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Abstract

We prove a result of classification for germs of formal and convergent quasi-homo-
geneous foliations in C2 with fixed separatrix. Basically, we prove that the analytical
and formal class of such a foliation depend respectively only on the analytical and
formal class of its representation of projective holonomy.
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1 Introduction and main statements.

A germ of foliation F with an isolated singularity in C2 is given by an holo-
morphic 1-form up to a germ unity

ω = a(x, y)dx+ b(x, y)dy

where a, b ∈ C{x, y}, a(0, 0) = b(0, 0) = 0 and gcd(a, b) = 1. The foliation F
is said to be formal, and then denoted by F̂ when a and b are only formal
functions in C[[x, y]]. A separatrix of F is a leaf of the regular foliation given
by ω|(C2∗,0) whose closure in (C2, 0) is an irreducible analytical curve passing

through the origin. A formal separatrix of F̂ is a formal irreducible curve
{f̂ = 0}, f̂ ∈ C[[x, y]] such that f̂ divides the product df̂ ∧ ω. Obviously, any
convergent separatrix seen as a formal curve is a formal separatrix of F seen
as a formal foliation. C. Camacho and P. Sad show in [3] that F has at least
one separatrix. Once the foliation is desingularized by a blowing-up morphism
[20], i.e. a sequence of succesive standard blowing-up,

E : (M,D) → (C2, 0), D = E−1(0) exceptionnal divisor

the pull-back foliation E∗F has only reduced singularity : any singularity of
E∗F is written in some coordinates
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(1) either ω = λxdy + βydx+ · · · with λ/β 6∈ Q−∗,
(2) or ω = xdy + · · ·

A singularity of saddle-node type corresponds to the second case. Now, F is
said to be of generalized curve type when E∗F has no singularity of saddle-
node type. Under the generalized curve assumption, the foliation F and its
separatrix have the same desingularization [2]. All these definitions and results
have their equivalent in the formal context: one has only to add the word
formal in order to get adapted statements.

Following [14], the foliation F is said to be quasi-homogeneous when the union
of its separatrix, denoted by Sep(F), is a germ of curve given in some coordi-
nates by a quasi-homogeneous polynomial function:

Sep(F) =





∑

αi+βj=γ

aijx
iyj = 0



 , α, β, γ ∈ N∗, gcd(α, β) = 1.

The couple (α, β) is called the weight of the curve. Suppose F to be a quasi-
homogeneous foliation of generalized curve type. The exceptional divisor of its
desingularization comes to be a unique chain of CP2 such that each component
except the two extremal meets exactly two others. Appart from the extremal
components, there is a unique component of the divisor, which meets the strict
transform of S, i.e. the closure of E−1(Sep(F)\{0}) in M. In this article,
we call the latter component the central component. As we will explain, the
whole transversal structure of F is concentrated in the projective holonomy
representation over the central component.

Let F0 and F1 be two germs of quasi-homogeneous foliations of generalized
curve type. Let E0 : (M0,D0) → (C2, 0) and E1 : (M1,D1) → (C2, 0), be their
respective desingularization. Suppose the separatrix analytically conjugated
and denote by Φ a conjugacy. The conjugacy can be lifted-up in a conjugacy
Φ∗ from M0 to M1 sending the central component of F0 to that of F1. We say
that F0 and F1 have conjugated holonomy if there is an interior automorphism
φ of the group Diff(C, 0)

φ(h) = ghg−1, for some g in Diff(C, 0)

such that the projective holonomy representations satify the commutative di-
agram:

Π1 (D0\Sing(E∗
0F0), x)

HolF0−−−→ Diff(C, 0)

Φ∗

y φ

y

Π1 (D1\Sing(E∗
1F1),Φ

∗(x))
HolF1−−−→ Diff(C, 0)

where D0 and D1 stand for the respective central components.
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The aim of this article is to show the following theorem:

Theorem 1.1 Let the foliations F0 and F1 be two germs of (resp. formal)
quasi-homogeneous foliations with analytically (resp. formally) conjugated sep-
aratrix. The foliations F0 and F1 are analytically (resp. formally) conjugated
if and only if they have conjugated holonomy (resp. formally conjugated holo-
nomy).

In [4], D. Cerveau and R. Moussu generalize a construction of the latter author
in [17] and prove the above result in the particular case of a quasi-homogeneous
foliation given by a 1-form with nilpotent linear part

ydy + · · · .

In this case, the separatrix is the curve y2 + xp = 0 and, consequently, there
is no separatrix whose strict transform is attached to the extremal compo-
nents of the exceptionnal divisor of the desingularization. From this remark,
their proof roughly consists in extending the conjugacy of the holonomy in
a neighborhood of the divisor deprived of a few curves by lifting the paths
with respect to some global transversal fibration. Since there exists a first
integral for the foliation on the neighboorhood of the whole exceptionnal di-
visor deprived of a neighboorhood of the central component, the conjugacy
is bounded and therefore well defined around the whole divisor. In the gen-
eral case, the existence of a first integral does not hold and it is not clear
wether the conjugacy one could obtain would be bounded. Actually, our point
of view is completely different and based upon deformation techniques. The
first section is devoted to proof the possibility of constructing some special de-
formations of foliations with prescribed underlying family of separatrix. The
associated result is independent of the main goal of this article and should
be of self interest. The second section provides some classical properties of
quasi-homogeneous foliations and reduced singularities and, finally, a detailed
proof of (1.1).

2 Isoholonomic deformations with prescribed separatrix.

This section is to devoted to the construction of some very special deforma-
tions of foliations, namely isoholonomic deformations, which are introduced
hereafter. The main result is a realization kind theorem (2.2), which allows us
to find an isoholonomic deformation of a foliation as soon as a deformation
of its separatrix is given. This theorem specializes to a result of [6] if there is
no parameter 1 . Since the proof of the latter result and the one we develop

1 This case correponds to K = {0} and C = ∅ in the theorem (1.1)
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here are widely similar, we are about to only give the arguments one has to
add to these presented in [6] in order to obtain a complete proof. However,
for the convenience of the reader we repeat here the relevant material from
[6] thus making our expostion almost self-contained. Nevertheless, the reader
which would be only interested in the classification (1.1) could admit the main
resullt of this section and begin its lecture with the last section.

2.1 Isoholonomic deformations.

Let F be a formal foliation in C2. Let K be a compact connected subset of Cp.
In this article, we call transversally formal integrable deformation over Kof F
any formal foliation FK of codimension one in (C2+p, 0 × K) with 0 × K as
singular locus such that the leaves are transversal to the fiber of the projection

π : (C2+p, 0 ×K) → (Cp, K), π(x, t) = t.

and given by a 1-form

Ω(x, y, t) = a(x, y, t)dx+ b(x, y, t)dy +
p∑

i=1

ci(x, y, t)dti,

(x, y) ∈ C2, t = (t1, . . . , tp) ∈ K

with

(1) a, b, c1, . . . , cp lies in the ring OK [[x, y]] of formal series with coefficients
in the ring of holomorphic functions on K,

(2) Ω is integrable,
(3) Ω|t=0 defines F ,
(4) the set

{a = 0, b = 0, c1 = 0, . . . , cp = 0}

is equal to 0 ×K and the ideal (c1, . . . , cp) is a sub-ideal of
√

(a, b).

