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Abstract. In this article, we construct an algorithm to compute the number
of the moduli of a germ of complex plane curve.

1. Introduction.

The number of moduli of a germ of curve in the complex plane. A germ
of curve C in the complex plane is the zero locus of a germ of analytical reduced
function f (x, y) ∈ C {x, y}

C = {f (x, y) = 0} .
Such a curve can be classi�ed up to continuous or analytic conjugacies of the ambi-
ent space

(
C2, 0

)
. The quotient of its equisingularity class Top (C) up to analytic

conjugacies can be endowed with a structure of complex variety, yet not Hausdor�
[4, 8] , and the dimension of this variety is precisely what we refer to as the number
of moduli of C.

The problem of the determination of the number of moduli of a germ of complex
plane curve goes back to the work of S. Ebey in 1965 [4] who computed the number
of moduli for a particular equisingularity class of curve, namely, the one given by
the equation y5 = x9. A few years after in 1973, O. Zariski in his seminal notes [29]
focused on the case of a curve with only one irreducible component. The topological
classi�cation of an irreducible curve is well known and relies on a semi-group of
integers extensively studied by Zariski himself in the 70s. Zariski proposed various
approaches to obtain the number of moduli for irreducible curves beyond the case
treated by Ebey. He introduced most of the concepts on which the forthcoming
works relied. However, at this time, the analytical classi�cation was a widely open
question, even in the irreducible case. In 1978, C. Delorme [3] studied extensively
the case of an irreducible curve with one Puiseux pair and established some formulas
to compute the number of moduli. In 1979, M. Granger [12] and later, in 1988,
J. Briançon, Granger and Ph. Maisonobe [1] produced an algorithm to compute
the number of moduli for a non irreducible quasi-homogeneous curve de�ned by
xm + yn = 0 �rst, for m and n relatively prime, and then in the general case. The
common denominator of the two previous works is the algorithmic approach based
upon arithmetic properties of the continuous fraction expansion associated to the
pair (m,n) . In 1988, O.A. Laudal, B. Martin and G. P�ster in [19], improved the
work of Delorme and gave an explicit description of a universal family for curves
with one Puiseux pair and a strati�cation of their moduli space. Finally, in 1998,
R. Peraire exhibited an algorithm in [25] to compute the Tjurina number of a
curve in its generic component, which is linked to the dimension of the number of
moduli. Up to our knowledge, the initial question of the analytic classi�cation can
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be today considered as mostly solved by a combination of the works of A. Hefez
and M.E. Hernandes [14, 15, 16] in 2010 who adressed the irreducible case and very
recently of M.E. Hernandes and M.E. Rodrigues Hernandes [17] for the general case
: these works provide a normal form type result for a given equisingularity class of
curve. Nevertheless, the extraction of the sole number of moduli form their very
�ne constructions can be quite involved, as it can be seen in the last example of
[17]. From the algorithmic point of view, the approaches are based upon Gröbner
basis like routine, which are known to be in general of high complexity.

In 2010 and 2011, in [9, 10], with E. Paul, we described the moduli space of a topo-
logically quasi-homogeneous curve C as the spaces of leaves of an algebraic foliation
de�ned on the moduli space of a foliation whose analytic invariant curve is precisely
C. These works initiated an approach based upon the theory of foliations, which is
at stake here. In 2022, in [6], we gave an explicit formula for the number of moduli
for an irreducible curve : this formula involves only very elementary topological
invariants of the curve, such as, the topological class of its desingularization. In [7],
we studied the reducible case and constructed an algorithm to compute the number
of moduli of a curve and proved that this algorithm yields the desired number under
the assumption that this curve is a union of smooth curves.

The goal of the current article is to prove that the algorithm mentioned above pro-
vides the expected number of moduli in any case. The complexity of this algorithm
is linear in the length of the desingularization of the curve.

The algorithm. Let C be a curve and E :
(
C̃2, D

)
→

(
C2, 0

)
be its desingular-

ization : it is a composition E = E1 ◦ · · · ◦EN of elementary blowing-ups of points.
According to [22], if C is any curve generic in its equisingularity class, its number
of moduli, denoted by MC , is equal to the dimension of the cohomological space

MC = dimC H1 (D,Θ)

where Θ is the sheaf of germs of vector �elds on C̃2 tangent to the total transform
E−1 (C). Indeed, the �rst group of cohomology of the sheaf Θ can be identi�ed
as the tangent space to the space of parameters of any miniversal deformation of
C. This dimension can be inductively computed along the desingularization of C
following the result below.

Theorem ([6, 7]). The number of moduli MC is written

MC = dimC H1
(
D1, Θ|D1

)
+

∑
k

MCk∪D1

where Θ|D1
is the sheaf of germs of vector �elds on the total space of E1 tangent

to E−1
1 (C) and the Ck's are the connected components of E−1

1 (C \ {0}).

The algorithm which provides the number of moduli is based upon the following
remark : we can compute the dimension dimC H1

(
D1, Θ|D1

)
using a study of the

Saito module of C, denoted by Der (logC), that is the set of vectors �elds tangent to
C. More precisely, this dimension can be expressed using mainly the Saito number
sC of C de�ned by

sC = min
X∈Der(logC)

ν (X)
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where ν (·) is the standard valuation and an optimal vector �eld X for C, that is, a
vector �eld reaching the minimum above. As an illustration, we quote the following
result from [8, Proposition 3.15]

Proposition ([8]). If C is generic in its equisingularity class and E−1
1 (X) leaves

generically invariant D1 where X is an optimal vector �eld for C, then

dimC H1
(
D1, Θ|D1

)
=

{
(sC − 1) (sC − 2) if ν (C) is even

(sC − 1)
2

if not.

Saito vector �eld. As a matter of fact, for a given curve C there is a lot of
optimal vector �elds with various topologies. In order to select among them a
better optimal vector �eld, we are going to require that not only X is optimal for
C but also that for any k, E−1

1 (X) is optimal for Ck ∪ D1 and �nally, that this
property of optimality propagates all along the desingularization process of C. Such
a vector �eld will be said Saito for C. Not only is there a priori no reason for such
a vector �eld to be indeed exceptional among the simply optimal vector �elds, but
there is no reason also that such a vector �eld exists.

The main goal of this article is to prove that a curve C, generic in its equisingularity
class, always admits a Saito vector �eld, and that the topology of this vector �eld
is somehow unique. More precisely, we will prove the following result

Theorem. Let C be a curve generic in its equisingularity class. Then C admits a
Saito vector �eld X. Moreover, let A be the dual tree of the desingularization process
E of C. We number a vertex s of A by the number of tangency point between the
irreducible component Ds of the exceptional divisor of E corresponding to s and
the pull-back vector �eld E−1 (X). Besides, we color a vertex s in white if Ds is
invariant by E−1 (X), otherwise we color it in black. Then, the colored numbered
tree A does not depend on X.

The article is divided in three sections. The �rst can be red independently : it
focuses on a technical combinatorial result on trees. This result is a key element to
describe the topology of the Saito vector �eld of C. More precisely, the result of the
�rst section provides a guide to apply a recipe developped by A. Lins-Neto in [20]
in order to build singular vector �elds or foliations from local data in a blowing-up
process. We control the topology of the resulting vector �eld and, in particular, its
valuations along the initial desingularization of C, which ensures the Saito property.
It remains to guarantee that the invariant curve of the obtained vector �eld is indeed
generic in its equisingularity class : it is achieved by considering a deformation of
the Saito vector �eld toward a vector �eld tangent to a curve that is actually generic
in its equisingularity class. This last approach derives from technics established by
X. Gomez-Mont in [11].

The �nal section focuses on examples : the Saito vector �eld of the double cusp,
the number of moduli of a certain non irreducible curves and an application to the
computation of the generic Tjurina number of a curve.

2. Saito dicriticity of an ordered numbered tree.

Let A be a tree. We can endow A with a partial order ≤ de�ned following an
inductive description of A : starting from a single vertex r, if (A,≤) is de�ned, one
can add a vertex to A following one of the two next rules
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Figure 2.1. Inductive construction of the partial order ≤ on A.

(1) a vertex s and an edge from s to a single vertex c are added to A. The
order ≤ is extended to A ∪ {s} setting s ≥ c.

(2) a vertex s is added to A deleting an egde from c to c′ and adding two edges
from s to c and from s to c′. The order is extended setting s ≥ c and s ≥ c′.

The vertex r is the minimal element of (A,≤) and is called the root of A. In the
sequel, in general, we will make no distinction between A and the set of vertices of
A.
We will denote by n = (nc)c∈A a numbering of the vertices of A by non negative

integers. We will also consider an element ∆ = (∆c)c∈A in {0, 1}A . The latter is
called a dicriticity for A. It induces a coloring of the tree A: if ∆c = 1 the vertex c
is colored in white, if not, it is colored in black.

Finally, the notation

⌊
a
b
c

stands for the the following :

⌊
a
b
c

=

{
a if c is even
b else

De�nition 1. In what follows, c stands for a vertex of A.

(1) We denote by pc the set of parents of c that is the set of predecessors of c
for the partial order ≤. Notice that pr = ∅ ; in any other cases, pc contains
one or two elements.

(1) Following [27], �xing a numbering {1, . . . , N} of the vertices such that i ∈
pj =⇒ i ≤ j, we consider the proximity matrix P of (A,≤) de�ned by

Pi,i = 1
Pi,j = −1 if i ∈ pj
Pi,j = 0 else.

.

It is an upper triangular invertible matrix.
(2) If n is numbering of A, then c · n is the numbering de�ned by

(c · n)c = nc + 1

and (c · n)c′ = nc′ if c
′ ̸= c.

