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In this article, we prove a formula that computes the generic dimension of the moduli

space of a germ of irreducible curve in the complex plane. It is obtained from the

study of the Saito module associated to the curve, which is the module of germs of

holomorphic 1-forms leaving the curve invariant.

Introduction

In 1973, in his lecture [27], Zariski started the systematic study of the analytic

classification of the branches of the complex plane, which are germs of irreducible

curves at the origin of C2. The general purpose was to describe as accurately as possible

the moduli space of S that is the quotient of the topological class of S by the action of

the group Diff
(
C2, 0

)
,

M (S) = {
S′∣∣S′ topologically equivalent to S

}/
Diff

(
C2, 0

)
.

The Puiseux parametrization of a branch S = {γ (t)| t ∈ (C, 0)} written

γ :

⎧⎨
⎩x = tp

y = tq +∑
k>q aktk

, p < q, p � q, t ∈ (C, 0) (0.1)
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3806 Y. Genzmer

highlights two basic topological invariants, namely the integers p and q. In the whole

article, we will denote them by p (S) and q (S), or simply p and q when no confusion

is possible. The integer p (S) corresponds to the algebraic multiplicity of the branch S.

This is also the algebraic multiplicity at (0, 0) of any irreducible function f ∈ C {x, y}
that vanishes along S. Actually, Zariski proved that the whole topological classification

depends on a sub-semigroup �S of N defined by

�S = {ν (f ◦ γ )| f ∈ C {x, y} , f (0) = 0} ,

where ν is the standard valuation of C {t}.
Beyond the topological classification, Zariski proposed in [27] various

approaches to achieve the analytical classification, introducing in particular the set �S

of valuations of Kähler differential forms for S

�S =
{
ν
(
γ ∗ω

)+ 1
∣∣ω ∈ �1

(
C2, 0

)}
⊃ �S \ {0} .

Fixing the topological type—and thus the semigroup �S above—Zariski gave a precise

description of the associated moduli space for, for instance,

�S = 〈2, 3〉 , 〈4, 5〉 or
〈
4, 6, β2

〉

and more generally for 〈n, n + 1〉 and 〈n, hn + 1〉 . According to him, of special interest

is the generic component of the moduli space: a finite determinacy property ensures

that γ is analytically equivalent to a parametrization whose Taylor expansion is

truncated at an order depending on the sole topological class. Having so a finite

dimension family of branches, the theory of geometric invariants provides an open

set of orbits of same dimension under the action of Diff (C, 0) × Diff
(
C2, 0

)
, see [27,

Chapter VI] or [6]. The image of this open set in the moduli space is the generic

component studied by Zariski. In some sense, its dimension is the minimal num-

ber of parameters on which a universal family for the deformation of S depends.

In the particular cases mentioned above, Zariski found an explicit formula of this

dimension.

In fact, as far as we know, the 1st example of computation of the dimension

of the generic component of the moduli space of a branch goes back to Ebey [6] who,

anticipating in 1965 some ideas of Zariski, described not only the generic component,

but also the whole moduli space of the branch whose semigroup is 〈5, 9〉 . Hereafter, we
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Dimension of the Moduli Space of a Germ of Curve in C2 3807

will give some more details about the construction of Ebey. In 1978, Delorme [5] studied

extensively the case of one Puiseux pair—�S = 〈m, n〉 with m ∧ n = 1—and established

some formulas to compute the generic dimension. In 1979, Granger [11] and later, in

1988, Briançon et al. [2] produced an algorithm to compute the generic dimension of the

moduli space of a non irreducible quasi-homogeneous curve defined by xm+yn = 0 first,

for m and n relatively prime, and then in the general case. The common denominator of

the two previous works is the algorithmic approach based upon arithmetic properties

of the continuous fraction expansion associated to the pair (m, n) . In 1988, Laudal et al.

in [18], improved the work of Delorme and gave an explicit description of a universal

family for S with �S = 〈m, n〉, m∧n = 1 and a stratification of the moduli space. Finally,

in 1998, Peraire exhibited an algorithm in [23] to compute the Tjurina number for a curve

in its generic component when �S = 〈m, n〉, m ∧ n = 1, which is linked to the dimension

of the generic component.

From 2009, in a series of papers [14–16], Hefez and Hernandes achieved a

impressive breakthrough in the problem of Zariski. They completed the analytical

classification of irreducible germs of curves thanks to the set of valuations of Kähler

differential forms. Moreover, they built an algorithm that describes very precisely the

stratification of the moduli space in terms of the possible �S for a given topological

class, computes the dimension of each stratum and produces some normal forms

corresponding to each stratum. One could consider that these works gave a definitive

answer to the initial problem addressed by Zariski. Nevertheless, the disadvantage of

the algorithmic approach is twofold: first, the high complexity of the algorithm—based

upon Groebner basis routine—prevents its actual effectiveness as soon as the degree

of the curve is big. Second, it is difficult to extract general geometric informations or

formulas from it.

In 2010 and 2011, in [9, 10], Paul and the author described the moduli space of

a topologically quasi-homogeneous curve S as the spaces of leaves of an algebraic foli-

ation defined on the moduli of a foliation whose analytic invariant curve is precisely S.

These works initiated an approach based upon the theory of foliations, which is at stake

here.

In this article, we propose a construction relying basically, on one hand, on the

desingularization of the curve S, on the other hand, on technics from the framework

of the theory of holomorphic foliations. We intend to obtain an explicit formula for the

generic dimension of the moduli space—the dimension of the generic stratum—that can

be performed by hand.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/5/3805/5909456 by U
niversidade Estadual de M

aringa (U
EM

) user on 18 April 2024



3808 Y. Genzmer

The generic stratum of the moduli space

At first, let us give a definition of the moduli space of a germ of curve and its generic

component in line with the ideas of Ebey [6].

Let Top (S) be the set of all germs of curves in
(
C2, 0

)
that are topologically equiv-

alent to S. The group of changes of coordinates Diff
(
C2, 0

)
acts naturally on Top (S) by

φ · S′ = φ
(
S′) φ ∈ Diff

(
C2, 0

)
, S′ ∈ Top (S) .

This action leads to a formal quotient and the following definition

Definition. The moduli space of S, denoted by M (S) , is the quotient of Top (S) by the

action of Diff
(
C2, 0

)
.

Notice that here the quotient is understood as a purely quotient in the category of sets:

in particular, it does not have, a priori, any particular structure. Nevertheless, in [6],

Ebey proved the following.

Theorem ([6], Theorems 4 and 6). Suppose that S is irreducible. Then, there exists

a constructible subset A of CP for some P ∈ N and an action of a connected solvable

algebraic group G on A such that there exists a bijection


 : A → Top (S)

that is equivariant for the action of G and Diff
(
C2, 0

)
. Moreover, there exists a

constructible set X ⊂ A such that each orbit of G on A meets exactly one point of X.

In other words, X is a transversal for the action of G on A. The set X being constructible,

it can be written

X =
⋃

i

Xi,

where the above union is a finite union of open sets in affine set. Since X is a transversal,

there is a unique i0 such that the orbit of Xi0 under G is dense. The image of Xi0 \Sing
(
Xi0

)
by 
 in the quotient M (S) is called the generic component of M (S). By construction, it

is a smooth manifold and its dimension defines the generic dimension of M (S) , denoted

by dimgen M (S). A curve will be said generic if its class in M (S) belongs to the generic

component.
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The proof of the theorem of Ebey is based upon the fact that an analytical class[
S′] of M (S) is characterized by the class of its ring of functions OS′ , which can be

embedded in C {t} for some uniformizing parameter t. Ebey showed that the set of all

sub-rings of C {t} that arise as a ring OS′ where S′ ∈ Top (S) can be parametrized by

some constructible set in some CP, P ∈ N. Moreover, the action of Diff
(
C2, 0

)
on Top (S)

reduces to the action on the sub-rings of C {t} of the group of finite jets of order Q, Q ∈ N,

JQ (Diff (C, 0)) of all diffeomorphisms written

t → α1t + α2t2 + · · · + αQtQ, α1 �= 0.

Here, both integers P and Q depend only on the topological class of S.

Example. Let S be the curve y4 − x5 = 0. Following Ebey, the set of all OS′ where

S′ ∈ Top (S) can be parametrized by

C
[
t4, t5 + at6

]
, a ∈ A = C

and the action of G = J1 (Diff (C, 0)) = C� on A = C is written

λ · a = λa.

Thus, the transversal X of the theorem of Ebey is here X = {0, 1} and the orbit of {1} is

dense in A. Its image in M (S) is the generic component whose dimension is 0. Finally,

the moduli space M (S) consists in two points M (S) = {
0, 1

}
such that 0 is a dense point

and 1 is a closed and open point. In particular, the topology of M (S) is not Hausdorff.

To compute a stratification of M (S) induced by the above construction, by no

means, is easy. Hefez and Hernandes constructed an algorithm based upon Gröbner

routines that describes very precisely a stratification of M (S) by the set of valuations

of the Kähler differentials forms.

Let us describe an example of this stratification for the curve S defined by y4 −
x9 = 0. This example is extracted from [14]. The set of all rings OS′ for S′ in Top (S) can

be parametrized by

C
[
t4, t9 + at10 + bt11 + ct15 + dt19

]
, (a, b, c, d) ∈ C4.

The stratification is given in Table 1. The equation of each stratum is given in the

coordinates (a, b, c, d). The symbol S � S ′
means the stratum S ′ contains S in its closure.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/5/3805/5909456 by U
niversidade Estadual de M

aringa (U
EM

) user on 18 April 2024



3810 Y. Genzmer

TABLE 1 Stratification of M
(
y4 − x9 = 0

)

The 2nd stratum is the generic one. Its dimension is 1. The last one is the stratum

reduced to the curve
(
t4, t9

)
, which is a point whose closure is the whole moduli space.

The dimension of the generic stratum

Let S be a germ of irreducible curve in the complex plane.

Theorem (Main Theorem). Let E = E1 ◦ · · · ◦ EN be the minimal desingularization of S.

Let ci be the center of Ei. Then

dimgen M (S) =
N∑

i=1

σ
(
νci

((
E1 ◦ · · · ◦ Ei−1

)−1
(S)

))
,

where ν� is the algebraic multiplicity at � and σ (k) =
⎧⎨
⎩

(k−3)2

4 if k is odd

(k−2)(k−4)
4 else

.

Notice that this formula depends only on some topological invariants of the curve S: in

particular, it is not necessary to exhibit a curve in the generic component of the moduli

space of S—that is in general difficult—to perform the computation above. One can

take any curve in the topological class of S to compute the multiplicities involved in

Theorem 2.

Remark. Actually, the proof performed here will lead us to a slightly more general

result where the formula keeps on being the same but appears to be correct for any

germ of curve of the form

S ∪ d,

where d will be called a direction for S and will be defined later in the article. This trick

will be helpful for the whole induction structure of the proof. However, for the sake of

simplicity, we do not mention it directly in the theorem.
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Dimension of the Moduli Space of a Germ of Curve in C2 3811

Example. In [27], Zariski showed that the dimension of the generic component of

the moduli space of S = {
yn − xn+1 = 0

}
is σ (n) . After one blowing-up E1, the strict

transform of S by E1 is a smooth curve tangent to the exceptional divisor, thus for any

i ≥ 2, the multiplicity satisfy

νci

((
E1 ◦ · · · ◦ Ei−1

)−1
(S)

)
≤ 3.

Example. More generally, for the semi-group �S = 〈n, nh + 1〉 with h ≥ 1, the

desingularization of S consists first in h successive blowing-ups, after which the curve

is smooth. The algebraic multiplicity of the curve S is n. After k < h blowing-ups, the

strict transform of S is a curve whose topological class is given by the semi-group

〈n, n (h − k) + 1〉 that is transverse to the exceptional divisor. Thus, according to the

Main Theorem, one has

dimgen M
(
S〈n,nh+1〉

) = σ (n) + σ (n + 1) + · · · + σ (n + 1)︸ ︷︷ ︸
h−1

+σ (3) + · · ·

= σ (n) + (h − 1) σ (n + 1) .

This formula coincides with the one in [27].

Example. Let us consider the following Puiseux parametrization

S :

⎧⎨
⎩x = t8

y = t20 + t30 + t35
.

