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THE SAITO MODULE AND THE MODULI OF A
GERM OF CURVE IN (C2, 0).

by Yohann Genzmer

Abstract. — This article proposes to study the moduli space of a germ of curve
S in the complex plane, that is to say the equisingularity class of S up to analytical
equivalence relation. The first part is devoted to proving that this last quotient can
be endowed with a reasonable complex structure, yet not canonical. The second
part deals with the computation of its generic dimension in terms of topological
invariants of S. It can be obtained from the study of the valuations of the Saito
module of S, Der (log S), i.e. the module of vector fields tangent to S.

Introduction.

The number of moduli of a germ of curve S in
(
C2, 0

)
is basically the

number of parameters on which depend a topologically miniversal family
for S. It is also the generic dimension of the quotient of the topological
class of S up to analytical equivalence relation, provided that this quotient
admits a structure from which a notion of dimension can be derived. Indeed,
this moduli space defined by the quotient of the topological class of S

{S′|S′ ∼top S}

by the following action of Diff
(
C2, 0

)
φ · S′ = φ (S′) , φ ∈ Diff

(
C2, 0

)
a priori has no particular structure beyond being a set.

The first determination of such a number of moduli goes back to the work
of Sherwood Ebey in 1965 [6] who dealt with the irreducible curves - those
having only one irreducible component. Ebey proved that the moduli space
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of S carries a complex structure compatible with a non separated topology
and computed the number of moduli for a particular topological class of
curve, namely, that given by the equation y5 = x9. In 1973, in [26], Os-
car Zariski proposed various approaches to get the number of moduli for
irreducible curves beyond the case treated previously by Ebey. He intro-
duced most of the concepts on which future work will be based. In 1978,
Delorme [4] studied extensively the case of an irreducible curve with one
Puiseux pair. In 1979, Granger [13] and later, in 1988, Briançon, Granger
and Maisonobe [1] produced an algorithm to compute the number of the
moduli of a non irreducible quasi-homogeneous curve. In 1988, Laudal,
Martin and Pfister in [19], improved the work of Delorme and gave an
explicit description of a miniversal family. From 2009, in a series of pa-
pers [14, 15, 16], Abramo Hefez and Marcelo Hernandes greatly improved
the previous studies and achieved the analytical classification of irreducible
curves. Their algorithmic approach provided in particular the number of
moduli.

In 2010 and 2011, in [10, 11], Emmanuel Paul and the author described the
moduli space of a topologically quasi-homogeneous curve S as the spaces
of leaves of an algebraic foliation defined on the moduli space of a foliation
whose analytic invariant curve is precisely S. This work initiated an ap-
proach based on the theory of foliations. In 2019, in [7], the author gave an
explicit formula for the number of moduli for irreducible curves S, generic
in its topological class : this formula involves only very elementary topolog-
ical invariants of S, such as, the topological class of its desingularization.

The aim of this article is to investigate the full general case, that is the num-
ber of moduli of a germ of curve in the complex plane. We emphasize that
our objective is far from being as ambitious as a complete analytical clas-
sification, which would require at least some deep algorithmic procedures,
but is rather to obtain a geometric interpretation of these moduli and a
procedure to calculate their number from primitive topological invariants.

This work follows the ideas introduced in [7] and illustrated in [9], which
focus on the irreducible case.

Section 1 establishes an extension of the result of Ebey [6, Theorem 4] to
the non irreducible curve : it concerns the structure of the moduli space.
As noticed by Ebey himself at the end of its article, its machinery derives
from the theory of algebraic groups and depends on the groups being solv-
able and connected. Therefore, it cannot be directly carried over to several
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component curves. Here, we overcome this issue by considering not only
curves but curves enriched with a marking which allows us to recover the
necessary connexity. As Ebey, we use an adapted complete topological in-
variant - the semi ring of values - introduced by R. Waldi [25] and some
of its properties identified by M. Hernandes and E. de Carvalho in [17].
Finally, we obtain the following result

Theorem. — The marked moduli space M• (S) of a germ of curve S in
C2, that is its marked topological class up to analytical marked equivalence
relation, can be identified with the quotient of a complex constructible set
by an action of a connected solvable algebraic group. In particular, it is
endowed with a non separated complex structure.

Notice that passing from the moduli space to the marking moduli space
has no effect on the generic dimension.

Section 1 can be read independently from the rest of the article.

Section 2 and 3 aim to develop the study of the module Der (logS) of
vector fields tangent to S, on which depends the computation of the number
of moduli of S. The starting point is a remark of K. Saito in [23], that,
highlighted the freeness of this module - which is specific to the curves
embedded in the complex plane. An immediate consequence of the work
of Saito is that, the smallest valuation of the vector fields in Der (logS)
cannot be too big compared to the valuation of S, namely, the following
upper bound holds

min
X∈Der(logS)

ν (X) 6 ν (S)
2 .

Our purpose is to prove that, generically, this bound is essentially reached.
In section 2, the existence of a flat basis of Der (logS) is shown in the generic
situation, that is, a basis admitting an analytic extension as a basis for the
modules Der (logC) where C are in a neighborhood of S in M• (S). As a
consequence, using the theory of infinitesimal deformations of foliations of
X. Gómez-Mont [12], we obtain the following theorem

Theorem. — For S generic in its moduli space M• (S), one has

min
X∈Der(logS)

ν (X) >


⌊
ν(S)

2

⌋
if S is not of radial type

⌈
ν(S)

2

⌉
− 1 else

.
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The definition of S being of radial type will be given in the article. Note
that if S is not generic in its moduli space, the above lower bound is false,
as it will be illustrated by some examples in the article. Moreover, in section
3, we proceed with the precise description of the various possibilities for
the flat basis of Der (logS).

Finally, Section 4 illustrates our approach for the computation of the generic
dimension of M• (S). As a consequence of section 2 and 3, we recover the
classical dimension of the moduli space of the singularity xn + yn = 0 with
n > 1.

Corollary 1 ([13]). — The generic dimension of M• (S) where

S = {xn + yn = 0}

is equal to {
(n−2)2

4 if n is even
(n−1)(n−3)

4 if n is odd.

In an upcoming article, we will build an algorithm based upon the results
presented here, that computes the generic dimension of the moduli space
for more general curves - namely, curves with many but smooth irreducible
components. We implemented, among other procedures, this algorithm on
Sage 9.*. See the routine Courbes.Planes following the link

https://perso.math.univ-toulouse.fr/genzmer/
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1. Moduli space of marked curve.

Throughout this article, S stands for a germ of singular curve in the com-
plex plane

(
C2, 0

)
. In particular, its algebraic valuation is at least 2. From

now on, we fix a decomposition of S in irreducible components

S = S1 ∪ · · · ∪ Sr
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where r is the number of irreducible components. Here and subsequently,
Comp (S) stands for the set of the irreducible components of S.

Let C be a germ of curve topologically equivalent to S by a germ of home-
omorphism of the ambient space

(
C2, 0

)
denoted by h and such that

h (S) = C.

The application h induces a bijective map

σh : Comp (S)→ Comp (C)

Two such homeomorphisms h and h′ are said to be equivalent if and only
if

(1.1) σh = σh′ .

Definition 1. — A curve marked by S is a couple
(
C, h

)
where C is curve

topologically equivalent to S and h a class of homeomorphism between C
and S for the equivalence relation defined above. We will denote by Top• (S)
the set of curves marked by S.

The group Diff
(
C2, 0

)
of germs of automorphisms of the ambient space(

C2, 0
)
acts on the set Top• (S) by

φ ·
(
C, h

)
=
(
φ (C) , φ ◦ h

)
.

In what follows, the quotient of Top• (S) by Diff
(
C2, 0

)
will be denoted by

M• (S)

and will be refered to as the marked moduli space of S. Although M• (S)
cannot be endowed with a complex structure by some general statements
about group actions, the result below provides such a structure. Indeed,
generalizing a result of Ebey [6], we obtain the

Theorem 1. — The quotientM• (S) can be identified with the quotient of
a complex constructible set by an action of a connected solvable algebraic
group.

This result still holds if we drop the assumption of S being a plane curve,
once we replace the topological equivalence by the equisingularity which
corresponds to the equality of the semirings of valuations as defined in [17].
Since the general proof consists at most in increasing the complexity of the
notations, we state Theorem 1 and prove it only for a curve embedded in
the complex plane. We follow Theorem 5 in [6] observing that a connected
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solvable algebraic action on a complex constructible set admits a complete
transversal, that is a constructible subset in correspondance one to one
with the orbits of the action. Thus, from Theorem 1, M• (S) inherits of
the complex structure of this transversal. Its compatible topology is just
the quotient topology : in most case, it is not separated (see for instance
[14, 15]).

The goal of the current section is to prove Theorem 1.

1.1. The ring of functions of
(
C, h

)

Let
(
C, h

)
be in Top• (S) and

γC =
{
γc : t ∈ (C, 0)→

(
C2, 0

)}
c∈Comp(C)

be any system of parametrizations of the irreducible components of C. We
denote by Ci the component of C defined by the marking h

Ci = σh
(
Si
)
.

From the marking h of C, we derived a morphism of rings defined by{
C [[x, y]] → (C [[t]])r

u 7→
(
γ?Ciu

)
i=1,...,r

.

which factorizes in an monomorphism

(1.2) E(C,h) : ÔC = C [[x, y]]
(f) ↪→ (C [[t]])r

where f is any reduced equation of C and ÔC is the completion of OC =
C{x,y}

(f) .

The following result is classic - see [6] for the irreducible case.

Lemma 1. — Let
(
C, h

)
and

(
C ′, h′

)
be two marked curves in Top• (S) .

The following propertie are equivalent

(1) The curves
(
C, h

)
and

(
C ′, h′

)
are analytically equivalent by a con-

jugacy preserving the markings.
(2) The images of the monomorphisms (1.2) associated to both curves

are conjugated by a diagonal formal automorphism of (C [[t]])r.
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1.2. The tropical semiring of values of
(
C, h

)

Following [17], we consider ΓC the set defined by

ΓC = {ν (G)|G ∈ OC} ⊂
(
N
)r

where N = N ∪ {∞}. The valuation ν is defined by

ν (G) =
(
ν0
(
γ?CiG

))
i=1,...,r

where ν0 is the standard valuation C {t} . Notice that this set depends not
only on the curve C but also on its marking.

The set ΓC inherits of a semiring structure defined by

α⊕ β = (min {αi, βi})i=1...r α�β = (αi + βi)i=1...r

where we set k+∞ =∞. ΓC is also partially ordered by the product order
6. The quadruplet (ΓC ,⊕,�,6) is called the tropical semiring of values of(
C, h

)
.

Definition 2. — A element α ∈ ΓC is said irreducible if and only if

(α = a+ b with a, b ∈ ΓC) =⇒ α = a or α = b.

It is said to be absolute if for any non empty proper subset J of the set

(1.3) Iα = { i ∈ {1, . . . r}|αi 6=∞} ,

the following set

(1.4) FJ (α) = {a ∈ ΓC | ∀i ∈ Iα \ J, ai > αi and ∀i /∈ Iα \ J, ai = αi}

is empty.

The following result gathers some known properties of the semiring of val-
ues.

Theorem 2 ([20, 17, 25]). — Two germ of plane curves are topologically
equivalent if and only if they share the same semiring of values [25]. More
precisely C1∪C2∪· · ·∪Cr and C ′1∪C ′2∪· · ·∪C ′r are two curves with same
semiring if and only if there exists an homeomorphism φ of the ambient
space

(
C2, 0

)
such that for any i

φ (Ci) = C ′i.

Moreover,
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(1) ΓC has a conductor, i.e, there exists a minimal σ ∈ ΓC such that
σ + Nr ⊂ ΓC [20].

(2) The set g of irreducible absolute points of ΓC is finite and minimaly
generates ΓC as semiring [17].

(3) Any family G of OC such that ν (G) = g is a minimal standard
basis of OC as defined in [17].

As a consequence, for any element C ∈ Top• (S), one has

ΓC = ΓS .

For now on, we will denote the mutual semiring for curves in Top• (S)
simply by Γ.

1.3. Trunctation and conductor.

The following lemma allows us to truncate elements in the ring OC (resp.
ÔC ).

Lemma 2. — Suppose that G =
(∑∞

k=0 alkt
k
)
l=1,...,r is an element of OC

( resp. of its completion ÔC). Then , for any p = (p1, . . . , pr) ∈ Nr with
pl > σl − 1 for l = 1, . . . , r, one has(

pl∑
k=0

alkt
k

)
l=1,...,r

∈ OC , (resp. ÔC)

Proof. — By definition of σ, for any l = 1, . . . , r and for any k > pl+1 > σl,
the r−uple ∞, · · · ,∞, k︸︷︷︸

lth

,∞, · · · ,∞


belongs to Γ. Thus, an inductive argument on the rank k > pl + 1 shows
that there exists a formal series F̂l ∈ C [[x, y]] such that

γ?F̂l =

0, · · · , 0,
∞∑

k=pl+1
alkt

k, 0, · · · , 0

 .
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Now, following [22, Theorem 1, p.493], if G is convergent, so is F̂l and, in
any case, evaluating

G− γ?
(

r∑
l=1

F̂l

)
yields the lemma. �

1.4. Γ−reduction.