The latter condition is equivalent to the transversality of the leaves and the
fibers of π. If the coefficients come to be convergent series the deformation
is simply called integrable deformation. In any case, the foliation i∗tF where
it, t ∈ K is the embedding it(x) = (x, t), x ∈ C2, is a formal foliation in usual
sense. More generally, for any subset J of K, we denote by FJ the tranversally
formal integrable deformation over J induced by restriction of FK on π−1(J). A
transversally formal integrable deformation is said equisingular if the induced
family of foliation {i∗tF}t∈K admits a desingularization in family. We refer to
[16] for a precise definition of this notion.
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Let us first recall a result due Mattei, which is the foundation of our method.
Let F be any germ of analytic foliation in (C2, 0) and E : (M,D) → (C2, 0)
its desingularization. We denote by Fix(F) the sheaf over D whose fiber is the
group of germs of automorphisms φ in (M,D) × (C, 0) such that

• φ|M×{0} = Id
• φ commutes with the projection on the space of parameter

Π : (M,D) × (C, 0) → (C, 0)

• φ lets invariant each local leaf and φ∗(F × (C, 0)) = F × (C, 0)

Basically, the flows of vector field X tangent to the foliation F × (C, 0) with
DΠ(X) = 0 are sections of Fix(F).

Theorem 2.1 (Mattei,[13]) There is a bijection between the moduli space
of germs of equisingular integrable deformations of F with parameters in C

and H1(D,Fix(F)).

In what follows, we are deeply going to make the most of this cohomological
interpretation of equisingular integrable deformations. Since the sections of
Fix(F) act in the local leaf, the holonomy pseudo-group of i∗tF(C,0) does not
depend on t along any equisingular integrable deformation. Hence, we adopt
the following defintion:

Definition 2.1 An (resp. transversally formal) isoholonomic deformation of
foliation is an equisingular (resp. transversally formal) integrable deformation.

For simplicity, the article is written from now on in the convergent context.
However, there is no special difficulty for transposing the proofs and the
results in the transversally formal context.

2.2 Existence of isoholonomic deformation with prescribed separatrix.

To make a precise statement, we have to introduce some more definitions.
Let FK be an isoholonomic deformation with parameter in K ⊂ Cp. When
i∗tFK is of generalized curve type for some t ∈ K, the whole deformation FK

is naturally said to be of generalized curve type. This definition is coherent
since, along an isoholonomic deformation, the property holds for any foliation
i∗tFK as soon as it holds for some t ∈ K. A separatrix of FK is an invariant
hypersurface of the regular foliation F|C2∗×K whose closure is an irreducible
analytical germ of hypersurface along 0×K. When FK has only a finite number
of separatrix, we denote by Sep(FK) their union and FK is said non-dicritical.
Since, FK is equisingular in the foliated meaning, the family {Sep(FK)}t∈K is
an equisingular deformation of curves.
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From now on, we assume the compact of parameters K to have a fundamental
system of open connected neighborhoods, which are Stein open sets. Let C be
an analytical subset of K given by the zeros of holomorphic functions.

Theorem 2.2 (Cobordism theorem) Let F 0 be a non-dicritical isoholo-
nomic deformation over K of generalized curve type and let us denote by S0

the separatrix of F 0. Let S1 be any equisingular family of germs of curves at
the origin of C2 with

(1) S1 and S0 are topologically equivalent as families,
(2) S1|C and S0|C are analytically equivalent as families.

There exists an isoholonomic deformation F 1 over K such that

(1) Sep(F1) = S1,
(2) F1|C and F0|C are analytically equivalent.

Moreover, the deformation F1 and F0 are embedded in an isoholonomic de-
formation F over K × D

F|K×{0} = F0 and F|K×{1} = F1

which is trivial above C: the deformation F|C×D
is analytically equivalent to

F|C×{0} × D.

Triv
ial

Triv
ial

F
Iso

Iso

Iso

F
0

1
F

A

B
K
C={A,B}

S 1

D

Fig. 1. Theorem (2.2)

As mentionned before, in this section, we are going to follow the proof per-
formed in [6] and give only the arguments related to the difficulties appearing
with the parameter context. One of the interests of the formalism introduced
in [6] is the easy way arguments are extended to this more general context.
Actually, the main difficulties arising with the parameters are removed thanks
to the Stein property of K.

In the formal context, there is a similar result: replace convergent objects by
formal objects and isoholonomic deformations by transversally formal isoholo-
nomic deformations.

Let us describe a short plan of the proof. In the section (2.3), we fix a manifold
M built from a family of blowing-up process and we define a very special class
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of manifolds denoted by GluC
0 (M,U , Z) related to M. In the section (2.4), M

is supposed to be foliated by an isoholonomic deformation F . A property of
cobordism type is pointed out , which allows us to detect the existence of an
isoholonomic deformation on any element of GluC

0 (M,U , Z). This deformation
will be automatically linked to F by isoholonomic deformations. In sections
(2.4.1), (2.4.2) and (2.4.3), we show the theorem (2.6) which states that, under
the generical hypothesis, the cobordism property holds for any element of
GluC

0 (M,U , Z). In the third section, we deduce the theorem (2.2) from this
cobordism property.

2.3 The category GluC
n (M, Z,U).

A blowing-up process over K is a commutative diagram

Mh Eh

→ . . . Mj Ej

→ . . .
E1

→ M0 = (C2+p, 0 ×K)
π
→ (Cp, K)

⋃ ⋃ ⋃

Σh → . . . Σj → . . . → Σ0 = 0 ×K
⋃ ⋃ ⋃

Sh → . . . Sj → . . . → S0 = 0 ×K

(1)

where Mj is an analytical manifold of dimension 2+p; Σj is a closed analytical
subset of dimension p called the jth singular locus; Sj ⊂ Σj is an analytical
smooth sub-variety with a finite number of connected components called the
jth blowing-up center. Futhermore, denoting

Ej := E0 ◦ · · · ◦ Ej, πj := π ◦ Ej, et Dj := E−1
j (S0),

we require that: π is the projection on the second factor; each Ej+1 is the stan-
dard blowing-up centered at Sj; each Sj is a union of irreducible components
of Σj; each Σj is a smooth subset of the divisor Dj. Moreover, the maps πj|Σj

and πj|Sj are etale over K. The set of irreducible components of Dj is denoted
by Comp(Dj). The integer h is called height of the blowing-up process and(
Mh,Dh,Σh, πh

)
the top of the process. The composed map Eh is called the

total morphism of the process.

More generally, we call tree over K a triplet (M,D,Σ, π) such that there

exists a blowing-up process over K whose
(
Mh,Dh,Σh, πh

)
is the top and a

biholomorphism Φ between M and Mh such that

Φ(D) = Dh, Φ(Σ) = Σh and πh ◦ Φ = π.
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Finally, for any J ⊂ K we denote by (MJ ,DJ ,ΣJ , πJ) the tree over J obtained
by simple restriction.

2.3.1 The sheaves GC
Z

n
, n ≥ 0.

From now on, we fix a marked tree (M,D,Σ, π). In order to get through
a technical difficulty, the tree is enhanced with a cross: let E be the total
morphism of (M,D,Σ, π).

Definition 2.2 (Cross) A cross on M is the strict transform Z = E∗Z0 of a
single Z0 = {Z1} or of a couple Z0 = {Z1, Z2} of germs of smooth transversal
hypersurfaces along 0×K. We assume that any component Z meets a unique
irreducible component of D.

