

DM2: LA CONSTRUCTION DE L'ENSEMBLE DES RÉELS D'APRÈS DEDEKIND.

ET DE LA RACINE CARRÉE DE 2...

1. Q: UN ENSEMBLE INCOMPLET.

On considère l'ensemble $\mathbb Q$ muni de son ordre naturel \leq . Soit A la partie de $\mathbb Q$ définie par

$$A=\left\{ \left. x\in\mathbb{Q}^{+}\right| x^{2}<2\right\} .$$

- (1) Montrer que A est non vide.
- (2) Montrer que A admet un majorant dans \mathbb{Q} .
- (3) On suppose que α est la borne supérieure de A.
 - (a) Soit $\epsilon > 0$. En remarquant que $\alpha \epsilon$ n'est pas un majorant de A, montrer que $\alpha^2 \le 2$.
 - (b) On suppose que $\alpha^2 > 2$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $\left(\alpha \frac{1}{n}\right)^2 > 2$. En déduire une contradiction puis que $\alpha^2 = 2$.
 - (c) Montrer que $\alpha^2 = 2$ est impossible.

On montre ainsi que dans \mathbb{Q} , certaines parties non vides majorées n'ont pas de borne supérieure, ce qui est un ÉNORME problème. Pour résoudre ce problème, on va ajouter de nouveaux nombres à \mathbb{Q} et construire \mathbb{R} .

2. Construction de \mathbb{R} par coupure.

La construction de \mathbb{R} suivante est dûe à Dedekind.²

Une *coupure* de $\mathbb Q$ est un couple de parties (A,B) de $\mathbb Q$ vérifiant les propriétés suivantes:

- \blacksquare A et B sont non vides.
- $\blacksquare A \cup B = \mathbb{Q}, A \cap B = \emptyset$
- $\blacksquare \ \forall x \in A, \ \forall y \in B, \quad x \le y.$
- A n'admet pas de plus grand élément.

On note \Re l'ensemble de toutes les coupures de \mathbb{Q} .

2.1. Deux exemples.

- (1) Montrer que $(\{x \in \mathbb{Q} | x < 1\}, \{x \in \mathbb{Q} | x \ge 1\})$ est une coupure.
- (2) Montrer que $(\mathbb{Q}^- \cup \{x \in \mathbb{Q}^+ | x^2 < 2\}, \{x \in \mathbb{Q}^+ | x^2 > 2\})$ est une coupure. On la notera $\mathcal{RAC}(2)$.

On supposer que $\alpha = \frac{p}{q}$ avec p et q premiers entre eux, et on cherchera une contradiction.

²Il existe d'autres constructions.

- 2.2. Ordre sur les coupures. Soit $C_1 = (A_1, B_1)$ et $C_2 = (A_2, B_2)$ deux coupures. On notera $C_1 \leq C_2$ lorsque $A_1 \subset A_2$.
 - (1) Montrer que \leq est un ordre.
 - (2) Montrer que c'est un ordre total.
 - (3) Montrer que $(\mathbb{Q}^{-*}, \mathbb{Q}^+) \leq \mathcal{RAC}(2)$.
- 2.3. **Théorème structurant**. Soit A une partie de \Re . On suppose A non vide et majorée. On pose

$$\mathbb{A} = \bigcup_{(A,B)\in\mathcal{A}} A$$

et $\mathbb{B} = \mathbb{Q} \setminus \mathbb{A}$.

- (1) Montrer que (\mathbb{A}, \mathbb{B}) est une coupure.
- (2) Montrer que c'est la borne supérieure de A.

On obtient ainsi le résultat de structure tant espéré: toute partie non-vide majorée de $\mathfrak R$ admet une borne supérieure.

2.4. Plongement de $\mathbb Q$ dans $\mathfrak R$.. Montrer que l'application définie par

$$I: \left\{ \begin{array}{ccc} \mathbb{Q} & \longrightarrow & \Re \\ r & \longrightarrow & (\left\{ \left. x \in \mathbb{Q} \right| x < r \right\}, \left\{ \left. x \in \mathbb{Q} \right| x \geq r \right\}) \end{array} \right.$$

est une injection croissante.

2.5. **Produit de deux coupures positives.** On dit qu'une coupure \mathcal{C} est positive si $I(0) \leq \mathcal{C}$. Soit $\mathcal{C}_1 = (A_1, B_1)$ et $\mathcal{C}_2 = (A_2, B_2)$ deux coupures positives. Soit B_3 défini par

$$B_3 = \{ xy | x \in B_1, y \in B_2 \}$$

et $\mathcal{C}_1 \otimes \mathcal{C}_2$ par

$$C_1 \otimes C_2 = (\mathbb{Q} \setminus B_3, B_3)$$
.

- (1) Montrer que $C_1 \otimes C_2$ est une coupure. Elle s'appelle le coupure produit de C_1 et C_2 .
- (2) Soit r_1 et r_2 deux rationnels positifs. Montrer que

$$I(r_1r_2) = I(r_1) \otimes I(r_2).$$

(3) Montrer enfin que

$$\mathcal{RAC}(2) \otimes \mathcal{RAC}(2) = I(2)$$
.

Ho !!!! On vient de construire la racine carrée de 2 !!!

