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Abstract. In the present paper, we use difference Galois theory to study the nature
of the generating series counting walks in the quarter plane. These series are trivari-
ate formal power series Q(x, y, t) that count the number of walks confined in the first
quadrant of the plane with a fixed set of admissible steps, called the model of the
walk. While the variables x and y are associated to the ending point of the path,
the variable t encodes its length. In this paper, we prove that if Q(x, y, t) does not
satisfy any algebraic differential relations with respect to x or y, it does not satisfy
any algebraic differential relations with respect to the parameter t. Combined with
[BBMR16, DHRS18, DHRS17], we are able to characterize the t-differential transcen-
dence of the generating series for any unweighted model of walk.
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Introduction

Classifying lattice walks in restricted domains is an important problem in enumerative
combinatorics. Recently much progress has been made in the study of walks with small
steps in the quarter plane. A small steps model in the plane is composed of a set of
admissible cardinal directions. For a given model, one defines qi,j,k to be the number of
walks confined to the first quadrant of the plane that begin at (0, 0) and end at (i, j)
in k admissible steps. The algebraic nature of the associated complete generating series
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Q(x, y, t) =
∑∞

i,j,k=0 qi,j,kx
iyjtk captures many important combinatorial properties of the

model: symmetries, asymptotic information, and recursive relations of the coefficients.
Among the 256 models in the first quadrant of the plane, Bousquet-Mélou and Mishna

proved in [BMM10] that, after accounting for symmetries and eliminating the trivial and
one dimensional cases, only 79 cases remained. It is worth mentioning that the generating
series is algebraic in all the trivial cases. Figure 1 classifies the models into four groups
depending on the algebraic nature of the series.

• Algebraic cases: the series Q(x, y, t) satisfies a non-trivial polynomial relation
with coefficients in Q(x, y, t).
• Holonomic cases: the series Q(x, y, t) is transcendental and holonomic, i.e. it

satisfies a non-trivial linear differential equation with coefficients in Q(x, y, t)
with respect to each of the three derivations ([BMM10, BvHK10, FR10]).
• Differentially algebraic cases: the series Q(x, y, t) is non-holonomic and dif-

ferentially algebraic, i.e. it satisfies a non-trivial polynomial differential equa-
tion with coefficients in Q with respect to each of the three derivations
([KR12, MM14, BBMR16]).
• Differentially transcendental cases: the series is not differentially algebraic with

respect to the derivation d
dx , nor with respect to the derivation d

dy ([DHRS18,

DHRS17]).

Algebraic cases

Holonomic cases

Differentially algebraic cases

Differentially transcendental cases

Figure 1. Classification of the 79 models. The algebraic and holonomic
cases correspond to walks with a finite group.

These classification results come from many approaches: probabilistic methods, com-
binatorial classification, computer algebra and “ Guess and Prove ”, analysis and bound-
ary value problems, and more recently difference Galois theory and algebraic geometry.
The analytic approach consists in studying the asymptotic growth of the generating se-
ries, or else showing that it has an infinite number of singularities, in order to prove
its non-holonomicity. Thus, this approach also allows for the study of some important
specializations of the complete generating series as for instance Q(1, 1, t) the generating
series for the number of nearest neighbor walks in the quarter plane (see [MM14, MR09]).
Though very powerful, these analytic techniques are unable to detect the differentially
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algebraic generating functions among the non-holonomic ones. For instance, the gen-
erating function

∏∞
k=1

1
(1−xk)

counting the number of partitions has an infinite number

of singularities, and yet is differentially algebraic. In order to detect these more subtle
kinds of functional dependance it is necessary, to use new arguments that focus on the
functional equation satisfied by the complete generating series. Indeed, the combinato-
rial decomposition of a walk into a shorter walk followed by an admissible step translates
into a functional equation for the generating series. Following the ideas of Fayolle, Iasno-
gorodski and Malyshev [FIM99], one specializes this functional equation to the so-called
kernel curve to find a linear discrete equation. Difference Galois theory allows then
to characterize the differentially transcendental complete generating series ([DHRS18])
whereas the clever use of Tutte invariants produces explicit differential algebraic relations
for the 9 non-holomic but differentially algebraic cases ([BBMR16]).

The aim of this paper is to complete the picture by solving the problem of the algebraic
relations satisfied by the complete generating series and its derivatives with respect
to the length variable t. Until now only partial results were known. Any complete
generating function that is differentially algebraic with respect to x and y was known to
be also differentially algebraic with respect to t. This comes for instance from an explicit
description of the series via elliptic functions (see [BBMR16] for the 9 differentially
algebraic cases). We prove that the converse holds. More precisely,

Theorem 1. For any unweighted model, the following facts are equivalent:

(1) the complete generating series is d
dx -differentially algebraic over Q;

(2) the complete generating series is d
dy -differentially algebraic over Q;

(3) the complete generating series is d
dt -differentially algebraic over Q.