Its semigroup is 〈8, 20, 50, 105〉 and its Puiseux pairs are (2, 5), (2, 15), and

(2, 35). Thus, S is not topologically quasi-homogeneous. The successive multiplicities

νci

((
E1 ◦ · · · ◦ Ei−1

)−1
(S)

)
are

8, 9, 5, 6, 5, 5, 3.

Thus, the generic dimension of the moduli space is

σ (8) + σ (9) + σ (5) + σ (6) + σ (5) + σ (5) = 20,

which is confirmed by the algorithm of Hefez and Hernandes [15].
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The Saito module of a germ of curves in
(
C2, 0

)
The inductive form of the formula in the Main Theorem comes naturally from the

inductive structure of the desingularization. At each step, the theory of foliations is

involved through the theory of logarithmic vector fields or forms introduced by Saito

in 1980 in [24]. Let us consider the set �1 (S) of germs of holomorphic one forms ω that

leave invariant S, that is γ ∗ω = 0. Saito proved that �1 (S) is a free O2−module of rank

2. If f is a reduced equation of S, then ω
f is logarithmic in the original sense of Saito,

see [4, Chapter II]. Adapting the criterion of Saito for the existence of a basis, the family{
ω1, ω2

}
is a basis of �1 (S) if and only if there exists a germ of unity u ∈ O, u (0) �= 0

such that the exterior product of ω1 and ω2 is written

ω1 ∧ ω2 = uf dx ∧ dy.

In other words, the tangency locus between ω1 and ω2 is reduced to the sole curve S.

Beyond this characterization, very few is known about these two generators. At first

glance, we can say the following: among all the possible basis
{
ω1, ω2

}
, there are some

for which the sum of the algebraic multiplicities

ν
(
ω1

)+ ν
(
ω2

)
(0.2)

is maximal. According to the Saito criterion,

ν
(
ω1

)+ ν
(
ω2

) ≤ ν
(
ω1 ∧ ω2

) = ν (f ) = ν (S) .

Thus, the sum (0.2) cannot exceed ν (S). However, for a given analytical class S it can

be strictly smaller. Notice that for a basis
{
ω1, ω2

}
being defined as above with ν

(
ω1

) ≤
ν
(
ω2

)
, one has

ν
(
ω1

) = min
ω∈�1(S)

ν (ω)

since for any a, b ∈ C {x, y}, the following inequality holds

ν
(
ω1

) ≤ ν
(
aω1 + bω2

)
.

It can be seen furthermore that
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Proposition. The couple of multiplicities
(
ν
(
ω1

)
, ν
(
ω2

))
such that ν

(
ω1

) ≤ ν
(
ω2

)
that

maximizes its sum is an analytic invariant of S.

Proof. Let us first prove that this couple is well defined. Consider another basis{
η1, η2

}
of �1 (S) such that ν

(
η1

) ≤ ν
(
η2

)
and

ν
(
η1

)+ ν
(
η2

) = ν
(
ω1

)+ ν
(
ω2

)
.

Since, ν
(
η1

) = minω∈�1(S) ν (ω) then, ν
(
η1

) = ν
(
ω1

)
. Thus, ν

(
η2

) = ν
(
ω2

)
.

Now, let S′ be a germ of curve such that φ
(
S′) = S where φ belongs to Diff

(
C2, 0

)
.

Let
{
ω1, ω2

}
be a basis of �1 (S) such that ν

(
ω1

) ≤ ν
(
ω2

)
and

ν
(
ω1

)+ ν
(
ω2

)
is maximal among all the possible basis of �1 (S). According to the Saito criterion,{
φ�ω1, φ�ω2

}
is a basis of �1

(
S′). Since the algebraic multiplicity is an analytic invariant

one has,

ν
(
φ�ω1

) = ν
(
ω1

)
andν

(
φ�ω2

) = ν
(
ω2

)
.

Suppose that there exists a basis
{
ω′

1, ω′
2

}
of �1

(
S′) with ν

(
ω′

1

) ≤ ν
(
ω′

2

)
and ν

(
ω′

1

) +
ν
(
ω′

2

)
> ν

(
φ�ω1

) + ν
(
φ�ω2

)
. Then the family

{
(φ�)−1 ω′

1, (φ�)−1 ω′
2

}
would be a basis

of �1 (S) whose sum of algebraic multiplicities is strictly bigger than ν
(
ω1

) + ν
(
ω2

)
,

which is impossible. Thus,
{
φ�ω1, φ�ω2

}
is a basis of �1

(
S′) whose sum of algebraic

multiplicities is maximal among all the basis of �1 (S) . �

The two integers ν
(
ω1

)
and ν

(
ω2

)
as well as their sum are analytical invariants.

However, they are not topologically invariants and in the topological class of a given

curve, they may vary widely.

Example. Let S be the curve yp−xq = 0 where p < q and gcd (p, q) = 1. Then the family

{
pxdy − qydx, d

(
yp − xq)}

is a basis of the Saito module since

(pxdy − qydx) ∧ d
(
yp − xq) = −pq

(
yp − xq)dx ∧ dy.

In that case, the couple of valuation is (1, p − 1) whose sum is exactly p.
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Example. However, perturbing a bit S, when for instance p = 6 and q = 7 leads to

different values of the multiplicities. For instance, if S is the curve y6 − x7 + x4y4 = 0

which is topologically but not analytically equivalent to y6 = x7, one can show that the

couple

ω1 = 5

3
x4dx − 20

21
x2y3dy +

(
8

21
xy3 + y

)
(6xdy − 7ydx)

ω2 = 20

21
x3y3dx +

(
10

7
y4 − 80

147
xy6

)
dy +

(
x2 + 32

147
y6
)

(6xdy − 7ydx)

is a basis for �1 (S). The multiplicities are respectively 2 and 3 whose sum is strictly

smaller than the multiplicity of S. This sum cannot be made bigger: indeed, the initial

parts of ω1 and ω2 are written

ω1 =y (6xdy − 7ydx) + · · ·
ω2 =x2 (6xdy − 7ydx) + · · · ,

so if ν
(
aω1 + bω2

)
> 2 then a (0) = 0. Therefore, any changes of basis

{
aω1 + bω2, cω1 + dω2

}
,

—where necessarily

(
a b

c d

)
∈ GL2 (C {x, y})—yields a new basis with associated

couple of multiplicities equal to (2, 2) or (2, 3).

Example. Finally, if S is given by y6−x7+y2x5 = 0, another perturbation of y6−x7 = 0,

then it can be seen that S admits a basis
{
ω1, ω2

}
with

(
ν
(
ω1

)
, ν
(
ω2

)) = (3, 3) �= (1, 5) .

This example leads us to introduce the following class of curves.

Definition. A curve S, reducible or not, is said to admit a balanced basis if there exists

a basis
{
ω1, ω2

}
of �1 (S) with

• ν
(
ω1

) = ν
(
ω2

) = ν(S)
2 if ν (S) is even,

• ν
(
ω1

) = ν
(
ω2

)− 1 = ν(S)−1
2 else.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/5/3805/5909456 by U
niversidade Estadual de M

aringa (U
EM

) user on 18 April 2024



Dimension of the Moduli Space of a Germ of Curve in C2 3815

In some sense, when S admits a balanced basis, the multiplicity of S is shared equally

between the two generators of �1 (S) , which is why we call it balanced.

To overcome a technical issue, we introduce below the notion of direction.

Definition. A direction d is either

• an empty set d = ∅,

• a smooth germ of curve d = l, or

• the union of two transverse smooth curves, d = l1 ∪ l2.

The structure of many proofs here relies on an induction on the length of the reduction

of singularities of S. Along this process, the strict transform of S can be attached

to a regular point of the exceptional divisor or a singular one. Thus, the local trace

of the total transform of S is either the union of S and a germ of smooth curve or

the union of S and a germ of a couple of transverse smooth curves. This is why we

introduce a direction. In the sequel, for any direction d, we will denote by Sd the

union S ∪ d. The following result will be the key to prove the formula in the Main

Theorem.

Theorem 1. For a generic irreducible curve S and any direction d, one has

min
ω∈�1(Sd)

ν (ω) =
[

ν
(
Sd

)
2

]
,

where [·] stands for the integer part function. Moreover, for any direction d, the curve

Sd admits a balanced basis.

This result will be a consequence of a construction of a very particular

element in the Saito module of Sd. This construction will be based upon an

arithmetic property of the reduction of singularities following some results of Wall

[26] and a recipe to produce foliations with desired invariant curves inspired by

[8, 19].

Theorem 2. If ν
(
Sd

)
is even or if d is empty or reduced to one component, then

there exists a 1−form ω of multiplicity
[

ν(Sd)
2

]
in �1

(
Sd

)
whose induced foliation is not

dicritical along the exceptional divisor of a single blowing-up of its singularity, which

means that the strict transform of ω by E1 leaves invariant E−1
1 (0) .
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Structure of the article

The structure of the proof of the Main Theorem is

Theorem 2 �⇒ Theorem 1 �⇒ Main Theorem

The 1st section of this article is devoted to the proof of the 2nd implication. The

2nd and the 3rd ones focus on the proof of Theorem 2. Finally, the last one contains the

proof of the 1st implication.

The author wishes to express his gratitude to the referees for several helpful

comments concerning, among other things, the structure of this paper.

1 Dimension of the moduli space & Theorem 1�⇒ Main Theorem

To describe the contribution of the deformation theory, let us introduce first some

notations that will be used all along the article.

Let E be the minimal resolution of singularities of S. We denote it by

E : (M, D) →
(
C2, 0

)
.

The map E is a finite sequence of elementary blowing-ups of points

E = E1 ◦ E2 ◦ · · · ◦ EN .

If � is a germ of curve at
(
C2, 0

)
or a divisor, �E will stand for the strict transform of �

by E, that is, the closure in M of E−1 (� \ {0}) .

The exceptional divisor of E, D = E−1 (0), is a union of a finite number of

exceptional smooth rational curves intersecting transversely

D =
N⋃

i=1

Di, Di � P1 (C) .

The components are numbered such that Di appears exactly after i blowing-ups. Finally,

let us denote Ej the truncated process

Ej = Ej ◦ Ej+1 ◦ · · · ◦ EN and Dj =
N⋃

i=j

Di.

The initial lemma is the following:
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Dimension of the Moduli Space of a Germ of Curve in C2 3817

Lemma 3. Let TS be the a sheaf of base D whose stalk at a point x ∈ D is the set

of germs of tangent vector fields to the total transform of S by E. Then the generic

dimension of the moduli space of S is

dimC H1
(
D, TSgen

)
,

where Sgen is a curve in the generic component of the moduli space of S.

Proof. In [27], Zariski proved that the dimension of the generic component is equal

to the dimension of the space of parameters of a semi-universal deformation of any

curve Sgen in the generic component of the moduli space of S. On the other hand, Mattei

proved in [21] that any curve S admits a semi-universal deformation whose base space

is
(
CdimC H1(D,TSgen), 0

)
, which conclude the proof. �

Let S be a curve (irreducible or not), E1 be the standard blow-up, and D1 =
E−1

1 (0).

Proposition 4. If the module of Saito �1 (S) admits a basis
{
ω1, ω2

}
with

ν
(
ω1

)+ ν
(
ω2

) = ν (S) .

Then

dim
C

H1 (D1, TS
) =

(
ν1 − 1

) (
ν1 − 2

)
2

+
(
ν2 − 1

) (
ν2 − 2

)
2

with νi = ν
(
ωi

)
.

Proof. Since
{
ω1, ω2

}
is a basis of �1 (S), the criterion of Saito ensures that

ω1 ∧ ω2 = uf dx ∧ dy (1.1)

for some unity u and some reduced equation f of S. Let X1 and X2 be the two vector

fields defined by

Xi = ω
�

i ,
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3818 Y. Genzmer

where ωi = iXi
(dx ∧ dy) and i� is the inner product. Let us consider the standard

covering of D1 by two open sets U1 and U2 and two charts
(
x1, y1

)
and

(
x2, y2

)
with

y2 = y1x1 x2 = 1

y1
E1

(
x1, y1

) = (
x1, y1x1

)
.