(3) In what follows, vc denotes the set of neighbours of c in A, that is the set
of vertices of A connected to c.
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(4) We called the multiplicity of c in A the positive integer, denoted by ρc
obtained inductively as follows : ρr = 1, and if c ̸= r then

ρc =
∑
c′∈pc

ρc′ .

(5) We denote by δc the number of parents c′ of c such that ∆c′ = 1. In
particular, this number depends not only on A but also on a dicriticity ∆.

(6) We called the valuation of c the number denoted by νnc and de�ned by the
matrix relation

(νnc )c∈A = P−1 (nc)c∈A .

In particular, from [27], it follows that

νnr =
∑
c∈A

ρcnc

(7) The square index of c is de�ned by

□c =
δc
2

−
⌊

∆c
1
2

νn
c −δc

.

(8) If c and c′ belong to A, we de�ned the acces tree from c to c′ the minimal
subgraph of A that from c, leads to c′ respecting the order ≤ . It is denoted
by

cAc′ .

If c = r is the root of A, then it is simply denoted by

Ac′ .

If ρc′ = 1 then the access tree Ac′ is a totally ordered linear chain of vertices
whose multiplicities are equal to 1 as in Figure 2.2. The proximity matrix
of this sub-graph is written

1 −1
1 −1

. . . −1
1



Figure 2.2. Acces tree from r to c′ with ρc′ = 1.

(9) We denote by ϵ = (ϵc)c∈A the family of integers de�ned by the following
matrix relation

(ϵc)c∈A = P
(
1

2
(νnc )c∈A − (□c)c∈A

)
=

(nc

2

)
c∈A

− P
(
(□c)c∈A

)
.

This uple of integers is called the con�guration associated to the dicriticity
∆.
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Figure 2.3. An ordered tree, its numbering and its dicriticity.

Example 2. Let us consider the tree represented in Figure (2.3).

In this example, the proximity matrix is written

P =


1 −1 −1 −1
0 1 0 0
0 0 1 −1
0 0 0 1

 .

The numbering is n = (0, 2, 1, 2) and is represented in Figure (2.3) by dots attached
to the vertices. We have

p1 = ∅, p2 = {1} , p3 = {1} , p4 = {1, 3}
v1 = {2, 4} , v2 = {1} , v4 = {1, 3} , v3 = {4} .

The partial order induced on A by the rules of construction is

1 ≤ 2, 1 ≤ 3 ≤ 4.

The multiplicities are

ρ1 = 1, ρ2 = 1, ρ3 = 1, ρ4 = 2.

Given the numbering n, the valuations are
ν1
ν2
ν3
ν4

 = P−1


0
2
1
2

 =


1 1 1 2
0 1 0 0
0 0 1 1
0 0 0 1




0
2
1
2

 =


7
2
3
2

 .

Now, assuming the dicriticity is ∆ = (1, 0, 1, 0) as in the �gure, we obtain

δ1 = 0, δ2 = 1, δ3 = 1, δ4 = 2

and

□1 = 0
2 −

⌊
1
1
2

7−0

= − 1
2 , □2 = 1

2 −
⌊

0
1
2

2−1

= 0

□3 = 1
2 −

⌊
1
1
2

3−1

= − 1
2 , □4 = 2

2 −
⌊

0
1
2

2−2

= 1.
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Finally, the con�guration ϵ is computed as follows
ϵ1
ϵ2
ϵ3
ϵ4

 =
1

2


0
2
1
2

−


1 −1 −1 −1
0 1 0 0
0 0 1 −1
0 0 0 1




− 1
2
0
− 1

2
1

 =


1
1
2
0

 .

As it can be seen in the previous example, from any dicriticity ∆, one can compute
a con�guration ϵ following De�nition 1.9. However, adding some constraints yields
a unicity type result.

Theorem 3. Consider a numbering n of A. There exists a unique dicriticity,
denoted by ∆n = (∆n

c )c∈A such that the associated con�guration ϵn satis�es the
following relations

(1) if ∆n
c = 0, then ϵnc ≥ 2−

∑
c′∈vc

∆n
c′

(2) if ∆n
c = 1, then ϵnc ≥ nc.

Such a dicriticity is said admissible and is called the Saito dicriticity of A numbered
by n. The exponent n appearing on any data in the sequel will mean that these datas
are associated to the Saito dicriticity for a given numbering n.

Moreover, the following properties hold

(A) We de�ne by n
AΘ

01
c the following invariant

n
AΘ

01
c =

∑
s∈Ac

□n
s +□c·n

s .

If ρc = 1 then we obtain

(2.1) n
AΘ

01
c = −∆n

c1 −
∣∣Ac1

∣∣
2

where |⋆| denotes the number of vertices in the subtree ⋆.
(B) Let c0, c1 ∈ A. We de�ne by n

AΘ
02
c0,c1 and n

AΘ
11
c0,c1 the following invariants

n
AΘ

02
c0,c1 =

∑
s∈Ac1

□n
s +□c1·c0·n

s

n
AΘ

11
c0,c1 =

∑
s∈Ac1

□c0·n
s +□c1·n

s .

If c0 and c1 satisfy both ρc0 = ρc1 = 1 then we have

n
AΘ

02
c0,c1 = ±1

2
−∆n

c1 −
∣∣Ac1

∣∣
2

(2.2)

n
AΘ

11
c0,c1 = ±1

2
−∆n

c1 −
∣∣Ac1

∣∣
2

(2.3)

(C) Let c be a vertex of A such that ρc = 1. We say that the access tree Ac

starts with a mixed branch if there exists a vertex mc ∈ Ac maximal for
this property such that for any s ∈ Amc , one has

∆n
s +∆c·n

s = 1.

It may happen that mc = c. If not, let us denote by m+
c the vertex of A

which succeeds mc in Ac. Depending on the type the mixed branch, Table
(1) presents some properties of the valuations νr and νm+

c
. In this table,
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νr νm+
c

odd even

even odd

even even

odd odd

νr νm+
c

odd odd

even even

even odd

odd even

Table 1. The valuations νr and νm+
c
along a mixed branch.

|Ac| > 1 νr

odd

even

impossible

impossible

|Ac| = 1 νr

odd

even

Table 2. The valuation νr along a pure mixed branch.

a picture such as represents the two Saito dicriticities along
Ac respectively, above for the numbering c and below for the numbering
c · n. Besides, if mc = c, Table (2) presents properties on the valuations
νr depending also on the type of what is called in that case a pure mixed
branch.

(D) Finally, for each connected component K of the sub-graph A\{c ∈ A|∆n
c = 0} ,

there exists c ∈ K with ϵnc > 0.

The main statement of Theorem 3 has already been proved in [7] for the particular
case of a tree A for which ρc = 1 for any c ∈ A.

Example 4. Let us consider the cusp tree, that is the tree in Figure 2.4 numbered
by n1 = n2 = 0 and n3 = 1. The order is de�ned by the relations 1 ≤ 2 and 1 ≤ 3.

The proximity matrix is

P =

 1 −1 −1
0 1 −1
0 0 1


Figure 2.4 presents also the associated Saito dicriticity represented by the coloring.

Table 3 shows the various con�gurations obtained from the 8 = 23 possible di-
criticities on A. For each con�guration, we highlight by the notation ⟨·⟩ a part of
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Figure 2.4. The cusp tree and its Saito dicriticity

∆ = (∆1,∆2,∆3) ϵ = (ϵ1, ϵ2,ϵ3)
0, 0, 0 ⟨−1⟩ , 0, 1
0, 0, 1 ⟨−1⟩ , 0, 1
0, 1, 0 ⟨0⟩ , 1, 1
0, 1, 1 ⟨−1⟩ , 0, 1
1, 0, 0 2, ⟨0⟩ , 0
1, 0, 1 2, ⟨0⟩ , 1
1, 1, 0 1, 1, 0

1, 1, 1 1, 1, ⟨0⟩
Table 3. Dicriticities and con�gurations for the cusp tree num-
bered by (0, 0, 1) .

the con�guration that violates one of the admissibility conditions. At the end, the
unique and thus Saito dicriticity that satis�es all the three admissibility conditions
is (1, 1, 0) for which

ϵ1 = 1 ≥ 0, ∆1 = 1

ϵ2 = 1 ≥ 0, ∆2 = 1

ϵ3 = 0 ≥ 2−∆1 −∆2, ∆3 = 0.

Notice that, 1 and 2 are two components of A \ {3} for which ϵ1 > 0 and ϵ2 > 0, as
predicted by the property (D) of Theorem 3.

Example 5. Suppose that A is a tree reduced to two vertices. Its proximity matrix
is

P =

(
1 −1
0 1

)
.

Figure 2.5 presents the Saito dicriticity∆ = (⋆, ⋆) ∈ {0, 1}2 depending on the values
n1 and n2.

Let c ∈ A. Along the row associated to c in the matrix P, any occurrence of a
coe�cient −1 corresponds to a vertex that belongs to the access tree from r to v
for some v in the neighborhood vr. This remark leads to the following expression
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Figure 2.5. Unique admissible choice of ∆ = (∆1,∆2) .

of ϵc that is going to be used extensively in the sequel,

ϵc =
nc

2
−□c +

∑
v∈vc

∑
s∈cAv\{c}

□s.