Thus the classification in Figure 1 remains valid after adding the t-derivation. In the
holonomic cases, Bousquet-Mélou and Mishna showed that differential behavior was the
same with respect to the three variables x, y and t. The same property was expected
to be true for the differentially algebraic cases but was far from being obvious to prove.
Indeed, in general, there is a priori no relation between the d

dx and d
dt differential alge-

braic properties of a function in these two variables. For instance, the function tΓ(x)
is holonomic with respect to t but not differentially algebraic with respect to x, thanks
to Hölder’s result. It happens that, for the walks in the first quadrant, the differential
algebraic behavior is governed by the geometry of the kernel curve. This curve is the
generic fiber of a rational or elliptic fibration over the projective line in t. Then, the
connection between the t and x derivatives of the complete generating series is related
to the fact that this fibration is not trivial, i.e. not a direct product∗. Unfortunately,
Theorem 1 gives only a partial answer for specializations of the generating series such as
for instance the series Q(1, 1, t) counting nearest neighbor walks in the quarter plane. If
the complete generating series is differential algebraic, the Tutte invariants of [BBMR16]
produce some explicit algebraic differential equations that one can try to specialize. How-
ever, when the complete series is differentially transcendental, it seems very difficult to
know whether its specialization Q(1, 1, t) is differentially transcendental or not. Methods
based on the kernel curve will fail because most of the time the point (1, 1) is not on the

∗The function tΓ(x) satisfies the finite difference equation F (x + 1, t) = xF (x, t) over the trivial
fibration P1 ×P1 → P1, (x, t) 7→ t
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kernel curve and analytic methods will only prove non-holomy. It seems that, the study
of the differential transcendence of this specialization will require drastically new ideas.

Our work relies on a non-archimedean uniformization of the Kernel curve. The advan-
tage of this framework is that it unifies the so called singular and non-singular models
but also allows us to address the question of the t-derivation. Indeed, in earlier works,
former uniformizations of the kernel curve were constructed for a fixed value of t and
resulted in the study of a q-difference equation for singular models ([DHRS17]) and finite
difference elliptic equations for non-singular ones ([KR12]). We use here the formalism
of Tate curves over Q(t) as in [Roq70] to show that for any singular or non-singular
model, the differential algebraic properties of the complete generating series are encoded
by the differential algebraic properties of a solution of a rank one non-homogeneous lin-
ear q-difference equation. Then, we generalize some Galoisian criteria for q-difference
equations of [HS08] to prove Theorem 1. Our result holds in the more general context of
weighted models.That is, given any (unweighted) model, one can add weights associated
to each admissible step and ask what happens to the algebraic nature of the series. In
the weighted situation, we are able to prove only one direction of the equivalence.

Theorem 2. For any non-degenerate† walk with infinite group of the walk, if the
complete generating series series is d

dt -differentially algebraic over Q then it is d
dx -

differentially algebraic over Q. A similar result holds for the derivation d
dy .

The paper is organized as follows. In Section 1 we present some reminders and no-
tations for walks in the quarter plane. In Section 2 we consider walks with genus zero
kernel curve, while Section 3 deals with the genus one case. Since this paper combines
many different fields, non-archemedian uniformization, combinatorics, and Galois the-
ory, we choose to postpone many technical intermediate results to the appendices. This
should allow the reader to understand the articulation of our proof of Sections 2 and 3
in three steps without being lost in too many technicalities. These three steps are the
uniformization of the kernel and the construction of a linear q-difference equation, the
Galoisian criteria, and finally, the resolution of telescoping problems. Appendix A is
devoted to the non-archimedean estimates that we used in the uniformization proce-
dure. Appendix B contains some reminders on special functions on Tate curves and
their normal forms. Appendix C proves the Galoisian criteria mentioned above. Finally,
Appendix D studies the transcendence properties of special functions on Tate curves
that will be used for the descent of our telescoping equations.

1. The walks in the quadrant

The goal of this section is to introduce some basic properties of walks in the quarter
plane. In §1.1, we introduce the generating series Q(x, y, t) of a walk confined in the
quarter plane. In §1.2, we attach to any walk a kernel curve, which is an algebraic curve
defined over Q[t]. This curve has been intensively studied as an algebraic curve over C
by fixing a morphism from Q[t] to C. For instance, [FIM99] is concerned with t = 1
whereas the papers [DHRS18] and [DR19] focus respectively on t ∈ C transcendental
over Q and t ∈]0, 1[. Unfortunately, specializing t even generically does not allow to

†See Definition 1.4
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study the t-dependencies of the generating series. In this paper, we do not work with a
specialization of t. This forces us to move away from the archimedean framework of the
field of complex numbers and to consider the kernel curve over a suitable valued field
extension of Q(t) endowed with the valuation at 0.

1.1. The walks. The cardinal directions of the plane { , , , , , , , } are identi-
fied with pairs of integers (i, j) ∈ {0,±1}2\{(0, 0)}. A walk W in the quarter plane Z2

≥0

is a sequence of points (Mn)n∈Z≥0
such that

• it starts at (0, 0), that is, M0 = (0, 0);
• for all n ∈ Z≥0, the point Mn belong to the quadrant Z≥0 × Z≥0;
• for all n ∈ Z≥0, the vector Mn+1 −Mn belongs to a given subset D of the set of

cardinal directions.