The pull-back of (1.1) by E1 is written in the 1st chart

E�
1ω1 ∧ E�

1ω2 = E�
1uE�

1fx1dx1 ∧ dy1.

Dividing by xν = xν1+ν2 yields the relation

(
X̃1

1

)� ∧
(
X̃1

2

)� = E∗
1uf̃ x1dx1 ∧ dy1,

where X̃1
i = E∗

1Xi

x
νi−1
1

. The two vector fields X̃1
1 and X̃1

2 are tangent to the exceptional

divisor. Obviously, they are also tangent to f̃ = 0. According to the Saito criterion,

at any point c of the exceptional divisor, the germ of
{
X̃1

1 , X̃1
2

}
at c is a basis of

the module (TS)c. The computation works the same in the 2nd chart
(
x2, y2

)
of the

blow-up.

The open sets U1 and U2 are Stein. Thus, following [25], they admit a system

of Stein neighborhoods. Since TS is coherent, by inductive limit, we deduce that the

covering
{
U1, U2

}
is acyclic for TS. Therefore, one can compute the cohomology using

this covering and thus

H1 (D1, TS
) = H1 ({U1, U2

}
, TS

) = H0
(
U1 ∩ U2, TS

)
H0

(
U1, TS

)⊕ H0
(
U2, TS

) .

Now, the spaces of global sections on U1, U2 and the intersection can be described as

follows:

H0 (U1 ∩ U2, TS
) =

{
φ12X̃1

1 + ψ12X̃1
2

∣∣∣φ12, ψ12 ∈ O
(
U1 ∩ U2

)}
H0 (U1, TS

) =
{
φ1X̃1

1 + ψ1X̃1
2

∣∣∣φ1, ψ1 ∈ O
(
U1

)}
H0 (U2, TS

) =
{
φ2X̃2

1 + ψ2X̃2
2

∣∣∣φ2, ψ2 ∈ O
(
U2

)}
.
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Dimension of the Moduli Space of a Germ of Curve in C2 3819

Fig. 1.1. Covering of D adapted to the Mayer–Vietoris argument.

Thus, the cohomological equation is written

φ12X̃1
1 + ψ12X̃1

2 = φ1X̃1
1 + ψ1X̃1

2 −
(
φ2X̃2

1 + ψ2X̃2
2

)
=

(
φ1 − φ2y−ν1+1

1

)
X̃1

1 +
(
ψ1 − ψ2y−ν2+1

1

)
X̃1

2 .

Since,
{
X̃1

1 , X̃1
2

}
is a basis of O-module, the above leads to the system

⎧⎨
⎩φ12 = φ1 − φ2y−ν1+1

1

ψ12 = ψ1 − ψ2y−ν2+1
1

.

Writing these equations using Taylor expansions leads to the checked number of

obstructions. �

Finally, the proof of

Theorem 1�⇒ Main Theorem

goes as follows. Consider the covering {U, V} of D1 where V is a very small ball around

the singular point of SE1
gen and U = D1 \ Sing

(
SE1

gen

)
.

The set

{
U ′ =

(
E2
)−1

(U) , V ′ =
(
E2
)−1

(V)

}

consists in a covering of D and V ′ is a neighborhood of D2 as shown in Figure (1.1). The

Mayer–Vietoris sequence associated to this covering and applied to the sheaf TSgen leads
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3820 Y. Genzmer

to the following long exact sequences in cohomology

0 → N → H1
(
D, TSgen

)
→ H1

(
V ′, TSgen

)
⊕ H1

(
U ′, TSgen

)
→ H1

(
V ′ ∩ U ′, TSgen

)
,

where N is given by the exact sequence

H0
(
V ′, TSgen

)
⊕ H0

(
U ′, TSgen

)
→ H0

(
V ′ ∩ U ′, TSgen

)
→ N.

Since V ′ ∩ U ′ and U ′ are Stein, one has

H1
(
V ′ ∩ U ′, TSgen

)
= 0

H1
(
U ′, TSgen

)
= 0.

By inductive limit on the neighborhood of Sing
(
SE1

gen

)
, one can show that

H1
(
V ′, TSgen

)
� H1

(
D2, TSgen

)
.

Moreover, E2 induces the following isomorphisms:

(
E2
)∗

: H0
(
U ′, TSgen

)
→ H0

(
U, TSgen

)
(
E2
)∗

: H0
(
V ′ ∩ U ′, TSgen

)
→ H0

(
U ∩ V, TSgen

)
,(

E2
)∗

: H0
(
V ′, TSgen

)
→ H0

(
V, TSgen

)
.

In the two 1st cases, E2 is an isomorphism itself on the involved neighborhoods. In

the 3rd case, this is a consequence of Hartogs extension lemma noticing that E2 is an

isomorphism from a neighborhood of
(
E2
)−1

(
V \ Sing

(
SE1

gen

))
to its image. The Mayer–

Vietoris sequence finally decomposes H1
(
D, TSgen

)
along the desingularization of Sgen

through the following isomorphism of C−vector spaces,

H1
(
D, TSgen

)
� H1

(
D1, TSgen

)⊕
H1

(
D2, TSgen

)
.
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Dimension of the Moduli Space of a Germ of Curve in C2 3821

The curve Sgen admits a balanced basis according to Theorem 1. Hence, the Main

Theorem is an inductive application of Proposition 4 noticing that in that case

dim H1
(
D1, TSgen

)
= σ

(
ν
(
Sgen

))
.

As a corollary, the formula gives a straightforward proof of the following result

contained in [14].

Corollary. A germ of irreducible curve S is generically rigid if and only if

• ν (S) ∈ {1, 2, 3} or

• ν (S) = 4 and its Puiseux pairs are (4, 5) , (4, 7) or ((2, 3) , (2, 2k + 1)) with

k ≥ 3.

Indeed, one can check that the cases above are the only one for which the formula in

Main Theorem yields 0.

2 A Remarkable Element in �1
(
Sd

)
The proof of Theorems 1 and 2 starts with the construction of a particular element in

�1
(
Sd

)
.

For any basis
{
ω1, ω2

}
of �1

(
Sd

)
, the criterion of Saito ensures that

ν
(
ω1

)+ ν
(
ω2

) ≤ ν
(
Sd

)
.

Thus, at least one of these multiplicities is smaller or equal to
[

ν(Sd)
2

]
, which proves

one part of the equality in Theorem 1. However, to obtain the whole equality we will

need some more informations about these generators. In this section, we are going to

construct quite explicitly an element of �1
(
Sd

)
with multiplicity

[
ν(Sd)

2

]
.

We recall that a foliation F is said to be dicritical along a divisor � if and only

if F is generically transverse to �.

Let us give a sketch of the proof of Theorem 2. First, we construct an auxiliary

foliation F
[
Sd

]
tangent to some curve S topologically equivalent to Sd—but not

necessarily analytically equivalent to Sd—with the desired algebraic multiplicity. Then,

we study the deformations of F
[
Sd

]
by means of cohomological tools. In particular, con-

sidering a deformation linking S to Sd, we prove that it can be followed by a deformation

of F
[
Sd

]
that preserves the algebraic multiplicity. The resulting foliation is tangent to

Sd with
[

ν(Sd)
2

]
as algebraic multiplicity. Among other properties, we obtain Theorem 2.
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3822 Y. Genzmer

2.1 The auxiliary foliation F
[
Sd
]

In this section, we are going to construct a foliation associated to Sd, denoted by F
[
Sd

]
,

thanks to a result of Lins Neto [19, 20] that is a kind of recipe to construct germs of

singular foliations in the complex plane.

Let E be the minimal desingularization of S. We denote it by

E : (M, D) →
(
C2, 0

)
.

Recall that E is a finite sequence of elementary blowing-ups of points

E = E1 ◦ E2 ◦ · · · ◦ EN .

We can encode the map E in a square matrix E of size N called by Wall the proximity

matrix (see [26, p. 52]). Let E be the matrix N × N whose entries are

Ei,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j

−1 if the jth blow-up of E is centered at a point of Di

0 otherwise

.

Notice that for any i ≤ N − 1, Ei,i+1 = −1 and that for any i > j, Ei,j = 0.

Let Si be the strict transform of S by E1 ◦ · · · ◦ Ei−1 for i ≥ 2 and S1 = S. The

map Ei is the minimal desingularization of the total transform of S1 by E1 ◦ · · · ◦ Ei−1. In

the sequel, we will denote by p
(
Si

)
and q

(
Si

)
, p

(
Si

)
< q

(
Si

)
the 1st two characteristic

exponents of the curve Si: p
(
Si

)
is nothing but the multiplicity of Si and q

(
Si

)
the 1st

exponent appearing in a Puiseux parametrization of Si

{
x = tp(Si)

y = tq(Si) + · · · p
(
Si

)
� q

(
Si

)
.

Definition 5. Let E : (M, D) → (
C2, 0

)
be a process of blow-ups E = E1 ◦ · · · ◦ EN . Let us

write D = E−1 (0) = ⋃N
i=1 Di. Let M be the maximal ideal at

(
C2, 0

)
and I the sheaf over

D of ideals generated locally by the functions of the form g ◦ E where g ∈ M. Then I can

be decomposed the following way

I =
N∏

i=1

In(E,Di)
Di

,
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Dimension of the Moduli Space of a Germ of Curve in C2 3823

where IDi
is the sheaf of functions vanishing on Di and n

(
E, Di

)
are some integers

depending only on E and D. The integer n
(
E, Di

)
is called the multiplicity of Di with

respect to E.

The following lemma is in [26, p. 53, Lemma 3.5.3]

Lemma 6. The inverse of the proximity matrix E−1 has the following form

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
. . . ekl
. . . 1

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where ekl = n
(
Ek, Dl

)
. Moreover, the coefficient ekN is the algebraic multiplicity of the

Sk. Finally, the matrix −E
(
tE
)

is the intersection matrix of D.

Example 7. Let us consider S = {
y5 = x13

}
. Then the proximity matrix E is written

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0

0 1 −1 −1 0 0

0 0 1 −1 −1 0

0 0 0 1 −1 −1

0 0 0 0 1 −1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The inverse matrix is written

E−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 2 3 5

0 1 1 2 3 5

0 0 1 1 2 3

0 0 0 1 1 2

0 0 0 0 1 1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The exceptional divisors of the associated sequence of processes of blowing-ups{
Ek
}

k=1..5 are presented in Figure (2.1).
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3824 Y. Genzmer

Fig. 2.1. Exceptional divisors of the sequence of processes of blowing-ups associated to the

desingularization of y5 − x13 = 0.

Notice that, as soon as S is singular, for any direction d, S and Sd share the same

reduction. The next proposition is the one upon which the construction of the auxiliary

foliation F
[
Sd

]
is based.

Proposition 8. Let δ1 ∈ {0, 1, 2} be the number of components of the direction d. In the

same way, consider the number δi of branches of the total transform of d by E1 ◦· · ·◦Ei−1

that meets Si for 2 ≤ i ≤ N. Let us denote κi − 1 the number of −1 on the i-th row of E .

Notice that, for i ≥ 2, δi ∈ {1, 2} .

Let us consider the vector of integers defined by

⎛
⎜⎜⎜⎜⎜⎝

p1

p2
...

pN

⎞
⎟⎟⎟⎟⎟⎠ = E

⎛
⎜⎜⎜⎜⎜⎜⎝

[
ν(S1)−δ1

2

]
+ 1[

ν(S2)−δ2
2

]
+ 1

...[
ν(SN )−δN

2

]
+ 1

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.1)

Then,

(1) any integer pi is bigger or equal to −1. The case pi = −1 occurs if and only if

(a) either, κi = 2, δi = 2, δi+1 = 1 and ν
(
Si

) = p
(
Si

)
is odd, or

(b) κi = 3, δi = 2, δi+1 = 1, ν
(
Si

)
is odd and q

(
Si

)
is even.

(2) If Di ∩ Dj �= ∅ then one cannot have both pi = −1 and pj = −1.

(3) Let us consider D the exceptional divisor D deprived of DN and of the

components Di for which pi = −1. Then in each connected component of

D, there exists at least one component Dj for which, either pj > 0 or, that

meets a component of dE .

(4) pN = 0.
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Dimension of the Moduli Space of a Germ of Curve in C2 3825

In the proposition above, the integer −κi is also equal to the self-intersection of

the component Di.

