arrows. It's not hard to prove the following proposition by induction on the height:

Proposition 1.1. Let $(\mathcal{N}, \mathcal{E}, \Delta) \in \mathfrak{A}(\mathcal{M}, \mathcal{D}, \Sigma)$. Then there exists a blowing -up process whose marked top is conjugated to $(\mathcal{N}, \mathcal{E}, \Delta)$.

The above proposition (1.1) allows us to extend in an easy way all natural invariants of blowing-up process to the category of marked trees. Afterwards, we are going to define the component multiplicity.
Let us denote by $\mathcal{O}\left(\mathcal{M}_{0}^{h}\right)$ the sheaf of germs of holomorphic function over \mathcal{M}_{0}^{h}. Let $i_{\mathcal{D}_{0}^{h}}$ be the divisor inclusion $\mathcal{D}_{0}^{h} \subset \mathcal{M}_{0}^{h}$. We define

$$
\mathcal{O}_{\mathcal{M}_{0}^{h}}:=i_{\mathcal{D}_{0}^{h}}^{-1}\left(\mathcal{O}\left(\mathcal{M}_{0}^{h}\right)\right)
$$

The sheaf $\mathcal{O}_{\mathcal{M}_{0}^{h}}$ is the restriction of \mathcal{O} over \mathcal{D}_{0}^{h}. Let D be an irreducible component of the divisor. We denote

$$
I_{D} \subset \mathcal{O}_{\mathcal{M}_{0}^{h}}
$$

the ideal subsheaf of germs of function vanishing along D. Let us consider the subsheaf $\mathfrak{M} \subset \mathcal{O}_{\mathcal{M}_{0}^{h}}$ pull-back of the maximal ideal at $0 \in \mathbb{C}^{2}$. The sheaf \mathfrak{M} is locally free and generated by two global sections. Furthermore, we have the following decomposition

$$
\mathfrak{M}=\left.\mathcal{O}\left(-\sum_{D \in \operatorname{Comp}(\mathcal{D})} \nu(D) D\right)\right|_{\mathcal{D}}
$$

Here, $\nu(D)$ is called the multiplicity of the component D. One can see that it is well determined by the intersection matrix. When $(\mathcal{M}, \mathcal{D}, \Sigma)$ is a general tree marked by $\left(\mathcal{M}_{0}^{h}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$, the multiplicity of D is naturally the multiplicity of the component associated by the indexation in \mathcal{D}_{0}^{h}.
1.2. \quad The sheaves $\mathcal{G}_{Z}^{n}, n \geq 0$.

From now on, we fix an element $(\mathcal{M}, \mathcal{D}, \Sigma)$ in $\mathfrak{A}\left(\mathcal{M}_{0}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$.

In order to define some sub-categories of $\mathfrak{A}\left(\mathcal{M}_{0}, \mathcal{D}_{0}^{h}, \Sigma_{0}^{h}\right)$ we are interested in, we introduce a family of sheaves of groups over \mathcal{D}. This construction leads to a key property (1.1).
In order to get through a technical difficulty, which appears in the final induction (2.1.3), the tree is enhanced with a cross: let \mathcal{M}^{h} be the top of a blowing-up process with $\mathcal{M}^{h} \stackrel{\phi}{\simeq} \mathcal{M}$ given by the proposition (1.1); let E_{h} be the total morphism of the process and $E:=\phi \circ E_{h}$.
Definition 1.2 (Cross) A cross on \mathcal{M} is the strict transform $Z=E^{*} Z_{0}$ of a single $Z_{0}=\left\{Z_{1}\right\}$ or of a couple $Z_{0}=\left\{Z_{1}, Z_{2}\right\}$ of germs of smooth transversal curves at the origin of \mathbb{C}^{2}.

Throughout this article, we will often have to describe objects in coordinates. Adapted coordinates will always refer to (x, y) local coordinates such that

- in the neighborhood of a regular point of $\mathcal{D},\{x=0\}$ is a local equation of \mathcal{D};
- in the neighborhood of a singular point of $\mathcal{D},\{x y=0\}$ is a local equation of \mathcal{D};
- in the neighborhood of the cross, $\{x=0\}$ is a local equation of \mathcal{D} and $\{y=0\}$ an equation of Z.
We consider $\operatorname{Aut}(\mathcal{M}, Z)$ the groups sheaf over \mathcal{D} of germs of automorphisms defined in a neighborhood of points of \mathcal{D} such that

$$
\Phi_{\mid \mathcal{D}}=\mathrm{Id}, \quad \Phi_{\mid Z}=\mathrm{Id}
$$

Let us have a closer look at the form of the $\operatorname{Aut}(\mathcal{M}, Z)$ sections in an adapted coordinate system. At a regular point c of $\mathcal{D} \cup Z$, the stack $\operatorname{Aut}(\mathcal{M}, Z)_{c}$ is the set of germs $(x, y) \mapsto(x(\alpha+A), y+x B)$ where A and B belong to $\mathbb{C}\{x, y\}, A(0,0)=0$ and $\alpha \in \mathbb{C}^{*}$. At a singular point s of $\mathcal{D} \cup Z$, the $\operatorname{stack} \operatorname{Aut}(\mathcal{M}, Z)_{s}$ is the set of germs $(x, y) \mapsto(x(1+y A), y(1+x B))$ where A and B belong to $\mathbb{C}\{x, y\}$.

We will be naturally led to look at the infinitesimal neighborhood of the divisor. To take care of the cross, we consider a filtration of $\mathcal{O}_{\mathcal{M}}$ defined by $\mathfrak{M}_{Z}^{n}=I_{Z} \cdot \mathfrak{M}^{n}, n \geq$ 1. In the same way, we denote $\Im_{Z} \subset \mathcal{O}_{\mathcal{M}}$ the sheaf

$$
\begin{equation*}
\mathfrak{I}_{Z}=\left.\mathcal{O}\left(-Z-\sum_{D \in \operatorname{Comp}(\mathcal{D})} D\right)\right|_{\mathcal{D}} \tag{2}
\end{equation*}
$$

Definition 1.3 (Infinitesimal crossed tree) We call $n^{\text {th }}$ infinitesimal crossed tree the analytical space

$$
\mathcal{M}^{[n], Z}=\left(\mathcal{D}, \mathcal{O}_{\mathcal{M}} / \mathfrak{M}_{Z}^{n}\right)
$$

The neighborhood of order 0 is $\mathcal{M}^{[0], Z}=\left(\mathcal{D}, \mathcal{O}_{\mathcal{M}} / \mathfrak{I}_{Z}\right)$. We also consider the following ringed spaces:

$$
\mathcal{M}^{\underline{n}, Z}=\left(\mathcal{D}, \mathfrak{I}_{Z} / \mathfrak{I}_{Z} \mathfrak{M}_{Z}^{n}\right) \quad \mathcal{M}^{0, Z}=\left(\mathcal{D}, \mathfrak{I}_{Z} / \mathfrak{I}_{Z}^{2}\right)
$$

The sequence of canonical imbeddings

$$
\ldots \mathcal{M}^{[p], Z} \hookrightarrow \mathcal{M}^{[p-1], Z} \hookrightarrow \ldots \hookrightarrow \mathcal{M}^{[1], Z} \hookrightarrow \mathcal{M}^{[0], Z} \hookrightarrow \mathcal{M}
$$

induces a natural filtration of the sheaf $\operatorname{Aut}(\mathcal{M}, Z)$:
Definition 1.4. We denote by $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ the subsheaf of $\operatorname{Aut}(\mathcal{M}, Z)$ of germs that coincide with Id when restricted to the infinitesimal neighborhood of order n.

Now, we study the form of $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ sections in coordinates in order to construct a special morphism of sheaves.
At a regular point c of $\mathcal{D} \cup Z$: let p be the multiplicity of the component containing c. In an adapted coordinate system, the elements of $\operatorname{Aut}_{n}(\mathcal{M}, Z)_{c}$ can be written $\phi(x, y)=\left(x+x^{p n} A, y+x^{p n} B\right)$, where A, B belong to $\mathbb{C}\{x, y\}$. Let \mathcal{J}_{n} be the function defined by

$$
\begin{aligned}
& \phi(x, y)=\left(x+x^{p n} A, y+x^{p n} B\right) \in \operatorname{Aut}_{n}(\mathcal{M}, Z)_{c} \\
& \stackrel{\mathcal{J}_{n}}{\longleftrightarrow} x^{p n-1} A \in\left(\mathcal{O}_{\mathcal{M}[n], z}\right)_{c}
\end{aligned}
$$

One can see that \mathcal{J}_{n} is a morphism of groups that doesn't depend on the adapted coordinates.
At a singular point s of \mathcal{D} : let p and q be the multiplicities of the local components. The elements of $\operatorname{Aut}_{n}(\mathcal{M}, Z)_{s}$ are thoe of the form $\phi(x, y)=$ $\left(x+x^{p n} y^{q n} A, y+x^{p n} y^{q n} B\right)$. In the same way, we define an intrisic group morphism by

$$
\begin{aligned}
\phi=\left(x+x^{p n} y^{q n} A, y+x^{p n}\right. & \left.y^{q n} B\right) \in \operatorname{Aut}_{n}(\mathcal{M}, Z)_{s} \\
& \stackrel{\mathcal{J}_{n}}{\longleftrightarrow} x^{p n-1} y^{q n-1}(y A+x B) \in\left(\mathcal{O}_{\mathcal{M}^{[n], z}}\right)_{s}
\end{aligned}
$$

At an attachment point z of Z : the multiplicity of the local component is 1 since the components of Z are smooth curves downstairs at the origin. The elements of $\operatorname{Aut}_{n}(\mathcal{M}, Z)_{z}$ are of the form $\phi(x, y)=\left(x+x^{n} y A, y+x^{n} y B\right)$ and the morphism is defined by

$$
\begin{aligned}
\phi(x, y)=\left(x+x^{n} y A, y+x^{n} y B\right) & \in \operatorname{Aut}_{n}(\mathcal{M}, Z)_{z} \\
& \stackrel{\mathcal{J}_{n}}{\longrightarrow} x^{n-1}(y A+x B) \in\left(\mathcal{O}_{\mathcal{M}^{[n]}, z}\right)_{z}
\end{aligned}
$$

Finally, we get a morphism of sheaves defined by its previous local description $\operatorname{Aut}_{n}(\mathcal{M}, Z) \stackrel{\mathcal{J}_{n}}{\longmapsto} \mathcal{O}_{\mathcal{M}^{[n], Z}}$. We have likewise a morphism of sheaves \mathcal{J}_{0} defined, for example, near a regular point by

$$
\begin{equation*}
\phi=(x+x A, y+x B) \in \operatorname{Aut}_{0}(\mathcal{M}, Z)_{c} \stackrel{\mathcal{J}_{0}}{\longmapsto} A \in\left(\mathcal{O}_{\mathcal{M}}[0], z\right)_{c} . \tag{3}
\end{equation*}
$$

Definition 1.5. We denote \mathcal{G}_{Z}^{n} the subsheaf of $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ kernel of the morphism \mathcal{J}_{n}.

REMARK 1.1. At any point c of the divisor, which is not a point of attachment of Z, the two decreasing filtrations $\left\{\mathcal{G}_{Z}^{n}\right\}_{n \geq 0}$ and $\left\{\operatorname{Aut}_{n}(\mathcal{M}, Z)\right\}_{n \geq 0}$ are equivalent in the following sense: one has the following sequence of inclusions,

$$
\ldots \subset\left(\mathcal{G}_{Z}^{p}\right)_{c} \subset\left(\operatorname{Aut}_{p}(\mathcal{M}, Z)\right)_{c} \subset\left(\mathcal{G}_{Z}^{p-1}\right)_{c} \subset \ldots
$$

Hence, the main difference between the two sheaves \mathcal{G}_{Z}^{n} and $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ is located near the cross. A section of \mathcal{G}_{Z}^{p-1} near the cross is written in adapted coordinates

$$
(x, y) \mapsto\left(x+x^{p} y A, y+x^{p} y^{2} B\right)
$$

whereas a section of $\operatorname{Aut}_{p}(\mathcal{M}, Z)$ is given by

$$
(x, y) \mapsto\left(x+x^{p} y A, y+x^{p} y B\right)
$$

Hence, the order of tangency along the curve $\{y=0\}$ of the second factor is bigger for sections of \mathcal{G}_{Z}^{p-1} than for sections of $\operatorname{Aut}_{p}(\mathcal{M}, Z)$. Later on, this difference is going to be very important.