=
nc

2
− δc

2
+

⌊
∆c
1
2

νn
c −δc

+
∑
v∈vc

∑
s∈cAv\{c}

δs
2

−
⌊

∆s
1
2

νn
s −δs

.(2.4)

Proof of Theorem 3. The proof is, as a whole, an induction on the number of ver-
tices in A.
Suppose that |A| = 1. The proximity matrix is P = (1) and the numbering n =
(nr) . In view of (2.4), we get

ϵr =
nr

2
−□r =

nr

2
−

δr
2

−
⌊

∆r
1
2

νn
r −δr


=

nr

2
+

⌊
∆r
1
2

nr

since δr = 0 and νnr = nr. Suppose nr = 0, 1 or 2. Then it can be seen that ∆r = 0
is not admissible, since it would impose that ϵr ≥ 2, which is not true. However, if
∆r = 1, for nr = 0, 1 or 2, we have respectively ϵr = 1, 1 and 2 that always satis�es
ϵr ≥ nr. Thus for nr = 0, 1 or 2, the Saito dicriticity is de�ned by ∆nr

r = 1. To the
contrary, if nr ≥ 3 then

ϵr ≤ nr

2
+ 1 < nr

thus ∆r = 1 is not an admissible dicriticity. However, ∆nr
r = 0 is admissible since

ϵr =
nr

2
+

⌊
0
1
2

nr

≥ 2,

which concludes the proof of the main property of Theorem 3 for |A| = 1.
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Now consider property (A) and the invariant nr

AΘ
01
r . By specifying the de�nition,

we obtain

n
AΘ

01
r = □n

r +□r·n
r

=
δnr
2

−
⌊

∆n
r
1
2

νn
r −δnr

+
δr·nr

2
−
⌊

∆r·n
r
1
2

νr·n
r −δnr

Notice that δnr = δr·nr = 0, νnr = nr and νr·nr = nr + 1. Consequently, this gives

n
AΘ

01
r = −

⌊
∆n

r
1
2

nr

−
⌊

∆r·n
r
1
2

nr+1

= −1

2
−
⌊

∆n
r

∆r·n
r

nr

If nr = 0 or 1 then ∆n
r = ∆r·n

r = 1 and thus the invariant is written

n
AΘ

01
r = −3

2
= −|Ar|

2
−∆n

r .

If nr ≥ 3 then ∆n
r = ∆r·n

r = 0 which induces

n
AΘ

01
r = −1

2
= −|Ar|

2
−∆n

r .

Finally, if nr = 2 then ∆n
r = 1 and ∆r·n

r = 0 and hence

⌊
∆n

r

∆r·n
r

nr

= 1. Therefore, it

follows

n
AΘ

01
r = −3

2
= −|Ar|

2
−∆n

r .

Consequently, formula (2.1) is true for |A| = 1. Now, the invariant n
AΘ

02
r,r is written

n
AΘ

02
r,r = □n

r +□r·r·n
r = −

⌊
∆n

r
1
2

nr

−
⌊

∆r·r·n
r
1
2

nr+2

= −
⌊

∆n
r +∆r·r·n

r

1
nr

.

If nr = 0 then it reduces to

−
⌊

∆n
r +∆r·r·n

r

1
nr

= −2 = −1

2
− |Ar|

2
−∆n

r .

If nr = 1, 2 then we obtain

−
⌊

∆n
r +∆r·r·n

r

1
nr

= −1 =
1

2
− |Ar|

2
−∆n

r .

Finally, if nr ≥ 3, then we get

−
⌊

∆n
r +∆r·r·n

r

1
nr

= −
⌊

0
1

nr

= ±1

2
− |Ar|

2
−∆n

r ,

thus formula (2.2) holds. We continue in this fashion obtaining the invariant n
AΘ

11
r,r,

n
AΘ

11
r,r = □r·n

r +□r·n
r = −

⌊
2∆r·n

r

1
nr+1

.
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If nr = 0, 1, 2 then ± 1
2 − |Ar|

2 − ∆n
r = −2 or − 1. This implies (2.3). If nr ≥ 3,

then we get

−
⌊

2∆r·n
r

1
nr+1

= −
⌊

0
1

nr+1

= ±1

2
− |Ar|

2
−∆n

r ,

which completes the proof of formula (2.3). For |A| = 1, there are only pure mixed
branches of length one. It is enough to refer to the computations above to obtain
the following correspondance : for A = {r}, we get

n = (nr) 0 1 2 ≥ 3
∆n

r 1 1 1 0
,

which ensures the properties in Table (2). To conclude the case |A| = 1,we observe
that Property (D) follows from the computations of ϵnr for nr = 0, 1 and 2.

Now, we are going to prove inductively the main property of Theorem 3 from the
theorem itself and Property (A). Let us consider the |vr| graphs obtained as the
connected components of A \ {r}. We index these graphs by vr itself by denoting
each connected component Ac for c ∈ vr. Each tree Ac inherits an order from the
one of A. Let us consider two di�erent numberings of each component Ac, c ∈ vr.
In the sequel, we refer to these two di�erent numbered trees by the notation A⋆,ν

with ⋆ = 0 or 1.

• ⋆ = 0, A0,c = Ac numbered by the integer n0 =
(
n0
s

)
s∈A0,c with n0

s = ns for

s ∈ A0,c.
• ⋆ = 1, A1,c = Ac but numbered by the integer n1 =

(
n1
s

)
s∈A1,c with n1

s = ns

for c ̸= s ∈ A1,c, and n1
c = nc + 1.

Note that by construction the tree A is obtained by gluing the family of trees
(A⋆,c)c∈vr

with ⋆ = 0 or 1 along the vertex r adding an edge between each vertex
c and the root r. Each vertex s belongs exactly to one of the trees A⋆,c. Applying
the main property of Theorem 3 to each numbered tree A⋆,c, we obtain a family
of dicriticities ∆⋆,c, that consists in the family of unique Saito dicriticities of the
numbered trees A⋆,c. As a result, we can de�ne two new distinct dicriticities on the
whole tree A induced by the ∆⋆,c, c ∈ vr the following way :

• ∆1, ∆1
r = 1 and for any s ̸= r ∆1

s = ∆1,c
s if s ∈ A1,c.

• ∆0, ∆0
r = 0 and for any s ̸= r ∆0

s = ∆0,c
s if s ∈ A0,c.

We claim that both dicriticities ∆0 or ∆1 satisfy the admissibility conditions for
the vertices s ∈ A\{r} . Indeed, let us denote ⋆⋆,c the combinatorial datas resulting
from Theorem 3 applied to each numbered tree A⋆,c. We also denote simply by
⋆0 or 1 the combinatorial datas associated respectively to the dicriticities ∆0 or ∆1.

Let us focus �rst on the dicriticity ∆1. For c ∈ vr and s ∈ A1,c, we get

(2.5)
if s /∈ A1,c

c \ {r} , ν1,cs = ν1s , δ1,cs = δ1s
if s ∈ A1,c

c \ {r} , ν1,cs = ν1s + 1, δ1,cs = δ1s − 1

Note that in any case, ν1,cs −δ1,cs and ν1s −δ1s have the same parity. If s /∈ A1,c
c \{r},

relations (2.5) combined with the construction of ∆1 ensures that ϵ1,cs = ϵ1s.
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If s ∈ A1,c
c \ {r} and s ̸= c then we obtain

ϵ1,cs =
ns

2
−□1,c

s +
∑
v∈vs

∑
u∈sAv\{s}

□1,c
u

=
ns

2
−□1,c

s +□1,c
c +

∑
v∈vs

∑
u̸=c∈sAv\{s}

□1,c
u

=
ns

2
− −1 + δ1s

2
+

⌊
∆1

s
1
2

ν1,c
s −δ1,cs

+
−1 + δ1c

2
−

⌊
∆1

c
1
2

ν1,c
c −δ1,cc

+
∑
v∈vs

∑
u̸=c∈sAv\{s}

□1,c
u

=
ns

2
− δ1s

2
+

⌊
∆1

s
1
2

ν1
s−δ1s

+
δ1c
2

−
⌊

∆1
c

1
2

ν1
c−δ1c

+
∑
v∈vs

∑
u ̸=c∈sAv\{s}

□1
u

= ϵ1s.

If s = c, it follows from the numbering of A1,c that

ϵ1,cc =
nc + 1

2
−□1,c

c +
∑
v∈vc

∑
u∈sAv\{s}

□1,c
u

=
nc + 1

2
− δ1,cc

2
+

⌊
∆1,c

c
1
2

ν1,c
c −δ1,cc

+
∑
v∈vc

∑
u∈cAv\{c}

□1,c
u

=
nc + 1

2
− −1 + δ1c

2
+

⌊
∆1

c
1
2

ν1
c−δ1c

+
∑
v∈vc

∑
u∈cAv\{c}

□1
u

=ϵ1c + 1.

Since the con�guration
(
ϵ1,c

)
s
is admissible for A1,c, ϵ1s sati�es the admissibility

conditions for s ̸= c. For s = c, if ∆1
c = 1 then we get the following inequality

ϵ1c = ϵ1,cc − 1 ≥ n1
c + 1− 1 ≥ n1

c ,

and if ∆1
c = 0 then the relation becomes

ϵ1c = ϵ1,cc − 1 ≥

2−
∑

s∈vc\{c}

∆1,c
s

− 1

≥

2−
∑

s∈vc\{c}

∆1
s

−∆1
r

≥ 2−
∑
s∈vc

∆1
s.

Thus, in any case, the con�guration ϵ1 is admissible for s ̸= r. Using much the
same computations, we can prove that ϵ0 is also admissible for s ̸= r.
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However, we are going to prove that exactly one dicriticity among ∆0 and ∆1

satis�es the admissibility condition for s = r. Indeed, we have

ϵ0r + ϵ1r =
nr

2
−□0

r +

∑
v∈vr

∑
s∈Av\{r}

□0
s

+
nr

2
−□1

r +

∑
v∈vc

∑
s∈cAv\{c}

□1
s


= nr +

⌊
0
1
2

νr

+

⌊
1
1
2

νr

+
∑
v∈vr

∑
s∈Av\{r}

□0
s +□1

s

= nr + 1 +
∑
v∈vr

∑
s∈Av\{r}

□0
s +□1

s.