The set D is called the set of steps or the model of the walk. Fixing a family of elements
(di,j)(i,j)∈{0,±1}2 of Q∩ [0, 1] such that

∑
i,j di,j = 1 and di,j 6= 0 inf and only if (i, j) ∈ D,

one can choose to weight the model of the walk in order to add a probabilistic flavor to
our study. In that case, the di,j are called the weights and the model is called a weighted
model. Note that the set of steps of the walk W is the set of cardinal directions with
non-zero weight, that is,

D = {(i, j) ∈ {0,±1}2\{(0, 0)}|di,j 6= 0}.
A model is unweighted if d0,0 = 0 and if the non-zero di,j ’s all have the same value.
For any (i, j) ∈ Z2

≥0 and any k ∈ Z≥0, we let qi,j,k ∈ [0, 1] be the probability for the

walk confined in the quadrant Z2
≥0 to reach the position (i, j) from the initial position

(0, 0) after k steps. We introduce the corresponding trivariate generating series

Q(x, y, t) :=
∑
i,j,k≥0

qi,j,kx
iyjtk.

Note that the generating series is not exactly the same as the one that we defined
in the introduction. To recover the latter, we should take di,j ∈ {0, 1} and di,j = 1
if and only if the corresponding direction belongs to D. Fortunately, the assumption∑

i,j di,j = 1 can be relaxed by rescaling the t-variable, and the results of the present
paper stay valid for the generating series of the introduction.

Remark 1.1. For simplicity, we assume that the weights di,j ∈ Q and that t ∈ R is
transcendental over Q. However, we would like to mention that any of the arguments
and statements below will hold with arbitrary real weights in [0, 1]. One just needs to
replace the field Q with the field Q(di,j).

The kernel polynomial of a weighted model (di,j)i,j∈{0,±1}2 is defined by

(1.1) K(x, y, t) := xy(1− tS(x, y))

where

(1.2)

S(x, y) =
∑

(i,j)∈{0,±1}2 di,jx
iyj

= A−1(x) 1
y +A0(x) +A1(x)y

= B−1(y) 1
x +B0(y) +B1(y)x,

and Ai(x) ∈ x−1Q[x], Bi(y) ∈ y−1Q[y].
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By [DHRS17, Lemma 1.1], see also [BMM10, Lemma 4], the generating series Q(x, y, t)
satisfies the following functional equation:

(1.3) K(x, y, t)Q(x, y, t) = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t),

where

F 1(x, t) := K(x, 0, t)Q(x, 0, t), and F 2(y, t) := K(0, y, t)Q(0, y, t).

Remark 1.2. We shall often use the following symmetry argument between x and y.
Exchanging x and y in the kernel polynomial amounts to consider the kernel polynomial
of a weighted model D′ := {(i, j) such that (j, i) ∈ D} with weights d′i,j := dj,i.

We conclude with a remark concerning the field of definition of any polynomial rela-
tions between the derivatives of the series.

Remark 1.3. Let K be a field generated over Q by elements that are ( d
dx ,

d
dt) (resp.

( ddy ,
d
dt)) differentially algebraic over Q. By [Kol73, Proposition 8, Page 101], the series

Q(x, y, t) is ( d
dx ,

d
dt) (resp. ( ddy ,

d
dt))-differentially transcendental over Q if and only if it

is ( d
dx ,

d
dt) (resp. ( ddy ,

d
dt))-differentially transcendental over K. Similar statements hold

for Q(x, 0, t) and Q(0, y, t).

1.2. The kernel curve. The kernel polynomial has coefficients in the valued field Q(t)
endowed with the valuation at zero. The latter field is neither algebraically closed nor
complete. In order to use the theory of Tate curves, one needs to consider a complete
algebraically closed field extension of Q(t). We consider the field C of Hahn series or
Mal’cev-Neumann series with coefficients in Q, an algebraic closure of Q, and monomi-
als from Q. We recall that a Hahn series f is a formal power series

∑
γ∈Q cγt

γ with

coefficients cγ in Q and such that the subset {γ|cγ 6= 0} is a well ordered subset of Q.
Its valuation v0(f) is the smallest element of the subset {γ|cγ 6= 0}. The field C is al-
gebraically closed and complete with respect to the valuation at zero, see [AvdDvdH17,
Ex. 3.2.23 and p. 151]. One can endow C with a derivation ∂t as follows

∂t

∑
γ∈Q

cγt
γ

 =
∑
γ∈Q

cγγt
γ .

Then, ∂t extends the derivation t ddt of Q(t), see [AvdDvdH17, Ex.(2), §4.4].
Let us fix once for all α ∈ R such that 0 < α < 1. For any f ∈ C, we define the norm

of f as |f | = αv0(f). Note for any Hahn series f such that |f | < 1, we have |∂t(f)| < 1.
This is not true when ∂t is replaced by d

dt .
We need to discard some degenerate cases. Following [FIM99], we have the following

definition.