The lemma (1.1) gives an intrisic criterion for a germ to be a section of \mathcal{G}_{Z}^{n} :
Lemma 1.1. Let ϕ a germ of section of $\operatorname{Aut}(\mathcal{M}, Z)$. The following properties are equivalent:

1. $\quad \phi$ is a section of \mathcal{G}_{Z}^{n}.
2. ϕ is the identity restricted to $\mathcal{M}^{[n], Z}$ and to \mathcal{M}^{n}, Z.

The following property shows the interest of the sheaves \mathcal{G}_{Z}^{n} we introduce: basically, these are sheaves of Lie groups associated to some sheaves of Lie algebras which are natural in our context.

Property 1.1 (Key property) Let X be a germ of vector field tangent to \mathcal{D} and to Z. Let f be a germ of \mathfrak{M}_{Z}^{n} section. Then the flow of $f \cdot X$ is a germ of \mathcal{G}_{Z}^{n} section.

Proof : The property can be read on the form of flow in coordinates. Let (x, y) be local adapted coordinates. If Y is a germ of vector field, we denote by $Y^{(k)}$ the $k^{t h}$ power of Y as differential operator on \mathcal{O}_{0}^{2}; for any $t \in[0,1]$, the flow of Y at time t can be expanded in a neighborhood of the origin as:

$$
e^{t Y}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} Y^{(k)}
$$

In the case of a divisor singular point, putting $Y=f \cdot X$, an induction on k shows that there exists A_{k}, B_{k}, sections of \mathfrak{M}_{Z}^{n+k}, such that $Y^{(k)}(x, y)=$ $\left(x A_{k}(x, y), y B_{k}(x, y)\right)$. Hence, at time 1, the flow has the form $(x, y) \longmapsto(x, y)+$ $x^{p n} y^{q n}(x A, y B)$ where p and q are the multiplicities of the local components of \mathcal{D}. The latter automorphism is a \mathcal{G}_{Z}^{n} section.
1.3. The tree gluing. Thanks to the sheaf $\operatorname{Aut}(\mathcal{M}, Z)$, we are going to introduce a process called gluing on \mathcal{M}. This construction will allow us to define a large class of trees with same divisor analytical type. These trees will inherit a canonical marking and a cross.
1.3.1. Distinguished covering. Let us define a particular type of open covering of the divisor. Open sets of that covering will play the role of gluing "bricks "

Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in \mathbb{I}=\mathbb{I}_{0} \cup \mathbb{I}_{1}}$ be covering of \mathcal{D} constitued of two kinds of open sets:

- if i belongs to \mathbb{I}_{0}, U_{i} is the trace on \mathcal{D} of a neighborhood of a unique singular.
- if i belongs to \mathbb{I}_{1}, U_{i} is an irreducible component of \mathcal{D} deprived of the singular points of \mathcal{D}.

Definition 1.6. Every such a covering is called distinguished when there is no 3 -intersection.

Distinguished coverings contain Stein open sets having fundamental systems of Stein neighborhoods. From now on, a covering denoted by \mathcal{U} will always supposed to be distinguished. The spaces $\mathcal{Z}^{0}(\mathcal{U}, \mathcal{G})$ and $\mathcal{Z}^{1}(\mathcal{U}, \mathcal{G})$ are the sets of 0-cocycles and 1-cocycles in the sense of Cech for the sheaf \mathcal{G} and the covering \mathcal{U}. Let us consider

$$
\mathbb{I}_{0} \check{\times} \mathbb{I}_{1}=\left\{(i, j) \in \mathbb{I}_{0} \times \mathbb{I}_{1} \mid U_{i} \cap U_{j} \neq \emptyset\right\}
$$

We define $\tilde{\mathcal{Z}}^{1}:=\prod_{(i, j) \in \mathbb{I}_{0} \check{\times} \mathbb{I}_{1}} \mathcal{Z}^{0}\left(U_{i} \cap U_{j}\right.$, Aut $\left.(\mathcal{M}, Z)\right)$. Since a distinguished covering does not have any 3 -intersection, $\tilde{\mathcal{Z}}^{1}$ and $\mathcal{Z}^{1}(\mathcal{U}, \operatorname{Aut}(\mathcal{M}, Z))$ are isomorphic. Hence, if no confusion is possible, we will keep on denoting by \mathcal{Z}^{1} the space $\tilde{\mathcal{Z}}^{1}$.
1.3.2. Gluing. Thanks to distinguished covering, we are able to glue the open sets of that covering by identifying points according to a 1-cocycle in $\operatorname{Aut}(\mathcal{M}, Z)$. Let $\left(\phi_{i j}\right)$ be a 1 -cocycle in $\mathcal{Z}^{1}(\mathcal{U}, \operatorname{Aut}(\mathcal{M}, Z))$. We define:

$$
\mathcal{M}\left[\phi_{i j}\right]=\bigcup_{i} \mathcal{U}_{i} \times\{i\} /\left(\{x\} \times\{i\} \sim\left\{\phi_{i j}(x)\right\} \times\{j\}\right),
$$

where \mathcal{U}_{i} is a neigborhood of U_{i} in \mathcal{M} such that $\phi_{i j}$ is represented as an automorphism of \mathcal{M} along $U_{i} \cap U_{j}$. The manifold we get comes with an embedding

$$
\begin{equation*}
\mathcal{D} \hookrightarrow \mathcal{M}\left[\phi_{i j}\right] \tag{4}
\end{equation*}
$$

whose image is denoted by $\mathcal{D}\left[\phi_{i j}\right]$ and $\mathcal{M}\left[\phi_{i j}\right]$ is considered as a germ of neighborhood of $\mathcal{D}\left[\phi_{i j}\right]$.

Definition 1.7. The germ of manifold $\mathcal{M}\left[\phi_{i j}\right]$ is called the gluing of \mathcal{M} along \mathcal{U} by the cocycle $\left(\phi_{i j}\right)$.

The gluing of a marked crossed tree comes naturally with a marking and a cross: the marking is the direct image by the embedding (4) of the marking σ; the cross is the direct image of Z by the quotient map for the gluing relation. Such a tree, marking and cross are respectively denoted by

$$
\left(\mathcal{M}\left[\phi_{i j}\right], \mathcal{D}\left[\phi_{i j}\right], \Sigma\left[\phi_{i j}\right]\right), \sigma\left[\phi_{i j}\right], \text { and } Z\left[\phi_{i j}\right]
$$

In the same way, the direct image of the covering \mathcal{U} by the quotient map is a distinguished covering of the new tree and is denoted by $\mathcal{U}\left[\phi_{i j}\right]$.
We associate to any gluing the data of morphisms on infinitesimal neigborhood generalizing the embedding (4). The intrisic description (1.1) of $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ sections reveals the following property

Property 1.2. Let n be an integer and $\mathcal{N}=\mathcal{M}\left[\phi_{i j}\right]$ be a gluing of \mathcal{M} by a cocycle in $\mathcal{Z}^{1}\left(\mathcal{U}, \operatorname{Aut}_{n}(\mathcal{M}, Z)\right)$. Then there are canonical isomorphisms of analytical and ringed spaces

$$
\begin{aligned}
\rho_{\mathcal{N}}^{[n]}: & \mathcal{M}^{[n], Z} \xrightarrow{\sim} \mathcal{N}^{[n], Z\left[\phi_{i j}\right]} \\
\rho_{\mathcal{N}}^{\underline{n}}: & \mathcal{M} \underline{n}, Z \xrightarrow{\sim} \mathcal{N} \underline{n}, Z\left[\phi_{i j}\right]
\end{aligned}
$$

1.4. The $\operatorname{Glu}(\mathcal{M}, Z, \mathcal{U})$ categories. Let p be an integer. Let us consider the marked crossed tree built by a succession of gluings

$$
\begin{equation*}
\mathcal{M}\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right] \tag{5}
\end{equation*}
$$

where

- $\left(\phi_{i j}^{1}\right)$ is a 1-cocyle of \mathcal{G}_{Z}^{n};
- for $k=2, \ldots, p,\left(\phi_{i j}^{k}\right) \in \mathcal{Z}^{1}\left(\mathcal{U}\left[\phi_{i j}^{1}\right] \ldots\left[\phi_{i j}^{k-1}\right], \mathcal{G}_{Z\left[\phi_{i j}^{1}\right] \ldots\left[\phi_{i j}^{k-1}\right]}^{n}\right)$.

Following the property (1.2), we have canonical isomorphisms

$$
\begin{array}{ll}
\rho_{\mathcal{M}\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right]}^{[n]} & \mathcal{M}^{[n], Z} \xrightarrow{\sim} \mathcal{M}\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right]^{[n], Z\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right]}, \\
\rho_{\mathcal{M}\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right]}^{n}: & \mathcal{M}^{\underline{n}, Z \xrightarrow{\sim} \mathcal{M}\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right], Z\left[\phi_{i j}^{1}\right]\left[\phi_{i j}^{2}\right][\ldots]\left[\phi_{i j}^{p}\right]} . \tag{7}
\end{array}
$$

Definition 1.8. The $\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$ category is the category whose objects are marked crossed trees built as (5) with the data of isomorphisms (6) and (7). Arrows are biholomorphic germs Φ between two trees \mathcal{N} and \mathcal{P} that respect marking and commute with these isomorphisms:

$$
\Phi \circ \rho_{\mathcal{N}}^{[n]}=\rho_{\mathcal{P}}^{[n]} \quad \text { and } \quad \Phi \circ \rho_{\mathcal{N}}^{n}=\rho \frac{n}{\mathcal{P}}
$$

If \mathcal{N} and \mathcal{P} are isomorphic in $\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$, we denote

$$
\mathcal{N} \stackrel{G_{n}}{\sim} \mathcal{P}
$$

1.5. Computations in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$. To compute in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$, we state three properties to manipulate gluings towards their defining cocycles. In view of intrisic description of \mathcal{G}_{n}^{Z} sections, it's easy to check the following property:
Property 1.3. Let \mathcal{N} and \mathcal{P} be in $\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$ defined respectively by the 1cocyles $\left(\rho_{i j}\right)$ and $\left(\gamma_{i j}\right)$. The following properties are equivalent:

1. $\mathcal{N} \stackrel{G_{n}}{=} \mathcal{P}$.
2. There exists a 0 -cocyle $\left(\phi_{i}\right)$ in \mathcal{G}_{Z}^{n} such that $\rho_{i j}=\phi_{j} \gamma_{i j} \phi_{i}^{-1}$.

Proof: Suppose that \mathcal{N} and \mathcal{P} are isomorphic in $\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$ and denote by ϕ the isomorphism. Taking the restriction of ϕ on each open set of the distinguished covering of \mathcal{M}, one finds a 0 -cocycle $\left(\phi_{i}\right)$ in $\operatorname{Aut}(\mathcal{M}, Z)$, which provides the cohomological relation

$$
\begin{equation*}
\rho_{i j}=\phi_{j} \gamma_{i j} \phi_{i}^{-1} . \tag{8}
\end{equation*}
$$

Since the isomorphism ϕ commutes with the canonical isomorphisms associated to \mathcal{N} and \mathcal{P}, the 0 -cocycle $\left(\phi_{i}\right)$ has its values in \mathcal{G}_{Z}^{n}.

REmARK 1.2. Note that if \mathcal{N} and \mathcal{P} are simply conjugated as trees, there still exists a 0-cocycle $\left(\phi_{i}\right)$ with values in $\operatorname{Aut}(\mathcal{M}, Z)$ verifying the cohomological relation (8). However, to ensure that $\left(\phi_{i}\right)$ belongs to the \mathcal{G}_{Z}^{n} class, one needs the assumption of commutativity with both isomorphisms (6) and (7) in the definition of the $\mathrm{Glu}_{n}(\mathcal{M}, Z, \mathcal{U})$ categories.