Now, if v ∈ vr and s ∈ rAv \ {r} one has

□0
s +□1

s =
δ0s
2

−
⌊

∆0
s

1
2

ν0
s−δ0s

+
δ1s
2

−
⌊

∆1
s

1
2

ν1
s−δ1s

The construction of ∆⋆ and the relations (2.5) force

□0
s +□1

s =
1

2
+□0,s

s +□1,s
s

which leads to

ϵ0r + ϵ1r = nr + 1 +
∑
v∈vr

∑
s∈Av\{r}

1

2
+□0,s

s +□1,s
s

= nr + 1 +
∑
v∈vr

|Av \ {r}|
2

+ n
A0,vΘ01

v

Notice that in the tree A0,ν the vertex ν is of multiplicity 1. Property (A) gives
the relation

n
A0,νΘ01

ν = −|Av \ {r}|
2

−∆0
v.

and the sum ϵ0r + ϵ1r reduces to

ϵ0r + ϵ1r = nr + 1−
∑
v∈vr

∆0
v.

Finally, the above equality ensures that one of the two conditions

ϵ1r ≥ nr or ϵ0r ≥ 2−
∑
v∈vr

∆0
v

holds but not both. As a consequence, either ∆1 or ∆0 is admissible for s = r, but
not both. That concludes the proof of the main property of Theorem 3 for the tree
A.
Now, we are going to prove property (A) inductively from (A) and (C). Suppose

�rst that the Saito dicricities respectively associated to n and c · n start with
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, then the invariant n
AΘ

01
c is written

n
AΘ

01
c =

∑
s∈Ac

□n
s +□c·n

s

= □n
r +□c·n

r +
∑

s∈Ac, s ̸=r

□n
s +□c·n

s

= −
⌊

1
1
2

νn
r

−
⌊

1
1
2

νn
r +1

+
δnr+

2
+

δc·nr+

2︸ ︷︷ ︸
=1

−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s ̸=r

□n
s +□c·n

s

= −1

2
−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s ̸=r

□n
s +□c·n

s

where r+ is the successor of r in the branch Ac. Consider the tree Ar+connected
composent of r+ in A\{r}. The inherited order of Ar+ makes of r+ its root. Let s0
be the vertex in the neighbobrhood vr of r in A such that s0 ≥ r+. Note that from

the unicity statement of Theorem 3 inductively applied to Ar+ , the dicriticity of

Ar+ inherited from the Saito dicriticity of A numbered by n is the Saito dicriticity

of Ar+ numbered by the numbering inherited from the s0 ·n. Applying inductively
property (A) to the tree Ar+ , we get

−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s̸=r

□n
s +□c·n

s =
∑

s∈Ar+
c,

□s0·n
s +□c·s0·n

s

= s0·n
Ar+

Θ01
c

= −|Ac| − 1

2
−∆s0·n

c .

Combining the two above relations, we are lead to

n
AΘ

01
c = −1

2
− |Ac| − 1

2
−∆s0·n

c = −|Ac|
2

−∆n
c ,

which is property (A). Now, if the Saito dicricities associated to n and c · n start

with , then the invariant n
AΘ

01
c becomes

n
AΘ

01
c =

∑
s∈Ac

□n
s +□c·n

s

= □n
r +□c·n

r +
∑

s∈Ac, s ̸=r

□n
s +□c·n

s

= −
⌊

0
1
2

νn
r

−
⌊

0
1
2

νn
r +1

+
δnr+

2
+

δc·nr+

2︸ ︷︷ ︸
=0

−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s ̸=r

□n
s +□c·n

s

= −1

2
−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s ̸=r

□n
s +□c·n

s



NUMBER OF MODULI OF A GERM OF COMPLEX PLANE CURVE. 16

As above, applying inductively property (A) yields

−
(
δnr+

2
+

δc·nr+

2

)
+

∑
s∈Ac, s̸=r

□n
s +□c·n

s =
∑

s∈Ar+
c,

□n
s +□c·n

s

= n

Ar+
Θ01

c .

= −|Ac| − 1

2
−∆n

c .

As before, the two above relations lead to

n
AΘ

01
c = −1

2
− |Ac| − 1

2
−∆n

c = −∆n
c − |Ac|

2
,

which is the desired property. We now turn to the case in which the Saito dicricities

associated to n and c · n start with . Hence, we are in the presence of a mixed
or pure mixed branch. Suppose �rst that |Ac| = 1. In that case, the branch is pure
and the invariant n

AΘ
01
c reduces to

n
AΘ

01
c = −

⌊
∆n

r
1
2

νn
r

−
⌊

∆r·n
r
1
2

νr·n
r

= −
⌊

1
1
2

νn
r

−
⌊

0
1
2

νn
r +1

.

From Table (C), we get

n
AΘ

01
c = −1− 1

2
= −|Ac|

2
−∆n

c .

Suppose now that |Ac| ≥ 2. In that case, along the mixed branch, the nature of the
square index allows us to simplify the expression of the invariant n

AΘ
01
c . Suppose

that s and s′ are consecutive vertices s ≤ s′ in Ac with

(2.6) ∆n
⋆ +∆c·n

⋆ = 1, ⋆ = s, s′.

Then, evaluating the square indeces at s′ yields

□n
s′ +□c·n

s′ =
δns′

2
+

δc·ns′

2
−

⌊
∆n

s′
1
2

νn
s′−δn

s′

−
⌊

∆c·n
s′
1
2

νc·n
s′ −δc·n

s′

.

Now, according to the relations (2.6) one has δns′ + δc·ns′ = 1, hence we obtain

□n
s′ +□c·n

s′ =
1

2
−
⌊

∆n
s′
1
2

νn
s′−δn

s′

−
⌊

1−∆n
s′

1
2

νn
s′+1−δn

s′−1

= −1

2
.(2.7)

Let us focus nows on a mixed branch is of type . Let mc be the
last vertex of the branch Ac where the mixing property (2.6) holds. Using the
simpli�cation (2.7), we obtain the following expression

n
AΘ

01
c =

∑
s∈Ac

□n
s +□c·n

s

= □n
r +□c·n

r +
∑

s∈Amc\{r}

□n
s +□c·n

s +□n
m+

c
+□c·n

m+
c
+

∑
s>m+

c , s∈Ac

□n
s +□c·n

s

= −
⌊

0
1
2

νr

−
⌊

1
1
2

νr+1

− |Amc
| − 1

2
+

1

2
−

⌊
1
1
2

ν
m

+
c
−1

−
⌊

1
1
2

ν
m

+
c
+1

+ 1 + s0·n
Am+

c
Θ01

c
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where Am+
c is the subtree of A whose root is m+

c and s0 is the vertex in vr such
that s0 ≥ m+

c . Following Table 1, we are lead to

n
AΘ

01
c = −1

2
− 1− |Amc | − 1

2
+

1

2
− 1 + 1 + s0·n

Am+
c
Θ01

c

= −1

2
− |Amc

|
2

+ s0·n
Am+

c
Θ01

c .

Applying inductively property (A), we obtain

n
AΘ

01
c = −1

2
− |Amc

|
2

−

∣∣∣m+
c
Ac

∣∣∣
2

−∆n
c = −|Ac|

2
−∆n

c ,

which is Property (A).

Suppose now the mixed branch is pure of type . Then the invariant n
AΘ

01
c

is written

n
AΘ

01
c =

∑
s∈Ac

□n
s +□c·n

s = □n
r +□c·n

r +

 ∑
s∈Amc\{r}

□n
s +□c·n

s


= −

⌊
1
1
2

νr

−
⌊

0
1
2

νr+1

− |Amc
| − 1

2
.

According to Table (1), νr is even. Thus we obtain

n
AΘ

01
c = −1− |Amc

|
2

= −∆n
c − |Amc

|
2

which is still Property (A). Any other type of mixed or pure mixed branch can be
treated exactly the same way.

Now, we will prove inductively property (B) from properties (A) and (B). In the
branch Ac1 , we denote by r+ the successor of r. Moreover, we denote by d ∈ vr
such that d ≥ r+. Depending on how starts the Saito dicriticity of A numbered
respectively by n and c0 · c · n, we expand below the expression of the invariant
n
AΘ

02
c0,c1 .

n
AΘ

02
c0,c1

= □n
r + □c0·c1·n

r +
∑

s∈Ac1
\{r}

□n
s + □c0·c1·n

s

= −
⌊

1
1
2

νr

−
⌊

1
1
2

νr+2

+
∑

s∈Ac1
\{r}

□d·n
s + □c1·d·n

s

= −
⌊

1
1
2

νr

−
⌊

1
1
2

νr+2

+
1

2
+

1

2
+

d·n

Ar
+Θ

01
c1

=

⌊
− 1

2
1
2

νr

− ∆
n
c1

−
∣∣Ac1

∣∣
2

.
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Figure 2.6. Mixed branch stopping from being mixed at the N th vertex.

n
AΘ

02
c0,c1

= □n
r + □c0·c1·n

r +
∑

s∈Ac1
\{r}

□n
s + □c0·c1·n

s

= −
⌊

1
1
2

νr

−
⌊

0
1
2

νr+2

+
∑

s∈Ac1
\{r}

□d·n
s + □c1·n

s

= −
⌊

1
1
2

νr

−
⌊

0
1
2

νr+2

+
1

2
+

n

Ar
+Θ

11
d,c1

= ±
1

2
− ∆

n
c −

|Ac|
2

n
AΘ

02
c0,c1

= □n
r + □c0·c1·n

r +
∑

s∈Ac1
\{r}

□n
s + □c0·c1·n

s

= −
⌊

0
1
2

νr

−
⌊

0
1
2

νr+2

+
∑

s∈Ac1
\{r}

□n
s + □c1·n

s

= −
⌊

0
1
2

νr

−
⌊

0
1
2

νr+2

+
n

Ar
+Θ

01
c1

=

⌊
1
2

− 1
2

νr

− ∆
n
c1

−
∣∣Ac1

∣∣
2

.

n
AΘ

02
c0,c1

= □n
r + □c0·c1·n

r +
∑

s∈Ac1
\{r}

□n
s + □c0·c1·n

s

= −
⌊

0
1
2

νr

−
⌊

1
1
2

νr+2

+
∑

s∈Ac1
\{r}

□n
s + □c1·d·n

s

= −
⌊

0
1
2

νr

−
⌊

1
1
2

νr+2

+
1

2
+

n

Ar
+Θ

02
d,c1

= ±
1

2
− ∆

n
c1

−
∣∣Ac1

∣∣
2

.