We consider AutC(M, Z) the sheaf over D of germs of automorphism defined
in a neighborhood of D such that

π ◦ Φ = π, Φ|D = Id, Φ|Z = Id et Φ|π−1(C) = Id.

Let OM be the sheaf over D of germs of functions on M. Let us consider
the subsheaf M ⊂ OM generated by the pull-back of the ideal of functions
vanishing along 0×K. It is easily seen that one has the following decomposition

M = O


−

∑

D∈Comp(D)

ν(D)D




where ν(D) is an integer called the multiplicity of the component D. We con-
sider a filtration of OM defined by Mn

Z := IZ · Mn, n ≥ 1. The sheaf MCn
Z

is a sub-sheaf of Mn
Z whose sections vanish along π−1(C). We also have to

consider the sheaf IZ ⊂ OM defined by

IZ := O


−Z −

∑

D∈Comp(D)

D


 .

We call nth infinitesimal neighboorhood the analytical space

M[n],Z :=
(
D,OM /Mn

Z

)
.

The neighborhood of order 0 is M[0],Z :=
(
D,OM /IZ

)
. We also consider the

following ringed spaces: Mn,Z :=
(
D, IZ /IZMn

Z

)
and M0,Z :=

(
D, IZ /I2

Z

)
.

Definition 2.3 We denote by AutC
n (M, Z) the subsheaf of AutC(M, Z) of
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germs that coincide with Id when restricted to the infinitesimal neighborhood
of order n.

Let us have a close look at the form of the sections of AutC
n (M, Z) in order to

define a special morphism of sheaves. In any following expressions, the used
coordinates are naturally adapted to the situtation: the coordinates (x, y)
stand for the local components of D or Z and t for the parameter in K.

At a regular point c of D ∪ Z: let p be the multiplicity of the compo-
nent containing c. The elements of AutC

n (M, Z)c can be written φ(x, y, t) =
(x + xpnA, y + xpnB, t), where A,B belong to C{x, y, t} and vanishing along
π−1(C). Let Jn be the function defined by

φ(x, y, t) = (x + xpnA, y + xpnB, t) ∈ AutC
n (M, Z)c

Jn7−→ xpn−1A ∈ (OM[n],Z)c .

One can see that Jn is a morphism of groups that doesn’t depend on the
adapted coordinates.

At a singular point s of D: let p and q be the multiplicities of the local
components. The elements of AutC

n (M, Z)s are those of the form φ(x, y, t) =
(x + xpnyqnA, y + xpnyqnB, t). In the same way, we define an intrisic group
morphism by

φ(x, y, t) = (x + xpnyqnA, y + xpnyqnB, t) ∈ AutC
n (M, Z)s

Jn7−→ xpn−1yqn−1 (yA+ xB) ∈ (OM[n],Z)s .

At an attachment point z of Z: the multiplicity of the local component is
1 since the components of Z are smooth curves downstairs at the origin. The
elements of AutC

n (M, Z)z are of the form φ(x, y, t) = (x + xnyA, y + xnyB, t)
and the morphism is defined by

φ(x, y, t) = (x + xnyA, y + xnyB, t) ∈ AutC
n (M, Z)z

Jn7−→ xn−1 (yA+ xB, t) ∈ (OM[n],Z)z .

Finally, we get a morphism of sheaves defined by its previous local description

AutC
n (M, Z)

Jn7−→ OM[n],Z . We have likewise a morphism of sheaves J0 defined,
for example, near a regular point by

φ(x, y, t) = (x + xA, y + xB, t) ∈ AutC
0 (M, Z)c

J07−→ A ∈ (OM[0],Z)c .

Definition 2.4 We denote GC
Z

n
the subsheaf of AutC

n (M, Z) kernel of the
morphism Jn.
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2.3.2 The tree gluing.

Thanks to the sheaf AutC(M, Z), we are going to introduce a process called
gluing on M. This construction will allow us to define a large class of trees
with same divisor analytical type. These trees will inherit a canonical cross.

Let us define a particular type of open covering of the divisor. Let U =
{Ui}i∈I=I0∪I1

be the covering of D constituted of two kinds of open sets: if
i belongs to I0, Ui is the trace on D of a neighborhood of a unique singular lo-
cus conformally equivalent to a polydisc; if i belongs to I1, Ui is an irreducible
component of D deprived of the singular locus of D. Such a covering is called
distinguished when there is no 3-intersection. Distinguished coverings contain
Stein open sets having fundamental systems of Stein neighborhood. From now
on, a covering denoted by U will always supposed to be distinguished.

Thanks to distinguished covering, we are able to glue the open sets of that
covering by identifying points with respect to a 1-cocycle in AutC(M, Z). Let

(φij) be a 1-cocycle in Z1
(
U ,AutC(M, Z)

)
. We define:

M[φij] =
⋃

i

Ui × {i}/(
{x}×{i}∼{φij (x)}×{j}

),

where Ui is a neigborhood of Ui in M such that φij is an automorphism of M
along Ui ∩ Uj. The manifold we get comes with an embedding

D ↪→ M[φij] (2)

whose image is denoted by D[φij] and M[φij] is considered as a germ of neigh-
borhood of D[φij].

Definition 2.5 The manifold germ M[φij] is called gluing of M along U by
the cocycle (φij).

By construction of the sheaf AutC(M, Z), we have the following isomorphism
of tree

M[φij]|C ' M|C

The gluing of a crossed tree comes naturally with a cross: it is the direct
image of Z by the quotient map for gluing relation. Such a tree and cross are
respectively denoted by

(M[φij],D[φij],Σ[φij]) , and Z[φij].

We associate to any gluing the data of morphisms on infinitesimal neigboor-
hoods generalizing the embedding (2). Actually, the description of GC

Z

n
sections

reveals the following property
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Proposition 2.1 Let n be an integer and N = M[φij] be a gluing of M by
a cocycle in Z1(U ,GC

Z

n
). There are canonical isomorphisms of analytical and

ringed spaces

ρ
[n]
N :M[n],Z ∼

−→ N [n],Z[φij],

ρ
n
N : Mn,Z ∼

−→ N n,Z[φij ].

Loosely speaking, since the cocyle (φij) is tangent to Id at order n along
the divisor D ⊂ M, the nth infinitesimal neighboorhood of the glued tree
N = M[φij] is the same as M in a canonical way.

2.3.3 The GluC
n (M, Z,U) categories.

Let p be an integer. Let us consider the crossed tree built by a succession of
gluings

M[φ1
ij][φ

2
ij][. . .][φ

p
ij] (3)

where

•
(
φ1

ij

)
is a 1-cocyle of Gn

Z ;

• for k = 2, . . . , p,
(
φk

ij

)
∈ Z1

(
U [φ1

ij] . . . [φ
k−1
ij ],GCn

Z[φ1
ij

]...[φk−1
ij

]

)
with

Gn

Z[φ1
ij

]...[φk−1
ij

]
⊂ AutC

(
M[φ1

ij] . . . [φ
k−1
ij ], Z[φ1

ij] . . . [φ
k−1
ij ]

)
.