The notion of Γ−reduction will allow us to construct normal forms for
systems of generators of ÔC .

Let P = (Pi)i=1,...,r be a family of r finite subsets of N such that for any i,
∞ ∈ Pi.

Definition 3. — The family P is said to be Γ-reduced if and only if

Γ ∩
∏

i=1,...,r
Pi = {∞}

where ∞ = (∞,∞, · · · ,∞)

A Γ−reduction of P is an elementary transformation of P of the following
form : suppose that there exists n = (n1, · · · , nr) such that

n ∈

Γ ∩
∏

i=1,...,r
Pi

 \ {∞} .
Consider an integer i such that ni 6=∞. Then the family P (1) =

(
P

(1)
i

)
i=1,...,r

defined by {
P

(1)
j = Pj for j 6= i

P
(1)
i = Pi \ {ni}

is called a Γ−reduction of P . To keep track of a Γ−reduction, we denote it
by

P = P (0) n,i−−→ P (1).

The following lemma is obvious

Lemma 3. — For any P , there exists a finite sequence of Γ−reductions

P = P (0) n0,i0−−−→ P (1) n1,i1−−−→ · · ·
n
q−1,iq−1
−−−−−−→ P (q).

such that P (q) is Γ−reduced.

TOME 1 (-1), FASCICULE 0
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Notice that this sequence is not unique.

1.5. Parametrization of the set Top• (S).

Let g =
{
g1, · · · , gq

}
be the set of irreducible absolute points of Γ and

G =
{
G1, · · · , Gq

}
⊂ OC such that for all i,

ν
(
Gi
)

= gi.

Lemma 4. — Among the family G and in the identification

OC = C [[x, y]]
(f) ,

there are two components Gi whose linear parts are independant.

Proof. — Assume that C contains an irreducible singular component, say
C1, and consider some coordinates (x, y) such that it is parametrized by

t→ (tn, tm + · · · ) , n - m

Evaluating the valuation of the coordinate functions x and y, we obtain
that Γ contains two elements of the form

(1.5) ν (x) = (n, · · · ) ∈ Γ and ν (y) = (m, · · · ) ∈ Γ.

If the linear parts of the functionsGi are dependant two by two, then the set
of valuations of the complete ring generated by the family G can contains
either (n, · · · ) or (m, · · · ) or none of them, but certainly not both. However,
according to Theorem 2, the complete ring generated by G is the whole
ring ÔC , which contradicts (1.5). If C contains two smooth components,
transversal or not, a contradiction can be obtained in much the same way
by considering coordinates in which these components are written

t→ ((t, 0) , (0, t) , · · · ) or t→ ((t, 0) , (t, tn) , · · · ) , n > 2.

�

Changing the numbering of the elements in g, we may assume that the
two elements identified by the above lemma are G1 and G2 with g1 < g2

minimal for the lexicographic order among those satisfying the property of
Lemma 4. Let us denote Gi, i = 1, 2 by

(1.6) Gi =

 ∞∑
k=gi

l

ailkt
k


l=1,...,r

ANNALES DE L’INSTITUT FOURIER
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Notice that in the above expression, gil may be equal to ∞ and the corre-
sponding component

(
Gi
)
l
be equal to 0 . However, one has the following

Lemma 5. — Assume that C is not the union of two smooth curves. If
gil 6=∞, then gil 6 σl − 1.

Proof. — The proof is by contradiction. Suppose that for some l, gil 6= ∞
and gil > σl. Applying Lemma 2 to Gi with

(pi)i=1,...,r = (∞, · · · ,∞, σl,∞, · · · ,∞)

yields an element g ∈ Γ such that gl =∞ and gk = gik for k 6= l. Consider
the proper subset of Igi defined by

J = Igi \ {l} ,

and suppose it is non empty. Definition 2 of absolute point ensures that
FJ
(
gi
)
is empty. However, by construction, g belongs to FJ

(
gi
)
which is

a contradiction. Thus, J is empty and Igi = {l}. Therefore, gi is written

gi =
(
∞, · · · ,∞, gil ,∞, · · · ,∞

)
.

• If r > 3, we are lead to a contradiction noticing that Gi would be
a function with non trivial linear part vanishing along two distinct
components of C.

• Assume r = 2. Since Gi is a regular function and gi =
(
∞, gi2

)
or(

gi1,∞
)
, one of the component of C, say C1, is smooth. One can

choose some coordinates (x, y) such that

C1 = {αy + βx = 0} , α, β ∈ C
C2 = {yp + xq + · · · = 0}

with p < q. The hypothesis of the lemma ensures that the case p = 1
is excluded. According to [17], the conductor σ of C is written

σ = (0, c2) +
{

(p, p) if β 6= 0
(q, q) if β = 0 .

where c2 > 1 is the conductor of the component C2. By construc-
tion, the function G1 is equal to αy + βx. Therefore,

g1 =
(
∞,
{
p if β 6= 0
q if β = 0

)
,

thus g1
2 < σ2.

�
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If C is a union of two smooth curves then one has

σ = (n, n) , g1 = (∞, n) and g2 = (n,∞)

where n is the order of tangency between C1 and C2. Actually, C is ana-
lytically equivalent to the curve

y (y + xn) = 0.

Thus the moduli space of C reduces to a point and the problem of the
analytic classification is trivial. For now on, we will assume that C is not
a union of two smooth curves.

Lemma 2 yields truncations of Gi, i = 1, 2 that we keep on denoting it by

(1.7) Gi =

max(σl−1,gil)∑
k=gi

l

ailkt
k


l=1,...,r

Notice that some components of (1.7) - but not all - may vanish.

We are going to normalize the expressions of Gi in order to make it unique
and depending only on the marked curve

(
C, h

)
. The first normalization

consists in the following: for i = 1, 2 let us consider the smallest li such
that gili 6=∞, we impose that

ailigili
= 1.

To go further in the normalization, we will use Γ−reductions. For i = 1, 2
let us consider P i =

(
P i1, . . . , P

i
r

)
defined by{

P il =
[
gil ,max

(
σl − 1, gil

)]
∩ N ∪ {∞} if l 6= li

P ili =
[
gili + 1,max

(
σli − 1, gili

)]
∩ N ∪ {∞}

Notice that if gil = ∞ then P il = {∞} . In the same way, if gili = σli − 1
then P ili = {∞} .

For any n ∈ Nr, we denote by Initi (n) the integer defined by

min
{
k| (n)k 6=∞ and (n)k 6= gik

}
.

If n 6= ∞ and n ∈ Γ ∩
∏
l=1,...,r P

i
l then Initi (n) is well defined since the

set of which it is the minimum is non-empty : indeed, if for any l, one has
(n)l = gil or ∞. In particular, (n)li = ∞. Moreover, n belongs to FJ

(
gi
)

where J is defined by
J = {k| (n)k 6=∞} .
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The set J is non-empty since n 6= ∞ and is proper since li /∈ J . That is
impossible because by definition of absolute point, FJ

(
gi
)
is empty.

We choose a sequence of Γ−reductions of P i

P i = P i,(0) n0,k0−−−→ P i,(1) n1,k1−−−→ · · ·P i,(qi−1) n
qi−1,kqi−1
−−−−−−−−→ P i,(qi)

such that for any t ∈ {0, · · · , qi − 1} ,

(P1) kt = Initi (nt) = min
{
Initi (n)

∣∣∣n 6=∞, n ∈ Γ ∩
∏
l=1,...,r P

i,(t)
l

}
and

(P2) among the nt’s that satisfy the previous equality, we choose the one
for which the integer

(nt)Initi(nt)
is the smallest possible.

The element (nt) might not be unique which is why we keep track of the
choice in the Γ−reduction. As one can see, the sequence of Γ−reduction
is constructed by induction on the integer (nt)Initi(nt). Finally, notice that
P i does not depend on Gi but only on Γ.

Let us show how the Γ−reduction

P i,(t)
nt,kt−−−→ P i,(t+1)

allows us to normalize Gi. The r−uple nt being an element of Γ, by defi-
nition, there exists a sum of the form

W i,(t) =
∑
β∈N2

w
i,(t)
β

(
G1)β1 (

G2)β2

such that ν
(
W i,(t)) = nt and the coefficient of t(nt)kt in the kth

t component
is equal to 1. The difference

(1.8) Gi − ai
kt(nt)kt

W i,(t)

belongs to ÔC and the coefficient of t(nt)kt in the kth
t component vanishes.

By construction, after a Γ−reduction, the new couple of functions defined
by (1.8) still generates ÔC . Doing the whole process of Γ−reductions for
both Gi, i = 1, 2 and a final truncation at σ, we obtain a normalized family
of generators that we denote

(
Ni
(
Gi
))
i=1,2. By construction, following the
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properties (P1) and (P2), a normalized family of generators
(
Ni
(
Gi
))
i=1,2

is written
(1.9)

Ni
(
Gi
)

=

 ∑
k∈P i,(qi)1

ai1kt
k, · · · , tg

i
li +

∑
k∈P i,(qi)

li

ailikt
k, · · · ,

∑
k∈P i,(qi)r

airkt
k

 .

The main characteristic of this normalized basis is that its parameters are
unique: indeed, G and G′ being two couples of normalized generators as in
(1.9), we consider the valuation

γ = ν
(
Gi − (G′)i

)
.

By definition, γ is an element of Γ. By construction of the normalized
family, it is also an element of

∏
l=1,...,r P

i,(qi)
l . Since P i,(qi) is Γ−reduced,

γ is equal to∞ and Gi and (G′)i are equal. Therefore the normalized basis
is unique and we can consider the following well defined map

MS :

 Top• (S) −→
∏
l,i

CP
i,(qi)
l(

C, h
)
7−→

(
ailk
)

that associates to a marked curve in Top• (S), the ordered coefficients of a
normalized family of generators of OC .

1.6. Top• (S) as a constructible set.

In this section, we are going to prove the

Proposition 1.1. — The image of MS is a constructible algebraic set, i.e,
a finite union of finite intersections of algebraic subsets and complements
of algebraic subsets of the affine set

∏
l,i

CP
i,(qi)
l .

Proof. — Consider an element of
∏
l,i

CP
i,(qi)
l and the associated couple(

G1, G2) as in (1.9). The complete ring generated by G is the comple-
tion of the ring of a plane curve C with r components C1, . . . , Cr given by
the coordinates of G. Fix some i in {1, . . . , r}. We begin by proving that
the condition

gi ∈ ΓC
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is a constructible condition. Choose any reduced equation hi (x, y) of the
curve ⋃

j /∈Igi

Cj .

If the complement of Igi is empty, choose simply hi = 1. Consider N the
finite set of couples of integers (u, v) ∈ N2 such that

ν
(
hi
(
G1, G2) (G1)u (G2)v) 6> σ.

and the set of expressions of the form

(1.10) hi
(
G1, G2)× ∑

(u,v)∈N

βuv
(
G1)u (G2)v , βuv ∈ C

where the βuv’s are coefficients. It follows that gi ∈ ΓC is equivalent to the
existence of a family {βuv}uv so that the expression (1.10) has a valuation
equal to gi. Let

Lil,k

be the coefficient of tk in the lth component of (1.10). The functions Lil,k
are linear forms in the variables βuv whose coefficients are algebraic ex-
pressions in the coefficients of the generators Gi. The condition gi ∈ ΓC
is equivalent to require that for each l = 1, . . . , r, the linear form Li

l,gi
l

is
linearly independent of the linear forms Lil,k for l = 1, . . . , r and k < gil .
The latter condition is constructible one in the coefficients of the generators
Gi since it can be expressed using the ranks of the minors of the matrix of
these linear forms. It follows that gi ⊂ ΓC and thus

Γ ⊂ ΓC
is a constructible condition. We can now proceed analogously to prove that
Γ = ΓC is also a constructible condition : indeed, according to [17], provided
that Γ ⊂ ΓC , the equality Γ = ΓC is equivalent to the equality

Γ ∩
r∏
i=1

[0, σl] = ΓC ∩
r∏
i=1

[0, σl]

which induces a finite number of conditions, that can be proven to be
constructible with similar arguments. �

1.7. Action on Top• (S).

The group (Diff (C, 0))r acts on the image of MS the following way : given
a point A in the image, consider its corresponding couple of generators
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(
G1, G2) . Take an element φ ∈ (Diff (C, 0))r and right compose Gi, i =

1, 2, by φ ; apply the process of normalization following a sequence of
Γ−reductions initially fixed and truncate the final expressions. In the end,
the coefficients of the new normalized couple of generators(

Ni
(
Gi ◦ φ

))
i=1,2

corresponds to some expressions φ ·A which depends on A and φ.