Definition 1.4. A weighted model is called degenerate if one of the following holds:

• K(x, y, t) is reducible as an element of the polynomial ring C[x, y],
• K(x, y, t) has x-degree less than or equal to 1,
• K(x, y, t) has y-degree less than or equal to 1.
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Remark 1.5. In [DHRS17], the authors specialize the variable t as a transcendental
complex number. Then, they study the kernel curve as a complex algebraic curve in
P1(C)×P1(C). In this work, we shall use any algebraic geometric result of [DHRS17] by
appealing to Lefschetz Principle: every true statement about an algebraic variety defined
over C remains true when C is replaced by an algebraically closed field of characteristic
zero.

The following proposition gives very simple conditions on D to decide whether a
weighted model is degenerate or not.

Proposition 1.6 (Lemma 2.3.2 in [FIM99]). A weighted model is degenerate if and only
if at least one of the following holds:

(1) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds to
walks with steps supported in one of the following configurations

(2) There exists j ∈ {−1, 1} such that d−1,j = d0,j = d1,j = 0. This corresponds to
walks with steps supported in one of the following configurations

(3) All the weights are zero except maybe {d1,1, d0,0, d−1,−1} or {d−1,1, d0,0, d1,−1}.
This corresponds to walks with steps supported in one of the following configura-
tions

Note that we only discard one dimensional problems as explained in [BMM10]. For
all the degenerate cases, the generating series Q(x, y, t) is algebraic.

From now on, we shall always assume that the weighted model under consideration is
non-degenerate.

To any weighted model D, we attach a curve E, called the kernel curve, that is defined
as the zero set in P1(C)×P1(C) of the following homogeneous polynomial

K̃(x0, x1, y0, y1, t) = x0x1y0y1 − t
2∑

i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 = x2

1y
2
1K

(
x0

x1
,
y0

y1
, t

)
.

Let us write K̃(x0, x1, y0, y1, t) =
∑2

i,j=0Ai,jx
i
0x

2−i
1 yj0y

2−j
1 where Ai,j = −tdi−1,j−1

if (i, j) 6= (1, 1) and A1,1 = 1 − td0,0. The partial discriminants of K̃(x0, x1, y0, y1, t)
are defined as the discriminants of the second degree homogeneous polynomials y 7→
K̃(x0, x1, y, 1, t) and x 7→ K̃(x, 1, y0, y1, t), respectively, i.e.

∆x(x0, x1) =

(
2∑
i=0

xi0x
2−i
1 Ai,1

)2

− 4

(
2∑
i=0

xi0x
2−i
1 Ai,0

)
×

(
2∑
i=0

xi0x
2−i
1 Ai,2

)
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and

∆y(y0, y1) =

 2∑
j=0

yj0y
2−j
1 A1,j

2

− 4

 2∑
j=0

yj0y
2−j
1 A0,j

×
 2∑
j=0

yj0y
2−j
1 A2,j

 .

Introduce

(1.4) D(x) := ∆x(x, 1) =
4∑
j=0

αjx
j and E(y) := ∆y(y, 1) =

4∑
j=0

βjy
j ,

where
(1.5)
α4 =

(
d2

1,0 − 4d1,1d1,−1

)
t2

α3 = 2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,−1 + d1,1d0,−1)
α2 = 1 + t2d2

0,0 + 2t2d−1,0d1,0 − 4t2(d−1,1d1,−1 + d0,1d0,−1 + d1,1d−1,−1)− 2td0,0

α1 = 2t2d−1,0d0,0 − 2td−1,0 − 4t2(d−1,1d0,−1 + d0,1d−1,−1)
α0 =

(
d2
−1,0 − 4d−1,1d−1,−1

)
t2

β4 =
(
d2

0,1 − 4d1,1d−1,1

)
t2

β3 = 2t2d0,1d0,0 − 2td0,1 − 4t2(d1,0d−1,1 + d1,1d−1,0)
β2 = 1 + t2d2

0,0 + 2t2d0,−1d0,1 − 4t2(d1,−1d−1,1 + d1,0d−1,0 + d1,1d−1,−1)− 2td0,0

β1 = 2t2d0,−1d0,0 − 2td0,−1 − 4t2(d1,−1d−1,0 + d1,0d−1,−1)
β0 =

(
d2

0,−1 − 4d1,−1d−1,−1

)
t2.

The discriminants ∆x(x0, x1),∆y(y0, y1) are homogeneous polynomials of degree 4.
The Eisenstein invariants are defined as follows (see [Dui10, §2.3.5]):

Definition 1.7. For any homogeneous polynomial of the form

f(x0, x1) = a0x
4
1 + 4a1x0x

3
1 + 6a2x

2
0x

2
1 + 4a3x

3
0x1 + a4x

4
0 ∈ C[x0, x1],

we define the Eisenstein invariants of f(x0, x1) as

• D(f) = a0a4 + 3a2
2 − 4a1a3

• E(f) = a0a
2
3 + a2

1a4 − a0a2a4 − 2a1a2a3 + a3
2

• F (f) = 27E(f)2 −D(f)3.

Since C is algebraically closed of characteristic zero, we can apply [Dui10, §2.4] to the
kernel curve. The following proposition characterizes the smoothness of the kernel curve
in terms of the invariants F (∆x), F (∆y).

Proposition 1.8 (Proposition 2.4.3 in [Dui10] and Lemma 4.4 in [DHRS17]). The
following statements are equivalent

• The kernel curve E is smooth, i.e. it has no singular point;
• F (∆x) 6= 0;
• F (∆y) 6= 0.