Following the proposition (2.1), we have canonical isomorphisms

ρ
[n]

M[φ1
ij

][φ2
ij

][...][φp
ij

]
:M[n],Z ∼

−→ M[φ1
ij][φ

2
ij][. . .][φ

p
ij][n], Z[φ1

ij][φ
2
ij][. . .][φ

p
ij], (4)

ρ
n

M[φ1
ij

][φ2
ij

][...][φp
ij

]
:Mn,Z ∼

−→ M[φ1
ij][φ

2
ij][. . .][φ

p
ij]

n,Z[φ1
ij ][φ

2
ij ][...][φ

p
ij

]. (5)

Definition 2.6 The GluC
n (M, Z,U) category is the category whose objects are

crossed trees built as (3) with the data of the isomorphisms (4) and (5). Arrows
are biholomorphisms of trees that commute with these isomorphisms. If M and
N are isomorphic in GluC

n (M, Z,U), we denote

M
Gn
' N .

From now on, we assume the tree M to be the support of an isoholonomi-
cal deformation F . We are going to define a cobordism property in order to
detect on any element of GluC

0 (M, Z,U) the existence of an isoholonomical
deformation linked to F by isoholonomical deformations. The next purpose
will be to prove that this property holds for any element of GluC

0 (M, Z,U).
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Definition 2.7 (Cross adapted to F) Let Z be a cross on M. Z is said
to be adapted to F when each component Zi is either a separatrix of F or is
attached at a regular point of F . In the latter case, Zi will be transversal to
the leaves of the isoholonomical deformation.

Now, we consider the sheaf XC
S,Z over D which is a subsheaf of the sheaf of

holomorphic vector field. A section X of XC
S,Z is supposed to vanish on π−1(C),

to be tangent to D, to the separatrix and to the cross. We also assume that
X is vertical :

Dπ(X) ≡ 0.

The sub-sheaf XC
F ,Z ⊂ XC

S,Z is the sheaf of vector fields tangent to the defor-
mation F . From now on, etX refers to the flow of the vector field X at time
t.

Definition 2.8 (Cobordism) Let N be in GluC
0 (M, Z,U). N is said to be

F-cobordant to M if there exists a finite sequence of 1-cocyles
(
T k

ij

)
k=1,...,N

such that the two following conditions are verified:

(1) for any p = 0, . . . , N − 1, let XC
Fp,Zp

be the sheaf over D[eT 1
ij ][· · · ][eT

p
ij ] of

germs of vector field defined as above adapted to the tree M[eT 1
ij ][· · · ][eT

p
ij ],

to the foliation Fp = F [eT 1
ij ][· · · ][eT

p
ij ], and to the cross Zp = Z[eT 1

ij ][· · · ][eT
p
ij ].

We assume
(
T p+1

ij

)
is a 1-cocycle with values in XC

Fp,Zp
.

(2) N
G0
' M[eT 1

ij ][· · · ][eT N
ij ].

We summarize this definition with the following notation:

M
F1,Z1

//___ M2
F2,Z2

//___ · · ·
FN−1,ZN−1

//___ MN

G0
' N .

Here, N inherit a canonical isoholonomical deformation embedded in an iso-
holonomical deformation of F . For example if the cobordism is elementary, i.e
N = 1, the isoholonomic deformation is constructed in the following way

∐

i

F|Ui
× D

/
(x, t) ∼ (e(t)Tijx, t).

The glue is well defined for the map x 7→ e(t)Tijx acts in the local leaves of F .

Let us explain what motivates the introduction of such a formalism. Roughly
speaking, the proof of the theorem (2.2) is going to be performed firstly on
the infinitesimal neighboorhood of the divisor at any order. The result will be
deduced on the whole neighboorhood by a stability kind argument. Hence, the
infinitesimal step (2.4.1) is going to be more or less the key of the proof. Now,
infinitesimal deformations of a tree are given by cocycles with values in the
sheaves of holomorphic vector fields tangent to the divisor of the tree. In view
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of the process of the proof, we choose a filtration of the sheaves of holomorphic
vector fields related to the vanishing order along the divisor. However, this
filtration must have a vanishing property at the cohomological level (2.1) to
ensure that any infinitesimal deformation of the tree can be lifted-up in an
infinitesimal isoholonomic deformation of the foliation. It appears that very
few filtration admit such a property. The most natural one in our context is
precisely

{
Mn

ZXC
S,Z

}
n≥0

. Now an easy computation in local coordinates shows

that the flow of any section of Mn
ZXC

S,Z is a section of GC
Z

n
: this property is

the main reason why we introduce these sheaves of automorphisms. Finally,
following our strategy, we filtered the category of trees with a family of adapted
categories (2.6) and prove the cobordism property by induction with respect
to this family. During the induction, the role of the isomorphisms (4) and
(5) is critical: they ensure in an intrinsic way a correspondance beetween the
geometrical and cohomological relations two trees may have. Actually, if these
two isomorphisms are removed of the definition (2.6), then two trees may be
isomorphic in the normal sense but not isomorphic in the category.

2.4 Proof of the existence theorem.

2.4.1 First step : the infinitesimal level.

Let F0 be the isoholonomical deformation over K such that E∗F0 = F . In
view of the definition , the deformation F0 is given by a 1-form Ω0. Let us
denote F0 a reduced equation of the separatrix of F0. Since the deformation
F is locally trivial, one can reproduce with parameter the computation done
in [6] in the non-parameter case to prove the following lemma based upon the
generalized curve hypothesis:

Proposition 2.2 There exists an exact sequence of sheaves

0 −→ Mn
ZXC

F ,Z −→ Mn
ZXC

S,Z

E∗Ω0(.)
−−−−→ MC

Z
n (F0 ◦ E) −→ 0

where (F0 ◦ E) is the sub-sheaf of OM generated by the function F0 ◦ E and
MC

Z
n the sheaf of ideals Mn

Z · O(−(π ◦ E)−1C)

In order to establish an equivalent of the infinitesimal cobordism result in [6]
in the present parameter context, we only have to show the

Lemma 2.1
H1(D,MC

Z
n) = 0.

Proof: Let us consider MW a neighborhood of D and the associted fibration

Π : MW 7−→ K = π ◦ E

13



where K ⊂ K is a Stein open set. The spectral sequence of [7] associated to
the sheaf Mn

Z and the fibration Π induce an exact sequence

H1 (K,Π∗M
C

Z
n) → H1 (MW ,M

C

Z
n) → H0

(
K,R1Π∗M

C

Z
n
)
→ H2 (K,Π∗M

C

Z
n) .

Since π is proper and MC

Z coherent, Π∗M
C

Z
n is a coherent sheaf [8]. As K is

Stein, each extremal term of the sequence vanishes [9]. Hence, we have

H1 (MW ,M
C

Z
n) ' H0

(
K,R1Π∗M

C

Z
n
)
. (6)

The fiber of the derived sheaf satisfies:

(
R1Π∗M

C

Z
n
)

x
' H1

(
Π−1(x),MC

Z
n|Π−1(x)

)
. (7)

Let us denote by Mx ⊂ (OK)x the ideal of germ of function vanishing at x.
Thanks to a distinguished covering of Π−1(x), one can see that

H1
(
Π−1(x),MC

Z
n
)
⊗OKx

OKx /Mx
' H1

(
Π−1(x),MC

Z
n ⊗OKx

OKx /Mx

)
.

Let ix be the embedding Π−1(x) ⊂ M; a simple local computation ensures
that

MC

Z
n ⊗OKx

OKx /Mx
' i∗xM

C

Z
n.

Now, in view of the non-parameter computation in [6], the cohomology of
i∗xM

C

Z satisfies

H1
(
Π−1(x), i∗xM

C

Z
n
)

= 0.