Lemma 6. — The application (φ,A)→ φ ·A is an action. More precisely,
for any φ, ψ in (Diff (C, 0))r

φ · (ψ ·A) = (ψ ◦ φ) ·A.

Proof. — For i = 1, 2, consider a normalized basis
(
G1, G2) and the two

following normalizations(
Ni
(
Gi ◦ ψ ◦ φ

))
i=1,2 and

(
Ni
(
Ni
(
Gi ◦ ψ

)
◦ φ
))
i=1,2 .

Both are normalized bases of the ring

(ψ ◦ φ)?OC = {γ ◦ ψ ◦ φ |γ ∈ OC } .

The rings OC and (ψ ◦ φ)?OC share the same semiring of valuations Γ.
Thus, for i = 1, 2, the valuation

ν
(
Ni
(
Gi ◦ ψ ◦ φ

)
−Ni

(
Ni
(
Gi ◦ ψ

)
◦ φ
))

is an element of Γ ∩
∏
l,i

P
i,(qi)
l . Since P i,(qi) is Γ−reduced, this valuation is

∞ and one has

Ni
(
Gi ◦ ψ ◦ φ

)
= Ni

(
Ni
(
Gi ◦ ψ

)
◦ φ
)
,

which is the lemma. �

Let us denote by Diffc (C, 0) the quotient of Diff (C, 0) by the normal sub-
group of elements of the form

t→ t+ utc + · · · .

The truncation at σ being part of the normalization process, it follows that
the previous action factorizes through

(1.11)
r∏
i=1

Diffσi (C, 0) .

Since the group (1.11) is a connected solvable algebraic group, Theorem 1
follows from Lemma 1 and the previous constructions.
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1.8. An example.

Let S be the curve y
(
y2 − x3) = 0. Figure (1.1) shows the semiring ΓS .

In this rather simple situation, it can computed by hand. In the general
case, there exist algorithms to compute the semiring of a curve with several
components - see [2].

Figure 1.1. Semiring of values the curve
{
y
(
y2 − x3) = 0

}
.

Let
(
C, h

)
be in Top• (S). The conductor σ of Γ is (3, 5). The set of irre-

ducible absolute points of Γ is

{(1, 2) , (2, 4) , (3,∞) , (∞, 3)} .

Since (2, 4) = 2 × (1, 2), following [17], the set that minimaly generates Γ
as semiring is

g = {(1, 2) , (3,∞) , (∞, 3)} .

Since ν (x) = (1, 2) and ν (y) = (∞, 3), applying Lemma 2 leads to a couple
of generators that are written{

G1 =
(
a1

11t+ a1
12t

2, a1
22t

2 + a1
23t

3 + a1
24t

4) , G2 =
(
0, a2

13t
3 + a2

14t
4)}

with a1
11 6= 0, a1

22 6= 0, a2
13 6= 0. Normalizing some initial non vanishing

coefficients provides the following couple of generators{
G1 =

(
t+ a1

12t
2, a1

22t
2 + a1

23t
3 + a1

24t
4) , G2 =

(
0, t3 + a2

14t
4)} .

To reduce G1 we consider the following data

P
1,(0)
1 = {∞, 2} P

1,(0)
2 = {∞, 2, 3, 4} ,

and the two successive ΓS−reductions defined as follows

P 1,(0) (2,3),1−−−−→ P 1,(1) = ({∞} , {∞, 2, 3, 4}) .
P 1,(1) (∞,3),2−−−−−→ P 1,(2) = ({∞} , {∞, 2, 4})
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Observe P 1,(2) is ΓS−reduced. Since ν
((
G1)2 +G2

)
= (2, 3), the trans-

formation associated to the first ΓS−reduction as in (1.8) is written

G1 − a1
12

((
G1)2 +G2

)
=
(
t+ t3 (· · · ) , (?) t2 + (?) t3 + (?) t4 + t5 (· · · )

)
,

which leads to a new generator that we still denote by G1. Noticing that
ν
(
G2) = (∞, 3) yields the transformation

G1 − (?)G2.

The truncation at σ = (3, 5) finishes the normalization ofG1. The generator
G2 is already normalized since (∞, 4) /∈ Γ.

Therefore, the normalized family G has for final form

(1.12)
{
G1 =

(
t, at2 + bt4

)
, G2 =

(
0, t3 + ct4

)}
and its elements depends only on E(C,h). The map MS is defined by

MS :
{

Top• (S) → C3(
C, h

)
7→ (a, b, c)

following (1.12). By construction if a 6= 0, any curve C associated to a ring
generated by such a family admits a semiring of values ΓC that contains
(1, 2) and (∞, 3) . It can be checked that a 6= 0 is the sole condition to
ensure that actually, ΓC = ΓS . Thus the image of MS is the constructible
set C \ {0} × C2.

Let us compute the action of φ ∈ Diff3 (C, 0)×Diff5 (C, 0) on A ∈ C\{0}×
C2 induced by the present construction where

φ =
(
ut+ vt2, αt+ βt2 + γt3 + δt4

)
and A = (a, b, c) .

The action of φ on A is written

φ ·A =
(
aα2

u
,
−a2α4v − 2aα2βcu2 + α4bu2 + 2aαγu2 − 5aβ2u2

u3 , αc+ 3β
α

)
and the quotient reduces to the class of the point (1, 0, 0). As a matter of
fact, the curve S has no moduli [11].
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2. Optimal vector field for a germ of curve S.

The space M• (S) is now endowed with a complex structure. The remainder
of the article is interested in the generic dimension of M• (S). In order to
reach this purpose, subsequently, we proceed to the study of the module of
vector fields tangent to S.

Let S be a germ of curve in
(
C2, 0

)
and f a reduced equation of S. Through-

out this article, Der (logS) will stand for be the O(C2,0)− module of vector
fields tangent to S,that is such that the set of vector fields X such that

X · f ∈ (f) .

It will be called the Saito module of S in reference to [23]. Associated to
the latter, we consider the following analytical invariant

Definition 4. — The Saito number of S is the integer

s (S) = min
X∈Der(logS)

ν (X) ,

where ν is the valuation defined by

ν (a∂x + b∂y) = min (ν (a) , ν (b)) .

According to [23], the Saito module of S is a free O(C2,0)− module of rank
2. If {X1, X2} is one of its basis, said to be a Saito basis for S, it is easily
seen that the number of Saito of S satisfies

s (S) = min (ν (X1) , ν (X2)) .

Following again [23], {X1, X2} is a Saito basis for S if and only if the
following property holds.

Criterion (Criterion of Saito). — {X1, X2} is a Saito basis for S if and
only if there exists a germ of unit u such that

(2.1) X1 ∧X2 = uf,

where · ∧ · stands for determinant of the vector fields in any coordinates.

The property (2.1) will be referred to as the criterion of Saito. Evaluating
the valuation of (2.1) gives the inequality

(2.2) ν (X1) + ν (X2) 6 ν (X1 ∧X2) = ν (f) = ν (S) .

In particular, one has

(2.3) s (S) 6 ν (S)
2 .
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Definition 5. — A vector field X ∈ Der (logS) is said to be optimal for
S if ν (X) = s (S) .

Example 1. — Let S be the double cusp given by

S =
{(
x2 − y3) (y2 − x3) = 0

}
.

Then an optimal vector field can be given by

X =
(

2x2 + 5
2y

3 − 9
2x

3y

)
∂x +

(
3xy − 3x2y2) ∂y.

In particular
s (S) = 2.

Proposition 2.1. — If X is optimal for S, then there exists a vector field
Y such that {X,Y } is a Saito basis for S.

Proof. — Let {X1, X2} be any Saito basis for S. According to the criterion
of Saito, there exists a unit u such that

(2.4) X1 ∧X2 = uf.

Since {X1, X2} is a basis, there exist functions ui, i = 1, 2 such that

X = u1X1 + u2X2.

Since ν (X) = s (S) = min (ν (X1) , ν (X2)), for some i, say i = 1, ui is a
unit. Then, using (2.4) yields

X ∧X2 = u1uf.

and thus, {X,X2} is a Saito basis for S. �

2.1. Curve of radial type.

Let E be the single blowing-up at 0. The total space of the blowing-up will
be denoted byM,

E : (M, D)→
(
C2, 0

)
.

For any curve S, SE will stand for the strict transform of S by E, that is
the closure in M of E−1 (S \ {0}) . Moreover, for any vector field Y, Y E

will be the blown-up vector field E?Y divided by the maximal power of a
local equation of D.

Definition 6. — Let Y be a germ of vector field in
(
C2, 0

)
. It is is said

dicritical if Y E is generically transverse to the exceptional divisor D.
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Being dicritical is a property that can be read on the homogeneous com-
ponent of smallest degree. Indeed,

Proposition 2.2. — Y is dicritical if and only if its homogeneous com-
ponent of smallest degree Y ν(Y ) is tangent to the radial vector field, i.e,
there exist an homogeneous polynomial function R such that

Y ν(Y ) = R (x, y) (x∂x + y∂y) .

Suppose that X is dicritical and optimal for S and let Y be such that
{X,Y } is a basis of Der (logS). Writing

Xν(X) = R (x, y) (x∂x + y∂y) ,

we have that for any couple of non-vanishing functions (a, b), the initial
part of aX + bY is equal to

a (0)R (x, y) (x∂x + y∂y) + b (0)Y (s(S)).

where Y (?) stands for the homogeneous part of degree ? of Y. If Y is optimal
and not dicritical then for a and b generic, aX+bY is not dicritical. Which
is why, we consider the following definition

Definition 7. — S is said to be of radial type if all optimal vector fields
for S are dicritical.

2.2. Flat Saito basis.

In this section, we are going to identify an open dense set U ⊂ M• (S)
for which, the Saito basis of C ∈ U , can be extended locally around C in
M• (S) into a family of Saito bases. Further on, an example will illustrate
that this property holds only generically.

Theorem 3. — There exist an open dense set U ⊂ M• (S) on which the
Saito number is constant. More precisely, for any

(
C, h

)
∈ U , there exists

two germs of analytical family of vector fields

c ∈
(
M• (S) ,

(
C, h

))
7→ Xi (c) , i = 1, 2

such that for any c, {X1 (c) , X2 (c)} is a Saito basis for which the multi-
plicity

ν (X1 (c)) = s (c)
is a constant depending only on S.
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Proof. — Let
(
C, h

)
∈M• (S) be a regular point for the complex structure

of M• (S). Consider a miniversal deformation of C

(2.5) (Σ, C) ⊂
(
C2+N ,C2 × {0}

) π−→
(
CN , 0

)
, π (x, t) = t ∈ CN

versal for topologically trivial deformations of C and for which the singular
locus of Σ is {0}×CN : it is enough to consider the miniversal deformation
of any reduced equation of C and to restrict it to the associated smooth
µ−constant stratum. We fix an open neighborhood C2+N ⊃ U 3 0 on which
Σ and C are well defined. By shrinking U if necessary, we can also suppose
that, out of its singular locus, Σ is transverse to the fiber of π, that is for
any p ∈ U \ {0} × CN ,

(2.6) π−1 (π (p)) 6⊂ TpΣ

The deformation (2.5) is topologically trivial : more precisely, there exists
an homeomorphism H:

(
C2+N , 0

)
→
(
C2+N , 0

)
such that

(1) πH = π

(2) H|π−1(0) = h

(3) The following diagram commutes(
S ×

(
CN , 0

)
, S
)
π

''

H // (Σ, C)

π

��(
CN , 0

)
By construction, the map C defined by

(2.7) t ∈
(
CN , 0

) C7−→
(

Σ|π−1(t) , H
∣∣
π−1(t)

)
∈M• (S)

is a local diffeomorphism.

For technical reason, we add to Σ an hyperplane H not contained in Σ and
transverse to π. Consider Σ◦ = Σ ∪ H. In what follows, fΣ◦ stands for a
reduced equation of Σ. The kernel of the evaluation map

Der (log Σ◦) dπ(·)−−−→ (ON+2)N

is the sheaf Der↑ (log Σ◦) of vertical vector fields tangent to Σ◦. In the
initial coordinates (x, y, t) a section of Der↑ (log Σ◦) is written

a (x, y, t) ∂x + b (x, y, t) ∂y
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where a and b are analytic functions. The sheaf Der (log Σ◦) is coherent, so
is Der↑ (log Σ◦) . Note that if X is a section of Der↑ (log Σ◦), then for any
t ∈ π (U), X|π−1(t) is tangent to Σ◦|π−1(t) . Fix a system of generators

(2.8) {X1, · · · , Xn}

of Der↑ (log Σ◦) (U) . We are going to use the following remarks which are
consequences of the coherence property : for any open set V ⊂ U , the vector
fields X1|V , · · · , Xn|V generate Der↑ (log Σ◦) (V) . Moreover,

(1) if V does not meet Σ◦ then Der↑ (log Σ◦) (V) is the set of all holo-
morphic vertical vector fields on V.