Furthermore, if E is smooth then it is an elliptic curve with J-invariant given by

J(E) = 123 D(∆y)
3

−F (∆y)
∈ C.
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Otherwise, if E is non-degenerate and singular, E has a unique singular point and is a
genus zero curve.

We define the genus of a weighted model as the genus of the associated kernel curve E.
We recall the results obtained in [FIM99, Theorem 6.1.1] that classify all the weighted
models attached to a genus zero kernel.

Theorem 1.9. Any non-degenerate weighted model of genus zero has steps included in
one of the following 4 sets of steps:

Otherwise, for any other non-degenerate weighted model, the kernel curve E is an elliptic
curve.

Remark 1.10. The walks corresponding to the fourth configuration never enter the
quarter-plane. As described in [BMM10, Section 2.1], if we consider walks corresponding
to the second and third configurations we are in the situation where one of the quarter
plane constraints implies the other. In the last three configurations, the generating series
is algebraic. So the only interesting genus zero weighted models have steps included in

Note that due to Proposition 1.6, the anti-diagonal steps have non-zero attached weights.
See (G0) for the enumeration of the possible set of steps of the interesting genus zero
weighted models.

Moreover, by Theorem 1.9, combined with Proposition 1.6, the non-degenerate
weighted models of genus one are the walks where there are no three consecutive cardinal
directions with weight zero. Or equivalently, this corresponds to the situation where the
set of steps is not included in any half plane.

Thanks to Theorem 1.9, one can reduce our study to two cases depending on the
genus of the kernel curve attached to a non-degenerate weighted model. The following
lemma proves that when the kernel curve is of genus one, its J-invariant has modulus
strictly greater than 1. This property allows us to use the theory of Tate curves in order
to analytically uniformize the kernel curve.

Lemma 1.11. When E is smooth, the invariant J(E) ∈ Q(t) is such that |J(E)| > 1,
where | | denotes the norm of (C, | |).

Proof. At t = 0, ∆y(y0, y1) reduces to y2
0y

2
1. This proves that the reduction of D(∆y)

(resp. E(∆y)) at t = 0 is 1
12 (resp. 1

63
). One concludes that F (∆y) vanishes for t = 0.

By Proposition 1.8, J(E) ∈ Q(t) has a strictly negative valuation at t = 0. Thus,
|J(E)| > 1. �

1.3. The automorphism of the walk. Following [BMM10, Section 3] or [KY15, Sec-
tion 3], we introduce the involutive birational transformations of P1(C) ×P1(C) given
by

i1(x, y) =

(
x,
A−1(x)

A1(x)y

)
and i2(x, y) =

(
B−1(y)

B1(y)x
, y

)
,
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(see §1.1 for the significance of the Ai, Bi’s).
They induce two involutive automorphisms ι1, ι2 : E 99K E given by

ι1([x0 : x1], [y0 : y1]) =

(
[x0 : x1],

[
A−1(x0x1 )

A1(x0x1 )y0y1
: 1

])
,

and ι2([x0 : x1], [y0 : y1]) =

([
B−1(y0y1 )

B1(y0y1 )x0x1
: 1

]
, [y0 : y1]

)
.

Note that ι1 and ι2 are nothing but the vertical and horizontal switches of E, see
Figure 2. That is, for any P = (x, y) ∈ E, we have

{P, ι1(P )} = E ∩ ({x} ×P1(C)) and {P, ι2(P )} = E ∩ (P1(C)× {y}).

•

•

•

•

•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
E

Figure 2. The maps ι1, ι2 restricted to the kernel curve E

The automorphism of the walk σ is defined by

σ = ι2 ◦ ι1.

The following holds.

Lemma 1.12 (Lemma 4.14 in [DHRS17]). Let P ∈ E. The following statements are
equivalent:

• P is fixed by σ;
• P is fixed by ι1 and ι2;
• P is the only singular point of E that is of genus zero.

2. Generating functions for walks, genus zero case

In this section, we fix a non-degenerate weighted model of genus zero. Following
Remark 1.10, after eliminating duplications of trivial cases and the interchange of x and
y, we should focus on walks W arising from the following 5 sets of steps:

(G0)

In this section, we prove the following theorem:
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Theorem 2.1. For any weighted model of Table (G0), the generating series Q(x, 0, t)
is ( d

dx ,
d
dt)-differentially transcendental over Q.

For any weighted model of Table (G0), the generating series Q(0, y, t) is ( ddy ,
d
dt))-

differentially transcendental over Q.

Theorem 2.1 implies the differential transcendence of the complete generating series.

Corollary 2.2. For any weighted model of Table (G0), the generating series Q(x, y, t)
is ( d

dx ,
d
dt) and ( ddy ,

d
dt)-differentially transcendental over Q.