The family of maps $I_{i}: U_{i} \subset \mathcal{M} \rightarrow \mathcal{M}\left[\phi_{i j}\right]$ induces the following canonical isomorphism

$$
\zeta^{0}:\left\{\begin{array}{ccc}
\mathcal{Z}^{0}(\mathcal{U}, \operatorname{Aut}(\mathcal{M}, Z)) & \longrightarrow & \mathcal{Z}^{0}\left(\mathcal{U}\left[\phi_{i j}\right], \operatorname{Aut}\left(\mathcal{M}\left[\phi_{i j}\right], Z\left[\phi_{i j}\right]\right)\right) \\
\left(\phi_{i}\right) & \longrightarrow & \left(I_{i} \phi_{i} I_{i}^{-1}\right)
\end{array} .\right.
$$

We are able to define such an isomorphism for 1-cocycles thanks to the $\tilde{\mathcal{Z}}^{1}$ spaces (1.3.1): we define ζ^{1} as the following isomorphism,

$$
\begin{array}{clc}
\tilde{\mathcal{Z}}^{1} & \rightarrow & \tilde{\mathcal{Z}}^{1}\left[\phi_{i j}\right]:=\prod_{(i, j) \in \mathbb{I}_{0} \check{\times} \mathbb{I}_{1}} \mathcal{Z}^{0}\left(U_{i} \cap U_{j}\left[\phi_{i j}\right], \operatorname{Aut}\left(\mathcal{M}\left[\phi_{i j}\right], Z\left[\phi_{i j}\right]\right)\right) \\
\left(\phi_{i j}\right) & \rightarrow & \left(I_{j} \phi_{i j} I_{j}^{-1}\right)
\end{array}
$$

Now, one can state the following useful property:
Property 1.4. Let $\left(\phi_{i j}\right)$ and $\left(\psi_{i j}\right)$ be in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{n}\right)$. Then

$$
\mathcal{M}\left[\phi_{i j}\right]\left[\zeta^{1} \psi_{i j}\right] \stackrel{\mathrm{G}_{n}}{\sim} \mathcal{M}\left[\phi_{i j} \psi_{i j}\right] .
$$

1.5.1. Stability property. In this subsection, we identify in the gluing category a class of isomorphic trees: basically, if the gluing cocycle is sufficiently tangent to the identity along the divisor, then the glued tree is isomorphic to the initial one.

Property 1.5 (Stability) For n big enough, the image of

$$
\operatorname{Glu}_{n}(\mathcal{M}, Z, \mathcal{U}) \longrightarrow \operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})
$$

is a set of trees conjugated to \mathcal{M} in the category $\operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})$.

This property can be stated in the following way: the map

$$
\begin{equation*}
H^{1}\left(\mathcal{D}, \mathcal{G}_{Z}^{n}\right) \longrightarrow H^{1}\left(\mathcal{D}, \mathcal{G}_{Z}^{1}\right) \tag{9}
\end{equation*}
$$

is constant equal to $[I d]_{\mathcal{G}_{Z}^{1}}$. First, let us establish the equivalent statement for the initial sheaf $\operatorname{Aut}_{n}(\mathcal{D}, Z)$.

Lemma 1.2. For any interger n, there is an integer $\delta(n)$ bigger than n such that the image of the map

$$
H^{1}\left(\mathcal{D}, \operatorname{Aut}_{\delta(n)}(\mathcal{M}, Z)\right) \rightarrow H^{1}\left(\mathcal{D}, \operatorname{Aut}_{n}(\mathcal{M}, Z)\right)
$$

is trivial.
Proof : The proof of a similar result can be found in [11]. Here, we reproduce the main arguments. One can suppose \mathcal{M} to be the top of a blowing-up process. Let $p \geq n$ and $\left(\phi_{i j}\right)$ be an element of $Z^{1}\left(D, \operatorname{Aut}_{p}(\mathcal{M}, Z)\right)$. There exists a germ of biholomorphism θ between $\mathcal{M}\left[\phi_{i j}\right]$ and the top of a blowing-up process \mathcal{M}^{\prime}. Let us denote by Z^{\prime} the induced cross on \mathcal{M}^{\prime}. The map θ induces an isomorphism $\theta^{[p]}$ between the infinitesimal crossed neighborhoods $\mathcal{M}\left[\phi_{i j}\right]^{[p], Z\left[\phi_{i j}\right]}$ and $\mathcal{M}^{\prime[p], Z^{\prime}}$. Hence, $\theta^{[p]} \circ \rho_{\mathcal{M}\left[\phi_{i j}\right]}^{[p]}$ identifies infinitesimal neighborhoods of both top blowing-up process. One can show that for $p=\delta(n)$ big enough, $\theta^{[p]} \circ \rho_{\mathcal{M}\left[\phi_{i j}\right]}^{[p]}$ can be extended as a biholomorphism T of trees such that

$$
T^{[n]}=\theta^{[n]} \circ \rho_{\mathcal{M}\left[\phi_{i j}\right]}^{[n]}
$$

Hence, $H=T^{-1} \circ \theta$ is a germ of biholomorphism between $\mathcal{M}\left[\phi_{i j}\right]$ and \mathcal{M} with $H^{[n]} \circ \rho_{\mathcal{M}\left[\phi_{i j}\right]}^{[n]}=\mathrm{Id}^{[n]}=\rho_{\mathcal{M}}^{[n]}$. This is equivalent to the triviality of $\left(\phi_{i j}\right)$ in $H^{1}\left(\mathcal{D}, \operatorname{Aut}_{n}(\mathcal{M}, Z)\right)$.
Proof : (Property 1.5) Let $\left(\phi_{i j}\right)$ be a 1-cocycle in $\mathcal{G}_{Z}^{\delta(n)}$. Its trivialisation in $\operatorname{Aut}_{n}(D, Z)$ can be written

$$
\begin{equation*}
\phi_{i j}=\phi_{i} \circ \phi_{j}^{-1} \tag{10}
\end{equation*}
$$

We are going to correct this trivialisation in order to obtain one with values in \mathcal{G}_{Z}^{1}. Let us denote by p_{1} and p_{2} the points of attachement of the cross. The cross is the strict pulled-back of a couple of transversal curves at the origin in \mathbb{C}^{2} which define a local system of coordinates. Near p_{1} and p_{2}, there are two local adapted coordinates systems $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that E takes the following forms: $E\left(x_{1}, y_{1}\right)=\left(x_{1}, y_{1} x_{1}^{N_{1}}\right)$ and $E\left(x_{2}, y_{2}\right)=\left(x_{2} y_{2}^{N_{2}}, y_{2}\right)$. The components of the cocycle ϕ_{1} and ϕ_{2} defined near p_{1} and p_{2} can be expanded as:

$$
\begin{gathered}
\phi_{1}\left(x_{1}, y_{1}\right)=\left(x_{1}+x_{1}^{n} y_{1} U_{1}\left(x_{1}, y_{1}\right), y_{1}+x_{1}^{n} y_{1} V_{1}\left(x_{1}, y_{1}\right)\right) \\
\phi_{2}\left(x_{2}, y_{2}\right)=\left(x_{2}+y_{2}^{n} x_{2} U_{2}\left(x_{2}, y_{2}\right), y_{2}+y_{2}^{n} x_{2} V_{2}\left(x_{2}, y_{2}\right)\right)
\end{gathered}
$$

Let ϕ_{0} be the germ of biholomorphism near 0 in \mathbb{C}^{2} defined by

$$
\phi_{0}(x, y)=\left(x+x y^{n} U_{2}(0, y), y+y x^{n} V_{1}(x, 0)\right)
$$

For n big enough, ϕ_{0} can be raised to an automorphism ϕ that fixes each point of the divisor and the cross. Moreover, for any point c different from p_{1} and p_{2}, the evaluation through \mathcal{J}_{1} provides the equality $\mathcal{J}_{1}\left(\phi^{-1}\right)_{c} \equiv 0$. Now, the choice of ϕ ensures that $\mathcal{J}_{1}\left(\phi_{1}\right)_{p_{1}} \equiv \mathcal{J}_{1}(\phi)_{p_{1}}$ and that $\mathcal{J}_{1}\left(\phi_{2}\right)_{p_{2}} \equiv \mathcal{J}_{1}(\phi)_{p_{2}}$. Finally, $\mathcal{J}_{1}\left(\phi_{i} \circ \phi^{-1}\right) \equiv 0$. Hence, the 0 -cocycle $\left(\phi_{i} \circ \phi^{-1}\right)$ is a trivialisation of $\left(\phi_{i j}\right)$ in \mathcal{G}_{Z}^{1}.

REMARK 1.3. Since the points of attachment of the cross can be chosen outside of any 2-intersection of the distinguished covering, in view of the remark (1.1), there is a canonical embedding

$$
\begin{equation*}
\mathcal{Z}^{1}\left(\mathcal{U}, \operatorname{Aut}_{\delta(n)+1}(\mathcal{M}, Z)\right) \hookrightarrow \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{\delta(n)}\right) \tag{11}
\end{equation*}
$$

Hence, the proof of the property (1.5) would work if staterd with $\left(\phi_{i j}\right) \in$ $\mathcal{Z}^{1}\left(\mathcal{U}, \operatorname{Aut}_{\delta(n)+1}(\mathcal{M}, Z)\right)$. Nevertheless, the embedding (11) cannot induce a map in cohomology.

2. Cobordism in $\operatorname{Glu}(\mathcal{M}, Z, \mathcal{U})$.

From now on, we assume the marked tree \mathcal{M} to be foliated by \mathcal{F}. We are going to define a cobordism notion in order to detect in any element of $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$ the existence of foliation linked to \mathcal{F} in the sense of equisingular unfolding. For a precise definition of equisingular unfolding, we refer to [8]. We assume the singularities of \mathcal{F} to be reduced.

Definition 2.1 (Cross adapted to \mathcal{F}) Let Z be a cross on \mathcal{M}. Z is said to be adapted to \mathcal{F} when each Z_{i} verifies at least one of the following properties:

1. Z_{i} is a separatrix of \mathcal{F}.
2. Z_{i} is attached at a regular point of \mathcal{F}.

In the latter case, Z_{i} will be transversal to the foliation.
From now on, the crosses will be always adapted. Let us denote by S the union of analytical invariant curves of \mathcal{F}, which are transversal to the divisor. By extension, the curve S is called the separatrix of \mathcal{F}. Now, we consider two natural sheaves:

- the sheaf $\mathfrak{X}_{S, Z}$ is a sheaf over \mathcal{D}. At each point of \mathcal{D}, its fiber is the space of germs of holomorphic vector fields of \mathcal{M} that are tangent to \mathcal{D}, to the separatrix and to the cross;
- the sheaf $\mathfrak{X}_{\mathcal{F}, Z} \subset \mathfrak{X}_{S, Z}$ is the subsheaf of germs of vector fields tangent to the foliation.

From now on, $e^{t X}$ refers to the flow of the vector field X at time t. One notices that, if X is a section of $\mathfrak{I}_{Z} \mathfrak{X}_{S, Z}$ then, for all $t \in \mathbb{C}, e^{t X}$ exists as a germ and defines a section of $\operatorname{Aut}(\mathcal{M}, Z)$.

Definition 2.2 (Elementary cobordism) Let $\mathcal{N} \in \operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$.
\mathcal{N} is elementary \mathcal{F}-cobordant to \mathcal{M} when there exists a 1-cocycle $\left(T_{i j}\right)$ of $Z^{1}\left(\mathcal{U}, \mathfrak{I}_{Z} \mathfrak{X}_{\mathcal{F}, Z}\right)$ such that \mathcal{N} and $\mathcal{M}\left[e^{T_{i j}}\right]$ are isomorphic in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$.

Here, \mathcal{N} inherit a canonical foliation defined by

$$
\mathcal{F}\left[e^{T_{i j}}\right]:=\left.\coprod_{i} \mathcal{F}\right|_{\mathcal{U}_{i}} /_{x \sim e^{T_{i j}} x}
$$

Moreover, a rigidity result of Grauert [8] implies that the deformation $t \rightarrow \mathcal{M}_{t}=$ $\mathcal{M}\left[e^{(t) T_{i j}}\right], t \in \overline{\mathbb{D}}$ carries an equisingular unfolding between \mathcal{F} and $\mathcal{F}\left[e^{T_{i j}}\right]$ in the sense of [8]: to be more specific, the foliation of codimension 1 in a manifold of dimension 3 defined by

$$
\mathcal{F}_{\overline{\mathbb{D}}}=\left.\coprod_{i} \mathcal{F}\right|_{\mathcal{U}_{i}} \times \overline{\mathbb{D}} /_{(x, t) \sim\left(e^{(t) T_{i j}} x, t\right)} \quad \text { on } \quad \coprod_{i} \mathcal{U}_{i} \times \overline{\mathbb{D}} /_{(x, t) \sim\left(e^{(t) T_{i j}} x, t\right)}
$$

comes with a transversal fibration π, which is the projection on the second factor. The family of foliated fibers of π is an equisingular unfolding. The fiber at 0 is the tree \mathcal{M} foliated by \mathcal{F} and the fiber at 1 is the tree $\mathcal{M}\left[e^{T_{i j}}\right]$ foliated by $\mathcal{F}\left[e^{T_{i j}}\right]$.
Definition 2.3 (General cobordism) Let \mathcal{N} be in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$. \mathcal{N} is said to be \mathcal{F}-cobordant to \mathcal{M} if there exists a finite sequence of 1 -cocyles $\left(T_{i j}^{k}\right)_{k=1, \ldots, N}$ such that the two following conditions are verified:

1. for any $p=0, \ldots, N-1$, let $\mathfrak{X}_{\mathcal{F}_{p}, Z_{p}}$ be the sheaf over $\mathcal{D}\left[e^{T_{i j}^{1}}\right][\cdots]\left[e^{T_{i j}^{p}}\right]$ of germs of vector field tangent to the following foliation and cross

$$
\mathcal{F}_{p}=\mathcal{F}\left[e^{T_{i j}^{1}}\right][\cdots]\left[e^{T_{i j}^{p}}\right], \quad Z_{p}=Z\left[e^{T_{i j}^{1}}\right][\cdots]\left[e^{T_{i j}^{p}}\right]
$$

We assume $\left(T_{i j}^{p+1}\right)$ is a 1-cocycle with values in $\mathfrak{X}_{\mathcal{F}_{p}, Z_{p}}$.
2. $\quad \mathcal{N} \stackrel{\mathrm{G}_{0}}{=} \mathcal{M}\left[e^{T_{i j}^{1}}\right][\cdots]\left[e^{T_{i j}^{N}}\right]$.