(2) if V meets the smooth part of Σ◦, then Der↑ (log Σ◦) (V) is locally
freely generated on V by the vertical vector fields u∂u and ∂v where
(u, v, t) is a local system of coordinates preserving the fibration π
for which u = 0 is an equation of the trace of Σ◦ on V: such a local
system of coordinates exists under the transversality property (2.6).
In particular, the product

u∂u ∧ ∂v
vanishes at order 1 along Σ◦.

All the X ′is cannot vanish identically on a given component of Σ◦ because
for instance the section of Der↑ (log Σ◦) defined by

∂x (fΣ◦) ∂y − ∂y (fΣ◦) ∂x
does not vanish on any component of Σ◦. Considering if necessary a com-
bination of the X ′is, we can suppose that X1 does not vanish identically
on any component of Σ◦. We can also suppose that X1 is singular in codi-
mension 2 : indeed, if not, there exists X̃1 such that X1 = hX̃1 where h is
an holomorphic map with h (0) = 0. Since h cannot vanish identically on
any component of Σ◦, X̃1 is tangent to Σ◦ and the family{

X̃1, · · · , Xn

}
still generates the sheaf Der↑ (log Σ◦). Now, if there exists j 6= 1 such that

X1 ∧Xj ≡ 0

then, by division, there exists φ such that Xj = φX1, which contradicts
the minimality of the system of generators (2.8). Thus, for any j 6= 1, there
exists a function gj 6≡ 0 such that

(2.9) X1 ∧Xj = fΣ◦gj = xfΣgj
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where the system of coordinates (x, y, t) is chosen so that x is an equation of
the added hyperplan H. Consider a point p in the zero set Z (g2, . . . , gn) of
the ideal (g2, . . . , gn). If p is not in Σ◦ then all the generators of Der↑ (log Σ◦)
are tangent two by two at p, which is impossible in view of the above remark
(1). Therefore, one has

Z (g2, . . . , gn) ⊂ Σ◦.

We are going to improve the above inclusion, showing that one can suppose
that

Z (g2, . . . , gn) ⊂ {0} × CN .
Consider the following set

∆ =
{
t ∈
(
CN , 0

)∣∣ π−1∣∣
Σ0

(t) ⊂ Z (g2, . . . , gn)
}
.

It is a closed analytic subset of
(
CN , 0

)
and we remove π−1 (∆) of U . Now,

fixed some t and denote by denote by I the canonical injection I :
(
C2, 0

)
→

π−1 (t) , I (x) = (x, t). If the intersection

∆t = Σ◦|π−1(t) ∩ Z (g2, · · · , gn)

contains 0×{t} has a non isolated point of ∆t, it contains also an analytic
curve which is a component of I?fΣ◦ = 0. Therefore there is a factor h of
I?fΣ◦ that divides I?gi for any i. Thus, for i > 2, one has

X1|π−1(t) ∧ Xi|π−1(t) = h2 (· · · ) .

Since the vector fields Xi|π−1(t) are tangent to h = 0, any couple of element

in Der↑ (log Σ◦)
∣∣∣
π−1(t)

has a contact of order 2 locally around the zero

locus of h, which is impossible according to the above remark (2). As a
consequence, for any t ∈

(
CN , 0

)
, if ∆t contains 0×{t}, it is as an isolated

point in ∆t. So, ∆t is a finite set.

Lemma 7. — Let W ⊂
(
C2+N , 0

)
be an analytic set such that for any t,

W ∩ π−1 (t) is finite. Then

{0} × CN 6⊂W \ {0} × CN .

Proof. — The hypothesis ensures that codimW > 2. If codimW > 3, the

lemma is clear since codim

{0} × CN︸ ︷︷ ︸
V

 = 2. Suppose codimW = 2. Let

us write
V = (W ∩ V ) ∪

(
V \W

)
.
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Since V is irreducible, eitherW∩V = V , and V is an irreducible component
of W , or V \W = V, and V ∩W is an analytic subset of V of codimension
at least 1 in V , and thus of codimension at least 3 in C2+N . In any case,
the lemma is proved. �

Following the lemma, the analytic set K defined by

K = {0} × CN ∩ Σ◦ ∩ Z (g2, · · · , gn) \ {0} × CN

is a strict analytic subset of {0}×CN admitting a neighborhood on which

Z (g2, · · · , gn) ⊂ {0} × CN

At the level of the ideals, the inclusion above ensures that there exists
M ∈ N such that

(x, y)M ⊂ (g2, . . . , gn) ‘
where (x, y) are local coordinates for which x is a local equation of the
hyperplane H. As a consequence, there exists a relation of the following
form

xM =
n∑
i=2

higi

and considering Y =
∑n
i=2 hiXi and the relation (2.9) yields a vector field

Y in Der↑ (log Σ◦) (U) such that

X1 ∧ Y = fΣx
M+1.

Notice that X1 and Y are both tangent to H = {x = 0}. Let us write in
coordinates

X1 = xa1 (x, y, t) ∂

∂x
+
(
b10 (y, t) + xb11 (x, y, t)

) ∂
∂y

Y = xa2 (x, y, t) ∂

∂x
+
(
b20 (y, t) + xb21 (x, y, t)

) ∂
∂y
.

Replacing if necessary X1 by X1 + Y , we can suppose that

νy
(
b10
)
6 νy

(
b20
)

where νy is the valuation in the ring C {t} {y}. Consider the vertical vector
field

Ỹ = 1
x

(
Y − b20

b10
X1

)
.

It is holomorphic removing if necessary, some fibers π−1 (t) for t in some
closed analytic set of CN related to the zeros of b10 (0, t). Moreover, one has

X1 ∧ Ỹ = fΣx
M .
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Since X1 is tangent to x = 0 and since its singular locus has codimension
2, Ỹ is also tangent to x = 0. The process can be repeated and finally, one
obtains two vertical vector fields X1 and X2 tangent to Σ such that

X1 ∧X2 = fΣ.

The functions
t ∈ π (U) 7→ ν

(
Xi|π−1(t)

)
, i = 1, 2

are lower semi-continuous. Replacing if necesssary X1 by X1 + X2, we
consider an open set U ′ ⊂

(
CN , 0

)
, whose closure is a neighborhood of 0,

on which
∀t ∈ U ′, ν

(
X1|π−1(t)

)
6 ν

(
X2|π−1(t)

)
.

According to the criterion of Saito, for any t,{
X1|π−1(t) , X2|π−1(t)

}
consists in basis of Saito for the curve Σ|π−1(t) . Therefore, for any t ∈ U ′,
one has

ν
(
X1|π−1(t)

)
= s

(
Σ|π−1(t)

)
.

From (2.7), one can consider the open set C (U ′) ⊂ M• (S) and the union
of such open sets while the above construction is done in the neighborhood
of any regular point

(
C, h

)
in M• (S) . By construction, the resulting open

set has the desired properties. �

From now on, a curve C in M• (S) will be said generic if it belongs to the
open set identified in the theorem above : in that sense, for a generic curve
C in its moduli space, we will be allowed to consider a analytical family of
Saito bases following any topologically trivial deformation of C.

Example 2. — Consider the union of four regular transversal curves. Up
to some change of coordinates, it can be written

S = {xy (y + x) (y + t1x) = 0}

where t1 ∈ M• (S) = C \ {0, 1} . It can be seen [10] that it admits a
miniversal deformation for the topologically trivial deformations of the form

Σ = {F (x, y, t) = xy (y + x) (y + tx) = 0} ∈
(
C2 × C, (0, 0, t1)

)
.

The basis highlighted in Theorem 3 can be explicited in the above coordi-
nates as

X1 = x∂x+ y∂y, X2 = ∂xF∂y − ∂yF∂x.
In this case, X1 and X2 is a Saito basis in a whole neighborhood of t1 ∈
M• (S) . In general, the situtation is not so favourable.
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Example 3. — Consider for instance the union of five regular transversal
curves, which is written

S = {xy (y + x) (y + αx) (y + βx) = 0} .

with α 6= 0, 1 and β 6= 0, 1, α. A miniversal deformation of S is written

Σ =
{
F = xy (y + x) (y + t1x)

(
y + t2x+ t3x

2) = 0
}
∈
(
C2 × C3, (0, 0, α, β, 0)

)
.

For the curve S, which corresponds to the parameter (α, β, 0), a basis of
Saito is given by

X1 = x∂x+ y∂y, X2 = ∂xF∂y − ∂yF∂x.

However, this basis cannot be extended, in a whole neighborhood of (α, β, 0) .
Since X1 has a valuation equal to one, the Saito number of S is equal to
1. It can be seen that for any t3 6= 0, the number of Saito of Σ|t=(α,β,t3) is
bigger than 2. Indeed, consider a vector field X tangent to Σ|t=(α,β,t3) . If
its valuation is smaller than 1, then it is dicritical. Thus it is written

X = k (x∂x + y∂y) + (· · · )

where k is a non vanishing constant. Following [5], X is linearizable and
in some coordinates in which X is linear, the curve Σ|t=(α,β,t3) becomes
exactly the union of five germs of straight lines, which is impossible if
t3 6= 0. Finally, it can be seen that if t3 6= 0 then

s
(

Σ|t=(α,β,t3)

)
= 2

and an optimal vector field for Σ|t=(α,β,v) is written

X = (x+ εy) (x∂x + y∂y) + (· · · )

where ε 6= 0, 1.

2.3. Saito basis for S and S ∪ l

The process described below allows us to obtain a Saito basis for S from a
Saito basis for S∪ l where the curve l is a regular curve. This trick has been
already introduced in the proof of Theorem 3. Throughout this article, it
will be often a key argument.

Let S be a germ of curve and l be a germ of smooth curve that is not a
component of S. Let {X1, X2} be a Saito basis for S∪ l. The Saito criterion
is written

(2.10) X1 ∧X2 = ufL
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where u is a unity, f a reduced equation of S and L a reduced equation
of l. Let us consider a local system of coordinates (x, y) in which L = x.

Then, for i = 1, 2, the vector fields Xi can be written

Xi = xai∂x +
(
b0i + xb1i

)
∂y, ai, b

1
i ∈ C {x, y} , b0i ∈ C {y} .

Considering if necessary a generic change of basis

{αX1 + βX2, uX1 + vX2}

where
∣∣∣∣ α β

u v

∣∣∣∣ 6= 0, one can suppose that

ν (Xi) = s (S ∪ l) and νy
(
b01 (y)

)
= νy

(
b02 (y)

)
where νy is the valuation in the ring C {y}. In particular, the quotient b0

1
b0

2
extends holomorphically at (x, y) = (0, 0) as a unit. The relation 2.10 leads
to

(2.11)

(
X1 − b0

1
b0

2
X2

)
x︸ ︷︷ ︸
X′1

∧X2 = uf,

whereX ′1 extends holomorphically at (0, 0) . Since L = 0 is not a component
of S, the vector field X ′1 leaves invariant S. The Saito criterion ensures that
{X ′1, X2} is a Saito basis for S.

Now, it is clear that

ν (X ′1) > ν (X1)− 1 = s (S ∪ l)− 1.

Since, ν (X2) = s (S ∪ l), one has

s (S) = s (S ∪ l)− 1 or s (S ∪ l) .

Assume moreover, that S is not of radial type but S ∪ l is. By definition,
X1 and X2 are dicritical. Thus, the homogeneous part of degree s (S ∪ l)
of Xi is written

X
(s(S∪l))
i = Ri (x∂x + y∂y)

Therefore the homogeneous part of degree s (S ∪ l)− 1 of X ′1 is

(2.12) 1
x

(
R1 −

b01
b02

(0)R2

)
(x∂x + y∂y) .
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If the above expression does not identically vanish, then X ′1 would be di-
critical. Since X2 is dicritical too, S would be of radial type, which is im-
possible. Thus, the expression 2.12 vanishes and ν (X ′1) > s (S ∪ l) . Since
ν (X2) = s (S ∪ l) one has finally

s (S) = s (S ∪ l) .

Gathering the remarks above, we obtain the

Proposition 2.3. — Let l be a germ of smooth curve that is not a com-
ponent of S. Then

(1) In any case, s (S) = s (S ∪ l)− 1 or s (S ∪ l).
(2) If S is not of radial type but S ∪ l is then

s (S) = s (S ∪ l) .

The process described above can be reversed. Consider a Saito basis {X1, X2}
for S. Changing of basis if necessary, one can consider that

ν (X1) = ν (X2) .

Let l be a generic smooth curve and L a reduced equation of l. Fix some
coordinates (x, y) in which l has a parametrization of the form

γ (t) = (t, ε (t)) , t ∈ (C, 0) .