That concludes the proof of Property (B) for the invariant n
AΘ

02
c0,c1 . The case of the

invariant n
AΘ

11
c0,c1 is obtained much the same way.

To prove inductively property (C) as a consequence of all previous properties, we
consider a mixed branch of any type as in Figure 2.6. In the sequel, the vertex is
designated by its position k in the branch k = 1, · · · . The N th is the �rst for which
the mixing property does not hold.

Let us denote by ϵ⋆k, ⋆ = n, c ·n the con�guration of the kth vertices of the branch.
Since the con�guration is supposed to be admissible, summing the two inequalities
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associated to the admissibility conditions of Theorem 3, we get

ϵnk + ϵc·nk ≥ nk + 2−
∑
s∈vk

∆
σk,n
s

where σk,n = n if ∆n
k = 0, else σk,n = c · n. Therefore,

(2.8)

N−1∑
k=1

ϵnk + ϵc·nk ≥ 2 (N − 1) +

N−1∑
k=1

nk −
N−1∑
k=1

∑
s∈vk

∆
σk,n
s .

Now, we want to estimate the expression in the left of the above inequality. Suppose
�rst that k = 2, · · · , N − 2. Notice that in this situation δ⋆k = ∆⋆

k−1, hence

ϵnk + ϵc·nk =
nk

2
−

∆n
k−1

2
+

⌊
∆n

k
1
2

νn
k −∆n

k−1

+
∑
s∈vk

∑
u∈kAs\{k}

□n
u

+
nk

2
−

∆c·n
k−1

2
+

⌊
∆c·n

k
1
2

νc·n
k −∆c·n

k−1

+
∑
s∈vk

∑
u∈kAs\{k}

□c·n
u

= nk +
1

2
+

∑
s∈vk

∑
u∈kAs\{k}

□n
u +□c·n

u

Let us denote by k− and k+ the vertices in v
k
such that k− ≥ (k − 1) , k− ̸= k − 1

and k+ ≥ (k + 1) for the order ≤ on the tree. Notice that k− may not exists and
k+ may be equal to k + 1.

From the previous expressions we obtain,

ϵnk + ϵc·nk = nk +
1

2
+

∑
s∈vk\{k−,k+}

∑
u∈kAs\{k}

□n
u +□c·n

u

+
∑

u∈kAk−\{k}

□n
u +□c·n

u +
∑

u∈kAk+\{k}

□n
u +□c·n

u .

For s ∈ vk \ {k−, k+} , we are lead to∑
u∈kAs\{k}

□n
u +□c·n

u =
|kAs \ {k}|

2
+

∑
u∈kAs\{k}

□n
u +□s·n

u

=
|kAs \ {k}|

2
+ n

AkΘ01
s .

Hence, according to Property (A), it∑
u∈kAs\{k}

□n
u +□c·n

u = −∆
σk,n
s .

In the same way, we �nd∑
u∈kAk−\{k}

□n
u +□c·n

u =
1

2
+

∣∣
kAk− \ {k}

∣∣
2

+
∑

u∈kAk−\{k}

□a
u +□b

u

=
1

2
+

∣∣
kAk− \ {k}

∣∣
2

+

{ n
AkΘ02

k,k− or
n

AkΘ11
k,k−
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where

{a, b} =

{
{n, k · k− · n}
{k · n, k− · n} if

(
∆n

k−1,∆
n
k−1

)
=

{
(0, 0) or (1, 1)
(0, 1) or (1, 0)

Thus, Property (A) ensures that∑
u∈kAk−\{k}

□n
u +□c·n

u =
1

2
± 1

2
−∆

σk,n

k− .

In the same way, one can prove that∑
u∈kAk+\{k}

□n
u +□c·n

u = ±1

2
−∆

σk,n

k+ .

Finally, for k ∈ {2, · · · , N − 2}

(2.9) ϵnk + ϵc·nk = nk +
1

2
± 1

2
+

{
1
2 ± 1

2 if k− exists
0 else

−
∑
s∈vk

∆
σk,n
s

For k = 1 the computation is slightly di�erent bu we obtain

ϵn1 + ϵc·n1 = n1 +
1

2
+

⌊
∆n

1

∆c·n
1

ν1

± 1

2
−

∑
s∈v1

∆σ1,n
s .(2.10)

Finally for k = N − 1, we can write

ϵnN−1 + ϵc·nN−1 =
nN−1

2
−

∆n
N−2

2
+

⌊
∆n

N−1
1
2

νn
N−∆n

N−2

+
nN−1

2
−

∆c·n
N−2

2
+

⌊
∆c·n

N−1
1
2

νc·n
N −∆c·n

N−2

+
∑

s∈vN−1

∑
u∈N−1As\{N−1}

□n
u +□c·n

u

= nN−1 +
1

2
+

∑
u∈

(N−1)
A

(N−1)+
\{(N−1)}

□n
u +□c·n

u

+
∑

s∈vN−1,s̸=(N−1)+

∑
u∈N−1As\{N−1}

□n
u +□c·n

u

Now, we focus on a term of the above sum : we have∑
u∈N−1A(N−1)+

\{N−1}

□n
u +□c·n

u =
∆n

N−1

2
+

∆c·n
N−1

2
−

⌊
∆n

N
1
2

νn
N−∆n

N−1

−
⌊

∆c·n
N
1
2

νc·n
N −∆c·n

N−1

+
∆n

N

2
+

∆c·n
N

2

−
(
∆n

N

2
+

∆c·n
N

2

)
+

∑
u∈

(N−1)
A
(N−1)+

u ̸=N,N−1

□n
u +□c·n

u .
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Since ∆n
N = ∆c·n

N , νnN = νc·nN − 1 and ∆n
N−1 + ∆c·n

N−1 = 1, we are lead to the
expression ∑

u∈N−1A(N−1)+
\{N−1}

□n
u +□c·n

u =
1

2
−
⌊

∆n
N

1−∆n
N

νN−∆n
N−1

−∆
σ(N−1),n

(N−1)+

Finally, we �nd

ϵnN−1 + ϵc·nN−1 = nN−1 + 1−
⌊

∆n
N

1−∆n
N

νN−∆n
N−1

(2.11)

+

{
1
2 ± 1

2 if (N − 1)
−
exists

0 else
−

∑
s∈v

N−1

∆σN−1,n
s

Summing the equations (2.9), (2.10) and (2.11) yields

N−1∑
k=1

ϵnk + ϵc·nk =

⌊
∆n

1

∆c·n
1

ν1

−
⌊

∆n
N

1−∆n
N

νN−∆n
N−1

+ (· · · )︸ ︷︷ ︸
at most 2N−3

+

N−1∑
k=1

nk −
N−1∑
k=1

∑
s∈vk

∆
σk,n
s .

Combining with the inequality (2.8), we obtain⌊
∆n

1

∆c·n
1

ν1

−
⌊

∆n
N

1−∆n
N

νN−∆n
N−1

≥ 1.

This inequality induces all the properties presented in Table 1.

To prove the statements in Table 2, we add one white component at the end of
each pure mixed branches, providing thus standard mixed branches. Numbering
the vertices of these branches 1, · · · , N,N + 1, the N + 1th being the added one
and setting nN+1 = 0, we obtain two mixed branches numbered respectively by n
and (N + 1) · n whose dicricities are Saito. Thus, the computations performed for
mixed branches yield ⌊

∆n
1

∆c·n
1

ν1

−
⌊

1
0

0−∆n
N

≥ 1.

Thus if ∆n
N = 0 the above inequality is impossible ; that excludes the two last cases

of Table 2. If ∆n
N = 1, then the inequality reduces to

⌊
∆n

1

∆c·n
1

ν1

≥ 1, which implies

the two �rst cases of Table 2. Finally, suppose that the mixed branch is reduced

to a single couple of vertices and starts with . Assume that νnr is even. We can
write,

ϵnr =
nr

2
+

⌊
0
1
2

νn
r

+
∑
v∈vc

□v.

Hence, we deduce that

ϵnr + 1 =
nr + 1

2
+

⌊
0
1
2

νn
r +1

+
∑
v∈vc

□v =
nr + 1

2
+

⌊
0
1
2

νr·n
r

+
∑
v∈vc

□v
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Since, ϵn is the con�guration of the Saito dicriticity for the numbering n, we get

ϵnr ≥ 2−
∑
s∈vr

∆n
s

and consequently, ϵnr + 1 ≥ 2 −
∑

s∈vr
∆n

s . Therefore, the dicriticity ∆n keeps on
being Saito for the tree A numbered by r ·n. Since, this dicriticity is unique, we get
∆r·n

r = 1 which contradicts the hypothesis of a mixed branch. Finally, νnr has to

be odd. In the same way, suppose the mixed branch is reduced to and νnr is odd.
The arguments are the same as above and from the following computations

ϵnr =
nr

2
+

⌊
1
1
2

νn
r

+
∑
v∈vc

□v ≥ nr

ϵnr + 1 =
nr + 1

2
+

⌊
1
1
2

νr·n
r

+
∑
v∈vc

□v ≥ nr + 1

we get a contradiction. Hence, νnr is even. This concludes the proof of Property
(C).