Proof of Corollary 2.2. Suppose to the contrary that Q(x, y, t) is ( d
dx ,

d
dt)-algebraic over

Q. Let P (X,Xx, Xt, Xxt, . . . ) be a non-zero polynomial with coefficients in Q such that
P (Q(x, y, t), ddxQ(x, y, t), ddtQ(x, y, t), . . . ) = 0. Specializing at y = 0 this relation and

noting that di

dxi
dj

dtj
(Q(x, 0, t) is the specialization of di

dxi
dj

dtj
(Q(x, y, t), one finds a non-

trivial differential algebraic relations for Q(x, 0, t) in the derivatives d
dx and d

dt . This

contradicts Theorem 2.1. The proof for the ( d
dy ,

d
dt)-differential transcendence is similar.

�

As detailed in the introduction, our proof has three major steps:

Step 1: we attach the incomplete generating series Q(x, 0, t) and Q(0, y, t) to some aux-
iliary functions that share the same differential behavior but satisfy simple q-
difference equations. This is done via the uniformization of the kernel (see §2.1
and §2.2).

Step 2: we apply difference Galois theory to the q-difference equations satisfied by the
auxiliary functions in order to relate the differential algebraicity of the incomplete
generating series to the existence of telescoping relations. These telescoping
relations are of the form (2.7).

Step 3: we prove that there is no such telescoping relation. This allows us to conclude
that the incomplete generating series are differentially transcendental (see §2.3).

2.1. Uniformization of the kernel curve. With the notation of §1, especially (1.5),
any weighted model of Table (G0) satisfies α0 = α1 = β0 = β1 = 0. Moreover, since
the weighted model is non-degenerate, one finds that the product d1,−1d−1,1 is non-zero.
Furthermore,

−1 + d0,0t±
√

(1− d0,0t)2 − 4d1,−1d−1,1t2 6= 0.

The uniformization of the kernel curve of a weighted model of Table (G0) is given by
the following proposition.

Proposition 2.3 (Propositions 1.5 in [DHRS17]). Let us consider a weighted model of
Table (G0) and let E be its kernel curve. There exist λ ∈ C∗ and a parameterization
φ : P1(C)→ E with

φ(s) = (x(s), y(s)) =

(
4α2√

α2
3 − 4α2α4(s+ 1

s )− 2α3

,
4β2√

β2
3 − 4β2β4( sλ + λ

s )− 2β3

)
,

such that

• φ : P1(C) \ {0,∞} → E \ {(0, 0)} is a bijection and φ−1((0, 0)) = {0,∞};
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• The automorphisms ι1, ι2, σ of E induce automorphisms ι̃1, ι̃2, σq of P1(C) via
φ that satisfy ι̃1(s) = 1

s , ι̃2(s) = q
s , σq(s) = qs, with λ2 = q ∈ {q̃, q̃−1} and

q̃ =
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
∈ C∗.

Thus, we have the commutative diagrams

E
ιk // E

P1(C)

φ

OO

ι̃k

// P1(C)

φ

OO and E
σ // E

P1(C)

φ

OO

σq
// P1(C)

φ

OO

The following estimate on the norm of q̃ holds:

Lemma 2.4. We have |q̃| > 1.

Proof. We consider the expansion as a Puiseux series of q̃. It is then easily seen that its
valuation is negative,which gives |q̃| > 1. �

2.2. Meromorphic continuation of the generating series. In this paragraph, we
combine the functional equation (1.3) with the uniformization of the kernel obtained
above to meromorphically continue the generating series.

We define the norm of an element b = [b0 : b1] ∈ P1(C) as follows: if b1 6= 0, we set

|b| = | b0b1 | and |[1 : 0]| = ∞ by convention. Since |t| < 1, the generating series Q(x, y, t)

as well as F 1(x, t), F 2(y, t) converge for any (x, y) ∈ P1(C) × P1(C) such that |x| and
|y| are smaller than or equal to 1. On that domain, they satisfy

(2.1) K(x, y, t)Q(x, y, t) = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t).

We claim that there exist two positive real numbers c0, c∞ such that φ maps the disks
U0 = {s ∈ P1(C)||s| < c0} and U∞ = {s ∈ P1(C)||s| > c∞} into the domain U defined
by {(x, y) ∈ E such that |x| ≤ 1 and |y| ≤ 1}. Indeed, the αi and βi are of norm smaller

or equal to 1 and |α2| = 1 (see (1.5)). Thus, if |s| < min(1, |
√
α2

3 − 4α2α4|), then

|x(s)| =

∣∣∣∣∣ 4α2s√
α2

3 − 4α2α4(s2 + 1)− 2α3s

∣∣∣∣∣ =
|4α2s|

|
√
α2

3 − 4α2α4|
< 1.

An analogous reasoning for y(s) shows that when |s| is sufficiently small, we find
|x(s)|, |y(s)| ≤ 1. Similarly, one can prove that, when |s| is sufficiently big, one has
|x(s)|, |y(s)| ≤ 1. This proves our claim.

We set F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t). Based on the above, these
functions are well defined on U0 ∪ U∞. Evaluating (2.1) for (x, y) = (x(s), y(s)), one
finds

(2.2) 0 = x(s)y(s) + F̆ 1(s) + F̆ 2(s) + td−1,−1Q(0, 0, t).