The product
X1 (γ) ∧ γ′ ∈ C {t}

has a valuation in C {t} equal to ν (X1) or ν (X1)+1 depending on whether
X1 is dicritical or not. Therefore, the quotient

X1 (γ) ∧ γ′

X2 (γ) ∧ γ′

extends holomorphically at t = 0 as a unit φ (t) . By construction, the
vector field

X1 − φ (x)X2

is tangent to the curve l. Finally, in the coordinates (x, y), according to the
criterion of Saito, the family

(2.13) {X1 − φ (x)X2, LX2}

is a Saito basis for S ∪ l.
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3. Generic element in Der (logS) and adapted Saito Bases.

In (2.3), we remark that

s (S) 6 ν (S)
2 .

In this section, we will prove that for a curve S generic in its moduli space
the latter inequality is essentially reached, as it will be stated in Theorem
4.

3.1. Generic value of s (S)

Let S be a curve generic in its topological class and {X1, X2} be a Saito
basis for S.

The exceptional divisor D of the blowing-up E : (M, D)→
(
C2, 0

)
can be

covered by two open sets U1 and U2 and two charts (x1, y1) and (x2, y2)
defined respectively in some neighborhoods of U1 and U2 such that

E (x1, y1) = (x1, y1x1) and E (x2, y2) = (x2y2, y2) .

Let ΘS be the sheaf onM of vector fields tangent to E(−1) (S) = SE ∪D.
Let ω be a 1−form with an isolated singularity tangent to the vector field
X1 : if X1 is written

X1 = a∂x + b∂y,

one can choose
ω = ady − bdx.

Let us consider the global 1−form onM defined by the pull-back

Ω = E?ω.

We denote by B the basic operator : this is a morphism of sheaves

B : ΘS → Ω2 (M)

that is written

B (T ) = LTΩ ∧ Ω = d (Ω (T )) ∧ Ω− Ω (T ) dΩ.

Here, Ω2 (M) is the sheaf onM of holomorphic 2-forms and LT is the Lie
deriviative with respect to the vector field T. Following [3], the kernel of
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B consists in the infinitesimal generators of the sheaf of automorphisms of
the foliation induced by XE

1 , that is,

LTΩ ∧ Ω ≡ 0 =⇒ ∀t ∈ (C, 0) ,
((
etT
)?
XE

1

)
∧XE

1 ≡ 0.

The lemma below describes partially the image of B.

Lemma 8. — B (ΘS) ⊂ Ω2 (−nD − SE) where
• n = 2ν (X1) +

{
2 if X1 is dicritical
1 if not

• Ω2 (−nD − SE) is the sheaf of 2−forms that vanish along D and
SE with at least respective orders n and 1.

Proof. — It is a computation which can be performed in local coordinates.
If X1 is dicritical, then out of Sing

(
XE

1
)
, one can write

Ω = ux
ν(X1)+1
1 dy1,

where u is a local unit. A section T of ΘS is written

T = αx1∂x1 + β∂y1 , α, β ∈ C {x1, y1}

Thus, applying the morphism B yields

B (T ) = −
(
u2x

2ν(X1)+2
1 ∂x1β

)
dx1 ∧ dy1.

If X1 is not dicritical, then out of the locus of tangency between XE
1 and

D, one can write in some coordinate

Ω = ux
ν(X1)
1 dx1,

and
B (T ) = −

(
u2x

2ν(X1)+1
1 ∂y1α

)
dx1 ∧ dy1.

Finally, along a regular point of SE , one can write

Ω = udy1,

where y1 = 0 is a local equation of SE . A local section of T of ΘS is written

T = α∂x1 + βy1∂y1 , α, β ∈ C {x1, y1}

and
B (T ) = −

(
u2y1∂x1β

)
dx1 ∧ dy1.

�
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Notice that if c is not a tangency point between XE
1 and D, then at the

level of the stack, one has

(B (ΘS))c =
(
Ω2 (−nD − SE))

c
,

thus the two sheaves B (ΘS) and Ω2 (−nD − SE) are essentially equal.

The proof of the next lemma is a corollary of an adaptation of the theory of
infinitesimal deformations of foliations developped in [12] by Gómez-Mont.

Lemma 9. — The map in cohomology induced by the inclusion of Lemma
8

H1 (M,ΘS) B−→ H1 (M,Ω2 (−nD − SE))
is the zero map.

Proof. — Let us denote by ΘX1 the sheaf of tangent vector fields to the
foliation induced onM by XE

1 . Let us consider the morphism of sheaves

(3.1) ΘS
D−→ Hom (ΘX1 ,ΘS/ΘX1)

defined by D (T ) = (X 7→ π [X,T ]) where [·] stands for the Lie bracket and
π the quotient map π : ΘS → ΘS/ΘX1 . Following [12] (Theorem 1.6), one
has the following exact sequence

(3.2) H1 (M,ΘX1)→ H1 (M,ΘS) D−→ H1 (M,Hom (ΘX1 ,ΘS/ΘX1)) .

In this sequence,H1 (M,ΘX1) is the first hypercohomology group of the leaf
complex associated to the morphism (3.1) as defined in [12]. It is identified
with the space of infinitesimal deformations of the foliation induced by
XE

1 . The cohomological group H1 (M, •) is the standard Cěch cohomology
of sheaves. The first cohomology group H1 (M,ΘS) is identified with the
space of infinitesimal deformations of SE . Finally, D is the map induced in
cohomology by D.

Assume that S is generic in its moduli space M• (S) . Theorem 3 ensures
that any small deformation of SE can be followed by a deformation of XE

1 .

As a consequence, any infinitesimal deformation of SE can be followed by
an infinitesimal deformation of XE

1 . In other words, in (3.2) the map

H1 (M,ΘX1)→ H1 (M,ΘS)

is onto. Since the sequence (3.2) is exact, the map D is the zero map.

Now, let us consider a covering {Ui}i∈I ofM and a cocycle {Tij}ij
{Tij}ij ∈ Z

1 (M, {Ui}i∈I ,ΘS

)
.
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The map D being the zero map, the cocycle D
(
{Tij}ij

)
is trivial, that is,

D
(
{Tij}ij

)
≡ 0 in H1 (M,Hom (ΘX1 ,ΘS/ΘX1)) .

By definition, there exists {Ti}i ∈ Z0 (M, {Ui}i∈I ,Hom (ΘX1 ,ΘS/ΘX1)
)

such that
[Tij , ·] = Tj − Ti.

At the level of the stack, the map D is onto at any regular point for XE
1 .

Thus we can consider a covering of Ui \ Sing
(
XE

1
)

=
⋃
k∈K Uik by open

sets Uik such that D is onto on Uik. By construction, on any Uik there
exists a section τik of ΘS such that

Ti = [τik, ·] .

Therefore, on Uik ∩ Uik′ , [τik, ·] = [τik′ , ·]. Thus, appyling B yields

LτikΩ ∧ Ω = B (τik) = B (τik′) = Lτik′Ω ∧ Ω.

Therefore, the 2−forms {LτikΩ ∧ Ω}k∈K paste in a global 2−forms Ωi de-
fined on Ui \ Sing

(
XE

1
)
which can be extended to Ui since Sing

(
XE

1
)
is of

codimension 2. By construction,

B ({Tij}) ≡ {Ωj − Ωi} ,

which is the lemma. �

The open sets U1 and U2 defined at the beginning of this section are Stein
as open set in C. Thus, following [24], they admit a system of Stein neigh-
borhoods. Since Ω2 (−nD − SE) is coherent, we deduce that there is a
covering {U1,U2} ofM that is acyclic for Ω2 (−nD − SE) . Therefore, one
can compute the cohomology using this covering and thus

H1 (M,Ω2 (−nD − SE)) = H1 ({U1,U2} ,Ω2 (−nD − SE))
which is the quotient

(3.3)
H0 (U1 ∩ U2,Ω2 (−nD − SE))

H0 (U1,Ω2 (−nD − SE))⊕H0 (U2,Ω2 (−nD − SE)) .

The lemma below is the key to get a lower bound for the Saito number
s (S) of the curve S.

Lemma 10. — Let f1 be the quotient f◦E
x
ν(S)
1

where f is a reduced equation

of S. If there exists a Laurent series A =
∑
ai,jx

i
1y
j
1 holomorphic on U1∩U2

with a non vanishing residu a0,−1, such that, in the identification (3.3), one
has
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[
A · f1x

k
1dx1 ∧ dy1

]
≡ 0 ∈ H1 (M,Ω2 (−kD − SE))

then
k > ν (S) .

Proof. — The global sections of Ω2 (−kD − SE) on each open sets U1, U2
and their intersection are written

Ω2 (−kD − SE) (U1) =
{
f (x1, y1) f1x

k
1dx1 ∧ dy1

∣∣ f ∈ O (U1)
}

Ω2 (−kD − SE) (U2) =
{
g (x2, y2) f2y

k
2dx2 ∧ dy2

∣∣ g ∈ O (U2)
}

Ω2 (−kD − SE) (U1 ∩ U2) =
{
h (x1, y1) f1x

k
1dx1 ∧ dy1

∣∣h ∈ O (U1 ∩ U2)
}

where f2 = f◦E
y
ν(S)
2

. Therefore, the cohomological equation induced by the
equality (3.3) is written

h (x1, y1) f1x
k
1dx1 ∧ dy1 = g (x2, y2) f2y

k
2dx2 ∧ dy2

−f (x1, y1) f1x
k
1dx1 ∧ dy1

which is equivalent to

(3.4) h (x1, y1) = y
k−ν(S)−1
1 g

(
1
y1
, y1x1

)
− f (x1, y1)

The hypothesis of Lemma 10 induces that if we set h to be the series∑
ai,jx

i
1y
j
1 then the equation above has a solution. In particular, the mono-

mial a0,−1
y1

has to appear in the Laurent expansion of one of the two terms
of the expression at the right of (3.4). This is equivalent to require that the
following system{

0 = j

−1 = j − i+ k − ν (S)− 1
⇐⇒

{
j = 0
i = k − ν (S)

.

has a solution in N2. Thus, k > ν (S). �

Theorem 4. — For S generic in its moduli space M• (S), one has

s (S) >


⌊
ν(S)

2

⌋
if S is not of radial type

⌈
ν(S)

2

⌉
− 1 else

,

where b?c and d?e stands respectively for the integer part and the least
integer of ?.
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In the moduli space M• (S) , the lower bound above holds only for the
generic point. For instance, the Saito number of a union of any number of
germs of straight lines is 1, since the radial vector field x∂x+ y∂y is in the
Saito module, whereas the algebraic multiplicity ν (S) goes to infinity with
the number of components. Even if the curve S is irreducible, one cannot
drop the assumption of S being generic in its moduli space, as it can be
seen in the following example due to M. Hernandes known as deformation
by socle : let S be the irreducible curve{

yp − xq + xq−2yp−2 = 0
}

with p∧q = 1 and 4 = p < q. Its algebraic multiplicity is equal to p whereas
its Saito number s (S) is equal to 2 regardless the value of p. Indeed, the
vector field X1 written

X1 =
(
y + (p− 2) (q − 2)

pq
xq−4yp−3

)
(px∂x + qy∂y)

+ (p− 2) q − 2p
q

xq−2∂y − (p− 2) (p− 2) q − 2p
pq

xp−3yq−3∂x

is optimal for S.

Proof of Theorem 4. — Let X1 be a generic optimal vector field for S.
Since we assume S generic in its moduli space, the operator B associated
to X1 and defined in Lemma 9 is trivial.

Suppose, first that X1 is dicritical. Let us suppose that in the coordinates
(x1, y1), the vector field XE

1 is transverse to D at (0, 0) and that f1 = f◦E
x
ν(S)
1

does not vanish at (0, 0). We can suppose that, in these coordinates, Ω is
written

Ω = ux
ν(X1)+1
1 dy1, u (0) 6= 0.

The image of the vector field

T = x1

y1
∂y1

by 1
f1
B is written

1
f1

B (T ) = 1
f1
LTΩ ∧ Ω = u2 (0, 0)

f1 (0, 0)x
n
1

1
y1

dx1 ∧ dy1 + xn+1
1 (· · · ) .

This meromorphic 2−form considered as a cocycle in

Z1 ({U1,U2} ,Ω2 (−nD − SE))
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has to be trivial in cohomology according to Lemma 9. Thus, Lemma 10
ensures that n = 2ν (X1) + 2 > ν (S) , which is also written

s (S) = ν (X1) > ν (S)
2 − 1.

Therefore, if X1 is dicritical the theorem is proved.

Suppose now thatX1 is not dicritical. Let us suppose that (0, 0) is a singular
point of XE

1 . Locally around (0, 0), Ω can be written

Ω = x
ν(X1)
1 ya1dx1 + x

ν(X1)+1
1 (· · · )

where a is some positive integer. Let us write

f1 = yb1v (y1) + x1 (· · · ) , v (0) 6= 0

where b is some positive integer. Considering the meromorphic vector field

T = x1

y2a−b
1

∂x1 ,

we apply the operator 1
f1
B and obtain

1
f1

B (T ) = (2a− b)
v (0)

xn1
y1

dx1 ∧ dy1 + xn+1
1 (· · · ) .