It remains to prove Property (D). Let K be the connected component of r in the
sub-graph A \ {c ∈ A|∆n

c = 0}. If K = ∅, the property is proved by induction on
|A|. If not, suppose that there exists s ∈ K such that ns > 0. Then, since ∆n

s = 1,
the admissibility condition ensures that ϵns ≥ ns > 0 which is the property. Finally,
we suppose that for any s ∈ K, ns = 0. Assume also that for any s ∈ K, ϵns = 0.
For any s ∈ vr, we consider ks ∈ As the minimal vertex such that ks

As is in K.
Now, one can write

0 = ϵnr = −□r +
∑
v∈vr

∑
s∈Av\{r}

□n
s .(2.12)

=

⌊
1
1
2

νn
r

+
∑
v∈vr

∑
A

k
−1
v

\{r}

□n
s +

∑
v∈vr

∑
kv

Av\{r}

□n
s

Now, extracting the intermediary sum in the expression above yields∑
A

k
−1
v

\{r}

□n
s =

∑
A

k
−1
v

\{r}

δns
2

−
⌊

∆n
s
1
2
⋆

=
∑

A
k
−1
v

\{r}

δns
2

−
∑

A
k
−1
v

\{r}

⌊
∆n

s
1
2
⋆

=
δnr+

2
+

∑
A

k
−1
v

\{r,r+}

δns
2

−
∑

A
k
−1
v

\{r}

⌊
∆n

s
1
2
⋆

=
δnr+

2
+

∑
A

k
−2
v

\{r}

δns+

2
−

 ∑
A

k
−2
v

\{r}

⌊
∆n

s
1
2
⋆

−
⌊

∆n
k−1
v
1
2
⋆

.
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where r+ is the successor of r in Av, k
−i
v the predecessor of k−i+1

v . Since ∆n
r = 1,

δnr+ = 1 and δns+ = 1 +∆n
s . Hence, we obtain

(2.13)
∑

rA
k
−1
v

\{r}

□n
s =

1

2
−

⌊
∆n

k−1
v
1
2
⋆︸ ︷︷ ︸

A

+
∑

rA
k
−2
v

\{r}

⌊
1−∆n

s

2
∆n

s

2
⋆︸ ︷︷ ︸

≥0

.

Now, since kv ∈ K, we get 0 = ϵnkv
and thus,

□n
kv

=
∑

v∈vkv

∑
s∈kv

Av\{kv}

□n
s .

If ∆n
k−1
v

= 0 then, in expression (2.13) A = 1
2 −

⌊
∆n

k−1
v
1
2
⋆

≥ 0. If ∆n
k−1
v

= 1, then by

construction of kv, k
−1
v /∈ vkv

. In the latter case, there exists s ∈ vkv
and c ∈ kv

As

with pc =
{
kv, k

−1
v

}
. Thus

δc =
1

2
+

1

2
which comes to compensate the fact that in relation (2.13), A might be equal to
−1
2 . Finally, if s ∈ kv

Av \ {r}, s ̸= kv then as before,

□n
s =

∑
v∈vs

∑
u∈sAv\{s}

□n
u.

Doing so step by step, from (2.12), we are lead to an expression of the form

0 =

⌊
1
1
2

νn
r

+ (· · · )︸ ︷︷ ︸
≥0

which is impossible. That concludes the proof of Property (D) and, at the same
time, the proof of Theorem 3. □

3. Saito foliations of a germ of curve and its deformation.

The O(C2,0)−module Der (logC) of germs of vector �elds tangent to a germ of curve

C ⊂
(
C2, 0

)
has been introduced as a particular case of a far more general object

by K. Saito in [26]. We are interesting in the valuations of the vector �elds in this
module, for the standard valuation ν de�ned by

ν (a∂x + b∂y) = min (ν (a) , ν (b)) , a, b ∈ C {x, y} ,

where

ν

∑
i,j

aijx
iyj

 = min
aij ̸=0

{i+ j} .

In particular, we de�ne the number of Saito of C by

sC = min
X∈Der(logC)

ν (X)

A vector �eld tangent to C is said optimal if its valuation is equal to the Saito
number of C.
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Let π be the blowing-up of the singular point of C. At any singular point s of the
total transform π−1 (C), the strict transform Xπ of X leaves invariant the strict
transfotm Cπ and maybe the exceptional divisor of π. When the latter occurs, X is
said non dicritical. Otherwise, it is said dicritical. The vector �eld Xπ may not be
optimal for the germ of Cπ at s although X is optimal for C. When the optimality
property is preserved along the desingularization process of C, we said that X is
Saito for C. More precisely, we consider the following inductive de�nition :

De�nition 6. X is Saito for C when X is optimal for C and when Xπ is Saito for
each germ of d ∪ Cπ at any of its singular points where

• d = π−1 (0) if X is not dicritical,
• d = ∅, otherwise.

To initiate the de�nition, we require that if C is regular, then ν (X) = 0 and if C
is the union of two transversal regular curves, then ν (X) = 1.

The goal of the current section is to prove the existence of a curve C ′ equisingular
to C that admits a Saito foliation. To do so, we are going to construct a foliation
using gluing techniques of [20]. The elementary pieces of this gluing are semi-local
models for Saito foliations introduced just below. The results of the �rst section
will provide a global data prescribing the gluing. The obtained foliation will be
studied from the point of view of deformations and the curve C ′ will be found as
an invariant curve of a generic deformation of the constructed foliation.

3.1. Semi-local models for Saito foliations. First, let us describe the two fam-
ilies of semi-local models for Saito foliations. These models are said to be semi-local
because they are de�ned in the neighborhood of a compact divisor embedeed in a
surface.

Let Mp be the germ of neighborhood of the divisor, given locally by x1 = 0 and
y2 = 0, in the 2−dimensional manifold de�ned by the disjont union of two charts

(
C2, (x1, y1)

)∐(
C2, (x2, y2)

)
with the identi�cation y2 = yp1x1 x2 = 1

y1
, p ≥ 0. The divisor {x1 = y2 = 0} is

a regular rational compact curve embedded in Mp with negative self-intersection
equal to −p.

3.1.1. The dicritical model. The manifold Mp can be foliated by the foliation Rp,N

given in coordinates (x1, y1) by the 1−form

(3.1) dx1 +

N∏
i=1

(y1 − i)dy1.

This foliation is transverse to the compact divisor except at the points given in
coordinates (x1, y1) by (0, i) , i = 1, . . . , N where it is tangent at order 1. Using
the changes of coordinates form (x1, y1) to (x2, y2), we can see that the foliation is
regular and transverse to the compact divisor at +∞. Note that we have∑

p∈{x1=0}

Tan (Rp,N , {x1 = 0} , p) = N

where Tan is an index introduced in particular in [18].
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Figure 3.1. Local models for Saito foliations.

3.1.2. The non dicritical model. The manifoldMp can also be foliated by a foliation
given by the 1−form Gp,N,Λ, Λ = (λ1, . . . , λN ) written in the coordinates (x1, y1)

(3.2)
dx1

x1
+

N∑
i=1

λi
dy1

y1 − i
.

with the following condition, known as the Camacho-Sad relation [2],

(3.3)

N∑
i=1

λi = p.

This foliation leaves invariant the divisor x1 = 0 and the relation above ensure that
it is regular at +∞. By construction, for any i, we get

CS (G, {x1 = 0} , i) = λi.

where CS is the so-called Camacho-Sad index [2]. Moreover, it follows that∑
p∈{x1=0}

Ind (Rp,N , {x1 = 0} , p) = N

where Ind is the second index introduced in [18].

Figure 3.1 presents the topology of R and G.

3.2. Gluing local models. Let E be the process of desingularization of C. Let A
be the dual tree of the exceptional divisor E−1 (0) . The map E is a composition of
elementary blowing-ups that we denote

E = ⃝s∈AEs.

Here Es is the elementary blowing-up whose exceptional divisor is the component
s. For any c, the notation ⋆Ec will refer to the germ at the point leading to the
component c of the strict transform of ⋆ by the sub-process ⃝s∈Ac\{c}Es where Ac

is the access tree from r to c, as de�ned in the previous section.

For a germ of vector �eld X (or its associated germ of foliation F) and s ∈ A,
we will set ∆

X (or F)
s = 1 if XE

s is non dicritical, otherwise, ∆X
s = 0. It de�nes a

dicriticity on A.

Proposition 7. There exists C ′ equisingular to C such that there exists X ∈
Der (logC ′) satisfying the following : for any s ∈ A

ν
(
XE

s

)
=

ν
(
CE

s

)
+ δXs

2
−
⌊

1−∆X
s

1
2

ν(CE
s )+δXs
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Proof. The process E of desingularization of C induces an numbered ordered tree
A as de�ned in the previous section. The tree A is the dual tree of the exceptional
divisor of E ; the order is the one induced by the process it-self ; the numbering n is
setting as follows : ns is equal to the number of component of the strict transform
CE attached to s. Consider the associated Saito dicriticity ∆n and con�guration
ϵn given by Theorem 3.

Using a result of A.-L. Neto [20] of construction of singular foliations in dimension
2 from elementary elements, we are going to construct a foliation from the data of
∆n and εn by gluing semi-local models. The matrix P being the proximity matrix
of A it is known that PtP is the intersection matrix I of E−1 (0) embedded in its
neighborhood [27].

To s ∈ A with ∆n
s = 1, we associate the semi-local model GIs,s,ϵns +|{c∈vs,∆n

c =1}|,Λs

where

Λs =
(
λ1, · · · , λϵns

, λs,c1 , · · · , λs,c|{c∈vs,∆n
c =1}|

)
The only obstruction for such a semi-local construction is the Camacho-Sad relation

(3.4)

ϵns∑
i=1

λi +
∑

i∈{c∈vs,∆n
c =1}

λs,i = −Is,s

To s ∈ A with ∆n
s = 0, we associate the semi-local model

RIs,s,ϵns −2+
∑

c∈vs
∆n

c
.