Hence, one gets

H1
(
Π−1(x),MC

Z
n
)
⊗OKx

OKx /Mx
= 0.

The Nakayama’s lemma [10] and the relation (7) ensure that the derived sheaf
R1Π∗M

C

Z
n is the trivial sheaf. Using (6), we have

H1 (MW ,M
C

Z
n) = 0.

Finally, the lemma is obtained by taking the inductive limit on a familly of
Stein neighborhood of K. �

The long exact sequence of cohomology associated to the short sequence (2.2)
and to the covering U give us the infinitesimal cobordism property

Proposition 2.3 (Infinitesimal cobordism) The canonical map

H1
(
D,Mn

ZXC
F ,Z

)
−→ H1

(
D,Mn

ZXC
S,Z

)

is onto.
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2.4.2 Second step : cobordism in GluC
1 (M, Z,U).

This section is devoted to prove the following proposition:

Proposition 2.4 Any element of GluC
1 (M, Z,U) is elementary F-cobordant

to M.

The proof performed in [6] using an algorithm of Newton type can be re-
produced in the GluC

1 (M, Z,U) category. Basically, we write N = M[φij] ∈
GluC

1 (M, Z,U) and normalized the n-jet of the cocycle (φij) for n big enough
using an induction and (2.3). The last argument is a stability property for
neighboorhoods of exceptional divisors. Hence, we have only to establish an
equivalent of the latter result in our context.

Proposition 2.5 (Stability property) For n big enough, any tree in the
image of the natural embedding

GluC
n (M, Z,U) ↪→ GluC

1 (M, Z,U)

is isomorphic to M in the category GluC
1 (M, Z,U).

Roughly speaking, if the cocyle φij is tangent enough to Id along the divisor,
then the trees M and M[φij] are isomorphic in the category GluC

1 (M, Z,U).

Proof: Let p and n be integers and N = M[φij] with (φij) in Z1
(
U ,AutC

p (M, Z)
)
.

For p big enough, the image of the natural morphism

H1(D,Autp(M, Z)) → H1(D,Autn(M, Z))

is trivial [16]. Since AutC
p (M, Z) ⊂ Autp(M, Z), one can take a trivialisation

φij = φi ◦ φ
−1
j , (φi) ∈ Z0 (U ,Autn(M, Z)) .

By definition of the sheaf AutC
p (M, Z), the restricted components of the co-

cycle satisfy
φi|π−1(C) = φj|π−1(C).

Hence, the familly (φi) defines a global section over C of Autn(M, Z). This
section induces a germ of biholomorphism φ along 0 × C ⊂ C2 × Cp which
commutes with the projection and lets fixed each point of the cross. In some
adapted coordinates (x, y, t), (x, y) ∈ (C2, 0), t ∈ K, φ is written

φ(x, y, t) = (x, y, t) +H(x, y, t)


 ∑

i,j≥ν

aij(t)x
iyj,

∑

i,j≥ν

bij(t)x
iyj, 0




where H is a reduced equation of the cross over K and aij, bij holomorphic
functions on C. Since K is Stein, in view of [5] there exist holomorphic func-
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tions Aij and Bij on K such that

Aij|C = aij et Bij|C = bij.

Then, the map

Φ(x, y, t) = (x, y, t) +H(x, y, t)


∑

i,j

Aij(t)x
iyj,

∑

i,j

Bij(t)x
iyj, 0


 (8)

is a germ of automorphism along 0×K ⊂ C2×K, which extends φ, commutes
with the projection and fixes the cross. Morevover, if one chooses Aij = 0 et
Bij = 0 as soon as aij = 0 and bij = 0, then the tangency order to the identity
of the extension is the same as φ. Hence, for p big enough, the biholomorphism
(8) can be lifted up in a global section of Autn(M, Z) over K with Φ|C = φ.
Hence, the 0-cocycle (ψi) = (φi ◦ Φ−1|Ui) is a trivialisation of (φij) with values
in AutC

n (M, Z).

Now, since K is Stein, the curve Z0 defining the cross Z = E∗Z0 can be
straightened along 0×K and in some coordinates (x, y, t), (x, y) ∈ C2, t ∈ K,
Z0 admits xy = 0 for equation. The latter coordinates induce two canoni-
cal systems of coordinates along the components of Z = Z1 ∪ Z2. The total
morphism E is now written E(x1, y1, t) = (x1, y1x

N1
1 , t) and E(x2, y2, t) =

(x2y
N2
2 , y2, t). Let us denote by ψ1 and ψ2 the components of (ψi) defined on

the open set of the covering which contains the components of Z. Since each
component of Z0 is smooth, the automorphisms ψ1 and ψ2 can be written

ψ1(x1, y1, t)= (x1 + xn
1y1U1(x1, y1, t), y1 + xn

1y1V1(x1, y1, t), t)

ψ2(x2, y2, t)= (x2 + yn
2x2U2(x2, y2, t), y2 + yn

2x2V2(x2, y2, t), t) .

Let ψ be the germ of biholomorphism along 0 ×K defined by

ψ(x, y, t) = (x(1 + ynU2(0, y, t)), y(1 + xnV1(x, 0, t)), t) .

For n big enough, Ψ can be lifted up on M in an automorphism Ψ that fixes
each point of D and Z. Now, if one takes a closed look to the expression of
ψ, one can verify that, for any point x on D and any component ψi of (ψi)
defined near x,

(J1)x(ψi) = (J1)x(Ψ).

Hence, the 0-cocycle (ψi ◦ Ψ−1|Ui
) is a trivialisation of (φij) in G1

Z . Since,
the tree N is the gluing M[φij], N is isomorphic to M in the category
GluC

1 (M, Z,U). �
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2.4.3 Third step: cobordism in GluC
0 (M, Z,U).

The cobordism in GluC
0 (M, Z,U) is related to the following result:

Proposition 2.6 Any element in GluC
0 (M, Z,U) is F-cobordant to M.

The proof done in [6] for the category Glu0(M, Z,U) can be repeated here
without any change. The main tools are an induction on the height of the
trees and the cobordism result for GluC

1 (M, Z,U).

2.4.4 Fourth step: preparation of a cocyle.

Let (M′,D′,Σ′, π′) be a tree over K topologically equivalent to (M,D,Σ, π).
We suppose that over C the trees M′|C and M|C are conjugated.

Proposition 2.7 There exists an isoholonomic deformation F ′ on M′ such
that F ′|C and F|C are analytically equivalent and F and F ′ are embedded in
an isoholonomic deformation over K×D which is trivial above C in the sense
of the theorem (1.1).

In order to prove the latter proposition, we prepare a 1-cocycle such that the
tree M′ becomes a gluing of M in a category Glu0(M, Z,U). This cocycle
must well behave with respect to the condition M′|C ' M|C.

In view of [19], one can find a first isoholonomic deformation F̃ over D × K
such that:

(1) F̃|−1×K is equal to F ,
(2) F̃|1×K is a deformation on a tree (M̃, D̃, Σ̃, π̃) with D′ and D̃ analytically

equivalent,
(3) the deformations F̃ |1×C and F|C are analytically equivalent.