Suppose that there exists a singular point of XE
1 such that 2a 6= b. Then,

Lemma 10 ensures that n = 2ν (X1) + 1 > ν (S) , which is written

(3.5) s (S) = ν (X1) > ν (S)− 1
2 .

If the equality 2a = b is true for any singular points, then ν (S) is even.
Thus, the theorem is proved when

• ν (S) is odd
• or ν (S) is even and for some singular points of XE

1 , one has b 6= 2a.
• or if S is radial.

Finally, suppose that ν (S) is even and S is not radial. Consider a Saito
basis {X1, X2} for S with ν (X1) = ν (X2). If ν (X1) = ν(S)

2 then the
property is proved. Therefore, assume that ν (X1) 6 ν(S)

2 − 1. Let l1 be
a generic smooth curve. Using the construction introduced at (2.13), we
obtain a Saito basis for S ∪ l1 of the form

{X1 + φ1X2, L1X2} , φ1 (0) 6= 0 and l1 = {L1 = 0}
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If ν (X1 + φ1X2) = ν (X1) then

ν (X1 + φ1X2) 6 ν (S)
2 − 1 < ν (S ∪ l1)− 1

2
which contradicts Theorem 4 applied to S ∪ l1, the valuation ν (S ∪ l1)
being odd. Therefore, ν (X1 + φ1X2) > ν(S)

2 and since ν (L1X2) > ν(S)
2

and ν (X2) 6 ν(s)
2 − 1, considering if necessary X1 + φ1X2 + L1X2, we

obtain a basis of Saito for S ∪ l1 written

(3.6) {X1 + φ1X2, L1X2} , φ1 (0) 6= 0

both of these vector fields being non dicritical and of multiplicity ν(S)
2 .

Using again the construction (2.13), we add one more generic curve l2 and
obtain a basis of Saito of the formL2 (X1 + φ1X2)︸ ︷︷ ︸

Y1

, L1X2 + φ2 (X1 + φ1X2)︸ ︷︷ ︸
Y2

 , φ2 (0) 6= 0 and l2 = {L2 = 0} .

We can apply Theorem 4 to S ∪ l1 ∪ l2 since the latter curve has a smooth
component for which b = 1 is not even. Therefore, the two above vector
fields are of multiplicity ν

2 + 1 and not dicritical. According to the Saito
criterion applied to (3.6), one has

(X1 + φ1X2) ∧ L1X2 = uL1f, u (0) 6= 0.

Therefore, L1 cannot divide X1 + φ1X2. Now consider any couple of non
vanishing functions α and β. Writing

(3.7) αY1 + βY2 = (βφ2 + αL2) (X1 + φ1X2) + βL1X2

ensures that αY1 + βY2 cannot be divided by L1L2. Fix some coordinates
(x, y) such that L1 = x and L2 = y. Taking a suitable linear combination
of Y1 and Y2 we can suppose that they are written

Y1 = a (x)xp∂x + b (y) yq∂y + xy (· · · )
Y2 = c (x)xp∂x + d (y) yq∂y + xy (· · · )

where a, b, c and d are non-vanishing germs of functions and p and q some
integers bigger than ν

2 + 1. Dividing Y1 and Y2 respectively by b and d, and
making a suitable change of coordinates of the form (x, y) 7→ (u (x) , y), we
can suppose that Y1 and Y2 are written

Y1 = axp∂x + byq∂y + xy (· · · )
Y2 = c (x)xp∂x + dyq∂y + xy (· · · )
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where a, b and d belongs to C \ {0}. Finally, considering the vector field

Y2 −
(c (x)− c (0))

a
Y1,

we can write

Y1 = axp∂x + byq∂y + xy (· · · )
Y2 = cxp∂x + dyq∂y + xy (· · · )

where a, b, c and d are non vanishing complex numbers. Now, the Saito
criterion written

Y1 ∧ Y2 = uxyf

where u is a unit ensures that

(cY1 − aY2) ∧ (dY1 − bY2) = (ad− bc)Y1 ∧ Y2 = u (ad− bc)xyf.

If ad−bc = 0 then considering
(
α

β

)
in the kernel of the matrix

(
a c

b d

)
yields a linear combination written

(3.8) αY1 + βY2 = xy (· · · )

Since neither Y1 nor Y2 can be divided by xy, one has α 6= 0 and β 6= 0.
According to (3.7), αY1 + βY2 cannot be divided by xy too. That is a
contradiction with (3.8). Therefore, ad− bc 6= 0 and the expression

(cY1 − aY2)
y

∧ (dY1 − bY2)
x

= u (ad− bc) f

is the Saito criterion for the curve S. However, both vector fields in the
product above have mutiplicities bigger than ν(S)

2 which is a contradiction
with the initial assumption. �

3.2. Generic Saito basis.

The generic lower bound of Theorem 4 induces some properties for a Saito
basis of a generic curve. In this section, we explore some of them.

To do so, we are going to use frequently the following lemma that is a direct
consequence of the criterion of Saito.

Lemma 11. — Let {X1, X2} be a Saito basis S. Then

(1) if ν (X1) + ν (X2) < ν (S) and X1 is dicritical then X2 is dicritical.
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(2) if ν (X1) + ν (X2) = ν (S) and X1 is dicritical then X2 is not dicrit-
ical.

(3) If S is generic in its moduli space, then one can suppose that

ν (S)− 1 6 ν (X1) + ν (X2) 6 ν (S) .

Proof. — Properties (1) and (2) are consequences of the following remark

X
(ν(X1))
1 ∧X(ν(X2))

2 ≡ 0⇐⇒ ν (X1) + ν (X2) < ν (S) .

For (3) , first, we recall that the sum ν (X1) + ν (X2) cannot exceed ν (S)
as noticed in (2.2). If ν (S) is odd, Theorem 4 gives the inequalities

ν (Xi) >
ν (S)− 1

2 , i = 1, 2

and thus ν (X1) + ν (X2) > ν (S)− 1, which is the lemma.

If ν (S) is even, adding a generic line l to S yields a Saito basis of S ∪ l for
which, in view of the previous arguments - ν (S ∪ l) is odd - , one has

ν (X1) + ν (X2) > ν (S ∪ l)− 1 = ν (S) .

By the process described in Proposition 2.3, the induced Saito basis {X ′1, X2}
of S satisfies

ν (X ′1) + ν (X2) > ν (X1) + ν (X2)− 1 > ν (S)− 1,

which ends the proof of the lemma. �

The next lemma ensures somehow that both inequalities identified in The-
orem 4 cannot be reached at the same time.

Lemma 12. — Let S be a generic curve of radial type. Then there is no
non dicritical vector field X in Der (logS) with ν (X) =

⌊
ν(S)

2

⌋
.

Proof. — Consider an optimal dicritical vector field X1 and X2 a vector
field such that {X1, X2} is a Saito basis of S. If ν (S) is even, then Theorem
4 ensures that ν (X1) > ν(S)

2 − 1. If ν (X1) = ν(S)
2 then the lemma follows

from the definition of S being radial. If ν (X1) = ν(S)
2 − 1 then either

X
(ν(X1))
1 ∧ X(ν(X2))

2 = 0 or ν (X2) > ν(S)
2 + 1. In any case, the lemma

follows. Finally, if ν (S) is odd and S radial, by definition, every vector
field of multiplicity

⌊
ν(S)

2

⌋
= ν(S)−1

2 is dicritical. �
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In the proposition below, we are going to identify precisely the type of Saito
basis that may occur for a generic curve. In the statement of the theorem,
we introduce some notations for the identified classes.

Theorem 5. — Let S be a curve generic in its moduli space. Then there
exists a Saito basis {X1, X2} for S with one of the following forms

• if ν (S) is even
(E) : ν (X1) = ν (X2) = ν(S)

2 , X1 and X2 are non dicritical.
(Ed) : ν (X1) = ν (X2)− 1 = ν(S)

2 − 1, X1 and X2 are dicritical.
(E′d) : ν (X1) = ν (X2)− 2 = ν(S)

2 − 1, X1 is dicritical but not X2.

• if ν (S) is odd
(O) : ν (X1) = ν (X2)− 1 = ν−1

2 , X1 and X2 are non dicritical.
(Od) : ν (X1) = ν (X2) = ν−1

2 , X1 and X2 are dicritical.
(O′d) : ν (X1) = ν (X2)− 1 = ν−1

2 , X1 is dicritical but not X2.

Moreover, if {X1, X2} is a generic Saito basis for S then there exists an
holomorphic function h such that

{X1, X2 − hX1}

has one of the above type.

If the Saito basis of S has one of the forms given by Theorem 5, we will
say that the basis is adapted.

Remark 1. — Notice that if the Saito basis {X1, X2} of S is of type (E′d)
or (O′d) then for any function L with a non trivial linear part, the family

{X1, X2 + LX1} ,
{
L (0) 6= 0 if S is of type (O′d)
L (0) = 0 if S is of type (E′d)

is a Saito basis for S of type (Ed) or (Od). In some sense, the bases of type
(E′d) or (O′d) are exceptional among the one of type (Ed) or (Od).

Remark 2. — The curves of type (E′d) are the only curves for which there
exists a Saito basis {X1, X2} with

|ν (X1)− ν (X2)| > 2

Remark 3. — One of the interest of adapted Saito bases is their behaviour
with respect to the blowing-up. For instance, suppose that S has an adapted
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Saito basis {X1, X2} of type (Ed) . Then, blowing-up the Saito criterion
(2.1) yields the relation

XE
1 ∧XE

2 = u ◦ Ef ◦ E
x
ν(S)
1

.

Therefore, according to the Saito criterion, the family
{(
XE

1
)
c
,
(
XE

2
)
c

}
is

a Saito basis for
(
SE
)
c
for any c ∈ D - but not necessarly adapted. It is a

simple matter to check that the latter proprety holds for any above type
of Saito bases.

Proof of Theorem 5. — Let us consider a Saito basis {X1, X2} of S and
suppose that ν (X1) 6 ν (X2) .

Case 1. Suppose first ν (S) even. If X1 is not dicritical then according
to Theorem 4 and (2.2), ν (X1) = ν (X2) = ν(S)

2 . Considering if
necessary X2 + αX1 for a generic value α ∈ C, one has

(E) ν (X1) = ν (X2) = ν(S)
2

X1 and X2 are non-dicritical.

Assume X1 is dicritical. If ν (X1) = ν(S)
2 then Lemma 11 ensures

that X2 is not dicritical and the Saito basis {X1 +X2, X2} is
of type (E) . If ν (X1) = ν(S)

2 − 1, following Lemma 11, one can
suppose that

ν (X2) = ν (S)
2 or ν (S)

2 + 1.

If ν (X2) = ν(S)
2 + 1 then X2 is not dicritical. Thus, one has a

basis of the form

(E′d)
ν (X1) = ν (X2)− 2 = ν(S)

2 − 1
X1 is dicritical but not X2.

If ν (X2) = ν(S)
2 , then X2 is dicritical, and thus

(Ed)
ν (X1) = ν (X2)− 1 = ν(S)

2 − 1
X1 and X2 are both dicritical.

Case 2. Suppose now ν (S) odd. In any case, ν (X1) = ν(S)−1
2 . Suppose

X1 dicritical. If ν (X2) = ν(S)−1
2 then X2 is dicritical, and thus

(Od)
ν (X1) = ν (X2) = ν(S)−1

2
X1 and X2 are dicritical.
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If ν (X2) = ν(S)+1
2 then X2 is not dicritical, and therefore the

basis satifies

(O′d)
ν (X1) = ν (X2)− 1 = ν(S)−1

2
X1 is dicritical and X2 is non-dicritical.

Finally, suppose that X1 is not dicritical. If ν (X2) = ν(S)+1
2

then the basis satifies

(O) ν (X1) = ν (X2)− 1 = ν(S)−1
2

X1 and X2 are non-dicritical.

It remains to study the case in which X1 is not dicritical and
ν (X2) = ν(S)−1

2 . To do so, consider a generic line l. The multi-
plicity of S ∪ l is even, thus we can apply the results above to
reach the description of the possible bases for S.
(1) Suppose first that the Saito basis

{
X l

1, X
l
2
}
of S ∪ l has the

form (E) ;

ν
(
X l

1
)

= ν
(
X l

2
)

= ν (S) + 1
2 ,

none of these vector fields being dicritical. Let us consider
some coordinates in which l = {x = 0} and let us write

X l
i = xAi∂x + (yαibi (y) + xBi) ∂y

with bi (0) 6= 0. By symmetry, one can suppose α1 6 α2.

Thus, the family{
X l

1, X
l

2 = 1
x

(
X2 − yα2−α1

b2
b1
X1

)}
is a Saito basis for S such that

ν
(
X l

1
)

= ν (S) + 1
2 and ν

(
X2

l
)

= ν (S)− 1
2 .