Since ∆n is the Saito dicriticity, the admissibility condition yields the inequality

ϵns − 2 +
∑
c∈vs

∆n
c ≥ 0,

so that, the de�nition of the model does make sense.

From [20], all these semi-local models can be glued together by gluing maps follow-
ing the edges of A provided that at any intersection point of two components s and
s′ with ∆n

s = ∆n
s′ = 1, the following relation is satis�ed

(3.5) λs,s′ · λs′,s = 1.

Property ((D)) of Theorem 3 ensures that, along any connected component K of
A \ {s ∈ A|∆n

s = 1}, no incompatiblity will occur between the relations (3.4) and
(3.5). Indeed, along K the number of induced relations is

♯vertices (K) + ♯edges (K) .

However, the number of variables involved in the mentioned relations is∑
s∈K

ϵns + |{c ∈ vs,∆
n
c = 1}| .

Following Property ((D)) the above number of variables satis�es∑
s∈K

ϵns + |{c ∈ vs,∆
n
c = 1}| ≥ 1 +

∑
s∈K

|{c ∈ vs,∆
n
c = 1}| = 2♯vertices (K)− 1

≥ ♯vertices (K) + ♯edges (K)

since ♯vertices (K) = ♯edges (K) + 1. Therefore the system of equations, union of
(3.4) and (3.5), has always a solution. Note that these solutions can be chosen to
be rational numbers.
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The gluing leads to a foliation de�ned in a neighborhood of a compact divisor D,
union of |A| regular rational curves, with same intersection matrix as the one of
the exceptional divisor of E. According to a classical result of H. Grauert [13], the
neighborhood of D is analytically equivalent to the neighborhood of the exceptional
divisor of some blowing-up process E′ with same dual graph as E. The latter
neighborhood is foliated by a foliation F ′ that can be contracted by E′ in a foliation
F .

For any component s ∈ A, either ∆n
s = 0 and F ′ is generically transverse to s.

Then, we choose arbitraly ns regular and transverse invariant curves attached to
s. Or ∆n

s = 1 and F ′ locally given by (3.2) leaves invariant at least ns regular and
transverse curves attached to s: indeed, ∆n being Saito, we have ϵns ≥ ns. The
union of all these curves yields a curve C ′ whose desingularization process has for
associated numbered dual tree the tree A itself. Thus, C ′ and C are equisingular
[28]. In the sequel, for the sake of simplicity, we denote C ′ simple by C. According
to [18, Theorem 3], we have

ν (F) + 1 =
∑
s∈A

ρs ×
{

− |{c ∈ vs,∆
n
c = 1}|+

∑
p∈s Ind

(
FE , s, p

)
if ∆n

s = 1

2− |{c ∈ vs,∆
n
c = 1}|+

∑
p∈sTan

(
FE , s, p

)
if ∆n

s = 0

In our construction, the de�nition of the semi-local models induces the relations∑
p∈s

Ind
(
FE , s, p

)
= ϵns + |{c ∈ vs,∆

n
c = 1}|(3.6)

∑
p∈s

Tan
(
FE , s, p

)
= ϵns − 2 + |{c ∈ vs,∆

n
c = 1}| .

Moreover, by construction for any s ∈ A, we �nd

∆n
s = ∆F

s , δns = δFs .

Thus, since the con�guration ϵn satis�es the system (9) of Theorem 3, the valuation
of F can be expressed as follows

ν (F) =
∑
s∈A

ρsϵ
n
s =

νn1
2

−
⌊

1−∆n
1

1
2

νn
1

=
ν (C)

2
−
⌊

1−∆F
1

1
2

ν(C)

.

Doing the same remark along the whole process of blowing-ups of C, we obtain, for
any s ∈ A,

ν
(
FE

s

)
=

ν
(
CE

s

)
+ δFs

2
−

⌊
1−∆F

s
1
2

ν(CE
s )+δFs

(3.7)

□

If a foliation F leaves invariant C and satis�es the relations (3.7), then the proof
above highlights that the dicriticity ∆F together with the con�guration ϵ de�ned
by the relations (3.6) provide an admissible con�guration for the numbered tree
associated to C. Since, Theorem 3 ensures the unicity of this dicriticity and thus of
its con�guration, the last statement of the introduction is proved.



NUMBER OF MODULI OF A GERM OF COMPLEX PLANE CURVE. 28

3.3. Deformation of F . In the previous section, we obtained a foliation F leaving
invariant a curve C whose valuations satisfy the relations described in Proposition
7. However, we cannot still claim that a vector �eld X de�ning F is neither optimal
nor Saito, since the curve C could be special in its equisingularity and could admit
a tangent vector �eld with small valuations. In order to overcome this di�culty,
we are going to prove that F can be put in a weakly equisingular deformation that
follows a deformation of toward generic elements of the equisingularity class of C,
for which lower bound for Saito numbers is known. To implement this strategy, we
will gather material from [6, 8, 5, 11].

Theorem 8. There exists C ′ equisingular to C such that C ′admits a Saito vector
�eld X further satisfying for any s ∈ A

ν
(
XE

s

)
=

ν
(
CE

s

)
+ δXs

2
−
⌊

1−∆X
s

1
2

ν(CE
s )+δXs

Proof. Let E be the desingularization process of C. Denote by Ω the volume form

Ω = E⋆ (dx ∧ dy) .

Let X be the global vector �eld X = E⋆
(

X
f

)
where X is a vector �eld de�ning F

and f is a balanced equation of the separatricies of X, as introduced in [5, De�nition
1.2]. Following [6, Proposition 18], we associate to X the following divisor

(3.8) DX = 2
(
(f = 0)

E − (f = ∞)
E
)
− CE +D

de�ned in the total space of E. Here, D is the union of components of D invariant
by X. Let us consider F the sheaf based upon D of O−modules of vector �elds
tangent to the foliation given by X and Θ the sheaf based on D of vector �elds
tangent to E−1 (C) . In [11, Theorem 1.6], Gomez-Mont exhibits the existence of
an exact sequence in cohomology written

(3.9) H1 (D,F) → H1 (D,Θ) → H1

(
D,Hom

(
F,

Θ

F

))
.

The space H1 (D,F) is identi�ed with the space of in�nitemisal deformations of
F ; the space H1 (D,Θ) is identi�ed with the space of in�nitesimal deformations of
C. Now, the sheaf F is locally free of rank 1. Thus, a section α of Hom

(
F, Θ

F
)
is

completely determined by the image of E⋆X or, equivalently by the image of X.
By contruction, F is of second kind as de�ned in [5]. The relations established in
[5, Lemme 2.1] are written in our context

νs (iE⋆XΩ) = νs (E
⋆f) +

{
1 if s is invariant by E⋆X

0 if not

where i stands for the inner product. It can be seen that, as a consequence, the
morphism of sheaves de�ned by

Hom

(
F,

Θ

F

)
→ Ω2 (DX) , α 7→ iα(X)Ω ∧ iXΩ
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is an isomorphism of sheaves : here, Ω2 (DX) is the sheaf over D of 2−forms η for
which the divisor (η) = (η = 0)− (η = ∞) satis�es

(η) ≥ −DX.

Moreover, in [6, Proposition 18], it is proved that, provided that the relations (3.7)
are satis�ed, we have

H1
(
D,Ω2 (DX)

)
= 0.

Thus, the exact sequence (3.9) reduces to

(3.10) H1 (D,F) → H1 (D,Θ) → 0.

Now, let (Ct)t∈(CN ,0) be a versal deformation of C. In
(
CN , 0

)
the generic compo-

nent in the sense of [8, Theorem 2.8] is the complement of an analytical subset Σ.

Therefore, we can set a direction ti such that ∂Ct

∂ti

∣∣∣
t=0

∈ H1 (D,Θ) is transverse to

Σ. According to 3.10 and [11, Theorem 3.3] there exists a deformation (Ft)t∈(C,0)

of F such the image of ∂Ft

∂t

∣∣
t=0

∈ H1 (D,F) in 3.10 is ∂Ct

∂ti

∣∣∣
t=0

. The deformation

(Ft)t∈(C,0) being locally equisingular, it leaves invariant a curve C ′
t equisingular to

C that does not belong to Σ for t ̸= 0. Moreover, the valuations are invariant, and
we get

∀t ∈ (C, 0) , ν
(
(Ft)

E
s

)
= ν

(
FE

s

)
=

ν
(
CE

s

)
+ δFs

2
−
⌊

1−∆F
s

1
2

ν(CE
s )+δFs

.

Now, if c is generic in its equisingularity class then, according to [8, Theorem 4],
for any X in Der (log c), the following lower bound holds

∀s ∈ A, ν
(
XE

s

)
≥

ν
(
cEs

)
+ δXs

2
−

⌊
1−∆X

s
1
2

ν(cEs )+δXs

.

Thus, for any t ̸= 0, the foliation (Ft)t∈C - or a vector �eld Xt de�ning Ft - leaves
invariant a curve C ′

t equisingular to C, is optimal for C ′
t and keeps on being optimal

along the desingularization process of C ′
t, that means precisely, is Saito for C ′

t. □

3.4. Number of moduli of C. According to [22, Theorem 4.2], the number of
moduli MC of C is equal to dimH1 (D,Θ) when C is chosen generic in its equisin-
gularity class. The results of this section and these of [8] ensure that this dimension
can be computed from the topological datas associated to a Saito foliation. In [7], a
precise description of an algorithm is given to compute this topological datas when
C is an union of regular curve. This article implies that the exact same algorithm,
presented brie�y here, still provides this topological datas in the general case, and
as a product the number of moduli of the initial curve.