Proof. The proof is an induction on the length of the desingularization of S. Let us

consider that E is written

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 · · · −1 0

1 −1

1 · · ·
. . . −1

1 −1

1
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Expanding the expression of p1, we find

p1 =
[

ν
(
S1

)− δ1

2

]
+ 1 −

κ∑
j=2

⎛
⎝
⎡
⎣ν

(
Sj

)
− δj

2

⎤
⎦+ 1

⎞
⎠ ,

where for the sake of simplicity, we denote κ1 simply by κ. Consider a Puiseux

parametrization of S1 = S,

S1 :

⎧⎨
⎩x = tp

y = tq + · · ·

with p = p
(
S1

)
< q = q

(
S1

)
and gcd (p, q) = 1. According to the desingularization of S1,

encoded in the proximity matrix, the multiplicities and the δi’s satisfy

ν
(
S1

) = p

ν
(
Sj

)
= q − p for 2 ≤ j ≤ κ − 1

ν
(
Sκ

) = (κ − 1) p − (κ − 2) q

δ1 ∈ {0, 1, 2}
δ2 ∈ {1, 2}
δj = 2 for 3 ≤ j ≤ κ.
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3826 Y. Genzmer

TABLE 2 Values of p1 depending on p being odd or even.

p is odd p is even

δ1 = 0, δ2 = 1 0 1

δ1 = 1, δ2 = 1 0 0

δ1 = 1, δ2 = 2 1 0

δ1 = 2, δ2 = 1 −1 0

δ1 = 2, δ2 = 2 0 0

TABLE 3 Values of p1 depending on κ being even or odd.

p and q

both odd

p and q

both even

p even

q odd

p odd

q even

δ1 = 0, δ2 = 1 1 1 κ−2
2 , κ−1

2
κ−2

2 , κ−3
2

δ1 = 1, δ2 = 1 1 0 κ−4
2 , κ−3

2
κ−2

2 , κ−3
2

δ1 = 1, δ2 = 2 1 0 κ−2
2 , κ−1

2
κ
2 , κ−1

2

δ1 = 2, δ2 = 1 0 0 κ−4
2 , κ−3

2
κ−4

2 , κ−5
2

δ1 = 2, δ2 = 2 0 0 κ−2
2 , κ−1

2
κ−2

2 , κ−3
2

Thus, the integer p1 is written

p1 =
[

p − δ1

2

]
−

κ−1∑
j=2

[q − p − δj

2

]
−
[
(κ − 1) p − (κ − 2) q − δκ

2

]
− κ + 2.

The following lemma is straightforward.

Lemma 9. If κ = 2, then the values of p1 =
[

p−δ1
2

]
−
[

p−δ2
2

]
are given in Table 2.

If κ ≥ 3 then the values of p1 are given in Table 3. When the value depends on κ,

it is the precise value of p1 if κ is even or odd. In particular, p1 = −1 if and only if one

of the following case occurs:

• κ = 2, δ1 = 2, δ2 = 1 and p is odd;

• κ = 3, δ1 = 2, δ2 = 1 and p is odd and q is even.

�
Now, we are able to study the general behavior of p1 and to prove Proposition 8.
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Dimension of the Moduli Space of a Germ of Curve in C2 3827

The Property (1) can be seen by reading inductively Lemma 9.

Property (2) is proved as follows. Suppose that p1 = −1. According to property

(1) , two cases may occur:

• if κ = 2, δ1 = 2 and δ2 = 1, then D1 meets D2 in D. Since δ2 = 1, p2 cannot

be equal to −1. Proposition 8 applied inductively to S2 yields the proposition

for S2.

• if κ = 3, δ1 = 2, δ2 = 1, p is odd and q is even, then D1 meets D3 and δ3 = 2.

Suppose that δ4 = 1 then S3 is neither tangent to D1 nor to D2. Looking at the

Puiseux parametrization of S3 yields

q − p = 2p − q,

which is impossible since p is odd. Thus, δ4 = 2, and p3 cannot be equal to

−1. We conclude by induction.

Let us now focus on property (3).

• Suppose first that δ1 = 2.

− If p1 > 0, then the connected component of D1 in D contains D1 as

component with p1 > 0. Applying inductively Proposition 8 to S2 with

the sequence of δ’s equal to

δ2, δ3, . . .

yields the proposition for S1 with the sequence of δ ’s equal to δ1, δ2, . . ..

− If p1 = 0, since at least one of the component of dE is attached to D1, the

same argument as before ensures the proposition.

− If p1 = −1, then two cases may occur:

© if κ = 2 then ν
(
S2

) = ν
(
S1

)
is odd and δ2 = 1. Applying inductively

Proposition 8 to S2 with the sequence of δ’s equal to

0, δ3, δ4, . . .

yields the result: indeed, one has

[
ν
(
S2

)− 0

2

]
=
[

ν
(
S2

)
2

]
=
[

ν
(
S2

)− 1

2

]
=
[

ν
(
S2

)− δ2

2

]
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3828 Y. Genzmer

and for j ≥ 3, since κ = 2, one has δ
′
j = δj where the δ

′
j would be the

sequence obtained following the desingularization of S2 with δ
′
2 = 0.

© If κ = 3, then δ2 = 1, ν
(
S1

) = p is odd and q is even. Moreover, since

κ = 3, one has δ3 = 2. Following the desingularization of S1, one has

ν
(
S2

) = q−p > 0 that is odd and ν
(
S3

) = 2p−q that is even. Applying

inductively Proposition 8 to S2 with the sequence of δ′s equal to

0, 1, δ4, . . .

yields the result: indeed, one has

[
ν
(
S2

)− 0

2

]
=
[

ν
(
S2

)− 1

2

]
=
[

ν
(
S2

)− δ2

2

]
,

[
ν
(
S3

)− 1

2

]
=
[

ν
(
S3

)− 2

2

]
=
[

ν
(
S2

)− δ3

2

]
,

and for j ≥ 4, since κ = 3, one has δ
′
j = δj where the δ

′
j would be the

sequence obtained following the desingularization of S2 with δ
′
2 = 0

and δ
′
3 = 1.

• Suppose now that δ1 = 1. Then according to property (1), p1 ≥ 0. If δ2 = 1

then the component of dE meets D1. So applying inductively Proposition 8 to

S2 with the sequence δ2, δ3, · · · yields the proposition. Let us suppose that

δ2 = 2. If p1 > 0, then inductively the proposition is proved. If p1 = 0 then

according to Lemma 9 two cases may occur

– if κ = 2 and ν
(
S2

) = ν
(
S1

)
is even, then D2 meets D1 in D and p2

cannot be equal to −1. Applying inductively Proposition 8 to S2 with

the sequence

1, δ3, . . .

yields the result. The arguments are the same as before.

– if κ ≥ 3, then p and q are even and the curve S cannot be topologically

quasi-homogeneous. While δi �= 1, no component Dj with pj = −1 can

appear. If at some point, one has δj = 1 then the multiplicity of ν
(
Sj

)
is

written αp+βq for some α, β in Z. Thus, it is even and pj cannot be equal
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Dimension of the Moduli Space of a Germ of Curve in C2 3829

to −1. Therefore, D2 and D1 belong to the same connected component D,

which inductively proves the proposition since dE is attached to D2.

• Suppose finally that δ1 = 0. One has δ2 = 1. If p1 > 0 then the proposition is

proved inductively. If not, two cases may occur:

– If κ = 2 then ν
(
S2

) = ν
(
S1

)
is odd. The proposition is proved applying it

inductively to S2 with the sequence

0, δ3, . . . .

The arguments are the same as above noticing that

[
ν
(
S2

)
2

]
=
[

ν
(
S2

)− δ2

2

]
.

– If κ ≥ 3 and p1 = 0 then κ = 3, p is odd and q is even. The proposition is

proved applying it inductively to S2 with the sequence

0, 1, δ4 . . . .

Again, the arguments are the same as before.

Now, we introduce a foliation associated to Sd prescribing some topological

data.

Definition 10. The numbered dual tree A [F ] of a foliation F is a numbered graph

constructed as follows. Let E be the minimal desingularization of F . The vertices of A [F ]

are in one-to-one correspondence with the irreducible components of the exceptional

divisor of E. There is an edge between Di and Dj if and only if Di ∩ Dj �= ∅. Each vertex is

numbered following the next rules:

• if E∗F is dicritical along Di, then Di is numbered +∞
• else it is numbered by the number of irreducible invariant curves of E∗F

intersecting Di transversely.

Now, the proposition below produces the checked foliation.

Proposition 11. Let A be the dual tree of Sd and p1, . . . , pN be the integers given by

Proposition 8. We number A the following way:
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3830 Y. Genzmer

• if pi = −1 then Di is numbered ∞.

• otherwise, Di is numbered pi + (
the number of component of dE meeting Di

)
• DN is numbered +∞.

Then, there exists a foliation F
[
Sd

]
whose singularities are linearizable and such that

A
[
F
[
Sd

]] = A.

Proof. We use a result of Lins Neto [19] whose statement is also mentioned in [20] and

written in a more compact way. For the arguments to come, we will refer to the latter

version.

The statement of Lins Neto is quite long to enunciate because the hypothesis

require that we prescribe all the local and semi-local data attached to the desired

foliation. Below, to be the most specific as possible, we will follow the numbering of

the hypothesis in [20, p. 151]. We require that

• Hypothesis (1): the desingularization of F
[
Sd

]
has the same topology as the

desingularization of Sd. For the sake of simplicity, we keep denoting by D =⋃N
i=1 Di the exceptional divisor of its desingularization.

• Hypothesis (2): F
[
Sd

]
is dicritical and regular along DN . If pi = −1, then

F
[
Sd

]
is dicritical and regular along Di. Otherwise, Di is invariant.

• Hypothesis (5): At each corner point of D that does not meet a dicritical com-

ponent, F
[
Sd

]
admits a linear singularity written in some local coordinates

(x, y)

λxdy + ydx, λ /∈ Q−, (2.2)

where xy = 0 is a local equation of D.

• Hypothesis (4) , (6): For each Di with pi ≥ 0, F
[
Sd

]
admits pi more linear

singularities along Di that can be written in some local coordinates (x, y)

λxdy + ydx, λ /∈ Q−, (2.3)

where x = 0 is a local equation of Di. The local analytic class of the

singularities added above depends on the value of λ which is called the

Camacho–Sad index [3] of the singularity s along D. It is denoted by

− λ = CSs

(
F
[
Sd

]
, D
)

,
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Dimension of the Moduli Space of a Germ of Curve in C2 3831

where s is the singularity. Finally, for each component of dE attached to Dj

with pj ≥ 0, F
[
Sd

]
admits one more linear singularity along Dj.

The remaining hypothesis control the projective representations of holonomy of the

desired foliation: this part is irrelevant for our construction and can be chosen

arbitrarily.

The above data must satisfy some compatibility conditions stated in the theorem

of Lins Neto:

• two dicritical components cannot meet which is ensured by the 2nd property

of Proposition 8.

• the Camacho–Sad indexes of the singularities along a given component Dj

have to satisfy a relation known as the Camacho–Sad relation

∑
s∈Dj

CSs

(
F
[
Sd

]
, Dj

)
= Dj · Dj.

The 3rd property in Proposition 8 allows us to choose the Camacho–Sad

indices of the linear singularities added at (2.2) and at (2.3) in order to ensure

the Camacho–Sad relation for any component Dj.

According to the theorem of Lins Neto, there exists a germ of foliation F
[
Sd

]
defined

at the origin of
(
C2, 0

)
that realizes all the above prescription. In particular, by

construction, one has

A
[
F
[
Sd

]] = A.

�

A lot of foliations can be constructed as above, prescribing freely the projective

representations of holonomy. Hence, there is a big number of non analytically equivalent

choices. However, all the foliations built the way above share some properties. In any

case, F
[
Sd

]
is dicritical along DN . Its singularities are all linearizable and thus F

[
Sd

]
is of 2nd kind as defined in [7, 21]. Its desingularization has the same topological

type as the desingularization of Sd. Moreover, the foliation F
[
Sd

]
is tangent to some

curve S topologically equivalent to Sd since S and Sd share the same process of

desingularization. Finally, the algebraic multiplicity is the desired one. Indeed, one has

the following result:
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3832 Y. Genzmer

Fig. 2.2. Dual numbered tree A
[
F
[
Sd
]]

for S =
{
y5 = x13

}
and any direction d.