X2
l has to be not dicritical since X1 is not dicritical. There-

fore, S admits a basis of the form (O) .
(2) Suppose that the Saito basis

{
X l

1, X
l
2
}
of S∪ l has the form

(Ed)

ν
(
X l

1
)

= ν
(
X l

2
)
− 1 = ν (S) + 1

2 − 1

both vector fields being dicritical. As before, let us consider
some coordinates in which l = {x = 0} and let us written

X l
i = xAi∂x + (yαibi (y) + xBi) ∂y
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with bi (0) 6= 0. If α1 6 α2 then the induced Saito basis{
X l

1, X
l

2

}
for S satisfies ν

(
X l

1
)

= ν(S)−1
2 . Therefore,

ν
(
X2

l
)

= ν (S)− 1
2 or ν (S) + 1

2 .

In any case of the alternative above, there is no non dicriti-
cal vector fields of multiplicity ν(S)−1

2 in the Saito module of
S, which is a contradiction with the property of X1. There-
fore, α1 > α2 . In the induced basis

{
X
l

1, X
l
2

}
, the vector

field X l

1 is write

X
l

1 = 1
x

(
X l

1 − yα1−α2
b1 (y)
b2 (y)X

l
2

)
.

Therefore, X l

1 is dicritical since ν
(
X l

2
)
> ν

(
X l

1
)
. But since

X1 is not dicritical, it is a contradiction.
(3) Finally, suppose that the Saito basis of S ∪ l has the form

(E′d)

ν
(
X l

1
)

= ν
(
X l

2
)
− 2 = ν (S) + 1

2 − 1

with X l
1 dicritical and X l

2 not dicritical. Then for any linear
function L the Saito basis for S ∪ l{

X l
1, X

l
2 + LX l

1
}

is of type (Ed) and we are reduced to the previous case.

�

3.3. Base of type (E′d) and (O′d).

Beyond Example 3, the curve S defined by

S =
{
y5 + x5 + x6 = 0

}
belongs to the generic component of the moduli space of five smooth and
transversal curves. An optimal vector field X1 for S can be written

X1 =
(

1
5xy −

1
25x

2y + 6
125x

3y + 36
125x

4y

)
∂x +

(
1
5y

2 + 216
625x

3y2
)
∂y

TOME 1 (-1), FASCICULE 0



44 Yohann Genzmer

S f = x f = xy f = xy (x+ y) f = xy
(
x2 − y2

)
ν (S) 1 2 3 4

X1, X2 ∂x, x∂y x∂x, y∂y x∂x + y∂y, ]f x∂x + y∂y, ]f

ν (X1) , ν (X2) 0, 1 1, 1 1, 2 1, 3

Type (O) (E)
(
O′d

) (
E′d

)
S f = xy

(
x3 − y3 + · · ·

)
f = xy

(
x2 − y2

)
(x+ 2y + · · · ) (x+ 3y + · · · )

ν (S) 5 6

X1, X2
x (x∂x + y∂y) + · · ·
y (x∂x + y∂y) + · · ·

(
x+ 29

15y
)

(x∂x + y∂y) + · · ·
x2 (x∂x + y∂y) + · · ·

ν (X1) , ν (X2) 2, 2 2, 3

Type (Od) - 1 free point (Ed) - 1 free point

Table 3.1. Examples of different types of Saito bases.

whose initial part is

(3.9) y

5 (x∂x + y∂y) .

Thus X1 is dicritical and of multiplicity 2. However, after one blowing-
up, XE

1 is not transverse to D at every point : indeed, following (3.9),
it is tangent to D at the point corresponding to the direction y = 0. To
formalize these remarks, let us recall the following definition

Definition 8. — Let D be a divisor and X a vector field defined in a
neighborhood of D that does not leave invariant D. The locus of tangency
between X and D is the common zeros of F and X ·F where F is any local
equation of D. It is denoted by

Tan(X,D).

By definition, the locus of tangency between D and X contains the singular
points of X which are on D. In the example (3.9), we have

Tan
(
XE

1 , D
)

= {(x1 = 0, y1 = 0)} 6= Tan
(
SE , D

)
= ∅.

This leads us to introduce the following notion.

ANNALES DE L’INSTITUT FOURIER



THE SAITO MODULE AND THE MODULI OF A GERM OF CURVE IN
(
C2, 0

)
.45

Definition 9. — A curve S of radial type is said to be of pure radial
type if for any optimal vector field X1 the following equality holds

Tan
(
XE

1 , D
)

= Tan
(
SE , D

)
.

If S is not pure radial, then the non empty set

Tan
(
XE

1 , D
)
\ Tan

(
SE , D

)
is called the set of free points of X1

Notice that by construction of X1, in any case, the inclusion

Tan
(
SE , D

)
⊂ Tan

(
XE

1 , D
)

holds. The main feature of this definition relies on the fact that it allows
to state a characterization of the curves admitting a basis of type (E′d) or
(O′d).

Theorem 6. — The following properties are equivalent :

(1) S is of pure radial type.
(2) S admits a Saito basis of type (E′d) or (O′d).

Proof. — We begin by proving (2) =⇒ (1). Assume that S admits an
adapted Saito basis of type (E′d) or (O′d). According to Remark 3, for any
point c ∈ D, the family {(

XE
1
)
c
,
(
XE

2
)
c

}
is a Saito basis of the germ of curve

(
SE
)
c
. Let c ∈ D \Tan

(
SE , D

)
. Sup-

pose first that c /∈ Sing
(
E−1 (S)

)
. Then following Remark 3, the product

XE
1 ∧XE

2 is a unity at c. Now, X1 is dicritical and X2 is not. Thus in local
coordinates (x, y) at c in which x = 0 is local equation of D, we can write

XE
1 ∧XE

2 = (u∂x+ v∂y) ∧ (ax∂x+ b∂y) , u, v, a, b ∈ C {x, y}
= avx− bu.

Therefore u is a unity and XE
1 is transverse to D. Suppose now that

c ∈ Sing
(
E−1 (S)

)
. Since c ∈ D \ Tan

(
SE , D

)
then SE is regular and

transverse to D. Now, considering local coordinates (x, y) in which xy = 0
is a local equation of E−1 (S), we obtain

XE
1 ∧XE

2 = (u∂x+ vy∂y) ∧ (ax∂x+ by∂y) u, v, a, b ∈ C {x, y}
= avxy − buy
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which has to be of the form (unity)× y according to the criterion of Saito.
Therefore, u is a unity and XE

1 is still transverse to D, which completes
the proof of the equality

Tan
(
XE

1 , D
)

= Tan
(
SE , D

)
.

We now proceed to the proof of (1) =⇒ (2). Let {X1, X2} be an adapted
Saito basis for S. The curve S being radial, let us write

(3.10) X1 = h1 (x∂x+ y∂y) + · · · .

The hypothesis is equivalent to assume that the tangent cone of h1 coincide
with the locus of tangency Tan

(
SE , D

)
for any optimal vector field X1.

Assume first that ν (S) is odd. According to Proposition (5), the valuation
of X1 is

ν (X1) = ν − 1
2 .

If X2 is not dicritical, then ν (X2) = ν+1
2 . Therefore, the basis {X1, X2}

is of type (O′d) and the proposition is proved. Assume X2 is dicritical and
ν (X2) = ν−1

2 . As in (3.10), we write

X2 = h2 (x∂x+ y∂y) + · · ·

and

h2 = q2 · h2

where the tangent cone of q2 does not meet Tan
(
SE , D

)
. For any value of

α and β, the initial part of αX1 + βX2 is written(
αh1 + βq2h2

)
(x∂x + y∂y) .

The hypothesis ensures that the tangent cone of αh1+βq2h2 is in Tan
(
SE , D

)
.

Since the tangent cone of h1 is in Tan
(
SE , D

)
, it can be seen that the func-

tion q2 is constant and that there exists a constant u such that

h2 = uh1

Then the basis {X1, X2 − uX1} is of type (O′d) .

Assume finally that ν (S) is even and consider a smooth curve l which
is attached to a point in Tan

(
SE , D

)
after on blowing-up. Let

{
X l

1, X
l
2
}

be an adapted Saito basis for S ∪ l. Consider some coordinates in which
l = {x = 0} and write

X l
i = xai∂x +

(
yαib0i (y) + xb1i

)
∂y

with bi (0) 6= 0. Since ν (S ∪ l) is odd, a few cases may occur :
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(1) Assume the basis is of type (O). Then, we can suppose that ν
(
X l

1
)

=
ν
(
X l

2
)

= ν(S)
2 and α1 = α2. The family{

X l
1, X

l

2 = 1
x

(
X l

2 −
b02
b01
X l

1

)}
is a Saito basis for S with

ν
(
X l

1
)

= ν

2 and ν
(
X
l

2

)
>
ν

2 − 1.

If ν
(
X
l

2

)
> ν

2 then s (S) > ν(S)
2 which is impossible. Thus ν

(
X
l

2

)
=

ν
2 −1. But then, following Lemma 11 X l

2 cannot be dicritical which
contradicts the radiality of S. Finally, the Saito basis of S∪ l cannot
be of type (O) .

(2) Assume it is of type (Od) but not of type (O′d). Applying Theorem
6 to this case for which ν (S ∪ l) is odd ensures that S∪ l is not pure
radial. Thus up to some changes of basis, Tan

((
X l

1
)E
, S ∪ l

)
and

Tan
((
X l

2
)E
, S ∪ l

)
contains some points out of Tan

(
(S ∪ l)E , D

)
=

Tan
(
SE , D

)
. Therefore, we obtain a Saito basis for S of the form{

X l
1, X

l

2

}
where the tangent cone of X l

2 is not contained in Tan
(
SE , D

)
,

which contradicts the assumption of S being pure radial. Therefore,
the Saito basis of S∪ l cannot be of type (Od) but not of type (O′d).

(3) Finally, S ∪ l admits a Saito basis
{
X l

1, X
l
2
}

of type (O′d) with
ν
(
X l

1
)

= ν
(
X l

2
)
− 1 = ν

2 . If α2 > α1 then{
X l

1, X
l

2 = 1
x

(
X l

2 − yα2−α1
b02
b01
X l

1

)}
is a Saito basis for S with

ν
(
X l

1
)

= ν

2 and ν
(
X
l

2

)
>
ν

2
which is impossible. Thus α2 6 α1 and{

X
l

1 = 1
x

(
X l

1 − yα1−α2
b01
b02
X l

2

)
, X l

2

}
is a Saito basis for S of type (E′d).

�

Finally, from the proof above we deduce the following
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Lemma 13. — If S is of type (O) then S ∪ l is of type (E) . If S is of type
(Ed) or (E′d) then S ∪ l is of type (Od) or (O′d).

3.4. Cohomology of ΘS

As we will explain in the next section, the cohomology of the sheaf ΘS

computes the generic dimension of M• (S). The associated formula depends
on the type of Saito basis of S.

Proposition 3.1. — The dimension of the cohomology group H1 (D,ΘS)
can be obtained from the multiplicities of an adapted Saito basis of S the
following way

(1) If ν (X1) + ν (X2) = ν (S) then

dimH1 (D,ΘS) = (ν1 − 1) (ν1 − 2)
2 + (ν2 − 1) (ν2 − 2)

2
(2) If ν (X1) + ν (X2) = ν (S)− 1 then

dimH1 (D,ΘS) = (ν1 − 1) (ν1 − 2)
2 + (ν2 − 1) (ν2 − 2)

2 + ν (S)− 2− ν0

where νi = ν (Xi) , i = 1, 2 and ν0 = ν
(

gcd
(
X

(ν(X1))
1 , X

(ν(X2))
2

))
.

Proof. — The proof of the first equality is in [7]. Below, we only give a proof
of the second equality. Let us consider the standard system of coordinates
defined in a neighborhood of D and introduced in section 3.1.

One can compute the cohomology using the associated covering and thus

(3.11) H1 (D,ΘS) = H1 ({U1, U2} ,ΘS) = H0 (U1 ∩ U2,ΘS)
H0 (U1,ΘS)⊕H0 (U2,ΘS) .

The task is now to describe in coordinates each H0 involved in the quotient
above. To deal with H0 (U1,ΘS), we start with the criterion of Saito

(3.12) X1 ∧X2 = uf.

As ν1 + ν2 = ν (S)− 1, blowing-up the criterion of Saito in the first chart
(x1, y1) yields

E?X1

xν1−1
1︸ ︷︷ ︸
X1

1

∧ E
?X2

xν2−1
1︸ ︷︷ ︸
X1

2

= u ◦ E · x2
1
f ◦ E
x
ν(S)
1

,
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Let Y be a section of ΘS on U1. By definition, there exists g1 ∈ O (U1)
such that

Y ∧X1
1 = g1x1

f ◦ E
x
ν(S)
1

.

Hence, one has (
x1Y − g1

1
u ◦ E

X1
2

)
∧X1

1 = 0.