We implemented, among other procedures this algorithm on Sage 9.* - or Python
3 -. See the routine Courbes.Planes following the link

https://perso.math.univ-toulouse.fr/genzmer/
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Algorithm 1 Algorithm to compute the number of moduli of C.

INPUT : C a curve

Compute the numbered tree (A, n) of C.
Compute the Saito dicriticity of (A, n).
Using the associated con�guration, compute σ (C) = dimH1

(
D1, Θ|D1

)
.

For Ck connected component of E−1
1 (C \ {0}), compute inductively MCk∪D1 .

RETURN : MC = σ (C) +
∑

k M
Ck∪D1 .

Figure 4.1. Saito dicriticities of the double cusp.

4. Examples

Example 9 (The Saito foliation of the double cusp). The double cusp is the curve
C de�ned by (

y2 + x3
) (

y2 − x3
)
= 0.

It is a curve with no moduli and its Saito number is 2. Its desingularization E
consists in �ve elementary blowing-ups

E = ⃝4
i=0Ei.

The Saito dicriticity of C is given in Figure 4.1. The number on each vertex allows
us to identify the order on the tree de�ned by

0 ≤ 1, 0 ≤ 2, 1 ≤ 4, 2 ≤ 3.

The dots in Figure 4.1 encode the con�guration. Here, the con�guration associated
to the Saito dicriticity is

ϵ0 = ϵ1 = ϵ2 = 1, ϵ3 = ϵ4 = 0.

It can be seen, by computing its desingularization, that the vector �eld X de�ned
by

X =

(
9

5
x3y − x2y2 + y3 − 4

5
x2 + xy

)
∂x

+

(
6

5
x2y2 − 3

2
xy3 − 5

6
x3 − 6

5
xy +

2

3
y2
)
∂y

is Saito for the double cusp. Indeed, it is tangent to C and non dicritical. Its
valuation sati�es

2 =
ν (C) = 4

2
−
⌊

1− 1
1
2
4

.
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After one blowing-up, it has three singularities along the exceptional divisor given
in the coordinates (y = y1, x = y1x1) by

s1 = (0, 0) , s3 =

(
0,−6

5

)
and s2 = (0,∞) .

The singularity s3 is reduced : the quotient of the eigenvalues of E⋆
0X at s2 is

actually equal to 5. At s1 and s3, E
⋆
0X is of valuation 1 which satis�es

1 =
ν
(
CE

s1

)
+ 1

2
−

⌊
1− 1

1
2
2

=
ν
(
CE

s3

)
+ 1

2
−
⌊

1− 1
1
2
2

.

After blowing-up s1, the vector �eld (E0 ◦ E1)
⋆
X has two singularities along the

new exceptional divisor. One is reduced with positive and rational quotient of the
eigenvalues. The other is radial, that is, its linear part is locally in coordinates
written x∂x + y∂y. The same occurs at s3. At the radial singularities s5 and s6
which are dicritical, one has

1 =
ν
(
CE

s5 or s6

)
+ 2

2
−

⌊
1− 0

1
2
3

.

As a consequence, X is indeed Saito for C.

Example 10 (Number of moduli of the union of r cusps equisingular to y2+x3 = 0).
In [17], the authors give a formula for the number of moduli of the curve

Cr =

{
r∏

i=1

(
y2 + aix

3
)
= 0

}
where ai ̸= aj ̸= 0 for i ̸= j. When r is even, this dimension happens to be equal
to

(4.1)
(r − 1) (3r − 5) + 1

2
.

Let us illustrate how our algorithm works in this situation. The proximity matrix
of the Cr is  1 −1 −1

0 1 −1
0 0 1


and the numbering of A is (0, 0, r) . The Saito dicriticity is equal to (1, 1, 0) and
the associated con�guration is

(
2, 1, r

2

)
. After one blowing-up, according to [8,

Proposition 4], we get

dimH1 (D1,Θ) =
(r − 1) (r − 2)

2
+

(r − 1) (r − 2)

2
= (r − 1) (r − 2) .

Now, after one blowing-up the curve D1∪CE1
r is given in local coordinates y = y1x1

by

x1

r∏
i=1

(
y21 + aix1

)
= 0.

The proximity matrix of the desingularization of the latter curve is now(
1 −1
0 1

)
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and the numbering (0, r + 1) . The Saito dicriticity is equal to (1, 0) and the asso-
ciated con�guration is

(
1, r

2

)
. Thus, we obtain

dimH1 (D2,Θ) =

(
r
2 − 1

) (
r
2 − 2

)
2

+
r
2

(
r
2 − 1

)
2

.

Finally, after one more blowing-up the curve D1 ∪D2 ∪ CE2
r is given by

x2y2

r∏
i=1

(y2 + aix2) .

The proximity matrix reduces to (1) and the numbering to (r + 2) . The Saito dicrit-
icity is just (0) and the con�guration

(
r
2 + 1

)
. Thus, still following [8, Proposition

4], one has

dimH1 (D3,Θ) =

(
r
2 − 1

) (
r
2 − 2

)
2

+
r
2

(
r
2 − 1

)
2

+ r − 1.

Adding the above dimensions leads to

dimH1 (D,Θ) = (r − 1) (r − 2) +

(
r
2 − 1

) (
r
2 − 2

)
2

+
r
2

(
r
2 − 1

)
2

+

(
r
2 − 1

) (
r
2 − 2

)
2

+
r
2

(
r
2 − 1

)
2

+ r − 1

=
(r − 1) (3r − 5) + 1

2
.

Example 11 (Number of moduli of a union of r cusps equisingular to yn+xn+1 = 0).
Consider the curve Cr,n de�ned by(

yn + a1x
n+1

) (
yn + a2x

n+1
)
· · ·

(
yn + arx

n+1
)
= 0, ai ̸= aj ̸= 0.

The Saito vector �eld of Cr,n is non dicritical of valuation
[
rn
2

]
. Therefore, we get

dimH1 (D1,Θ) =

{
(rn−2)(rn−4)

4 if n or r is even
(rn−3)2

4 else
.

After the �rst blowing-up, the curve CE1
r,n ∪ D1 is a union of r + 1 regular curves

tangent at order n. Its Saito vector �eld is non dicritical of valuation
[
r+1
2

]
and

thus

dimH1 (D2,Θ) =

{
(r−1)(r−3)

4 if r is odd
(r−2)2

4 else
.

The next n−2 blowing-ups produce curves which, at each step, are a union of r+1
regular curves tangent as a whole and a transverse curve. Its Saito vector �eld is
non dicritical of valuation

[
r
2

]
+ 1. Therefore, we �nd

dimH1 (Di,Θ) =

{
r(r−2)

4 if r is even
(r−1)2

4 else
, i = 2, . . . , n− 1.

Finally, the nth blowing-up yields a curve union of r+2 transverse curves. Its Saito
vector �eld is dicritical and

dimH1 (Dn−1,Θ) =

{
r2

4 if r is even
r2−1

4 else
.
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Finally, adding the contributions above, we �nd

MCr,n =


n2r2+nr2−8rn

4 + 3 if r is even
n2r2+nr2−8rn+n

4 + 2 if r is odd and n is even
n2r2+nr2−8rn+n+9

4 if r is odd and n is odd.

Example 12 (Generic Tjurina number of a curve). The algorithm de�ned above
allows us to provide immediately a computation of the generic Tjurina number,
that is, the dimension of the quotient of C {x, y} by the Tjurina ideal of C, i.e
(f, ∂xf, ∂yf) where f is an equation of C. Let E be the desingularization process of
C. On the exceptional divisor D of E, we consider the sheaves Tdf and Θ of vector
�elds tangent respectively to the foliation E⋆df and E−1

(
f−1 (0)

)
. The following

sequence of sheaves

0 → Tdf → Θ
E⋆df(·)−−−−−→ (f ◦ E)OD → 0

is exact [23]. The associated long exact sequence in cohomology is written

0 → H0 (D,Tdf ) → H0 (D,Θ) → H0 (D, (f ◦ E)OD)

→ H1 (D,Tdf ) → H1 (D,Θ) → 0

since H1 (D, (f ◦ E)OD) = 0. Now, we can identify the global sections of the above
sheaves :

H0 (D, (f ◦ E)OD) = (f)

H0 (D,Θ) = {X vector �eld|X · f ∈ (f)}
Therefore, the following sequence is exact

0 → (f)

{X · f |X tangent to f = 0}
→ H1 (D,Tdf ) → H1 (D,Θ) → 0.

Now, it can be seen that

(f)

{X · f |X tangent to f = 0}
≃ (f, Jacf)

Jacf
.

The previous short exact sequence ensures that

dimC H1 (D,Θ)− dimC H1 (D,Tdf ) + dimC
(f, Jacf)

Jacf
= 0

which can be also written

τ (C) = µ (C)− δ (C) + dimC H1 (D,Θ)

where µ (C) is the Milnor number of C and δ (C) its modularity [21]. Now, if C is
chosen generic, we obtain

(4.2) τgen (C) = µ (C)− δ (C) +MC .

Since the Milnor number and the modularity can be computed from the numbered
tree of C, the formula above yields an agorithm to compute the generic Tjurina
number of C - which happens to be also the minimal Tjurina number.

As an example, the curve given by the following parametrization C =
(
t9, t12 + t17

)
has been studied by Peraire [24] and she found

τgen (C) = 80.
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Saito vector �eld of
the successive blown-up curves

ν (C) sC
Contribution to
the moduli

9 4 9

4 2 0

5 2 1

5 2 1

Table 4. Algorithm for Peraire's example.

It can be seen that

µ (C) = 98 and δ (C) = 29.

Table 4 presents the four �rst steps of the inductive algorithm : beyond, no new
contribution in the number of moduli appears. Thus, it provides the number moduli
of C and we �nd

MC = 9 + 0 + 1 + 1 = 11,

which con�rms the result of Peraire in view of (4.2).
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