Lemma 12. Regardless the foliation F
[
Sd

]
constructed as above, one has

ν
(
F
[
Sd

]) =
[

ν
(
Sd

)
2

]
.

Proof. A formula of Hertling in [17]—see Theorem 3.(a)—gives us

ν
(
F
[
Sd

]) =
N−1∑
i=1

pie1i + δ1 − 1.

In the notations of the Hertling’s formula, one has ρi = e1i and ε
(k)

i = pi +(
the number of component of dE meeting Di

)
. Since ν

(
SN

) = 1 and δN = 2, one has

pN = 0. Using the expression of E−1 to invert the formula (2.1), the 1st row yields

N−1∑
i=1

pie1i + δ1 − 1 =
[

ν
(
S1

)− δ1

2

]
+ δ1 =

[
ν
(
Sd

)
2

]
.

�

As an example, Figure 2.2 presents the numbered dual tree A
[
F
[
Sd

]]
for the

curve S = {
y5 − x13

}
and for all the possible topological types of direction d. Hence,

for instance, if δ1 = 1, δ2 =2, and δ3 = 1 then ν
(
Sd

) = 5 + 1 and ν (F) = 3. Besides, in

the latter case, the topological type of the foliation E�F
[
Sd

]
prescribed by A

[
F
[
Sd

]]
is

depicted in Figure 2.3
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Fig. 2.3. Topology of E�F .

3 Deformations of F
[
Sd

]
& Proof of Theorem 2.

In this section, we are interested in the deformations of foliations with a cohomological

approach.

3.1 Basic vector fields and deformations

Let ω be a germ of 1−form and X be a germ of vector field. The vector field X is said to

be basic for ω if and only if

(
LXω

) ∧ ω = d (ω (X)) ∧ ω − ω (X) dω = 0.

The property of being basic for the 1−form ω depends only on the foliation induced by

ω, since for any function f , one has

LX (f ω) ∧ f ω = f 2 (LXω
) ∧ ω.

Lemma 13. [4, p. 36] Let X be a germ of vector field. It is basic for ω if and only if

for any t ∈ (C, 0) , the flow at time t of X, denoted by e[t]X , is an automorphism of the

foliation defined by ω, that is,

((
e[t]X

)∗
ω
)

∧ ω = 0.

In particular, the flow e[t]X preserves the set of leaves of the foliation but may

permute them.

More generally, a germ of automorphism of ω or basic automorphism for ω—or

for the foliation induced by ω—is a germ of diffeomorphism φ such that

(
φ∗ω

) ∧ ω = 0.
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3834 Y. Genzmer

If φ is tangent to Id, then there exists aformal basic vector field X such that e[1]X = φ. In

what follows, we will simply denote the flow at time 1 of X by eX . If X is singular at p,

then the flow eX is convergent in a neighborhood of p.

Thanks to basic automorphisms, we can describe a surgery construction that

produces many non-equivalent germs of foliations from a given one. Consider the

desingularization E : (M, D) → (
C2, 0

)
of some singular foliation F at

(
C2, 0

)
. For any

covering
{
Ui

}
i∈I of a neighborhood of D in M and for any 2-intersection Uij = Ui ∩Uj, we

consider φij a basic automorphism of E∗F , which is the identity map along Uij ∩ D. We

suppose that the family
{
φij

}
i,j

satisfies the cocycle relation: on any 3-intersection Uijk,

one has

φij ◦ φjk ◦ φki = Id.

We construct a manifold with the following gluing

M
[
φij

]
=
∐

i

Ui/(x,i)∼(φij(x),j),

which is a neighborhood of some divisor isomorphic to D. This manifold is foliated by a

foliation F ′ obtained by gluing with the same collection of maps the family of restricted

foliations
{

E∗F | Ui

}
i
.

Lemma 14. There exists a germ of singular foliation at the origin of
(
C2, 0

)
denoted by

F
[
φij

]
and a process of blowing-ups E′ such that

(
E′)∗ F [

φij

]
is analytically equivalent

to F ′.

Proof. The manifold M
[
φij

]
is an open neighborhood of a divisor whose intersection

matrix is the same as the one of D since the gluing maps φij leave invariant the

trace of the divisor Uij ∩ D. In particular, its intersection matrix is definite negative.

Following the Grauert’s contraction result [12], there exists a process of blowing-ups E′ :(
M′, D′) → (

C2, 0
)

such that M′ is analytically equivalent to M
[
φij

]
. Being analytically

equivalent to M
[
φij

]
, the manifold M′ is foliated. Since E′ is an isomorphism between

M′ \ D′ and
(
C2, 0

) \ {0}, there exists a foliation in
(
C2, 0

) \ {0} whose pull-back by E′

coincides with the foliation of M′ on M′ \ D′. The Hartogs’s extension result allows us

to extend this foliation in
(
C2, 0

)
. The obtained foliation is F

[
φij

]
. �

A foliation built the way above is said to be a basic surgery of F . Our goal is to

study the basic surgeries of F
[
Sd

]
and in particular to prove the following
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Dimension of the Moduli Space of a Germ of Curve in C2 3835

Proposition 15. For any curve S topologically equivalent to Sd, there is a 1-form ω ∈
�1 (S) defining a foliation obtained from a basic surgery of F

[
Sd

]
.

The proof is based upon the study of deformations of F
[
Sd

]
with a cohomolog-

ical point of view based upon the notion of balanced equation of separatricies. This is

developed below.

3.2 The balanced equation of separatricies

Roughly speaking, a balanced equation of the separatricies of a foliation is a meromor-

phic function that plays the role of the standard equation of the separatricies associated

to a foliation admitting only a finite number of them. Here, in general F
[
Sd

]
admits an

infinite number of separatricies. Thus, the classical notion is not adapted. Basically, the

zeros of F contain the set of isolated separatricies—which are always in finite number—

and the poles contain a finite number of curvets attached to the dicritical components

of the exceptional divisor with valence bigger than 3. Below we reproduce some material

from [9], which we refer to for more details.

We denote respectively by

Dic (D) and Dic (D)

the set of dicritical and non dicritical components of D with respect to F . A germ

of irreducible separatrix S of F is said to be isolated if its strict transform SE does

not meet a dicritical component. We denote by Iso (�) the set of isolated separatrices

of F attached to the component � ∈ Dic (D). A germ of irreducible separatrix whose

strict transform crosses a dicritical component is called a curvet. The set of all curvets

associated to � ∈ Dic (D) is denoted by Curv (�). Finally, val (�) stands for the valence

of �, defined as the number of components of D intersecting �.

Definition 16. A balanced equation of separatrices for F is a meromorphic function

F whose divisor is written

(F)0 − (F) ∞ =
∑

�∈Dic (D)

∑
C∈Iso(�)

a�,C (C) +
∑

�∈Dic(D)

∑
C∈Curv(�)

a�,C (C) ,

where

• for every non dicritical component � ∈ Dic (D) , the coefficient a�,C is equal

to 1;
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3836 Y. Genzmer

• for every dicritical component � ∈ Dic(D), the coefficients a�,C ∈ {−1, 0, 1}
are zero except for finitely many and satisfy the following equality

∑
C∈Curv(�)

aD,C = 2 − val (�) .

Since a�,C belongs to {−1, 0, 1}, the function F has reduced zeros and poles

without multiplicities. If D has no dicritical component, then a balanced equation is

nothing but any equation of the finite set of separatricies.

The next lemma follows from the construction of F
[
Sd

]
in Proposition 11.

Lemma 17. Any balanced equation of the separatricies of F
[
Sd

]
satisfies that for all

i = 1, . . . , N

∑
C

aDi,C = pi +
(
the number of component of dE meeting Di

)
.

3.3 The sheaf TSd

In the desingularization E : (M, D) → (
C2, 0

)
, let us consider the sheaf TSd, with D as

basis, of vector fields tangent to D and to SE that vanish along the strict transform dE .

For any divisor � = ∑
ni�i in M, we denote by �2 (�) the sheaf with D as basis,

of 2−forms ω such that the multiplicity of ω along �i satisfies

ν�i
(ω) ≥ −ni.

Let F be a balanced equation of the separatricies of F
[
Sd

]
. First, we prove the

following proposition.

Proposition 18. In Cech cohomology, one has

H1
(
D, �2

(
2 (F)E − SE

d + D
))

= 0,

where the divisor (F)E is (F = 0)E − (F = ∞)E and D is the divisor D deprived of DN and

of the components Di for which pi = −1.

The proof is an induction on the length of the desingularization E. The 1st step

is the following lemma.
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Dimension of the Moduli Space of a Germ of Curve in C2 3837

Let us consider a germ of divisor � at the origin of
(
C2, 0

)
and E1 :

(
M1, D1

) →(
C2, 0

)
the single blowing-up of the origin. Consider the standard coordinates of the

blowing-up together with its standard covering.

U1 :

⎧⎨
⎩y = y1x1

x = x1

U2 :

⎧⎨
⎩y = y2

x = y2x2

.

Lemma 19. For any n ≥ 0, the following statements are equivalent:

• The multiplicity of � at the origin satisfies ν (�) ≥ n.

• The 1st cohomology group of �2
(
�E1 + nD1

)
on D1 vanishes

H1
(
D1, �2

(
�E1 + nD1

))
= 0. (3.1)

More precisely, let us denote l1 = l◦E1

xν(�)
1

where l is an equation of �. If a
(
x1, y1

)
is a

Laurent series in y1

a
(
x1, y1

) =
∑

i∈N,j≥−N

aijx
i
1yj

1

then

⎧⎪⎪⎨
⎪⎪⎩

[
adx1∧dy1

xn
1 l1

]
= 0 ∈ H1

(
D1,

{
U1, U2

}
�2

(
�E + nD1

))
and

a0−1 �= 0

�⇒ ν (�) ≥ n.

Proof. The global sections of �2
(
�E1 + nD1

)
on each associated open sets are written

�2
(
�E1 + nD1

) (
U1

) =
{

f
(
x1, y1

) 1

l1xn
1

dx1 ∧ dy1

∣∣∣∣ f ∈ O
(
U1

)}

�2
(
�E1 + nD1

) (
U2

) =
{

g
(
x2, y2

) 1

l2yn
2

dx2 ∧ dy2

∣∣∣∣g ∈ O
(
U2

)}

�2
(
�E1 + nD1

) (
U1 ∩ U2

) =
{

h
(
x1, y1

) 1

l1xn
1

dx1 ∧ dy1

∣∣∣∣h ∈ O
(
U1 ∩ U2

)}
,
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where l1 = l◦E1

xν(�)
1

, l2 = l◦E1

yν(�)
2

. Since the covering
{
U1, U2

}
is acyclic, one has the following

isomorphism

H1
(
D1, �2

(
�E1 + nD1

))
� �2

(
�E1 + nD1

) (
U1 ∩ U2

)
�2

(
�E1 + nD1

) (
U1

)⊕ �2
(
�E1 + nD1

) (
U2

) .

Therefore, the dimension of (3.1) is the number of obstructions to the following

cohomological equation

h
(
x1, y1

) 1
l1xn

1
dx1 ∧ dy1 = g

(
x2, y2

) 1
l2yn

2
dx2 ∧ dy2

−f
(
x1, y1

) 1
l1xn

1
dx1 ∧ dy1,

which is equivalent to

h
(
x1, y1

) = −f
(
x1, y1

)− 1

y−ν(�)+n+1
1

g
(

1

y1
, y1x1

)
. (3.2)

Let h = xi0
1 yj0

1 . Then h is an obstruction to (3.2) if and only if j0 < 0 and the following

system cannot be solved in N2

⎧⎨
⎩i0 = j

j0 = j − i + ν (�) − n − 1
⇐⇒

⎧⎨
⎩j = i0

i = i0 − j0 + ν (�) − n − 1.

Thus, ν (�) ≥ n if and only if there is no obstruction. The 2nd part of the lemma follows

from the fact that if the above system has a solution (i, j) ∈ N2 for
(
i0, j0

) = (0, −1) then

ν (�) ≥ n. �

Now let us prove Proposition 18.