The following lemma shows that one can use the above equation to meromorphically
continue the functions F̆ i(s) so that they satisfy a q-difference equation.
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Lemma 2.5. For i = 1, 2, the restriction of the function F̆ i(s) to U0 can be continued

to a meromorphic function F̃ i(s) on C such that

F̃ 1(qs)− F̃ 1(s) = b1 = (x(qs)− x(s))y(qs)

and
F̃ 2(qs)− F̃ 2(s) = b2 = (y(qs)− y(s))x(s).

Proof. We just give a sketch of a proof since the arguments are the exact analogue in our
ultrametric context of those employed in [DHRS17, §2.1]. Since ι̃1(s) = 1

s and ι̃2(s) = q
s ,

we can assume without loss of generality that ι̃1(U0) ⊂ U∞ and ι̃2(U∞) ⊂ U0. Then one
can evaluate (2.2) at any s ∈ U0. We obtain

0 = x(s)y(s) + F̆ 1(s) + F̆ 2(s) + td−1,−1Q(0, 0, t).

Evaluating (2.2) at ι̃1(s) ∈ U∞, we find

0 = x(ι̃1(s))y(ι̃1(s)) + F̆ 1(ι̃1(s)) + F̆ 2(ι̃1(s)) + td−1,−1Q(0, 0, t).

Using the invariance of x(s) (resp. y(s)) with respect to ι̃1 (resp. ι̃2), the second equation
is

0 = x(s)y(qs) + F̆ 1(s) + F̆ 2(qs) + td−1,−1Q(0, 0, t).

Subtracting this last equation to the first, we find that, for any s ∈ U0, we have

(2.3) F̆ 2(qs)− F̆ 2(s) = (y(qs)− y(s))x(s).

By Lemma 2.4, the norm of q̃ is strictly greater than one and therefore the norm of |q|
is distinct from 1. This allows us to use (2.3) to meromorphically continue F̆ 2 to C so

that it satisfies (2.3) everywhere. The proof for F̆ 1 is similar. �

Note that, for i = 1, 2, the function F̃ i(s) does not coincide a priori with F̆ i(s) in the
neighborhood of infinity.

2.3. Differential transcendence in the genus zero case. We recall that any holo-
morphic function f on C∗ can be represented as an everywhere convergent Laurent
series with coefficients in C. Moreover any non-zero meromorphic function on C∗ can
be written as the quotient of two holomorphic functions on C∗ with no common zeros.
We denote by Mer(C∗) the field of meromorphic functions over C∗ and by σq the q-
difference operator that maps a meromorphic function g(s) onto g(qs). Finally, let Cq

be the the field formed by the meromorphic functions over C∗ fixed by σq.
We now define the q-logarithm. If |q| > 1, the Jacobi Theta function is the mero-

morphic function defined by θq(s) =
∑

n∈Z q−n(n+1)/2sn ∈Mer(C∗). It satisfies the the
q-difference equation

θq(qs) = sθq(s).

Its logarithmic derivative `q(s) =
∂s(θq)
θq

∈ Mer(C∗) satisfies `q(qs) = `q(s) + 1. If

|q| < 1 then the meromorphic function −`1/q is solution of σq(−`1/q) = −`1/q + 1.
Abusing the notation, we still denote by `q the function −`1/q when |q| < 1.

Since we want to use the q-difference equations of Lemma 2.5 as a constraint for the

form of the differential algebraic relations satisfied by the F̃ i(s) ’s, we need to consider
derivations that are compatible with σq in the sense that they commute with each
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other. This is not the case for the derivation ∂t = t ddt . By Lemma D.2, the derivations

∂s = s dds and ∆t,q = ∂t(q)`q(s)∂s + ∂t commute with σq. The following lemma relates
the differential transcendence of the incomplete generating series Q(x, 0, t) and Q(0, y, t)

to the differential transcendence of the auxiliary functions F̃ i(s).

Lemma 2.6. If the generating series is Q(x, 0, t) is
(
d
dx ,

d
dt

)
-differentially algebraic over

Q, then F̃ 1(s) is (∂s,∆t,q)-differentially algebraic over K̃ = Cq(s, `q(s)).

If the generating series is Q(0, y, t) is
(
d
dy ,

d
dt

)
-differentially algebraic over Q, then

F̃ 2(s) is (∂s,∆t,q)-differentially algebraic over K̃ = Cq(s, `q(s)).

Proof. The statement being symmetrical in x and y, we prove it only for Q(x, 0, t).
Assume that the generating series is Q(x, 0, t) is

(
d
dx ,

d
dt

)
-differentially algebraic over

Q. Since F 1(x, t) is the product of Q(x, 0, t) by the polynomial K(x, 0, t) ∈ Q[x, t],
the function F 1(x, t) is

(
d
dx ,

d
dt

)
-differentially algebraic over Q. It is therefore

(
d
dx , ∂t

)
-

differentially algebraic over Q(t), and finally
(
d
dx , ∂t

)
-differentially algebraic over Q, since

t is ∂t-differentially algebraic over Q. Remember that F̃ 1(s) coincides with F 1(x(s), t)
for s ∈ U0 where x(s) is defined thanks to Proposition 2.3. Therefore, we need to
understand the relations between the x and t derivatives of F 1(x, t) and the derivatives
of F 1(x(s), t) with respect to ∂s and ∆t,q.