Notice that, even if the divisors D′ and D̃ are analytically equivalent, there is
no reason for the trees M′ and M̃ to be also analytically equivalent. Let us
denote by θ a conjugacy between D′ and D̃ and φ a conjugacy between M′|C
and M̃|C . Since K is Stein, the tubular neighborhood of any irreducible com-
ponent of D is a trivial deformation over K. Therefore, for such any component
D, there exists a biholomorphism ΘD from a tubular neighborhood T (D) of
D to a tubular neighborhood of θ(D) extending θ|D such that ΘD(D̃) = D′.
The automorphism of T (D)|C defined by

ΘD|C ◦ φ−1|T (D)

is well-defined on a neigborhood of D|C , lets invariant each component of D|C
and commutes with the projection.
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Lemma 2.2 There exists an automorphism ΦD of a neighborhood of D ex-
tending ΘD|C ◦ φ−1|T (D) over K, which lets invariant D and commutes with
π.

Proof: Let us denote by hD the automorphism ΘD|C◦φ−1|T (D). Since K is Stein,
there exists a system of coordinates (x, t, s), x ∈ P1, t ∈ (C, 0), s ∈ K in a
neighborhood ofD such that: {x = 0} is a local equation ofD; the components
of D transversal to D have equations of the form {t = fi(s), t = ∞}i=1,...,N ; the
fibration π is π : (x, t, s) 7→ s. In view of all its properties, hD is written

(x, t, s) 7→


xA(x, t, s), t+ xB(x, t, s)

∏

i=1,...,N

(t− fi(s)), s


 , s ∈ C

where A and B are holomorphic functions. Since hD is a germ of automor-
phism, we have A(0, t, s) 6= 0. Moreover as hD is global and extendable along
{t = ∞}, if A and B are written

A(x, t, s) =
∑

ij

aij(s)x
itj, B(x, t, s) =

∑

ij

bij(s)x
itj, s ∈ C

the functions aij and bij vanish as soon as ip − j < 0, p refering to the self-
intersection of D. Particulary, we find A(0, t, s) = a00(s) for any s, t. Since
K is Stein and compact, a00 can be extended in a non-vanishing holomor-
phic function on K and any other function aij or bij can be extended too.
If one carefully chooses to extend by the zero function as soon as aij or bij
is the zero function, one gets an extension on hD satisfying all the properties. �

Now for any component D, let us consider ΛD = φ−1
D ◦ ΘD. If we glue the

familly of tubular neighborhoods with respect to the familly of automorphisms
ΛDD′ = Λ−1

D ◦ ΛD′, we find:

M′ '
∐

D∈Comp(D̃)

T (D)

/
(x ∼ ΛDD′(x))(D,D′)∈Comp(D̃)2̌ , (9)

ΛDD′|C = Id. (10)

From now on, we make two operations on the familly (ΛDD′) which leads us to

a 1-cocyle taking its values in GC0
Z . Using an analogous with parameter of the

lemma (3.3) in [6] , one can first suppose ΛDD′ to be tangent to the identity
along the singular locus D ∩ D′. Then, by taking a distinguished covering U
of D finer than the tubular neighborhood as in (3.2) of [6], one can build an

element (φij) related to ΛDD′, which belongs to Z1(U ,GC0
Z) for a cross Z well

chosen. Moreover, in this construction, one keeps the property M′ ' M̃[φij].
Hence, the tree M′ is conjugated to an element of Glu0(M, Z,U). Therefore,
the proposition (2.7) is a consequence of (2.6).
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2.4.5 Fifth and last step: a finite determinacy argument.

If E is the total morphism of a blowing-up process, let us denote by Att(E, S)
the locus of intersection between the exceptional divisor and the strict trans-
form of S by E. Let us prove now the theorem (2.2). Let the tree (M1,D1,Σ1, π1)
be the top of the desingularization process of the equisingular family S1. For n,
let us denote by (M1

n,D
1
n,Σ

1
n, π

1
n) the top of the process given by the following

diagram

M1
n

En

→ . . . M1
j

Ej

→ . . .
E1

→ M1

⋃ ⋃ ⋃

Att(En, S
1) → . . . Att(Ej, S

1) → . . . → S1

⋃ ⋃ ⋃

Att(En, S
1) → . . . Att(Ej, S

1) → . . . → S1

(11)

where Ej refers to the total morphism of M1
j−1. For any integer n, the propo-

sition (2.7) ensures the existence of an isoholonomic deformation F 1
n on M1

n

such that F1
n|C and F0|C are analytically equivalent. For n big enough, one

can suppose that each component of D1
n meets at most one irreducible com-

ponent of E∗
nS

1. Moreover, S1 and S0 are topologically equivalent as well as
F1

n and E∗
nF

0. Hence, each component of D1
n, which meets a component of

E∗
nS

1, meets exactly one component of the separatrix of F 1
n. In view of [12],

a property of finite determinacy ensures that for n big enough, the separatrix
of F1

n and E∗
nS

1 are analytically equivalent. Therefore, F 1
n can be pulled down

in an isoholonomical deformation F 1 over K satisfiying Sep(F 1) = S1 and
F1|C ' F0|C . Moreover, by construction, F 0 and F1 are embedded in some
isoholonomical deformations over K × D satisfying the checked properties.

3 Quasi-homogeneous foliations.

3.1 Desingularization of quasi-homogeneous foliations.

We are interested first in the desingularization of quasi-homogeneous foliation
of generalized curve type.

Let Ω be an open set in C2, p a point in Ω and S a germ of smooth curve.
For any proper morphism E : X → Ω, we call the strict transform of S by E
the closure in X of the analytical set E−1(S\0). The intersection of the strict
transform of S and the divisor E−1(0) is called the attaching locus of S with
the respect to E.

We define a special morphism with a finite number of successive blowing-up
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centered at point En
d(p, S) : (Mn

d ,D
n
d ) → (Ω, p) by

En
d(p, S) = E1 ◦ · · · ◦ En

where Ei is the blowing-up centered at the attaching locus of S with respect
to E1 ◦ · · · ◦ Ei−1. The exceptional divisor Dn

d = En
d(p, S)−1(0) is a chain of n

irreducible components {Di}1≤i≤n such that

(E1 ◦ . . . Ei)
−1(p) = D1 ∪ . . . ∪Di.

The component Di is called the i-component of En
d(p, S)

Let f be a reduced quasi-homogeneous polynomial function defined in some
coordinates (u, v)

f =





∑

αi+βj=γ

aiju
ivj = 0



 , α, β, γ ∈ N∗, pgcd(α, β) = 1, α < β.

Let us write the Euclide algorithm for the couple (α, β):

r0 = β, r1 = α





r0 = q1r1 + r2

· · ·

ri = qi+1ri+1 + ri+2

· · ·

rN = qN+1rN+1 + 0

. (12)

We are now able to give a precise description of the morphism of desingular-
ization of f and the following classical result:

Proposition 3.1 The morphism of desingularization of f−1(0) is the compo-
sition

E
q1

d (p1, S1) ◦ E
q2

d (p2, S2) ◦ · · · ◦ E
qN+1

d (pN+1, SN+1) (13)

where

(1) p1 = 0, S1 = {v = 0}.
(2) pi+1 is the intersection point of the (qi)-component and the (qi − 1)-

component of E
qi

d (pi, Si).
(3) Si+1 is the germ of smooth curve defined by the qi−1-component of E

qi

d (pi, Si).

Proof: The proof is an induction on the length of the Euclid algorithm. If the
length is 1, since α and β are relatively prime, the algorithm is reduced to

r0 = β, r1 = α = 1 r0 = r0 × r1.
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In the coordinates (u, v), the morphism E
r0
d (0, {v = 0}) is locally written

E
r0
d (0, {v = 0})(u1, v1) = (u1, v1u

r0
1 ).