Assume X1 is not dicritical. Then, X1
1 has only isolated singularities and

there exists h1 ∈ O (U1) such that

x1Y = g1
1

u ◦ E
X1

2 + h1X
1
1 .

If now X1 is dicritical, then X1
1
x1

extends analytically along D and has only
isolated singularities. Therefore, there still exists h1 ∈ O (U1) such that

x1Y = k1
1

u ◦ E
X1

2 + h1

x1
X1

1 .

Since, x1Y and X1
2 are tangent to D, x1 divides h1. Thus we get

H0 (U1,ΘS) =
{
Y = 1

x1

(
φ1

1X
1
1 + φ1

2X
1
2
)∣∣∣∣ (1) φ1

i ∈ O (U1)
(2) Y extends analytically along D

}
.

We now proceed to analyse the second condition highlighted above : let us
write the expansion of Xi in homogeneous components

Xi = X
(νi)
i +X

(νi+1)
i + · · ·

The relation ν1 + ν2 = ν − 1 implies that

X
(ν1)
1 ∧X(ν2)

2 = 0

and we can write
X

(νi)
i = δiX0

where X0 = gcd
(
X

(ν1)
1 , X

(ν2)
2

)
and δi, i = 1, 2 are homogeneous functions

such that
δ1 ∧ δ2 = 1.

The expression of Y can be expanded with respect to x1 in

Y = 1
x1

∑
i=1,2

(
φ1,0
i (y1) + x1 (· · · )

)
︸ ︷︷ ︸

φ1
i

(
δ1
iX

1
0 + x1 (. . .)

)︸ ︷︷ ︸
X1
i

, δ1
i = δi ◦ E

x
ν(δi)
1

Thus the condition Y being extendable along D reduces to∑
i=1,2

φ1,0
i δ1

i = 0.
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We proceed analogously for the open sets U2 and U1∩U2 and obtain the fol-
lowing description where the exponent 2 refers to the second chart (x2, y2)

H0 (U1,ΘS) =

Y 1 = 1
x1

∑
i=1,2

φ1
iX

1
i

∣∣∣∣∣∣ φ
1
i ∈ O (U1)∑
i=1,2 φ

1,0
i δ1

i = 0

 ,

H0 (U2,ΘS) =

Y 2 = 1
y2

∑
i=1,2

φ2
iX

2
i

∣∣∣∣∣∣ φ
2
i ∈ O (U2)∑
i=1,2 φ

2,0
i δ2

i = 0

 ,(3.13)

H0 (U1 ∩ U2,ΘS) =

Y 12 = 1
x1

∑
i=1,2

φ12
i X

1
i

∣∣∣∣∣∣ φ
12
i ∈ O (U1 ∩ U2)∑
i=1,2 φ

12,0
i δ1

i = 0

 .

We may now compute the number of obstructions involved in the cohomo-
logical equation describing the quotient (3.11), namely,

Y 12 = Y 2 − Y 1.

In view of the description above, the cohomological equation splits into the
system

φ12
i = φ2

i

yνi1
− φ1

i , i = 1, 2

which we filter with respect to x1 obtaining

φ12,0
i = φ2,0

i

yνi1
− φ1,0

i , i = 1, 2(3.14)

φ12,1
i = φ2,1

i

yνi1
− φ1,1

i , i = 1, 2(3.15)

where
φ?i = φ?,0i + x1φ

?,1
i ,

with ? = 1, 2, 12. Let us analyse the system (3.14). Since the functions
δi are relatively prime, the conditions involved in the description of the
cohomological spaces (3.13) ensures that there exist analytical functions
φ̇?,0 such that

φ?,01 = φ̇?,0δ?2 and φ?,02 = −φ̇?,0δ?1 .
for ? = 1, 2, 12. Thus, the system (3.14) reduces to the sole equation

φ̇12,0 = φ̇2,0

y
ν1+ν(δ2)
1

− φ̇1,0.

Writing the Laurent expansions of the above functions yields the relation∑
k∈Z

φ̇12
k y

k
1 =

∑
k∈N

φ̇2
ky
−k−ν1−ν(δ2)
1 −

∑
k∈N

φ̇1
ky
k
1
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which implies φ̇12
k = 0 for −ν1−ν (δ2) + 1 6 k 6 −1. These conditions pro-

vide the sole −ν1 − ν (δ2) + 1 obstructions to the cohomological equation
(3.11). The system (3.15) involves two independant cohomological equa-
tions. We can proceed analogously to identify (νi−1)(νi−2)

2 obstructions
i = 1, 2 , respectively, for the equation i = 1, 2. Finally, the formula (2) of
the proposition follows from the relation

ν (δ2) = ν2 − ν0.

�

Notice that the second case of Proposition 2.3 may occur when S is of type
(Od) or (Ed). In that case, it can be seen that ν (X1) − ν0 is the number
of free points of X1.

4. Dimension of the moduli space of a singular regular
point.

In this section, we intend to apply the previous results to compute the
generic dimension of M• (S) for

S = {xn + yn = 0} ,

and thus, to recover a classical result due to Granger [13].

To achieve this, we have to identify precisely the topology of the generic
optimal vector field for S. First, we are going to improve somehow the
optimality of the generic optimal vector field studying when this optimality
is preserved after one blowing-up.

In [8], we successfully apply these techniques in a slightly more general case
: the curves with many but smooth components. The full general case is
still open but might be a consequence of the mentioned work : indeed, up
to ramification, any curve is an union of several smooth curves.

4.1. Optimality after one blowin-up.

Proposition 4.1. — Let S be a generic curve in its moduli space. Let
c ∈ D a point in the exceptional divisor of the single blowing-up E. Assume
that
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(?) there exists a germ of regular curve l such that
(
SE
)
c
∪(

lE
)
c
has no Saito basis of type (E′d).

Then there exists a vector field X optimal for S such that
(
XE
)
c
is optimal

for
(
SE
)
c
.

Proof. — Let {X1, X2} be an adapted Saito basis for S. If ν (X1) = ν (X2)
which is satisfy when the basis is of type (E), (Od) then for α and β generic
one has

αXE
1 + βXE

2 = (αX1 + βX2)E .
According to Remark (3),

{(
XE

1
)
c
,
(
XE

2
)
c

}
is a Saito basis for

(
SE
)
c
,

therefore at c one has

νc

(
(αX1 + βX2)E

)
= s

((
SE
)
c

)
Thus, in that case, choosing X = αY1 + βY2 yields the lemma.

Now, assume that ν (X1) < ν (X2) . Suppose first that ν (S) is odd then S
is of type (O) . Let us consider a curve l satisfying the hypothesis of the
lemma. According to Lemma 13, an adapated Saito basis

{
X l

1, X
l
2
}
is of

type (E) with

ν
(
X l

1
)

= ν
(
X l

2
)

= ν (S) + 1
2 .

Applying the process of division, we are lead to an adapted Saito basis{
X
l

1, X
l
2

}
for S with

(4.1) ν
(
X
l

1

)
= ν (S)− 1

2 < ν
(
X l

2
)

= ν (S) + 1
2

The blow-up family
{(

X
l

1

)E
c
,
(
X l

2
)E
c

}
is a basis for

(
SE
)
c
. Now, suppose

that
νc

((
X
l

1

)E)
> νc

((
X l

2
)E)+ 1

therefore,

νc

(
L
(
X
l

1

)E)
> νc

((
X l

2
)E)+ 2

where L is a local equation of lE . The family
{
L
(
X
l

1

)E
,
(
X l

2
)E} is a

Saito basis for SE ∪ lE at c and following Remark 2 it is of type (E′d). That
is impossible. Hence,

(4.2) νc

((
X
l

1

)E)
6 νc

((
X l

2
)E)
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and, according to (4.1) and (4.2), X = X
l

1 satisfies the conclusion of the
lemma. Finally, if ν (S) is even then S is of type (Ed). Therefore, S ∪ l is
of type (Od) and the arguments are similar. �

Corollary 2. — If any component of SE satisfies the hypothesis (?) of
Proposition 4.1, then there exists a vector field X optimal for S such that,
for any c,

(
XE
)
c
is optimal for

(
SE
)
c
.

Proof. — Indeed, for any point c in the tangent cone of S, consider Xc

given by Proposition 4.1 for the curve
(
SE
)
c
. Then for a generic family of

complex numbers {αc}, the vector field

X =
∑

αcXc

satisfies the property. �

4.2. Dimension of M• (S) where S = {xn + yn = 0}

The curve S is desingularized by a single blowing-up. From [21], the generic
dimension of M• (S) is equal to

dimH1 (D,ΘS) .

Following Proposition 3.1, it can be computed from some topological data
associated to an adapted basis of Saito for S. Below, we are going to describe
these bases according to the value of n.

If n = 3 then there are coordinates (x, y) in which S = {f = xy (x+ y) = 0} .
The family

{X1 = x∂x + y∂y, X2 = ]df = ∂xf∂y − ∂yf∂x}

is a Saito basis for S. Since ν (X1) = ν (X2)−1 = 1, X1 is dicritical but not
X2, S is of type (O′d) . If n = 4 then there are coordinates (x, y) in which
S = {f = xy (x+ y) (x+ ay) = 0} for some a /∈ {0, 1} . Hence, the family

{X1 = x∂x + y∂y, X2 = ]df}

is a Saito basis for S. Since ν (X1) = ν (X2) − 2 = 1, X1 is dicritical but
not X2, S is of type (E′d) . In the latter case, the dimension of M• (S) is 1.

Now suppose n > 5.
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Proposition 4.2. — The curve S is of type (Od) or (Ed). Moreover, the
generic optimal vector X1 is completely regular after a single blowing-up
and has

⌈
n
2
⌉
− 2 free points.

Proof. — Following notations introduced in [18, p. 657] for a germ at p of
vector field X and a germ of curve S given in coordinates by

X = a (x, y) ∂x + b (x, y) ∂y S = {x = 0}

we recall the following definitions :

(1) if S is invariant by X, the integer νy (b (0, y)) is called the index of
X at p with respect to S and it is denoted by

ind (X,S, p) .

(2) if S is not invariant by X, the integer νy (a (0, y)) is called the
tangency order of X at p with respect to S and it is denoted by

tan (X,S, p) .

Suppose X1 non dicritical, then according to [18, Lemma 1], one has

(4.3) ν (X1) + 1 =
∑
c∈D

ind
(
XE

1 , D, c
)
.

For any point c in the tangent cone of S, the curve
(
SE ∪D

)
c
is a union

of two transversal smooth curves. Therefore, the index ind
(
XE

1 , D, c
)
is at

least 1 since
(
XE

1
)
c
is singular. Therefore, one has

(4.4)
∑
c∈D

ind
(
XE

1 , D, c
)
> ]tangent cone = n.

On the other hand, the optimality of X1 ensures that

(4.5) ν (X1) 6 n

2 .

The equality 4.3 and the inequalities (4.4) and (4.5) are incompatible with
n > 5, and thus X1 is dicritical. Any component of SE is a regular curve.
Since the union of two curves is not of type (E′d), any component of SE
satisfies the hypothesis (?) of Propostion 4.1. As a consequence, we can
considerX1 to be not only optimal for S but also optimal after one blowing-
up. Since any component of SE are regular curve, whose Saito number are
equal to 0, the vector fieldXE

1 is regular at the tangent cone of S.Moreover,
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there exists Y such that {X1, Y } is an adapted Saito basis. Thus, after one
blowing-up, one can write

XE
1 ∧ Y E = u ◦ Ef ◦ E

xn1

where f = xn + yn. Since out of the tangent cone of S, the function f◦E
xn1

is
a unit, XE

1 is finally regular at any point of D.

Following again [18, Lemma 1], one has

ν (X1) + 1 =
⌈n

2

⌉
= 2 +

∑
c∈D

tan
(
XE

1 , D, c
)
.

The above relation concludes the proof of the proposition : Tan
(
SE , D

)
being empty, any tangency point between XE

1 and D is a free point. �

As a consequence of Proposition 4.2, we recover a classical result of Granger
concerning the generic dimension of the moduli space of S [13]. According
to Theorem 4.2, the Saito basis of S satisfies

ν (X1) =
{

n
2 − 1 if n is even
n−1

2 else and ν (X2) =
{

n
2 if n is even
n−1

2 else .

Moreover, by construction, the integer ν0 identified in Proposition 3.1 sat-
isfies

ν0 = ν (X1)− (number of free points)

=
{

n
2 − 1 if n is even
n−1

2 else −
(⌈n

2

⌉
− 2
)

= 1.

Now, following Propostion 3.1, the dimension of M• (S) is equal to{
1
2
(
n
2 − 2

) (
n
2 − 3

)
+ 1

2
(
n
2 − 1

) (
n
2 − 2

)
+ n− 3 = (n−2)2

4 if n is even(
n−1

2 − 1
) (

n−1
2 − 2

)
+ n− 3 = (n−1)(n−3)

4 if n is odd

which coincides with the results in [13].
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