We summarize this definition with the following notation:

$$
\mathcal{M} \stackrel{\mathcal{F}_{1}, Z_{1}}{-} \mathcal{M}_{2} \stackrel{\mathcal{F}_{2}, Z_{2}}{-} \cdots \stackrel{\mathcal{F}_{N-1}, Z_{N-1}}{-} \mathcal{M}_{N} \stackrel{G_{0}}{\sim} \mathcal{N}
$$

2.1. Construction of cobordism. A foliation \mathcal{F} is a non-dicritical generalized curve when all its singularities are reduced with two non-vanishing eigenvalues and when the divisor is invariant.

Proposition 2.1. Let \mathcal{F} be a non-dicritical generalized curve on a marked tree \mathcal{M} crossed by Z. Any element in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$ is \mathcal{F}-cobordant to \mathcal{M}.

The proof points out three different steps : first, we establish the result at an infinitesimal level, then for the sub-category $\operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})$ and finally, thanks to an induction on the height of the tree, for the $\operatorname{Glu}_{0}(\mathcal{M}, \mathcal{Z}, \mathcal{U})$ category.
2.1.1. Step 1: the infinitesimal level. Let H be a biholomorphism between \mathcal{M} and the top of a blowing-up process \mathcal{M}^{h}. The induced foliation \mathcal{F}^{h} on \mathcal{M}^{h} is defined by a germ of holomorphic 1-form ω at the origin of \mathbb{C}^{2}. We define $E:=E_{h} \circ H$ where E_{h} is the total morphism of the process (1.1). The global 1-form $E^{*} \omega$ defines a morphism of sheaves

$$
X \in \mathfrak{X}_{S, Z} \rightarrow E^{*}(\omega)(X) \in \mathcal{O}_{\mathcal{M}}
$$

Let a reduced equation of the separatrix of ω be denoted by f. For any component D of \mathcal{D}, we denote by $\nu_{D}(f)$ and $\nu_{D}(\omega)$ the respective vanishing orders of $E^{*}(f)$ and $E^{*}(\omega)$ along the component D.
Lemma 2.1. There exists an exact sequence of sheaves

$$
0 \longrightarrow \mathfrak{M}_{Z}^{n} \mathfrak{X}_{\mathcal{F}, Z} \longrightarrow \mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z} \xrightarrow{E^{*} \omega(.)} \mathfrak{M}_{Z}^{n}(f \circ E) \longrightarrow 0 .
$$

Here, $(f \circ E)$ is the sheaf of ideals generated by $f \circ E$ in $\mathcal{O}_{\mathcal{M}}$.
Proof: Let us show that there exists an exact sequence of sheaves

$$
\begin{equation*}
0 \longrightarrow \mathfrak{X}_{\mathcal{F}, Z} \longrightarrow \mathfrak{X}_{S, Z} \xrightarrow{E^{*} \omega(.)}(f \circ E) \longrightarrow 0 \tag{12}
\end{equation*}
$$

The exactness of the first part in (12) is obvious since $\mathcal{X}_{\mathcal{F}, Z}=\operatorname{ker}\left(E^{*} \omega\right)$. Let us compute the image of $E^{*} \omega($.$) . In view of [4] and as \mathcal{F}$ is a non-dicritical generalized curve, for any component D of \mathcal{D}, one has the following relation

$$
\nu_{D}(f)=\nu_{D}(\omega)+1
$$

Hence, near a divisor singular point s there exist local coordinates such that $f \circ E=U x^{p+1} y^{q+1}$ and $E^{*} \omega=V x^{p} y^{q}(\lambda x(1+A) \mathrm{d} y+y(1+B) \mathrm{d} x)$, where U and V are unities. Let g be any element of $\left(\mathcal{O}_{\mathcal{M}}\right)_{s}$. The vector field $X=y g \frac{U}{V} \partial y$ belongs to $\left(\mathfrak{X}_{S, Z}\right)_{s}$ and $E^{*} \omega(X)=g f \circ E$. At a regular point c of the foliation, there exists coordinates such that $f \circ E=U x^{p+1}$ and $E^{*} \omega=V x^{p} \mathrm{~d} x$, where U and V are unities. The vector field $X=x g \frac{U}{V} \partial x$ belongs to $\left(\mathfrak{X}_{S, Z}\right)_{c}$ and verifies $E^{*} \omega(X)=g f \circ E$ for any germ of function g. The other cases can be studied in the same way. Now, the sheaf \mathfrak{M}_{Z}^{n} is locally principal. Hence, the sequence (12) multiplied by \mathfrak{M}_{Z}^{n} remains exact.

Lemma 2.2. For any $n \geq 1, H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n}\right)=0$.
Proof: The long exact sequence associated to the short exact one $0 \rightarrow \mathfrak{M}_{Z}^{n} \rightarrow$ $\mathfrak{M}^{n} \rightarrow \mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n} \rightarrow 0$ is written $([\mathbf{6}])$

$$
\cdots \rightarrow H^{0}\left(\mathcal{D}, \mathfrak{M}^{n}\right) \xrightarrow{\delta} H^{0}\left(\mathcal{D}, \mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}\right) \rightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n}\right) \rightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}^{n}\right) \cdots
$$

The sheaf \mathfrak{M}^{n} is generated by its global sections. Hence $H^{1}\left(\mathcal{D}, \mathfrak{M}^{n}\right)=0$ since $H^{1}\left(\mathcal{D}, \mathcal{O}_{\mathcal{M}}\right)=0[8]$. In order to conclude, it remains to prove that δ is onto. Outside the points p_{1} and p_{2} of attachment of Z, the sheaf I_{Z} coincides with $\mathcal{O}_{\mathcal{M}}$, therefore the fiber of $\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}$ is trivial. Let us consider the local coordinates systems $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ near p_{1} and p_{2} introduced in the proof of (1.5). We have

$$
\left(\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}\right)_{p_{1}} \simeq x_{1}^{n} \mathbb{C}\left\{x_{1}, y_{1}\right\} / x_{1}^{n} y_{1} \mathbb{C}\left\{x_{1}, y_{1}\right\} \simeq x_{1}^{n} \mathbb{C}\left\{x_{1}\right\}
$$

In the same way, $\left(\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}\right)_{p_{2}}$ is isomorphic to $y_{2}^{n} \mathbb{C}\left\{y_{2}\right\}$. Hence, the space of $\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}$ global sections is identified to $x_{1}^{n} \mathbb{C}\left\{x_{1}\right\} \bigoplus y_{2}^{n} \mathbb{C}\left\{y_{2}\right\}$. Let $S=x_{1}^{n} a_{1}\left(x_{1}\right) \oplus$ $y_{2}^{n} a_{2}\left(y_{2}\right)$ be in the previous set. The germ of function defined by $s(x, y)=$ $x^{n} a_{1}(x)+y^{n} a_{2}(y)$ induces a global section $s \circ E$ of \mathfrak{M}^{n}. Now, the map E takes the
following form in coordinates: $E\left(x_{1}, y_{1}\right)=\left(x_{1}, y_{1} x_{1}^{N_{1}}\right)$ and $E\left(x_{2}, y_{2}\right)=\left(x_{2} y_{2}^{N_{2}}, y_{2}\right)$. Hence $s \circ E$ verifies the following equalities

$$
\begin{aligned}
(s \circ E)_{p_{1}} & \equiv x_{1}^{n} a_{1}\left(x_{1}\right)+y_{1}^{n} x_{1}^{n N_{1}} a_{2}\left(y_{1} x_{1}^{n_{1}}\right) \equiv x_{1}^{n} a_{1}\left(x_{1}\right) \in\left(\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}\right)_{p_{1}} \\
(s \circ E)_{p_{2}} & \equiv x_{2}^{n} y_{2}^{n N_{2}} a_{1}\left(x_{2} y_{2}^{N_{2}}\right)+y_{2}^{n} a_{2}\left(y_{2}\right) \equiv y_{2}^{n} a_{2}\left(x_{2}\right) \in\left(\mathfrak{M}^{n} / \mathfrak{M}_{Z}^{n}\right)_{p_{2}}
\end{aligned}
$$

that means $\delta(s \circ E)=S$ and ends the proof.

REMARK 2.1. In view of the previous proof of lemma 2.1, the exactness of the sequence (12) holds when replacing the sheaf \mathfrak{M}_{Z}^{n} by any sub-sheaf of $\left.\mathcal{O}\left(-Z-\sum_{D \in \operatorname{Comp}(\mathcal{D})} D\right)\right|_{\mathcal{D}} . \quad H o w e v e r$, very few have vanishing cohomology groups. In particular, the image by $E^{*} \omega($.$) of the Lie algebra associated to the$ sheaf $\operatorname{Aut}_{n}(\mathcal{M}, Z)$ fails to have vanishing cohomology groups. This justifies the introduction of \mathcal{G}_{Z}^{n}, which Lie algebra is precisely $\mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}$.

Now, we can state the infinitesimal equivalent of the property (2.1):
Proposition 2.2 (Infinitesimal cobordism)
The map

$$
H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{\mathcal{F}, Z}\right) \longrightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}\right)
$$

is onto.
Proof: The long exact sequence associated to the short one in the lemma (2.1) is

$$
\begin{equation*}
\cdots \rightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{\mathcal{F}, Z}\right) \rightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}\right) \rightarrow H^{1}\left(\mathcal{D}, \mathfrak{M}_{Z}^{n}(f \circ E)\right) \rightarrow \cdots \tag{13}
\end{equation*}
$$

Now, the lemma (2.2) ensures that $H^{1}\left(\mathfrak{M}_{Z}^{n}(f \circ E)\right)$ is trivial, hence the last term of (13) vanishes.
2.1.2. Step 2: cobordism in $\operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})$. This section is devoted to proving the following proposition:

Proposition 2.3. Let \mathcal{F} be a non-dicritical generalized curve on a marked tree \mathcal{M} crossed by Z. Any element of $\operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})$ is elementary \mathcal{F}-cobordant to \mathcal{M}.

The proof consists in getting the cobordism on a infinitesimal neighborhood of order big enough to apply the stability property.