Hence, the pull-back function E
r0
d (0, {v = 0})∗f is expressed by

E
r0
d (0, {v = 0})∗f(u1, v1) =

∑

i+r0j=γ

aiju
i+r0j
1 vj

1 = uγ
1

∑

i+r0j=γ

aijv
j
1

The curve
∑

i+r0j=γ aijv
j
1 is the union of a finite number of smooth curves

transversal to the exceptional divisor. One can verify that in any other canon-
ical coordinates for the blowing-up morphism E

r0
d (0, {v = 0}), the function

E
r0
d (0, {v = 0})∗f does not vanish along any curve transversal to the excep-

tional divisor except maybe on the first component: the latter case only occurs
when the axe {u = 0} in the considered coordinates is an irreducible compo-
nent of f−1(0). In any case, the curve f−1(0) is desingularized by E

r0
d (0, {v =

0}). If the Euclid algorithm is of length n, using the notation of (12), one con-
siders the morphism E

q1

d (p1, S1). As above, the pull-back equation is written

f1(u1, v1) = E
q1

d (0, {v = 0})∗f(u1, v1) =
∑

αi+βj=γ

aiju
i+q1j
1 vj

1

=
∑

α(i+q1j)+r2j=γ

aiju
i+q1j
1 vj

1.

To conclude, one observes that the last equation defines a quasi-homogeneous
curve of weight (α, r2). Since the Euclid algorithm for the couple (α, r2) is of
length n − 1, the induction hypothesis ensures that the desingularization of
the latter curve admits a description of type (13). As the desingularization of
f−1(0) is the composition of E

q1

d (0, {v = 0}) and of the desingularization of
f−1

1 (0), the proposition is proved. �

Now, if F is a quasi-homogeneous curve of generalized curve type, its desin-
gularization admits the same description as (13). In particular, F has a dual
tree of the form depicted on Figure 2 : the non-extremal vertex with some ar-

Fig. 2. Dual tree of a quasi-homogeneous foliation

rows corresponds to the central component. The extremal components carry
an arrow if and only if, in the (u, v) coordinates, at least one of the axes is an
irreducible component of the separatrix.
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3.2 Automorphism of reduced singularity.

In order to prove that there is no transversal obstruction for quasi-homogeneous
foliations with same holonomy to be conjugated and in view of the cohomo-
logical interpretation (2.1), we first recall some classical facts about automor-
phisms of reduced singularities.

Let F be a germ of reduced singularity with two non-vanishing eigen-values.
In some coordinates [15], the foliation F is given by an holomorphic 1-form ω
where

ω = x(1 + A(x, y))d + y(λ+B(x, y))dy (14)

with A(0, 0) = B(0, 0) = 0. Hence, the axes {x = 0} and {y = 0} are both
separatrix. In fact, these are the sole separatrix. Let us denote by S and S ′

the respective axes. For any open set U in S, the notation Aut(F , U) refers to
the group of local automorphism germs φ along U , which let globally invariant
the foliation and satisfy

φ|U = Id.

Precisely, a germ of automorphism φ is in Aut(F , U) if and only if:

φ∗ω ∧ ω = 0, φ|U = Id.

Let us denote by Fix(F , U) the sub-group of Aut(F , U), which lets invariant
each local leaf. In [1], D. Cerveau and R. Meziani call Aut(F , U) the isotropy
group of the singularity. They give a description of all elements in Fix(F , U)
when U is a neighborhood of 0 in the separatrix S. To be more specific, any
element of Fix(F , U) can be written

(x, y) 7→ e(τ(x,y))X

Here, X is a germ of tangent vector field and τ(x, y) a germ of holomorphic
function vanishing along {x = 0}. The notation e(t)X refers to the flow of
X at time t. This kind of description persists if one considers a punctured
neighborhood of 0 in S or even any corona around 0.

Let T be a germ of curve transversal to S and HolT ∈ Diff(T, T ∩ S) be the
holonomy automorphism of F computed on T . Let U be either a neighborhood
of 0 in S or a corona around 0 in S such that T ∩ S ∈ U . Let φ be any
element of Aut(F , U). In a small neigborhood of T ∩ S , the foliation F
can be straightened: precisely, there exists local coordinates (u, v) such that
S = {v = 0}, T = {u = 0} and F = {v = cst}. The curve φ(T ) is transversal
to S and meets S at S ∩ T . Hence, there exists a germ of biholomorphism ρφ

such that

ρφ : (0, v) ∈ (T, S ∩ T ) 7→ (α(v), v) ∈ (φ(T ), S ∩ T ).
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where α is a germ of holomorphic function with α(0) = 0 and α′(0) 6= 0. By
definition, the holonomy map Holφ(T ) computed as a germ in Diff(φ(T ), T ∩S)
satisfies the following relation

HolT = ρ−1
φ ◦ Holφ(T ) ◦ ρφ

Let us consider a path γ in the leaf passing through (0, v) from the point (0, v)
to the point (0,HolT (v)) making exactly one turn around S ′. Since φ is the
identity when restricted to S, for v small enough, φ(γ) is a path in the leaf
from (0, φ(v)) to (0, φ(HolT (v))) making exactly one turn around S ′ with the
same orientation as γ. Hence, by definition of the holonomy,

Holφ(T )(φ(v)) = φ(HolT (v)).

With the above relations, we find

(ρ−1
φ φ) ◦ HolT = HolT ◦ (ρ−1

φ φ)

Hence, we build a morphism defined by

φ ∈ Aut(F , U) 7−→
[
ρ−1

φ φ
]
∈ Cent(HolT )/ < HolT > .

It is a morphism of groups with values in the quotient of the centralisator
Cent(HolT ) by the abelian sub-group generated HolT . Moreover, we have the
following result:

Lemma 3.1 If U is a small enough neighborhood of the singularity or a
corona around it then the following sequence

0 −→ Fix(F , U) −→ Aut(F , U) −→ Cent(HolT ) /<HolT > −→ 0 (15)

is exact.

In the formal context, since one can define the holonomy of a transversally
formal foliation along an irreducible component of the divisor, the lemma (3.1)
can be reproduced by using transversally formal vocabulary.

3.3 Proof of the classification result (1.1).

One can clearly suppose that F0 and F1 are two quasi-homogeneous genera-
lized curves with

Sep(F0) = Sep(F1) = S.