Proof. The proof of the proposition is an induction on the length of the desingulariza-

tion of Sd. Let us write

E = E1 ◦ E2.

Let U1 be D1 \ Sing
(
S2

)
and U2 a very small neighborhood of Sing

(
S2

)
. We defined the

following open sets

U1 =
(
E2
)−1 (

U1

)
U2 =

(
E2
)−1 (

U2

)
. (3.3)
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The system
{
U1,U2

}
is an open covering of D. The associated Mayer–Vietoris sequence

for the sheaf �2
(
2 (F)E − SE

d + D
)

is written

H0
(
U1, �2

(
2 (F)E − SE

d + D
))⊕

H0
(
U2, �2 (· · · )

)
→ H0

(
U1 ∩ U2, �2 (· · · )

)
→ N → 0 (3.4)

and

0 → N → H1
(
D, �2 (· · · )

)
→ H1

(
U1, �2 (· · · )

)⊕
H1

(
U2, �2 (· · · )

)
. (3.5)

We are going to identify each term of the above exact sequences.

The manifold D1 \ Sing
(
S2

)
is isomorphic to C. Thus, it is Stein. Since, the sheaf

�2 (· · · ) is coherent, its cohomology vanishes on U1 (see [13]) and, in (5), the following

relation holds,

H1
(
U1, �2

(
2 (F)E − SE

d + D
))

= 0.

Let F2 be defined by the germ of foliation E∗
1F

[
Sd

]
at Sing

(
S2

)
. By construction, the

foliation F2 leaves invariant S2. Let F2 be a balanced equation of F2. Let h be a local

equation of D1 at Sing
(
S2

)
. Two cases have to be considered

• If D1 is invariant for F
[
Sd

]
, then, following [9], F2 can be chosen so that

(
F2

)E2 = (h)E2 + (F)E
∣∣∣ U2

Thus, if the direction d2 of S2 is chosen to be the local trace at Sing
(
S2

)
of

the union of dE1 and D1, then the next equalities hold

(
2 (F)E − SE

d + D
)∣∣∣ U2

= 2
((

F2

)E2 − (h)E2
)

− SE
d

∣∣∣ U2
+ D

∣∣ U2

= 2
(
F2

)E2 − 2 (h)E2 − SE
d

∣∣∣ U2
+ D2 + (h)E2

= 2
(
F2

)E2 − SE2

2,d2
+ D2

• If D1 is not invariant for F
[
Sd

]
then F2 can be chosen so that

(
F2

)E2 = (F)E .
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Thus, setting for the direction d2 of S2 the local trace at Sing
(
S2

)
of the sole

dE1 still yields

(
2 (F)E − SE

d + D
)∣∣∣ U2

= 2
(
F2

)E2 − SE2

2,d2
+ D2

since here D
∣∣ U2

= D2.

In any case, applying inductively Proposition 18 to S2 and to the associated divisor

2
(
F2

)E2 − SE2

2,d2
+ D2 ensures that, in (5), one has

H1
(
U2, �2

(
2 (F)E − SE

d + D
))

= H1
(
U2, �2

(
2
(
F2

)E2 − SE2

2,d2
+ D2

))
= 0.

The map E2 induces isomorphisms in cohomology

H0
(
U1, �2

(
2 (F)E − SE

d + D
))

� H0
(
U1, �2

(
2 (F)E1 − SE1

d + D1

))
H0

(
U1 ∩ U2, �2 (· · · )

)
� H0

(
U1 ∩ U2, �2 (· · · )

)
. (3.6)

Let us prove that E2 induces also an isomorphism on the set of global sections along U2

and U2. If η is a global section of �2
(
2 (F)E − SE

d + D
)

on U2 then the push-forward of η

by E2 can be extended analytically at Sing
(
S2

)
by Hartogs’s extension result. It induces

naturally a section of �2
(
2 (F)E1 − SE1

d + D1

)
on U2. Thus, E2 induces a injective map

H0
(
U2, �2

(
2 (F)E − SE

d + D
)) E2

↪→ H0
(
U2, �2

(
2 (F)E1 − SE1

d + D1

))
. (3.7)

By induction, it is enough to prove that (3.7) is onto when E2 is the

simple blowing-up of Sing
(
S2

)
and D reduced to D1 ∪ D2. Let η be a section of

�2
(
2 (F)E1 − SE1

d + D1

)
on U2.

• If D1 is not dicritical for F
[
Sd

]
then η is written in coordinates

η = hl
dx ∧ dy

x
,

where x is a local equation of D1, l is any meromorphic function whose local

divisor is SE1
d − 2 (F)E1 and h is any holomorphic function. If δ2 = 1 then the

possible component of d meets D1 at a different point from Sing
(
S2

)
. The
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family of integers pi satisfies the system (2.1) of Proposition 8. Thus, one has

E−1

⎛
⎜⎜⎜⎜⎜⎝

p1

p2
...

pN

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

[
ν(S1)−δ1

2

]
+ 1[

ν(S2)−δ2
2

]
+ 1

...[
ν(SN )−δN

2

]
+ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

According to Proposition 8, pN is equal to 0. Moreover, ν
(
S2

) = e2N . Thus,

writing the 2nd line of this system leads to

N−1∑
i=2

pie2i =
[

e2N − 1

2

]
− 1.

By construction of F
[
Sd

]
and its balanced equation of separatricies F [9], the

multiplicity of l is equal to

ν (l) = e2N − 2
N−1∑
i=2

pie2i = e2N − 2
[

e2N − 1

2

]
− 2 ≥ −1.

Now, after the blowing-up E2, which is written in adapted coordinates

E2 (x, t) = (x, tx) , the pull back of η is written

E2∗η = E2∗hE2∗ldx ∧ dt.

Thus, the multiplicity of E2∗η along D2 is at least −1. The exceptional divisor

of E2 cannot be dicritical for F
[
Sd

]
since δ2 = 1. Therefore, E2∗η is a section

of �2
(
2 (F)E2 − SE2

d + D1 ∪ D2

)
along D1 ∪ D2. Now, if δ2 = 2 then one of the

components of dE1 , say dE1
1 , meets Sing

(
S2

)
. Whether or not the component

dE
1 meets a dicritical component, the multiplicity of l is at least

ν (l) ≥ e2N − 2
N−1∑
i=2

pie2i − 1 = e2N − 2
[e2N

2

]
− 1.

If the exceptional divisor of E2 is dicritical then e2N is odd and ν (l) ≥ 0. If

not, ν (l) ≥ −1. Thus, wether the exceptional divisor of E2 is dicritical or not,

E2∗ω is a section of �2
(
2 (F)E2 − SE2

d + D1 ∪ D2

)
along D1 ∪ D2.
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3842 Y. Genzmer

• if D1 is dicritical then δ2 = 1. Moreover, η is written

η = hldx ∧ dy, E2∗η = E2∗hE2∗lxdx ∧ dt,

where

ν (l) + 1 = e2N −
N−1∑
i=2

pie2i + 1 = e2N − 1 − 2
[

e2N − 1

2

]
≥ 0.

Hence, E2∗ω is still a section of �2
(
2 (F)E2 − SE2

d + D1 ∪ D2

)
along D1 ∪ D2.

By induction on the length of E2, the isomorphism (3.7) is proved. Thus, the isomor-

phisms (3.1) and the exact sequence (4) identify N with the cohomology group

H1
(
D1, �2

(
2 (F)E1 − SE1

d + D1

))
.

Let us prove that the latter vanishes. If p1 = −1, then D1 is dicritical and δ1 = 2 and

δ2 = 1. Therefore,

ν
(
2 (F)E1 − SE1

d

)
= 2

N−1∑
i=2

pie1i − e1N = 2
([

e1N − 2

2

]
+ 2

)
− e1N = 1

since e1N is odd. If p1 �= −1, then

ν
(
2 (F)E1 − SE1

d

)
= 2

N−1∑
i=1

pie1i + δ1 − e1N = 2
[

e1N − δ1

2

]
+ 2 + δ1 − e1N ≥ 1.

Therefore, according to Lemma 19, N vanishes, which completes the proof of Proposi-

tion 18. �

To compare the deformations of F
[
Sd

]
and of the underlying curve Sd, we

introduce the following operator.

Definition 20. The operator of basic vector fields for F
[
Sd

]
is a morphism of sheaves

defined by

B : X ∈ TSd �→ LXE∗ ω

F
∧ E∗ ω

F
∈ �2, (3.8)
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Dimension of the Moduli Space of a Germ of Curve in C2 3843

where ω is any 1−form with an isolated singularity defining F
[
Sd

]
and F any balanced

equation of F
[
Sd

]
.

The operator of basic vector fields may behave quite wildly around the singular

point of F
[
Sd

]
. Indeed, one can check that the description of its local image at

singular points may involve the phenomenon known as small divisors. However, for our

construction, we can disregard what happens exactly at the singular points, since we

control everything happening around. To take into account this remark, we introduce

the following notation:

Notation. For any sheaf F of basis D, we denote by F◦ the sheaf whose stalk satisfies

that for all x ∈ D \ Sing
(
F
[
Sd

])
, (F)x = (

F◦)
x and for all x ∈ Sing

(
F
[
Sd

])
,
(
F◦)

x = 0.

The interest of the above notation relies on the following lemma:

Lemma 21. For any i ≥ 1, one has

Hi (D,F) = Hi (D,F◦) .

Proof. Indeed, there is a direct sum of skyscraper sheaves F◦ such that F◦ = F/F◦. The

long exact sequence of sheaves associated to the short sequence

0 → F◦ → F → F/F◦ → 0

and the fact that the cohomology of F◦vanishes in degree more than 1 ensure

the lemma. �

Proposition 22. Let Bn

(
F
[
Sd

])
be the sheaf defined by the kernel

Bn

(
F
[
Sd

]) = ker
(
B|Mn·TSd

)
,

where Mn is the nth power of the sheaf of O−module generated by the functions E∗f

with f (0) = 0. There is an exact sequence of sheaves

0 → Bn

(
F
[
Sd

])◦ → Mn · TS◦
d → Mn · �2

(
2 (F)E − SE

d + D
)◦ → 0. (3.9)

In particular, extracted from the long exact in cohomology associated to (3.9), there is

an exact sequence

H1 (D,Bn

(
F
[
Sd

])◦) → H1 (D,Mn · TS◦
d

) → 0. (3.10)
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3844 Y. Genzmer

Proof. The 1st part of the proposition is a computation in local coordinates. We

describe the image of Mn · TSd by the operator B. Since, F
[
Sd

]
has only linearizable

singularities, the multiplicities of F
[
Sd

]
and of the balanced equation F along any

irreducible component Di of the exceptional divisor satisfy [7, 9, Proposition 3.7]

• νDi

(
F
[
Sd

]) = νDi
(E∗F) if Di is dicritical

• νDi

(
F
[
Sd

]) = νDi
(E∗F) + 1 else.

Let p ∈ Di, for some i, be a regular point of F
[
Sd

]
where the foliation is tangent to

exceptional divisor. In some local coordinates (x, y) around p, the pull-back E∗ ω
F is

written

E∗ ω

F
= u

dx

x
,

where x is a local equation of Di. Now, a local section X of Mn · TSd is written

X = xm
(

ax
∂

∂x
+ b

∂

∂y

)
, a, b ∈ C {x, y} ,

where m = n × n
(
E, Di

)
where n

(
E, Di

)
is defined in Definition 5. Therefore, applying

the basic operator leads to

B (X) = xmu2 ∂a

∂y

dx ∧ dy

x
,

which is a local section of Mn · �2
(
2 (F)E − SE

d + D
)

. Since the equation ∂a
∂y = h can be

solved for any h, the operator B is onto locally around p. This property is true for any

type of regular points for F
[
Sd

]
.

The sheaf Mn is generated by its global sections. Therefore, Proposition 18

ensures that

H1
(
D,Mn · �2

(
2 (F)E − SE

d + D
))

= 0.