Lemma 2.3 (Infinitesimal cobordism of order n)
Let $\left(\phi_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{1}\right)$. For any $n \geq 1$, there exists $\left(T_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathfrak{M}_{Z} \mathfrak{X}_{\mathcal{F}, Z}\right)$, $\left(\phi_{i}\right)$ in $\mathcal{Z}^{0}\left(\mathcal{U}, \mathcal{G}_{Z}^{1}\right)$ and $\left(\tilde{\phi}_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{n}\right)$ such that

$$
\begin{equation*}
\phi_{j}^{-1} \circ \phi_{i j} \circ \phi_{i}=e^{T_{i j}} \circ \tilde{\phi}_{i j} \tag{14}
\end{equation*}
$$

Proof: It is an induction on the integer n. Let us assume the property to be true at rank n. Let $\left(\tilde{\phi}_{i j}\right) \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{n}\right)$ be given by the induction hypothesis. In local adapted coordinates, one can write $\tilde{\phi_{i j}}\left(x_{i j}, y_{i j}\right)=\operatorname{Id}+\left(A_{i j}, B_{i j}\right)$. Let $\tilde{X}_{i j}$ be the germ of vector field defined by $\tilde{X}_{i j}=A_{i j} \partial_{x_{i j}}+B_{i j} \partial_{y_{i j}}$. The family $\left(\tilde{X}_{i j}\right)$ is a 1-cocycle with values in $\mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}$. The proposition (2.2) ensures the existence of a 0-cocycle $\left(\tilde{X}_{i}\right)$ in $Z^{0}\left(\mathcal{U}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}\right)$ and a 1-cocycle $\left(\tilde{T}_{i j}\right)$ in $Z^{1}\left(\mathcal{U}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{\mathcal{F}, Z}\right)$ such that $\tilde{X}_{i j}=\tilde{X}_{j}-\tilde{X}_{i}+\tilde{T}_{i j}$. By expanding the flow $e^{\tilde{X}_{i j}}$, one can see that

$$
\phi_{i j}^{1}:=e^{-\tilde{X}_{i j}} \circ \tilde{\phi}_{i j}=\left(\operatorname{Id}-\tilde{X}_{i j}+\cdots\right) \circ\left(\operatorname{Id}+\tilde{X}_{i j}+\cdots\right) \in \mathcal{G}_{Z}^{n+1}
$$

In view of the previous relations, we find

$$
\begin{aligned}
e^{-\tilde{X}_{j}} \circ \phi_{j}^{-1} \circ \phi_{i j} \circ \phi_{i} \circ e^{\tilde{X}_{i}} & =e^{-\tilde{X}_{j}} \circ e^{T_{i j}} \circ \tilde{\phi}_{i j} \circ e^{\tilde{X}_{i}} \\
& =e^{-\tilde{X}_{j}} \circ e^{T_{i j}} \circ e^{\tilde{X}_{i j}} \circ e^{\tilde{X}_{i}} \circ \phi_{i j}^{1} \circ\left[\phi_{i j}^{1}, e^{\tilde{X}_{i}}\right]
\end{aligned}
$$

where $[a, b]=a^{-1} b^{-1} a b$. Now, one can find in $[\mathbf{1 4}]$ the following result:

Sub-LEmma 2.1 (Campbell-Hausdorff formula)

Let X and Y be two germs of vector field vanishing along the divisor. Then there exists a formal vector field $\rho(X, Y)=\sum_{k=1}^{\infty} \rho_{k}(X, Y)$ such that

$$
e^{\rho(X, Y)}=e^{X} \circ e^{Y} .
$$

The sum is convergent for the Krull topology in the space of formal series. Moreover, the first terms of the series are

$$
\begin{equation*}
\rho(X, Y)=X+Y+\frac{1}{2}[X, Y]+\cdots \tag{15}
\end{equation*}
$$

Thanks to the above lemma, we get the following relation

$$
e^{-\tilde{X}_{j}} \circ e^{T_{i j}} \circ e^{\tilde{X}_{i j}} \circ e^{\tilde{X}_{i}}=e^{\rho\left(\rho\left(\rho\left(-\tilde{X}_{j}, T_{i j}\right), \tilde{X}_{i j}\right), \tilde{X}_{i}\right)}
$$

The relation (15) provides the following expansion:

$$
\begin{align*}
& \rho\left(\rho\left(\rho\left(-\tilde{X}_{j}, T_{i j}\right), \tilde{X}_{i j}\right), \tilde{X}_{i}\right)= \\
& T_{i j}+\tilde{T}_{i j}+\underbrace{\frac{1}{2}\left[T_{i j}, \tilde{X}_{j}\right]+\frac{1}{2}\left[T_{i j}, \tilde{X}_{i j}\right]+\frac{1}{2}\left[T_{i j}, \tilde{X}_{i}\right]+\cdots}_{Y_{i j}} . \tag{16}
\end{align*}
$$

Now, for any integers n and $m,\left[\mathfrak{M}_{Z}^{m} \mathfrak{X}_{S, Z}, \mathfrak{M}_{Z}^{n} \mathfrak{X}_{S, Z}\right] \subset \mathfrak{M}_{Z}^{m+n} \mathfrak{X}_{S, Z}$. Hence, $\left(Y_{i j}\right)$ is a 1-cocycle of $\mathcal{Z}^{1}\left(\mathcal{U}, \mathfrak{M}_{Z}^{n+1} \mathfrak{X}_{S, Z}\right)$. So, we get the following expression

$$
\begin{align*}
e^{-\tilde{X}_{j}} \circ \phi_{j}^{-1} \circ \phi_{i j} \circ \phi_{i} \circ e^{\tilde{X}_{i}} & =e^{T_{i j}+\tilde{T}_{i j}+Y_{i j}} \circ \phi_{i j}^{1} \circ\left[\phi_{i j}^{1}, e^{-\tilde{X}_{i}}\right] \tag{17}\\
& =e^{T_{i j}+\tilde{T}_{i j}} \circ \phi_{i j}^{2} \circ \phi_{i j}^{1} \circ\left[\phi_{i j}^{1}, e^{-\tilde{X}_{i}}\right] \tag{18}
\end{align*}
$$

where $\phi_{i j}^{2}$ is equal to $e^{-T_{i j}-\tilde{T}_{i j}} \circ e^{T_{i j}+\tilde{T}_{i j}+Y_{i j}}$. Again, the Campbell-Hausdorff formula shows that $\phi_{i j}^{2}$ is the flow of the vector field admitting the following
expansion $Y_{i j}-\frac{1}{2}\left[Y_{i j}, T_{i j}+\tilde{T}_{i j}\right]+\cdots$. As a consequence, in view of the property (1.1), $\phi_{i j}^{2}$ takes its values in \mathcal{G}_{Z}^{n+1}. Finally, similary arguments ensure that the commutator in (18) is in \mathcal{G}_{Z}^{n+1} class. Hence, the equation (18) is the induction hypothesis at rank $n+1$.

REMARK 2.2. The previous lemma would be wrong if one replaces \mathcal{G}_{Z}^{1} by \mathcal{G}_{Z}^{0} for the infinitesimal argument does not work with the latter sheaf. In fact, as in the remark (2.1), the image by $E^{*} \omega($.$) of the Lie algebra associated to \mathcal{G}_{Z}^{0}$ is

$$
\left.\mathcal{O}\left(-Z-\sum_{D \in \operatorname{Comp}(\mathcal{D})} D\right)\right|_{\mathcal{D}}(f \circ E)
$$

which has not vanishing cohomology.
Let us now prove the proposition (2.3). One can write $\mathcal{N} \simeq \mathcal{M}\left[\phi_{i j}\right]$ with $\left(\phi_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{1}\right)$. The infinitesimal cobordism lemma gives us three cocycles $\left(T_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathfrak{M}_{Z} \mathfrak{X}_{\mathcal{F}, Z}\right),\left(\phi_{i}\right)$ in $\mathcal{Z}^{0}\left(\mathcal{U}, \mathcal{G}_{Z}^{1}\right)$ and $\left(\tilde{\phi}_{i j}\right)$ in $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{n}\right)$ such that $\phi_{j}^{-1} \phi_{i j} \phi_{i}=e^{T_{i j}} \tilde{\phi}_{i j}$. Now, the (1.3) and (1.4) properties imply that

$$
\mathcal{M}\left[\phi_{i j}\right] \stackrel{\mathrm{G}_{1}}{\sim} \mathcal{M}\left[\phi_{j}^{-1} \phi_{i j} \phi_{i}\right]=\mathcal{M}\left[e^{T_{i j}} \tilde{\phi}_{i j}\right] \stackrel{\mathrm{G}_{1}}{\sim} \mathcal{M}\left[e^{T_{i j}}\right]\left[\zeta^{1} \tilde{\phi}_{i j}\right] .
$$

Moreover, the stability property applied in $\operatorname{Glu}_{n}\left(\mathcal{M}\left[e^{T_{i j}}\right], Z\left[e^{T_{i j}}\right], \mathcal{U}\left[e^{T_{i j}}\right]\right)$ to the cocycle $\left(\zeta^{1} \tilde{\phi}_{i j}\right)$ shows that $\mathcal{M}\left[e^{T_{i j}}\right]\left[\zeta^{1} \tilde{\phi}_{i j}\right] \stackrel{G_{1}}{\sim} \mathcal{M}\left[e^{T_{i j}}\right]$. Hence, $\mathcal{M}\left[\phi_{i j}\right]$ is isomorphic to $\mathcal{M}\left[e^{T_{i j}}\right]$, which is the property to be verified.
2.1.3. Step 3: cobordism in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$. The proof of the (2.1) proposition is an induction on the height of the tree, which allows us to use the previous result established for the $\operatorname{Glu}_{1}(\mathcal{M}, Z, \mathcal{U})$ category.

Let $\left(\phi_{i j}\right)$ be such that $\mathcal{N}=\mathcal{M}\left[\phi_{i j}\right]$. Let us denote by D_{0} the irreducible component of \mathcal{D} appearing after the first blowing-up. Let $\left\{c_{1}, \ldots, c_{N}\right\}$ be the set of singular points of \mathcal{D} on D_{0}. We denote by \mathcal{D}_{l} the branch of \mathcal{D} attached to c_{l} and \mathcal{M}_{l} the neighborhood of \mathcal{D}_{l} in \mathcal{M}. The notation \mathcal{U}_{l} refers to the distinguished covering of \mathcal{D}_{l} induced by restriction of \mathcal{U}. Moreover, we denote by $U_{0} \in \mathcal{U}$ the open set $D_{0} \backslash\left\{c_{1}, \ldots, c_{N}\right\}$ and $U_{l} \in \mathcal{U}$ the neighborhood of c_{l}. The foliation \mathcal{F}_{l} refers to the restriction of the foliation \mathcal{F} to \mathcal{M}_{l}. We consider a cross Z_{l} defined by the trace in \mathcal{M}_{l} of D_{0} and of the strict transform of Z (see Fig. 2.1.3). One can see that \mathcal{F}_{l} is a non-dicritical generalized curve on a marked crossed tree and that Z_{l} is adapted to \mathcal{F}_{l}.
Let us consider $\left(\phi_{i j}^{l}\right) \in \mathcal{Z}^{1}\left(\mathcal{U}_{l}, \mathcal{G}_{Z_{l}}^{0}\right)$ the 1-cocycle restriction of $\left(\phi_{i j}\right) \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{G}_{Z}^{0}\right)$ to \mathcal{U}_{l},

$$
\phi_{i j}^{l}=\phi_{i j}, \quad U_{i}, U_{j} \in \mathcal{U}_{l} .
$$

Since each tree \mathcal{D}_{l} has a height smaller than $h-1$, the induction hypothesis ensures that each tree $\mathcal{M}_{l}\left[\phi_{i j}^{l}\right]$ is \mathcal{F}_{l}-cobordant to \mathcal{M}_{l} in the category $\operatorname{Glu}_{0}\left(\mathcal{M}_{l}, Z_{l}, \mathcal{U}_{l}\right)$.

Figure 1. Induction construction.

Let us assume first that the above \mathcal{F}_{l}-cobordisms are elementary. By definition, there exists a family of 1-cocyles $\left(T_{i j}^{l}\right), l=1, \ldots, N$ of $\mathcal{Z}^{1}\left(\mathcal{U}_{l}, \mathfrak{I}_{Z_{l}} \mathfrak{X}_{\mathcal{F}_{l}, Z_{l}}\right)$ such that,

$$
\mathcal{M}_{l}\left[\phi_{i j}^{l}\right] \stackrel{\mathrm{G}_{0}}{\sim} \mathcal{M}_{l}\left[e^{T_{i j}^{l}}\right] .
$$

In view of the lemma (1.3), there exists a family of 0 -cocycles in $\mathcal{G}_{Z_{l}}^{0}$ verifying

$$
\begin{equation*}
\phi_{i j}^{l}=\psi_{j}^{l} e^{T_{i j}^{l}} \psi_{i}^{l-1} \tag{19}
\end{equation*}
$$

Let us suppose that ψ_{1}^{l} refers to the component of the 0-cocycle $\left(\psi_{i}^{l}\right)$ defined on the open set U_{l} containing the singularity c_{l}. Let $\left(e^{T_{i j}}\right)_{\text {ext }}$ be the 1-cocyle

$$
\left(e^{T_{i j}}\right)_{e x t}= \begin{cases}\mathrm{Id} & \text { on } U_{l} \cap U_{0} \\ e^{T_{i j}^{l}} & \text { elsewhere }\end{cases}
$$

We denote by $\phi_{l 0}$ the component of the 1-cocycle $\left(\phi_{i j}\right)$ defined on $U_{l} \cap U_{0}$. Finally, we define a 1 -cocycle by

$$
\kappa_{i j}=\left\{\begin{array}{lc}
\psi_{1}^{l} \phi_{l 0} & \text { on } U_{l} \cap U_{0} \\
e^{T_{i j}^{l}} & \text { elsewhere }
\end{array} .\right.
$$

The relation (19) induces an isomorphism in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$

$$
\begin{equation*}
\mathcal{M}\left[\kappa_{i j}\right] \stackrel{\mathrm{G}_{0}}{\sim} \mathcal{M}\left[\phi_{i j}\right] . \tag{20}
\end{equation*}
$$

We define the following 1-cocycle

$$
\tilde{\kappa}_{i j}=\left\{\begin{array}{lc}
\psi_{1}^{l} \phi_{l 0} & \text { on } U_{l} \cap U_{0} \tag{21}\\
\text { Id } & \text { elsewhere }
\end{array} .\right.
$$

Let $\tilde{\mathcal{M}} \in \operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$ be defined by $\tilde{\mathcal{M}}=\mathcal{M}\left[e_{\text {ext }}^{T_{i j}}\right]$. We have

$$
\begin{align*}
\tilde{\mathcal{M}}\left[\zeta^{1} \tilde{\kappa}_{i j}\right] & =\mathcal{M}\left[e_{\mathrm{ext}}^{T_{i j}}\right]\left[\zeta^{1} \tilde{\kappa}_{i j}\right] \tag{22}\\
& \stackrel{\mathrm{G}_{0}}{\simeq} \mathcal{M}\left[e_{\mathrm{ext}}^{T_{i j}} \tilde{\kappa}_{i j}\right] \tag{23}\\
& =\mathcal{M}\left[\kappa_{i j}\right] . \tag{24}
\end{align*}
$$

Outside $U_{l} \cap U_{0}$, the components of the cocycle $\left(\zeta^{1} \tilde{\kappa}_{i j}\right)$ are equal to Id. Since ψ_{l} is in the $\mathcal{G}_{Z_{l}}^{0}$ class, $\zeta^{1} \tilde{\kappa}_{l 0}$ is a germ of automorphism in $\mathcal{G}_{\tilde{Z}}^{0}$ where $\tilde{Z}=Z\left[e_{\mathrm{ext}}^{T_{i j}}\right]$.