As each foliation is of generalized curve type, their desingularizations are both
equal to the desingularization of S [2]. Let us denote by E : (M,D) → (C2, 0)
the morphism of desingularization where D refers to the exceptional divisor
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E−1(0). Since the projective holonomy of E∗F0 and E∗F1 over the central
component D0 are conjugated, the restricted foliation E∗F0 and E∗F1 on
a tubular neighborhood of D0 are conjugated: in order to prove the latter
fact, let us consider a curve T0 transversal to D0, on which one computes
the projective holonomy representations. Let the set {s1, . . . , sn} refer to the
singularities of E∗F0 along D0. In view of the hypothesis, there exists a germ
of automorphism h0 : T0 → T0 so that for any [γ] ∈ Π1(D0\{s1, . . . , sn}) and
x ∈ T0, one has

h0([γ]F0x) = [γ]F1h0(x) (16)

where [γ]F0 and [γ]F1 refer to the image of the path γ through the respective
projective holonomy representations. In view of the desingularization process
of F0, there exists a fibration π over D0, for which the irreducible components
of the strict transform of S, which are attached toD0, and the two components
of D transversal to D0 are some fibers. Let us call them the special fibers. One
can choose the fibration π such that any fiber different from the special fibers,
is transversal to the leaves of the foliations E∗F0 and E∗F1, at least on a little
neighborhood of D0. Let us choose for T0 any fiber of π different from the
special fibers. For any point x in a neighborhood of D0 deprived of the special
fibers, one can consider a path γ(t), t ∈ [0, 1], which links x to some point of
T0 in the leaf. The point H0(x) is now defined as the extremity of the lifting
path in the leaf passing by γ(1) with respect to the fibration π. The relation
(16) ensures that this construction does not depend on the path γ; hence,
x→ H0(x) is well defined. Moreover, by construction H0 is bounded near the
special fibers. Hence, H0 can be holomorphically extended on a neighborhood
of D0. One can check that H0 sends any local leaf of E∗F0 on a local leaf
of E∗F1. We can observe that, by construction, the restriction of H0 on the
component D0 is the identity.

Let us denote by D1 an irreducible component of the divisor meeting D0 at the
point s01. Since D1 has only two singular points, the holonomy representations
are morphisms of the form

k ∈ Z = Π1

(
D1\Sing(D)

)
→ [γi]

k ∈ Diff(C, 0)

where γi is the holonomy of a path in D1 making one turn around D0 for the
foliation E∗Fi. As the two foliations are analytically equivalent near s01, the
holonomy maps [γ0] and [γ1] are conjugated by an interior automorphism of
Diff(C, 0). Hence, the whole projective holonomy representations over D1 of
E∗F0 and E∗F1 are conjugated. In view of the geometry of the desingulariza-
tion process, one can repeat the argument for any component of the divisor.
Then thanks to the same construction as before, one can extend any conjugacy
of the holonomy over D on a tubular neighborhood of D denoted by T (D).
Hence, we get a germ of biholomorphism HD along each D such that

H∗
DE

∗F0|T (D) = E∗F1|T (D) and HD|D = Id
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Of course, there is no chance for the family {HD}D∈Comp(D) to induce a global
biholomorphism, i.e to verify the condition

HD = HD′, on a neighborhood of D ∩D′.

However, we are going to introduce a finer covering than {T (D)}D∈Comp(D),
which allows us to twist the family {HD}D∈Comp(D) and to build a new family{
H̃i

}
i∈I

satisfying

H̃i ◦ H̃
−1
j acts in the local leaf of E∗F0.

Precisely, let us consider a covering {Ui}i∈I=I0∪I1
of D defined by




i ∈ I0 = Comp(D), UD = D\Sing(E∗F0)

i ∈ I1 = Comp(D)2, U(D,D′) = T (D) ∩ T (D′) ∩ D

In view of the form of the dual graph of F0 or F1, we use the following clear
notation for the components of D

Comp(D) = {D−m, D−m−1, . . . , D−1, D0, D1, . . . , Dp−1, Dp}

where D0 refers to the central component. We consider the filtration In of I

defined by
In = {D−n, . . . , Dn}

⋃
{D−n, . . . , Dn}

2

Using the special geometry of the dual tree of quasi-homogenous foliation, we
establish the following lemma:

Lemma 3.2 For any integer n, there exists a family {φi}i∈In
such that

• for all D ∈ In, φD belongs to Aut(E∗F0, UD)
• for all (D,D′) ∈ In, φ(D,D′) belongs to Aut(E∗F0, U(D,D′))

and such that for all (D, (D,D′)) ∈ I0 × I1 the two maps

φ−1
D ◦H−1

D ◦HD′ ◦ φ(D,D′)

and φ−1
D′ ◦ φ(D,D′)

act in the local leaf of E∗F0.

Proof: The proof is an induction on the integer n. For n = 0, the lemma is
trivial: since the condition is empty, on can choose ΦD0 = Id. Let us suppose
the result true for n. The automorphism φ−1

Dn
◦H−1

Dn
◦HDn+1 is an automorphism

of the foliation defined in a neighborhood of UDn
∩ U(Dn,Dn+1). By construc-

tion, the foliation E∗F0 restricted to a neighborhood of U(Dn,Dn+1) has exactly
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one reduced isolated singularity. Hence, one can consider Holn its holonomy
map computed on any curve transversal to Dn and attached to a point in
U(Dn,Dn+1). In view of the lemma (3.1), there exists φ(Dn,Dn+1) in the group
Aut(E∗F0, U(Dn,Dn+1)) such that

φ−1
Dn

◦H−1
Dn

◦HDn+1 and φ(Dn,Dn+1)

have same images in Cent(Holn) /<Holn> . Hence, the automorphism

φ−1
Dn

◦H−1
Dn

◦HDn+1 ◦ φ(Dn,Dn+1)

acts in the local leaf. In the same way, the map φ(Dn,Dn+1) is an automorphism
of the restricted foliation in an open neighborhood of the set UDn+1∩U(Dn,Dn+1).
Since the open set UDn+1 is conformally equivalent to a corona, there exists
φDn+1 in Aut(E∗F0, UDn+1) such that

φ−1
Dn+1

◦ φ(Dn,Dn+1)

acts in the local leaf. Hence, we have obtained the induction hypothesis at
rank n+ 1. �

Let us now consider the following family of maps




i ∈ I0 = Comp(D), ψD = φD ◦HD

i ∈ I1 = Comp(D)2, ψ(D,D′) = φ(D,D′) ◦HD

In view of the construction, the automorphism ψ−1
i ◦ψj, i, j ∈ I = I0 ∪ I1 acts

in the local leaf. In view of [1], there exists a family of tangent vector fields
{Xij}i,j∈I

and a family of holomorphic functions {tij}i,j∈I
such that

ψ−1
i ◦ ψj = Φ

tij
Xij
,

where Φt
X refers to the flow of the vector field X at t time. Let us denote by

Ui a neighborhood of Ui in M. The deformation defined by the identification

s 7−→
∐

i∈I

E∗F0|Ui

/

x∼Φ
s·tij

Xij
x

, s ∈ D

is well defined since the automorphisms of identification x → Φ
s·tij
Xij

x act in the
local leaf. Moreover, in view of the cohomological interpretation of isoholo-
nomic deformation, this deformation is precisely an isoholonomic deformation
of foliation. The fiber of this deformation at 0 ∈ D is the foliation F0 and the
fiber at 1 ∈ D is a foliation analytically equivalent to F1. Now, the theorem
(2.2) applied with C = {0, 1} ⊂ D ensures the existence of an isoholonomic
deformation R over D from F0 to F1 such that the underlying deformation
of separatrix is the trivial deformation S × D. Since F0 is quasihomogeneous,
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the deformation R is locally trivial [14]. Hence, F0 and F1 are analytically
conjugated. This ends the proof in the convergent context. The transposition
to the formal context is let to the reader.

Recently, E. Paul generalized a result of F. Loray [11] and found unique formal
normal forms for any formal quasi-homogeneous vector fields [18]. Once the
separatrix are given, the theorem (1.1) ensures the equivalence between the
data of such a formal normal form and the choice of a point in the space of
representation of a free group in D̂iff(C, 0). However, the meaning of such a
correspondance is still to be worked out.
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