Finally, the long exact sequence in cohomology associated to (3.9) proves the end of

Proposition 22. �

3.4 Deformations of F
[
Sd
]

Proposition 22 can be expressed as follows: any infinitesimal deformation of Sd tangent

to D at order n can be followed by an infinitesimal deformation of the foliation F
[
Sd

]
at
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Dimension of the Moduli Space of a Germ of Curve in C2 3845

the same level of tangency. Roughly speaking, the proof of Proposition 15 consists in an

non-commutative analog. Actually, let us consider the following sheaves of non-abelian

groups

Definition 23. For any involutive sub-sheaf I of the sheaf of tangent vector fields to

SE
d that vanish along d and D, we consider

G (I)

the sheaf of non-abelian groups generated by the flows of vector fields in I.

According to the Campbell–Hausdorff formula,

eXeY = eX+Y+ 1
2 [X,Y]+ 1

12 ([X,[X,Y]]−[Y,[X,Y]])+··· (3.11)

any element of G (I) is a flow of an element of I.

The 1st step of the proof of Proposition 15 is the following:

Proposition 24. Extracted from the long exact sequence in cohomology induced by the

embedding G
(
B1

(
F
[
Sd

])◦)
↪→ G

(
M · TS◦

d

)
, the following sequence

H1 (D,G
(
B1

(
F
[
Sd

])◦)) → H1 (D,G
(
M · TS◦

d

)) → 0

is exact.

Proof. Let us consider a 1−cocycle
{
φij

}
ij

∈ Z1
(
D,G

(
M · TS◦

d

))
. By definition, this is a

flow

φij = eXij , (3.12)

where
{
Xij

}
ij

∈ Z1
(
D,M · TS◦

d

)
. By induction on n, we are going to prove that there exist{

Bn
ij

}
ij

∈ Z1
(
D,B1

(
F
[
Sd

])◦), {Xn
i

}
i ∈ Z0

(
D,M · TS◦

d

)
and

{
Xn

ij

}
ij

∈ Z1
(
D,Mn · TS◦

d

)
such

that

e−Xn
i φije

Xn
j = eBn

ijeXn
ij . (3.13)

For n = 1, this is the relation (3.12). Now, suppose this is true for n. According to

Proposition 22, there exist
{
B̃n

ij

}
ij

∈ Z1
(
D,B1

(
F
[
Sd

])◦) and
{
Yn

i

}
i ∈ Z0

(
D,M · TS◦

d

)
such
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that

Xn
ij = Yn

i + B̃n
ij − Yn

j .

Taking the flow at time 1 yields

e−Yn
i e−Xn

i φije
Xn

j eYn
j = e−Yn

i eBn
ijeXn

ij eYn
j

= eBn
ij

[
e−Bn

ij , e−Yn
i

]
e−Yn

i eXn
ij eYn

j

= eBn
ij

[
e−Bn

ij , e−Yn
i

]
eB̃n

ijeYn+1
ij

= eBn
ijeB̃n

ij e−B̃n
ij

[
e−Bn

ij , e−Yn
i

]
eB̃n

ijeYn+1
ij︸ ︷︷ ︸

∈G(
Mn+1·TS◦

d

)
= eBn+1

ij eXn+1
ij ,

where Bn+1
ij is given by the Campbell–Hausdorff (3.11) where X = Bn

ij and Y = B̃n
ij, which

ensures the property by induction. Taking n as big as necessary, the proposition is a

consequence of the stability property proved in [8]. �

We can improve a bit the previous property taking advantage of the inductive

structure of the desingularization of Sd.

Proposition 25. Let E : (M, D) → (
C2, 0

)
be the desingularization of F

[
Sd

]
. Consider

the sheaf I · TSd, where I is the ideal of functions vanishing along D and B0

(
F
[
Sd

]) =
ker

(
B| I·TSd

)
. Then for every

{
φij

}
ij

∈ Z1
(
D,G

(
I · TS◦

d

))
there exists a family

{
ψk

ij

}
ij

k =
0 . . . l of 1-cocycles in Z1

(
D,G

(
B0

(
F
[
Sd

])◦)) such that

M
[
φij

]
� M

[
ψ0

ij

]
· · ·

[
ψ l

ij

]
. (3.14)

In particular, M
[
φij

]
is the support of a foliation obtained by successive basic surgeries

of F
[
Sd

]
.

Proof. The proof is an induction on the length of the resolution of Sd. Let us consider

a 1-cocyle
{
φij

}
ij

in Z1
(
G
(
I · TSd

)◦) . Let us consider
{
φij

}
ij

the restriction of the cocyle{
φij

}
ij

to D2. We are going to apply inductively the property to S2,d2
for some adapted

direction d2 of S2 as defined in the proof of Proposition 18. Applying inductively
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Proposition 25 to
{
φij

}
ij

yields the existence of 0−cocycles in G

(
I ·

(
TS2

d2

)◦)
and of

1−cocycles G

(
B0

(
F
[
S2

d2

])◦)
such that

φij = φ1
i ψ1

ijφ
2
i ψ2

ij · · · ψM
ij

(
φM

j

)−1 (
φM−1

j

)−1 · · ·
(
φ1

j

)−1
,

a relation that is equivalent to (3.14) for
{
φij

}
ij

. Now, consider the following 1−cocyle

φ̃ij =
⎧⎨
⎩φ12φ1

j φ2
j · · · φM

j for i = 1 and j = 2.

Id else.

It belongs to Z1
(
G
(
I · TSd

))
. Since M and I coincide along D1, it belongs also to

Z1
(
G
(
M · TSd

)◦). Therefore, Proposition 24 yields a 0−cocycle and 1-cocycle respec-

tively in G
(
M · TS◦

d

)
and G

(
B1

(
F
[
Sd

])◦) such that

φ̃ij = φiψijφ
−1
j .

In particular, if (i, j) �= 2, then φ−1
i φj = ψij. Therefore, for any (i, j) �= (1, 2), one can write

φij = φ1
i ψ1

ijφ
2
i ψ2

ij · · · ψM
ij φiψijφ

−1
j

(
φM

j

)−1 (
φM−1

j

)−1 · · ·
(
φ1

j

)−1

and

φ12 = φ1ψ12φ−1
2

(
φM

2

)−1 (
φM−1

2

)−1 · · ·
(
φ1

2

)−1
,

which is equivalent to (3.14) for
{
φij

}
ij

. The proposition is proved. �

Finally, we can prove Proposition 15. Let E′ :
(
M′, D′) → (

C2, 0
)

be the

desingularization of S. The curves S and Sd are topologically equivalent. Since S is

irreducible, the exceptional divisors D and D
′

are analytically equivalent. Following [8,

Section 3.2], there exists a 1-cocycle
{
φij

}
ij

in G
(
I · TS◦

d

)
such that

M′ � M
[
φij

]
.
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According to Proposition 25, M′ is the support of a foliation obtained from a basic

surgery of F
[
Sd

]
that leaves invariant the curve C, which completes the proof of

Proposition 15.

As a corollary, we obtain Theorem 2, since under the hypothesis mentioned, p1

cannot be equal to −1 and F
[
Sd

]
is not dicritical along the exceptional divisor of the

1st blowing-up.

4 Theorem 2�⇒Theorem 1

The proof consists in an argument by contradiction and four consecutive steps.

4.1 Step 1: construction of an equisingular family of curves S (ε) followed by an analytical

family of forms ω (ε) ∈ �1 (S (ε)) reaching the minimal valuation in �1 (S (ε)).

Let S be an irreducible germ of curve in the generic component of its moduli space and

let E : (M, D) → (
C2, 0

)
be its minimal desingularization. Let d be any direction for

S. Let � be a mini-versal deformation of Sd for the topologically trivial deformations

of Sd

Sd ↪→ (
CP+2, �

)
↓ ↓ π

0 ↪→ (
CP, 0

) .

Let H be an equation of �. The family ε ∈ CP → ω (ε) = dH| π−1(ε) is an analytic family

of 1−forms such that ω (ε) ∈ �1
(
H−1 (0) ∩ π−1 (ε)

)
and ν (ω (ε)) = ν (S) − 1. Consider

now, the smallest integer ν such that, there exists a Zariski open set such that for all

ε ∈ U there exists ω (ε) ∈ �1
(
H−1 (0) ∩ π−1 (ε)

)
and ν (ω (ε)) = ν. Our main goal is to

prove that

ν ≥
[

ν
(
Sd

)
2

]

Lemma 26. The family ω (ε) : ε ∈ (
CP, 0

) → �1
(
Sd (ε)

)
can be chosen analytic in ε.

Proof. Up to some change of coordinates (x, y) ∈ (
C2, 0

)
, we can suppose that the

direction d is a fixed curve equal to ∅, {x = 0} or {xy = 0} that does not depend on ε. In
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these three respective cases, any element in �1
(
Sd (ε)

)
can be written in coordinates

ω (ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aεdx + Bεdy, d = ∅
Aεdx + xBεdy, d = {x = 0}
or

yAεdx + xBεdy, d = {xy = 0}

Let γε be a Puiseux parametrization of S (ε) depending analytically on ε. The

hypothesis ensures that for any N ∈ N and for any ε, the following system has a

solution ω

(
Lε

)
:

⎧⎪⎪⎨
⎪⎪⎩

JetN
t=0

(
γ ∗
ε ω

) = 0 (1)

Jetν−1
(x,y)ω (ε) = 0 (2)

Jetν
(x,y)ω (ε) �= 0 (3)

.

The family
(
Lε

)
ε

is an analytic family of linear systems with a finite number of

unknown variables, say M, which are some coefficients of the Taylor expansion of Aε

and Bε—(1) and (2)—and an open condition (3). Thus, the solutions can be viewed as a

constructible set Z of U × CM that projects onto U through the projection p : CP+M →
CP. Since the image of p| Z contains an open set, the set of points in Z where p| Z is a

submersion cannot be empty. Thus, if
(
z, ε0

)
is such a point, there exists a local analytic

section σ of p defined in a neighborhood of ε0 such that σ
(
ε0

) = (
p, ε0

)
. This provides a

analytic family
(
ωε

)
ε∈(CP ,ε0)

that is a solution of
(
Lε

)
in a neighborhood of ε0. Since the

family γε is topologically trivial, taking a bigger integer N if necessary, we can find a

family of functions fk ∈ C {x, y} with ν
(
dfk

)
> ν, ν

(
dfk

) −−−→
k→∞

+∞ such that for any

k ≥ N and any ε, one has

ν
(
γ ∗
ε dfk

) = k.

Considering a form written

� = ωε +
∑
k≥M

αk (ε) dfk, (4.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/5/3805/5909456 by U
niversidade Estadual de M

aringa (U
EM

) user on 18 April 2024



3850 Y. Genzmer

we can choose inductively αk (ε) such that (4.1) becomes a formal solution � ∈
C {ε} [[x, y

]]
of the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ ∗
ε � = 0

Jetν−1
(x,y)� = 0

and

Jetν
(x,y)� �= 0

.

According to the Artin’s approximation theorem [1], we can take � analytic as a whole,

� ∈ C {ε, x, y}. �

For ε generic, we can also suppose that ω (ε) is equireducible [22]. Finally, let

E (ε) : (M (ε) , D (ε)) →
(
C2, 0

)
, ε ∈

(
CP, ε0

)

be the equisingular family of minimal desingularizations of the foliations F (ε) defined

by ω (ε) . In particular, E (ε) is also an equisingular family of desingularizations of Sd (ε) .

For the sake of simplicity, we consider that ε0 = 0 and we still denote by M, E, F , ω and

Sd respectively the manifold M (0) , the desingularization E (0), the foliation F (0), the

1−form ω (0) and the curve Sd (0).

4.2 Step 2: vanishing of some cohomology

Let
{
Tij

}
ij

be a 1−cocycle in Z1
(
M, TSd

)
. Let us consider the deformation obtained by

the gluing

M
[
e(t)Tij

]
.

Since the flow e(t)Tij leaves globally invariant Sd, the manifold M
[
e(t)Tij

]
admits an

invariant curve topologically equivalent to SE
d. By versality, the so defined topologically

trivial deformation is equivalent to a deformation Sd (ε (t)) for some analytic factoriza-

tion ε (t) : (C, 0) → (
CP, 0

)
. The deformation Sd (ε (t)) is followed by the deformation

of foliations F (ε (t)). Therefore, on the open set M (ε)∗ which is M (ε) deprived of the

singular locus of E (ε)∗ F (ε), the cocycle
{
e(t)Tij

}
ij is equivalent to a cocycle of basic

automorphisms. Thus, there exist a 0−cocycle of automorphism
{
φi (t)

}
i leaving globally

invariant S (ε (t))E(ε(t))
d and D (ε (t)) and a 1−cocycle of basic automorphisms

{
Bij (t)

}
ij

for
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F , such that on M (ε (t))∗, one has

e(t)Tij = φi (t) Bij (t) φ−1
j (t) .