REMARK 2.3. The latter argument is the key of the induction, which explains why all our constructions come with the use of a cross: here Z_{l} plays the role of the forgotten part of the component D_{0} in the induction step. Thanks to the cross, we can control the cocycles along Z_{l} when the hypothesis of induction is applied. It ensures that, once the cocycles are put together as in (21), we keep cocycles in the $\mathcal{G}_{\tilde{Z}}^{0}$ class.
Now, the sheaves $\Im_{\tilde{Z}}$ and $\mathfrak{M}_{\tilde{Z}}^{1}$ coincide along the regular part of \tilde{D}_{0}. Hence, the sheaves $\mathcal{G}_{\tilde{\tilde{Z}}}^{1}$ and $\mathcal{G}_{\tilde{Z}}^{0}$ are equal too. As a consequence, the 1-cocycle $\left(\zeta^{1} \tilde{\kappa}_{i j}\right)$ is in $\mathcal{G}_{\tilde{Z}}^{1}$ and $\tilde{\mathcal{M}}\left[\zeta^{1} \tilde{\kappa}_{i j}\right]$ belongs to $\operatorname{Glu}_{1}(\tilde{\mathcal{M}}, \tilde{Z}, \tilde{\mathcal{U}})$. The proposition (2.3) ensures that there exists an elementary $\mathcal{F}\left[e_{\text {ext }}^{T_{i j}}\right]$-cobordism between $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}}\left[\zeta^{1} \tilde{\kappa}_{i j}\right]$ defined by a 1-cocycle $\left(e^{\tilde{T}_{i j}}\right) \in Z^{1}\left(\tilde{\mathcal{U}}, \Im_{\tilde{Z}} \mathcal{X}_{\mathcal{F}\left[e_{\mathrm{ext}}^{T_{i j}}\right], \tilde{Z}}\right)$. Thanks to (20) and (24), we have $\mathcal{N} \stackrel{G_{0}}{\sim} \tilde{\mathcal{M}}\left[\zeta^{1} \tilde{\kappa}_{i j}\right]$. Hence, we get a final cobordism between \mathcal{N} and \mathcal{M} :

$$
\begin{aligned}
& \mathcal{N} \stackrel{\mathrm{G}_{0}}{\sim} \tilde{\mathcal{M}}\left[e^{\tilde{T}_{i j}}\right] \\
& \tilde{\mathcal{M}} \stackrel{\mathrm{G}_{0}}{\sim} \mathcal{M}\left[e_{\mathrm{ext}}^{T_{i j}}\right]
\end{aligned}
$$

Now, if the cobordisms are not elementary, one can suppose them to be decomposed in sequences of elementary cobordisms of same length. Indeed, we have

$$
\begin{aligned}
\mathcal{M}_{1} & =\mathcal{M}_{1}^{1} \stackrel{\mathcal{F}_{1}^{1}, z_{1}^{1}}{-} \mathcal{M}_{1}^{2} \cdots \mathcal{M}_{1}^{p-1} \stackrel{\mathcal{F}_{1}^{p-1}, z_{1}^{p-1}}{-} \mathcal{M}_{1}^{p} \stackrel{\mathfrak{G}_{0}}{\sim} \mathcal{N}_{1} \\
\mathcal{M}_{2} & =\mathcal{M}_{2}^{1} \stackrel{\mathcal{F}_{2}^{1}, z_{2}^{1}}{\rightarrow} \mathcal{M}_{1}^{2} \cdots \mathcal{M}_{2}^{p-1} \stackrel{\mathcal{F}_{2}^{p-1}, z_{2}^{p-1}}{-} \mathcal{M}_{2}^{p} \stackrel{G_{0}}{\sim} \mathcal{N}_{2} \\
& \vdots \\
\mathcal{M}_{N} & =\mathcal{M}_{N}^{1} \stackrel{\mathcal{F}_{N}, Z_{1}^{1}}{-} \mathcal{M}_{N}^{2} \cdots \mathcal{M}_{N}^{p-1} \stackrel{\mathcal{F}_{N}^{p-1}, Z_{N}^{p-1}}{-} \mathcal{M}_{N}^{p} \stackrel{G_{0}}{\sim} \mathcal{N}_{N},
\end{aligned}
$$

where \mathcal{F}_{l}^{k} and $Z_{l}^{k}, l \geq 1$ naturally refer to the foliations and the crosses induced by the successive cobordisms. Let $\left(e^{T_{i j}^{k, l}}\right)$ be the cocycle defining the elementary
$\operatorname{cobordism} \mathcal{M}_{l}^{k} \stackrel{\mathcal{F}_{l}^{k}, Z_{l}^{k}}{-} \mathcal{M}_{l}^{k+1}$, where $\left(T_{i j}^{k, l}\right)$ belongs to $\mathcal{Z}^{1}\left(\mathcal{U}_{l}^{k}, \Im_{Z_{l}^{k}} \mathcal{X}_{\mathcal{F}_{l}^{k}, Z_{l}^{k}}\right)$. For $1 \leq k \leq p-2$, we consider the trees $\dot{\mathcal{M}}^{k}$ defined by $\dot{\mathcal{M}}^{1}=\mathcal{M}$ and

$$
\dot{\mathcal{M}}^{k+1}=\dot{\mathcal{M}}^{k}\left[e^{T_{i j}^{k, l}} \quad \text { ext }\right]
$$

with

$$
\left(e^{T_{i j}^{k, l}}\right)_{e x t}=\left\{\begin{array}{lr}
\operatorname{Id} & \text { on } U_{l}^{k, l} \cap U_{0}^{k, l} \\
e^{T_{i j}^{k, l}} & \text { elsewhere }
\end{array}\right.
$$

Here $\mathcal{U}^{k, l}$ refers to the distinguished covering induced by the successive gluings, $\mathcal{U}^{k+1, l}=\mathcal{U}^{k, l}\left[e^{T_{i j}^{k, l}} e x t\right]$. In view of the construction, the previous relations give us a general \mathcal{F}-cobordism between \mathcal{M} and $\dot{\mathcal{M}}^{p-1}$. Moreover, for all l the tree $\dot{\mathcal{M}}_{l}^{p-1}$, restriction of the tree $\dot{\mathcal{M}}^{p-1}$ over the singularity l is isomorphic to \mathcal{M}_{l}^{p-1} and the foliation $\dot{\mathcal{F}}_{l}^{p-1}$ got by successive cobordisms is isomorphic to \mathcal{F}_{l}^{p-1}. Hence, to finish the proof of (2.1), one must solve the elementary case from \mathcal{M}^{p-1} to \mathcal{N}, what has already been done.
2.2. The second kind case. In this subsection, we want to extend the proposition (2.1) to a bigger and more natural class of foliations than the generalized curves.

A reduced singularity of foliation with a linear part of the form $x \mathrm{~d} y$ admits a formal normal forms of following type [5]:

$$
x^{p+1} \mathrm{~d} y-y\left(1+\lambda x^{p}\right) \mathrm{d} x .
$$

The separatrix $x=0$ is called the strong invariant curve. If some singularities of such kind appear in the reduction process, most of previous results are false, except when this kind of singularities is in a specific position. The notion of foliation of second kind was introduced in [11] to take care of that possibility. This class of foliations admits the same properties as generalized curves and provides a nice description of local formal moduli spaces.

Definition 2.4. \mathcal{F} is of second kind if

1. \mathcal{F} is non-dicritical,
2. each singularity of the divisor is a reduced singularity of the foliation with two non-vanishing eigenvalues,
3. each singularity of the foliation on the regular part of the divisor is either of above kind or has $x d y$ for linear part; in the latter case, one asks the strong invariant curve to be the germ defined by the divisor.
With obvious notations, we consider the sheaf $\widehat{\mathcal{X}}_{S, Z}$ over \mathcal{D} of germs of formal vector fields that are tangent to the divisor, the separatrix and the cross. We denote $\widehat{\mathfrak{X}}_{\mathcal{F}, Z}$ the subsheaf of vector fields tangent to the foliation and the cross. In [9], one can find the following criterion for a foliation to be of second kind:

Proposition 2.4. The foliation \mathcal{F} is of second kind if and only if the sequence of sheaves

$$
0 \longrightarrow \widehat{\mathfrak{X}}_{\mathcal{F}, Z} \longrightarrow \widehat{\mathfrak{X}}_{S, Z} \xrightarrow{E^{*} \omega(.)} \widehat{\mathcal{O}}(f \circ E) \longrightarrow 0
$$

is exact.
Now, it's not hard to see that from the above exact sequence, every previous constructions and arguments can be repeated in the formal context under the second kind hypothesis. More precisely, one can get the following result:
Proposition 2.5. Let \mathcal{F} be a foliation of second kind on a marked tree \mathcal{M} and Z an adapted cross. Let \mathcal{N} be in $\operatorname{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$. There exists a finite sequence of 1-cocyles $\left(\widehat{T}_{i j}^{k}\right)_{k=1 . . N}$ such that

$$
\mathcal{N} \stackrel{\widehat{\sigma_{0}}}{\sim} \mathcal{M}\left[e^{\widehat{T}_{i j}^{1}}\right]\left[e^{\widehat{T}_{i j}^{2}}\right][\ldots]\left[e^{\widehat{T}_{i j}^{N}}\right] \cdot \dagger
$$

Here, $\left(\widehat{T}_{i j}^{p}\right)$ is a 1-cocycle with values in $\widehat{\mathfrak{X}}_{\widehat{\mathcal{F}}_{p}, \widehat{Z}_{p}}$: this is the sheaf over the divisor of the tree $\mathcal{M}\left[e^{\widehat{T}_{i j}^{1}}\right]\left[e^{\widehat{T}_{i j}^{2}}\right][\ldots]\left[e^{\hat{T}_{i j}^{p-1}}\right]$ whose fiber is the space of germ of formal vector field tangent to the following formal foliation and formal cross

$$
\widehat{\mathcal{F}}_{p}=\widehat{\mathcal{F}}\left[e^{\widehat{T}_{i j}^{1}}\right]\left[e^{\widehat{T}_{i j}^{2}}\right][\ldots]\left[e^{\widehat{T}_{i j}^{p-1}}\right], \quad \widehat{Z}_{p}=Z\left[e^{\widehat{T}_{i j}^{1}}\right]\left[e^{\widehat{T}_{i j}^{2}}\right][\ldots]\left[e^{\widehat{T}_{i j}^{p-1}}\right] .
$$