Taking the derivative at t = 0 of the above expression yields to a cohomological relation

on M (0) = M.

Tij = Ti + bij − Tj, (4.2)

where
{
Ti

}
is a 0−cocycle in TSd and

{
bij

}
ij

is a 1−cocycle with values in the sub-sheaf

of basic vector fields for F tangent to Sd, denoted simply by B (F).

Let us denote by � the image sheaf of TSd by the basic operator (3.8) for F with

a given balanced equation F.

The following diagram

(4.3)

is commutative. Since for any 1-cocycle
{
Tij

}
ij

∈ Z1
(
M, TSd

)
, a relation such as (4.2)

exists, one has

Imα ⊂ Imi.

Thus, the composed map B ◦ α is the zero map. The sheaf � on M∗ can be described as

follows:

� = �2
(
2 (F)E − SE

d +
∑

niDi

)
, (4.4)

where D = ∑
Di and the ni’s are some integers depending on F . This sheaf can

be extended analytically on M. The Mayer–Vietoris sequence applied to the covering

{M∗,U} of M where U is an union of some small open balls around each singularity is
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written

· · · → H0 (M∗, �
)⊕

H0 (U , �)
�−→ H0 (M∗ ∩ U , �

)
→ H1 (M, �) → H1 (M∗, �

)⊕
H1 (U , �) → · · ·

The Hartogs’s extension result ensures that � is onto. Moreover, since U can be supposed

to be Stein and � is coherent, we deduce that in the diagram (4.3) the map γ is injective.

The previous lemma and the properties of the diagram (4.3) ensure that the map

H1 (M, TSd

) β−→ H1 (M, �)

is the zero map.

4.3 Step 3: the contradiction

We are going to prove that the fact that the above function β is the zero map leads to a

contradiction with the inequality

ν (F) <

[
ν
(
Sd

)
2

]
.

We recall that F being a balanced equation of F [9, Proposition 3.3], the next relation

holds

ν (F) = ν (F) − 1 + τ (F) ,

where τ (F) is a positive integer called the tangency excess of F [9, Definition 3.2].

Fix a local system of coordinates
(
x1, y1

)
along the 1st blowing-up such that x1 =

0 is a local equation of D1. Suppose first that F is not dicritical along the exceptional

divisor of the blowing-up of its singularity. Then, one has the following inequality

νD

(
E∗

1ω
) = ν (F) = ν (F) − 1 + τ (F) .

Let us suppose that in the coordinates
(
x1, y1

)
the point (0, 0) is singular for

E�
1ω

x
νD(E�

1ω)
1

.

Then in small neighborhood of (0, 0), the 1−form E�
1

ω
F can be written

xτ(F)−1
1

(
(· · · ) dx1 + x1 (· · · ) dy1

)
.
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In particular, for any vector field Y = x1 (· · · ) ∂
∂x1

+ (· · · ) ∂
∂y1

tangent to D1 one has

LYE�
1
ω

F
∧ E�

1
ω

F
= x2τ(F)−1

1 (· · · ) .

Therefore, in the description (4.4), one has

n1 = 1 − 2τ (F) .

Now, in neighborhood of (0, 0) deprived of (0, 0), E�
1

ω
F can be more precisely written

xτ(F)−1
1

(
ya

1 (· · · ) dx1 + x1 (· · · ) dy1

)
for some integer a. Moreover if l stands for an equation of the divisor 2 (F)− Sd, then its

strict transform can be locally written

l1 = yb
1 (· · · ) + x1 (· · · ) .

Finally, if one considers the meromorphic vector field X = x1

y2a+b
1

∂
∂x1

then

β (X) = LXE�
1
ω

F
∧ E�

1
ω

F
= − 2a + b

x1−2τ(F)
1 l1

1

y1
dx1 ∧ dy1 + · · · .

Since β (X) vanishes in H1
(
M1, �2

(
2 (F)E1 − SE1

d + n1D1

))
, Lemma 19 shows that

ν
(
2 (F) − Sd

) ≥ n1,

which implies that

2ν (F) − ν
(
Sd

) ≥ −1.

But ν (F) ≤
[

ν(Sd)
2

]
− 1 gives us

2ν (F) − ν
(
Sd

) ≤ 2

[
ν
(
Sd

)
2

]
− ν

(
Sd

)− 2 < −1,

which is a contradiction.
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Suppose now that F is dicritical along the exceptional divisor of the single

blowing-up of its singularity. Then, one has the following inequality:

νD

(
E∗

1ω
) = ν (F) + 1 = ν (F) + τ (F) .

Let us suppose that in the coordinates
(
x1, y1

)
the point (0, 0) is regular for

E�
1ω

x
νD(E�

1ω)
1

and that l1 has neither a zero nor a pole at (0, 0). Then in small neighborhood of (0, 0)

deprived of (0, 0), the 1−form E�
1

ω
F can be written as

xτ(F)
1 dy1.

In particular, for any vector field Y = x1 (· · · ) ∂
∂x1

+ (· · · ) ∂
∂y1

tangent to D1 one has

LYE�
1
ω

F
∧ E�

1
ω

F
= x2τ(F)

1 (· · · ) .

Therefore, in the description (4.4), one has

n1 = −2τ (F) .

If one considers the vector field X = x1
y1

∂
∂y1

, then

β (X) = LXE�
1
ω

F
∧ E�

1
ω

F
= 1

l1 (0, 0) x−2τ(F)
1

1

y1
dx1 ∧ dy1 + · · · .

Since β (X) vanishes, Lemma 19 shows again that

2ν (F) − ν
(
Sd

) ≥ −2τ (F) ⇐⇒ 2ν (F) − ν
(
Sd

) ≥ −2.

If ν (F) ≤
[

ν(Sd)
2

]
− 2 then we are led to a contradiction. Suppose that ν (F) =

[
ν(Sd)

2

]
− 1.

If ν
(
Sd

)
is odd then

2ν (F) − ν
(
Sd

) = 2

(
ν
(
Sd

)− 1

2
− 1

)
− ν

(
Sd

) = −3,

which is still a contradiction. Suppose that ν
(
Sd

)
is even. Then, ν (F) = ν(Sd)

2 − 1. The

multiplicity ν (F) being as small as possible in �1
(
Sd

)
, a basis of �1

(
Sd

)
can be written
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{
ω1, ω2

}
with

ν
(
Sd

)
2

− 1 = ν
(
ω1

) ≤ ν
(
ω2

)
andν

(
ω1

)+ ν
(
ω2

) ≤ ν
(
Sd

)
.

Thus, there are only three possibilities for ν
(
ω2

)
:

• if ν
(
ω2

) = ν(Sd)
2 +1, then any 1-form ω of multiplicity ν(Sd)

2 in �1
(
Sd

)
is written

ω = aω1 + bω2,

where a is a function of multiplicity 1 and b is any function. In particular,

its jet of smallest order is written

(a)1 · (ω1

)
ν(Sd)

2 −1
,

where (�)i stands for the jet of order i. Thus, as ω1 is dicritical along the

exceptional divisor of the single blowing-up of its singularity, ω is also. This

would imply that any element of multiplicity ν(Sd)
2 in the Saito module has

this property. This is a contradiction with Theorem 2;

• if ν
(
ω2

) = ν(Sd)
2 or ν

(
ω2

) = ν(Sd)
2 − 1 then using the criterion of Saito we have

(
ω1

)
ν(ω1)

∧ (
ω2

)
ν(ω2)

= 0.

Therefore, ω2 is dicritical after one blowing-up. If ν
(
ω2

) = ν(Sd)
2 then any

1−form of multiplicity ν(Sd)
2 is dicritical, which is impossible. If ν

(
ω2

) =
ν(Sd)

2 − 1, let us write

ω1 = P1ωr + · · ·
ω2 = P2ωr + · · · ,

where ωr = xdy − ydx. Consider ω in the module of Saito with multiplicity
ν(Sd)

2 . It can be written

ω = aω1 + bω2 = (
aP1 + bP2

)
ωr + · · · .

If ν (a) = 0 or ν (b) = 0 then ν (ω) = ν(Sd)
2 − 1 unless there exists a non

vanishing constant C such that P2 = CP1. But in that latter case
{
ω1, ω2 − Cω1

}
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is still a basis of the module of Saito with ν
(
ω2 − Cω1

)
>

ν(Sd)
2 −1 which leads

to a case already treated. Thus, ν (a) ≥ 1 and ν (b) ≥ 1 and necessarily, ω is

dicritical along the exceptional divisor of one blowing-up. As before, any 1-

form of multiplicity ν(Sd)
2 would be dicritical along the exceptional divisor of

the blowing-up of its singularity, which is impossible.

This completes the proof of the 1st part of Theorem 1, and thus for S generic, we prove

that

min
ω∈�1(Sd)

ν (ω) =
[

ν
(
Sd

)
2

]
. (4.5)

4.4 Step 4: existence of a balanced basis

Let us prove now the existence of a balanced basis for �1
(
Sd

)
.

Let us suppose first that ν
(
Sd

)
is even. Consider a basis

{
ω1, ω2

}
of �1

(
Sd

)
.

According to (4.5) there are some 1-forms with multiplicity ν(Sd)
2 in �1

(
Sd

)
. Hence,

at least one of the forms in the basis, say ω1, has a multiplicity equal to ν(Sd)
2 . The

multiplicity of ω2 is greater or equal to ν(Sd)
2 . If it is equal, then the basis is balanced. If

not,
{
ω1, ω1 + ω2

}
is still a basis and is balanced.

Suppose now that ν
(
Sd

)
is odd. If the direction of Sd is empty or contains one

component, let us consider S̃ = Sd ∪ L where L is a smooth curve transverse to the

direction of Sd. Since the multiplicity of S̃ is even, according to the previous case, the

module �1
(
S̃
)

admits a balanced basis. Therefore, there exists a couple a 1−forms{
ω1, ω2

}
of multiplicity ν(Sd)+1

2 such that

ω1 ∧ ω2 = ulf dx ∧ dy, u (0) �= 0,

where l is an irreducible equation of L and f a reduced equation of Sd. Now, according

to (4.5), there exists ω tangent to Sd such that ν (ω) = ν(Sd)−1
2 . The 1-form lω is tangent to

S̃. Hence, there exist two germs of functions a1 and a2 such that

lω = a1ω1 + a2ω2.

The functions a1 and a2 cannot both vanish. Suppose by symmetry that a1 does not

vanish, then
{
lω, ω2

}
is a basis of �1

(
S̃
)

.Thus,

lω ∧ ω2 = vlf dx ∧ dy, v (0) �= 0.
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Dividing by l the above expression leads to the criterion of Saito for the balanced basis{
ω, ω2

}
of �1

(
Sd

)
.

If the direction of Sd contains two components L1 and L2, then let us consider

S̃ = S ∪ L1. The module �1
(
S̃
)

admits a balanced basis
{
ω1, ω2

}
with ν

(
ω1

) = ν
(
ω2

) =[
ν
(
S̃
)

2

]
= ν(S)+1

2 . Now, there exists ω in �1
(
Sd

)
with ν (ω) =

[
ν(Sd)

2

]
= ν(S)+1

2 . Since ω is

also tangent to S ∪ L1, there exist two functions a1 and a2 such that

ω = a1ω1 + a2ω2.

The functions a1 and a2 cannot both vanish so we can suppose that a1 (0) �= 0. The

family
{
ω, ω2

}
is still a basis of �1

(
S̃
)

that satisfies

ω ∧ ω2 = wfl1dx ∧ dy, w (0) �= 0.

Thus, multiplying by l2 leads to

ω ∧ l2ω2 = wfl1l2dx ∧ dy, w (0) �= 0

and
{
ω, l2ω2

}
is a balanced basis of �1

(
Sd

)
.

This ends the proof of Theorem 1.
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