From this formal construction, one can go back to the convergent context using the following lemma: let \mathcal{M} be foliated by a convergent foliation \mathcal{F} of second kind and let $\left(\widehat{T}_{i j}\right)$ be in $Z^{1}\left(\mathcal{U}, \widehat{\mathfrak{I}}_{Z} \widehat{\mathfrak{X}}_{\mathcal{F}, Z}\right)$.
Lemma 2.4. There exists $\left(T_{i j}^{c}\right) \in Z^{1}\left(\mathcal{U}, \mathfrak{I}_{Z} \mathfrak{X}_{\mathcal{F}, Z}\right)$ such that $\mathcal{M}\left[\widehat{T}_{i j}\right] \stackrel{\widehat{\sigma_{0}}}{\sim} \mathcal{M}\left[T_{i j}^{c}\right]$.
Proof : Since \mathcal{F} is convergent, there exists a convergent vector field $T_{i j}$ tangent to the foliation and a formal series $\widehat{\phi}_{i j}$ such that $\widehat{T}_{i j}=\widehat{\phi}_{i j} T_{i j}$. For any integer n, we consider the cocyle $\left(T_{i j}^{c}\right)$ in $\mathfrak{X}_{\mathcal{F}, Z}$ defined by $T_{i j}^{c}=\phi_{i j}^{n} T_{i j}$, where $\phi_{i j}^{n}$ refers to a representative function of the n-jet of $\widehat{\phi}_{i j}$. We are going to show that, for n big enough, the gluings associated to $\widehat{T}_{i j}$ and $T_{i j}^{c}$ are formally equivalent in $\widehat{\operatorname{Glu}}_{0}(\mathcal{M}, Z, \mathcal{U})$. Let us consider the following 1 -cocycle

$$
\delta_{i j}(x, t, s)=\left(e^{(t-s) \widehat{T_{i j}}} \circ e^{(s) T_{i j}^{c}}, t, s\right) .
$$

We construct an equisingular unfolding in the following way:

$$
\mathcal{M}_{\overline{\mathbb{D}}^{2}}=\bigcup_{i} U_{i} \times \overline{\mathbb{D}}^{2} /(x, t, s) \sim \delta_{i j}(x, t, s)
$$

which admits a projection $\mathcal{M}_{\overline{\mathbb{D}}^{2}} \xrightarrow{\Pi} \overline{\mathbb{D}}^{2}$. This manifold is the neighborhood of a divisor $\mathcal{D}_{\overline{\mathbb{D}}^{2}}$. Thanks to local triviality of the unfolding along $U_{i} \times \overline{\mathbb{D}}^{2}$, one can find a family $\left\{X_{i}\right\}$ of vector fields tangent to the foliation such that in $U_{i} \times \overline{\mathbb{D}}^{2}$ we have $T \Pi\left(X_{i}\right)=\frac{\partial}{\partial s}$. The 1-cocycle $\left(X_{i}-X_{j}\right)$ takes its values in the sheaf over $\mathcal{D}_{\overline{\mathbb{D}}}$ of germs of vector fields tangent to the foliation, vertical $-T \Pi(X)=0$ - and vanishing at order n along $\mathcal{D}_{\overline{\mathbb{D}}}$. We denote by $\widehat{\mathcal{X}}_{\mathcal{F}, Z, n} \overline{\mathbb{D}}^{2}$, the latter sheaf. Since $\widehat{\mathcal{X}}_{\mathcal{F}, Z, 1}^{\mathbb{D}^{2}}$ is coherent, one can find the following property in [3]:

[^0]Sub-LEmma 2.2. For n big enough, the map

$$
H^{1}\left(\widehat{\mathfrak{X}}_{\mathcal{F}, Z, n}^{\overline{\mathbb{D}}^{2}}\right) \longrightarrow H^{1}\left(\widehat{\mathfrak{X}}_{\mathcal{F}, Z, 1}^{\overline{\mathbb{D}}^{2}}\right)
$$

is trivial.
Hence, there exists 0-cocycle $\left(Y_{i}\right)$ in $\widehat{\mathfrak{X}}_{\mathcal{F}, Z, 1} \overline{\mathbb{D}}^{2}$ such that

$$
X_{i}-X_{j}=Y_{i}-Y_{j}
$$

Therefore, $X=X_{i}-Y_{i}$ is a global formal vector field such that $T \Pi(X)=\frac{\partial}{\partial s}$. The biholomorphim $\phi(x, t, s)=\left(e^{(s) X}(x, t, 0), t, s\right)$ formally conjuguates the equisingular unfoldings $\mathcal{M}_{\overline{\mathbb{D}}^{2}}$ and $\mathcal{M}_{\overline{\mathbb{D}} \times\{0\}} \times \overline{\mathbb{D}}$. By restricting them along the diagonal, one can see that $\mathcal{M}\left[\widehat{T}_{i j}\right]$ and $\mathcal{M}\left[T_{i j}^{c}\right]$ are conjugated.

By applying the previous lemma to each elementary cobordism in (2.5), one can proof the cobordism result for foliation of second kind:

Proposition 2.6. Let \mathcal{F} be a foliation of second kind on a marked tree \mathcal{M} and Z a cross adapted to \mathcal{F}. Any element in $\mathrm{Glu}_{0}(\mathcal{M}, Z, \mathcal{U})$ is \mathcal{F}-cobordant to \mathcal{M}.
3. Existence theorem.

In this section, we use the proposition (2.6) to establish the existence theorem. Let \mathcal{F} be a foliation of second kind on a marked tree $\left(\mathcal{M}, \mathcal{D}, \Sigma_{\mathcal{F}}\right)$ and $\left(\mathcal{M}^{\prime}, \mathcal{D}^{\prime}, \Sigma^{\prime}\right)$ be any marked tree.

Theorem 3.1.
If the marked weighted dual trees of \mathcal{M} and \mathcal{M}^{\prime} are topologically equivalent then there exists a foliation \mathcal{F}^{\prime} on \mathcal{M}^{\prime} such that \mathcal{F} and \mathcal{F}^{\prime} are linked by an equisingular unfolding, which respects the marking.

We focus on the proof of the above statement.
3.1. First step: cocyle transformation. Since the marked dual trees of \mathcal{M} and \mathcal{M}^{\prime} are conjugated, one can find in [12] the following result: there exists an equisingular unfolding of \mathcal{F}, which leads to a foliation defined on a tree with a divisor biholomorphic to the divisor of \mathcal{M}^{\prime}. Hence, one can suppose the divisors \mathcal{D} and \mathcal{D}^{\prime} isomorphic.

Figure 2. A tree and its dual tree.

Prepared using etds.cls

REMARK 3.1. One has to notice that the divisor could be isomorphic without the neighborhoods being the same. For example, consider any tree \mathcal{M} topologically equivalent to the one on the picture (2). If one fixes the position of the four points A, B, C and D on the projective line of self-intersection -5 , it remains eight degrees of liberty to determine \mathcal{M}, which correspond to the four pairs of singular points on the components of self-intersection -3. Two such trees have isomorphic divisor. Now, let ϕ be in a germ of automorphism of $\left(\mathbb{C}^{2}, 0\right)$, which leaves invariant the four points A, B, C and D when lifted-up to the first projective line: the first jet of ϕ is necessarily an homothetie and the action of the lifted-up of ϕ on any projective line of self-intersection -3 is completely determined by the second jet of ϕ. Finaly, it provides seven degrees of liberty on ϕ. Therefore, there exist trees topologically equivalent to \mathcal{M} with isomorphic divisors, which are not analytically equivalent to \mathcal{M}.

Let us denote by h a biholomorphism between the divisors. For each component D of \mathcal{D}, we consider a fibration π_{D} transversal to D

$$
\pi_{D}: T(D) \longrightarrow D
$$

where $T(D)$ is a fixed tubular neighborhood of D such that the traces of transversal components of \mathcal{D} are fibers of π_{D}. Such a fibration can be obtained as follows: assume that the component D appears in the blowing-up process by blowing-up a point c. Consider the radial foliation \mathcal{R}_{c} generated by the vector field $x \partial_{x}+y \partial y$ where (x, y) are some adapted coordinates near the point c. The checked fibration is the restriction on $T(D)$ of the foliation \mathcal{R}_{c} blown-up by the remain blowing-up process. We make the same construction over the components of \mathcal{D}^{\prime}. An easy computation in coordinates allows us to show the following lemma:

Lemma 3.1. There exists a family of maps $\left(H_{D}\right)_{D \in \operatorname{Comp}(\mathcal{D})}$ such that the following diagram is commutative

We denote by $\operatorname{Comp}(\mathcal{D})^{2}$ the set $\left\{\left(D, D^{\prime}\right) \in \operatorname{Comp}(D)^{2} \mid D \cap D^{\prime} \neq \emptyset\right\}$. Let us consider the germ of manifold defined by

$$
\tilde{\mathcal{M}}=\coprod_{D \in \operatorname{Comp}(\mathcal{D})} T(D) /\left(x \sim H_{D}^{-1} \circ H_{D^{\prime}} x\right)_{\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{\Sigma}}
$$

One has to notice that the above gluing is different from the gluing introduced in previous sections: here, coverings are made of tubular neighborhoods, which intersect each other along polydisks; whereas open sets of distinguished covering are finer and intersect each other along torus. Nevertheless, the tree $\tilde{\mathcal{M}}$ is a neighborhood of some divisor $\tilde{\mathcal{D}}$. The tree $(\tilde{\mathcal{M}}, \tilde{\mathcal{D}}, \tilde{\Sigma})$ is a marked tree conjugated
to $\left(\mathcal{M}^{\prime}, \mathcal{D}^{\prime}, \Sigma^{\prime}\right)$: indeed the family $\left(H_{D}\right)$ induces a biholomorphism adapted to markings.
In order to apply the proposition (2.1), we are going to build a tree $\dot{\mathcal{M}}$ such that $\dot{\mathcal{M}}$ verifies the existence theorem and $\tilde{\mathcal{M}}$ belongs to $\operatorname{Glu}_{0}(\dot{\mathcal{M}}, Z, \mathcal{U})$ for suitable cross and covering.
Let us denote by $s_{D D^{\prime}}$ the intersection of D and D^{\prime} and $\phi_{D D^{\prime}}:=H_{D}{ }^{-1} \circ H_{D^{\prime}}$.
Lemma 3.2. There exists families $\left(\Delta_{D D^{\prime}}\right)_{\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{\check{2}}}$ and $\left(\phi_{D}\right)_{D \in \operatorname{Comp}(\mathcal{D})}$ of automorphism germs such that

- $\Delta_{D D^{\prime}}$ is defined near $s_{D D^{\prime}}$, fixes this point and leaves invariant each local leaf;
- ϕ_{D} is defined along D and fixes each point of D;
- the germ of automorphism $\phi_{D^{\prime}}^{-1} \circ \Delta_{D D^{\prime}} \circ \phi_{D D^{\prime}} \circ \phi_{D}$ is tangent to the identity at $s_{D D^{\prime}}$.
Proof : Let us consider the standard metric d on the dual weighted graph of \mathcal{M} and fix one vertex $D_{0} \in \operatorname{Comp}(\mathcal{D})$. We define the subgraph $\mathbb{A}_{n}^{*}, n \geq 0$ whose vertex are at distance smaller than n from D_{0}. The graphs \mathbb{A}_{n}^{*} are connected and cover the whole \mathcal{M} 's graph. One can now consider the restricted family ($\phi_{D D^{\prime}}^{n}$) defined by

$$
\phi_{D D^{\prime}}^{n}=\phi_{D D^{\prime}}, \quad D D^{\prime} \text { is an edge of } \mathbb{A}_{n}^{*}
$$

By induction, we establish the result on the subfamily $\left(\phi_{D D^{\prime}}^{n}\right)$. For $n=0$, the result is obvious and one can choose for $\phi_{D_{0}}$ the identity automorphism. Let us suppose the result true for n : precisely, we have two families $\Delta_{D D^{\prime}}$ and ϕ_{D} as in the lemma such that for any edge $D D^{\prime}$ of \mathbb{A}_{n}^{*}

$$
\phi_{D^{\prime}}^{-1} \circ \Delta_{D D^{\prime}} \circ \phi_{D D^{\prime}} \circ \phi_{D}
$$

is tangent to the indentity at $s_{D D^{\prime}}$. Let $D_{i} D_{j}$ be an edge of $\mathbb{A}_{n+1}^{*} \backslash \mathbb{A}_{n}^{*}$ such that D_{i} is a vertex of \mathbb{A}_{n}^{*} and D_{j} a vertex of \mathbb{A}_{n+1}^{*}. One has to define in a good way $\phi_{D_{j}}$ and $\Delta_{D_{i} D_{j}}$ in order to conclude. Now, one can easily prove the general following results:

Sub-Lemma 3.2. 1. Let s be a singular point of \mathcal{D} and $\alpha \in \mathbb{C}^{*}$. There exists a germ of automorphism Δ defined near s and leaving invariant each local leaf such that, in adapted coordinates, the tangent map at s is

$$
T_{s} \Delta=\left(\begin{array}{cc}
\alpha & 0 \\
0 & *
\end{array}\right) .
$$

2. For any β in \mathbb{C}^{*}, any component of D and any $c \in D$, there exists a germ of automorphism ϕ defined in the neighborhood of D fixing each point of D such that, in adapted coordinates \dagger, the tangent map at c is

$$
T_{c} \phi=\left(\begin{array}{cc}
1 & 0 \\
0 & \beta
\end{array}\right) .
$$

\dagger Here, we assume the second coordinates to be transversal to the divisor

In adapted coordinates, the tangent map of the automorphism $\phi_{D_{i} D_{j}} \circ \phi_{D_{i}}$ is $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$. In view of the previous lemma, there exists a germ of automorphism $\Delta_{D_{i} D_{j}}$ defined near $s_{D_{i} D_{j}}$ leaving invariant each local leaf and a germ of automorphism $\phi_{D_{j}}$ defined in the neighborhood of D_{j} fixing each point of D_{j} such that

$$
T_{s_{D_{i} D_{j}}}\left(\Delta_{D_{i} D_{j}}^{-1} \circ \phi_{D_{j}}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Then, $T_{s_{D_{i} D_{j}}}\left(\phi_{D_{j}}^{-1} \circ \Delta_{D_{i} D_{j}} \circ \phi_{D_{i} D_{j}} \circ \phi_{D_{i}}\right)=$ Id. Since the dual tree doesn't have any cycle, one can repeat the same construction for all edges of $\mathbb{A}_{n+1}^{*} \backslash \mathbb{A}_{n}^{*}$. Hence, the lemma is proved for \mathbb{A}_{n+1}^{*}.
3.2. Second step: a fine distinguished covering. With the family $\left\{\Delta_{D D^{\prime}}\right\}$ of the previous lemma, one can define

$$
\dot{\mathcal{M}}=\coprod_{D \in \operatorname{Comp}(\mathcal{D})} T(D) /\left(x \sim \Delta_{D D^{\prime}}^{-1} x\right)
$$

The tree $\dot{\mathcal{M}}$ is a neighborhood of some divisor $\dot{\mathcal{D}}$. One can find in [1] a precise description of germs leaving invariant each local leaf of a reduced singularity with two non-vanishing eigenvalues. These can be written $(x, y) \mapsto \phi_{X}^{t(x, y)}$ where $t(x, y)$ is a function, X a germ of vector field tangent to the foliation and ϕ_{X}^{t} the flow of X at time t. Particulary, this description ensures that $\dot{\mathcal{M}}$ admits a foliation $\dot{\mathcal{F}}$ linked to \mathcal{F} by an equisingular unfolding. Basically, the unfolding exists because there is a suitable isotopy from $(x, y) \mapsto \phi_{X}^{t(x, y)}$ to the identity defined by $(s, x, y) \mapsto \phi_{X}^{s t(x, y)}$. One notices that we have the following isomorphism

$$
\tilde{\mathcal{M}} \simeq \coprod_{\dot{D} \in \operatorname{Comp}(\dot{\mathcal{D}})} T(\dot{D}) /\left(x \sim \Delta_{D D^{\prime}} \circ \phi_{D D^{\prime}} x\right)
$$

Let us consider $\theta_{D D^{\prime}}:=\phi_{D^{\prime}}{ }^{-1} \circ \Delta_{D D^{\prime}} \circ \phi_{D D^{\prime}} \circ \phi_{D}$. One can see that,

$$
\coprod_{\dot{D} \in \operatorname{Comp}(\dot{\mathcal{D}})} T(\dot{D}) /\left(x \sim \theta_{D D^{\prime}} x\right) \simeq \tilde{\mathcal{M}}
$$

We are going to make a last transformation on $\theta_{D D^{\prime}}$ in order to obtain a cocycle with values in \mathcal{G}_{Z}^{0}; it's not hard to prove the following result:

Sub-Lemma 3.3. Let θ be a germ of automorphism tangent to identity at $0 \in \mathbb{C}^{2}$ letting invariant the axes $\{x=0\}$ and $\{y=0\}$. The germ θ admits a decomposition of the form

$$
\theta=\theta^{0} \circ \theta^{1}, \quad \theta^{0}=\binom{x+x^{2}(\cdots)}{y+x y(\cdots)}, \quad \theta^{1}=\binom{x+x y(\cdots)}{y+y^{2}(\cdots)}
$$

For each $D, D^{\prime} \in \operatorname{Comp}(\mathcal{D})^{\check{ }}$, we decompose $\theta_{D D^{\prime}}$ in $\theta_{D D^{\prime}}=\theta_{D D^{\prime}}^{0} \circ \theta_{D D^{\prime}}^{1}$. Let us consider a distinguished covering $\mathcal{U}=\left(U_{i}\right)$ of \mathcal{D} finer than the tubular covering $(T(\dot{D}))_{D \in \operatorname{Comp}(\mathcal{D})}$ defined by

$$
\left\{\begin{array}{lr}
U_{D}=T(D) \backslash\{\text { Singular points of } \mathcal{D}\} & \text { for } D \in \operatorname{Comp}(\mathcal{D}) \\
U_{D D^{\prime}}=T(D) \cap T\left(D^{\prime}\right) & \text { for }\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{\tilde{2}}
\end{array} .\right.
$$

Using the disjoint union \mathfrak{U} defined by

$$
\mathfrak{U}=\coprod_{D \in \operatorname{Comp}(\mathcal{D})} U_{D} \coprod_{\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{\check{z}}} U_{D D^{\prime}} \times\{0\} \coprod_{\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{\check{z}}} U_{D D^{\prime}} \times\{1\},
$$

we consider the commutative diagram of the figure (3). The two horizontal lines of

Figure 3. Finer distinguished covering.
this diagram describe two different ways to glue together the open sets of \mathfrak{U}. The glued manifolds are both trees respectively equal to

$$
\tilde{\mathcal{M}} \text { and } \dot{\mathcal{M}}\left[\left\{\theta_{D D^{\prime}}^{\epsilon}\right\} \underset{\substack{\epsilon=0,1 \\\left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{2}}}{ }\right] .
$$

Since the diagram commutes, the vertical arrows provide an isomorphism between them. Let Z be any suitable cross on $\dot{\mathcal{M}}$ adapted to $\dot{\mathcal{F}}$. Since the cocyle $\left\{\theta_{D D^{\prime}}^{\epsilon}\right\} \begin{gathered}\epsilon=0,1 \\ \left(D, D^{\prime}\right) \in \operatorname{Comp}(\mathcal{D})^{2}\end{gathered}$ belongs to \mathcal{G}_{Z}^{0}, the tree $\tilde{\mathcal{M}}$ belongs to $\operatorname{Glu}_{0}(\dot{\mathcal{M}}, Z, \mathcal{U})$. In view of the previous results, $\tilde{\mathcal{M}}$ is $\dot{\mathcal{F}}$-cobordant to $\dot{\mathcal{M}}$. Hence, $\mathcal{M}^{\prime} \simeq \tilde{\mathcal{M}}$ admits a foliation \mathcal{F}^{\prime} linked to \mathcal{F} by an equisingular unfolding.

4. Cobordism class.

Let \mathcal{F} be a non-dicritical generalized curve and $S=\operatorname{Sep}(\mathcal{F})$ its separatrix. A foliation \mathcal{F}^{\prime} is said to be cobordant to \mathcal{F} when there is an equisingular unfolding in the sense of [8] that links \mathcal{F} and \mathcal{F}^{\prime}. We denote by $\operatorname{Cob}(\mathcal{F})$ the set of cobordant foliation. The set $\mathrm{E}(S)$ refers to the equisingularity class of S or, in a equivalent way, the set of curves topologically conjugated to S.

Theorem 4.1. The map defined by

$$
\mathcal{F}^{\prime} \in \operatorname{Cob}(\mathcal{F}) \longmapsto \operatorname{Sep}\left(\mathcal{F}^{\prime}\right) \in \mathrm{E}(S)
$$

is onto.

In order to prove the above result, one notices that the existence theorem holds for trees that may not be the minimal reduction tree of a foliation. This remark leads us to define the following sequence of blowing-up process: let $\left(E^{j}\right)_{j=1 \ldots h}$ be the blowing-up process of the reduction of the foliation \mathcal{F} (1.1). We define a sequence of blowing-up process in this way:

- $\mathfrak{E}_{h}=\left(E^{j}\right)_{j=1 \ldots h}$.
- \mathfrak{E}_{n+1} is the blowing-up process build over \mathfrak{E}_{n} where S^{n} and Σ^{n} are both the set of singularities of $E_{n}^{*} \mathcal{F}$, where E_{n} refers to the total morphism of \mathfrak{E}_{n} (1.1).

Proof : theorem (4.1) Let S^{\prime} be a curve in the equinsigularity class of S. Let E and E^{\prime} refer respectively to the reduction process of S and S^{\prime}. In view of a result in [2], since \mathcal{F} is a generalized curve, E is also the reduction of \mathcal{F}. Moreover, according to a result of O. Zariski [15], the weighted dual graphs of S and S^{\prime} are conjugated. Particulary, the points of attachment of S and S^{\prime} strict transforms are on conjugated components.
Let \mathcal{H} be the foliation $\mathrm{d} h=0$ where h is any reduced equation of S^{\prime}. For any integer n bigger than the height of E, we consider the sequence E_{n} and E_{n}^{\prime} built as above with \mathcal{F} and \mathcal{H} as respective initial data. For every n, the weighted dual trees associated to E_{n} and E_{n}^{\prime} are topologically equivalent. The theorem (3.1) ensures the existence of a foliation \mathcal{F}_{n} on the tree of E_{n}^{\prime} linked to $E_{n}^{*} \mathcal{F}$ by an equisingular unfolding. Let ξ_{n} be the germ of separatrix of \mathcal{F}_{n} at $0 \in \mathbb{C}^{2}$. One can see that the points of attachment of the strict transforms by E_{n}^{\prime} of the curves ξ_{n} and S^{\prime} are on same components. Since \mathcal{F}_{n} is cobordant to $\mathcal{F}, \mathcal{F}_{n}$ is topologically equivalent to \mathcal{F}. In particular, ξ_{n} is topologically equivalent to S^{\prime}. For n great enough, the study in [15] ensures that ξ_{n} and S^{\prime} are in fact analytically conjugated. The image of \mathcal{F}_{n} by this conjugacy is a holomorphic foliation topologically equivalent to \mathcal{F} admitting S^{\prime} for separatrix.

References

[1] M. Berthier, D. Cerveau, and R. Meziani. Transformations isotropes des germes de feuilletages holomorphes. J. Math. Pures Appl. (9), 78(7):701-722, 1999.
[2] C. Camacho. Singularities of holomorphic differential equations. In Singularities and dynamical systems (Iráklion, 1983), volume 103 of North-Holland Math. Stud., pages 137159. North-Holland, Amsterdam, 1985.
[3] C. Camacho and H. Movasati. Neighborhoods of analytic varieties, volume 35 of Monografías del Instituto de Matemática y Ciencias Afines [Monographs of the Institute of Mathematics and Related Sciences]. Instituto de Matemática y Ciencias Afines, IMCA, Lima, 2003.
[4] César Camacho and Paulo Sad. Invariant varieties through singularities of holomorphic vector fields. Ann. of Math. (2), 115(3):579-595, 1982.
[5] H. Dulac. Recherches sur les point singuliers des équations différentielles. J. Ecole Polytechnique, (2):1-125, 1904.

Prepared using etds.cls
[6] R. Godement. Théorie des faisçeaux. Hermann, Paris, 1973.
[7] Alcides Lins Neto. Construction of singular holomorphic vector fields and foliations in dimension two. J. Differential Geom., 26(1):1-31, 1987.
[8] J.-F. Mattei. Modules de feuilletages holomorphes singuliers. I. Équisingularité. Invent. Math., 103(2):297-325, 1991.
[9] J. F. Mattei. Quasi-homogénéité et équiréductibilité de feuilletages holomorphes en dimension deux. Astérisque, (261):xix, 253-276, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995).
[10] J.-F. Mattei and R. Moussu. Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4), 13(4):469-523, 1980.
[11] J.-F. Mattei and E. Salem. Modules formels locaux de feuilletages holomorphes. PrePrint., 2004.
[12] M. Seguy. Cobordismes et reliabilités équisinbulières de singularités marquées de feuilletages holomorphes en dimension deux. PhD thesis, Toulouse, 2003.
[13] A. Seidenberg. Reduction of singularities of the differential equation $A d y=B d x$. Amer. J. Math., 90:248-269, 1968.
[14] Michael Spivak. A comprehensive introduction to differential geometry. Publish or Perish Inc., Boston, Mass., 1975.
[15] Oscar Zariski. Le problème des modules pour les branches planes. Hermann, Paris, second edition, 1986. Course given at the Centre de Mathématiques de l'École Polytechnique, Paris, October-November 1973.

[^0]: \dagger Here, the isomorphism is related to the category $\widehat{\operatorname{Glu}}_{0}(\mathcal{M}, Z, \mathcal{U})$. This notation refers to the same one but in convergent context. The transposition to formal context is easy.