Let us study these relations for an arbitrary bivariate function G(x, t) which converges

on |x|, |y| ≤ 1. Denote by δx the derivation d
dx and by G̃(s) = G(x(s), t). From the

equality (∂sG̃(s)) = ∂s(x(s))(δxG)(x(s), t), we conclude that

∂t(G̃(s)) = (∂tG)(x(s), t) + ∂t(x(s))(δxG)(x(s), t) = (∂tG)(x(s), t) + c∂s(G̃(s)),

where c = ∂t(x(s))
∂s(x(s)) . The element c belongs to K̃ because x(s) ∈ K̃ and K̃ is stable by

∂s,∆t,q and thereby by ∂t = ∆t,q − ∂t(q)`q(s)∂s (see Lemma D.5). An easy induction
shows that

(2.4) (∂nt G)(x(s), t) = ∂nt (G̃(s)) +
∑

i≤n,j<n
bi,j∂

j
t ∂

i
s(G̃(s)),

where the bi,j ’s belong to K̃. By Lemma D.2, we have ∂s∆t,q − ∆t,q∂s = f∂s, where

f = ∂t(q)∂s(`q) ∈ K̃. Combining (2.4) with ∂t = ∆t,q − ∂t(q)`q(s)∂s, we find that

(2.5) (∂nt G)(x(s), t) = ∆n
t,q(G̃(s)) +

∑
i≤2n,j<n

di,j∆
j
t,q∂

i
s(G̃(s)),

for some di,j ’s in K̃. Moreover, an easy induction shows that, for any m ∈ N∗, we have

(2.6) (δmx G)(x(s), t) =
1

∂s(x(s))m
∂ms (G̃(s)) +

m−1∑
i=1

ai∂
i
s(G̃(s)),

where ai ∈ K̃. Applying (2.5) with G replaced by δmx G, we find that for every m,n ∈ N,

(∂nt δ
m
x G)(x(s), t) = ∆n

t,q((δmx G)(x(s), t)) +
∑

i≤2n,j<n

di,j∆
j
t,q∂

i
s((δ

m
x G)(x(s), t)).
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Combining this equation with (2.6), we conclude that

(∂nt δ
m
x G)(x(s), t) =

1

∂s(x(s))m
∆n
t,q∂

m
s (G̃(s)) +

∑
i≤2n+m,j<n

ri,j∆
j
t,q∂

i
s(G̃(s)),

where the ri,j ’s are elements of K̃.
Applying the computations above to G = F 1(x, t), we find that any non-trivial poly-

nomial equation in the derivatives δmx ∂
n
t F

1(x, t) over Q yields to a non-trivial polynomial

equation over K̃ between the derivatives ∆j
t,q∂

i
s(F̃

1(s)). �

Thus, we have reduced the proof of Theorem 2.1 to the following proposition:

Proposition 2.7. The functions F̃ 1(s) and F̃ 2(s) are (∂s,∆t,q)-differentially transcen-

dental over K̃.

Proof. Suppose to the contrary that F̃ 1(s) is (∂s,∆t,q)-differentially algebraic over K̃.

By Lemma 2.5, the meromorphic function F̃ 1(s) satisfies F̃ 1(qs) − F̃ 1(s) = b1 =
(x(qs) − x(s))y(qs) with b1 ∈ C(s) ⊂ Cq(s). We now apply difference Galois the-
ory to this q-difference equation. More precisely, by Proposition D.6 and Corollary D.14
with K = Cq(s), there exist m ∈ N, d0, . . . , dm ∈ Cq not all zero and h ∈ Cq(s) such
that

(2.7) d0b1 + d1∂s(b1) + · · ·+ dm∂
m
s (b1) = σq(h)− h.

Let (eβ)β∈B be a C-basis of C(s). Then, (eβ)β∈B is a Cq-basis of Cq(s) by [Wib10,
Lemma 1.1.6]. Now, decompose the dk’s and h over (eβ)β∈B. Since b1 ∈ C(s), it is
easily seen that (2.7) amounts into a collection of polynomial equations with coefficients
in C that should satisfy the coefficients of the dk’s and h with respect to the basis
(eβ)β∈B. Since this collection of polynomial equations has a non-zero solution in Cq,
we can conclude that it has a non-zero solution in C because C is algebraically closed.
Therefore, there exists ck ∈ C not all zero and g ∈ C(s) such that∑

k

ck∂
k
s (b1) = σq(g)− g.

By [HS08, Lemma 6.4] there exist f ∈ C(s) and c ∈ C, such that

F̃ 1(qs)− F̃ 1(s) = b1 = σq(f)− f + c.

Since F̃ 1 is meromorphic at s = 0, we conclude that c must be equal to zero. Finally,
we have shown that there exist f ∈ C(s) such that

(2.8) b1 = σq(f)− f.

By duality, the morphism φ : P1 → E gives rise to a field isomorphism φ∗ from the
field C(x, y)‡ of rational functions on E and the field C(s) of rational functions on P1.
Moreover, one has σqφ

∗ = φ∗σ∗, where σ∗ is the action induced by the automorphism
of the walk on C(E). Then, it is easily seen that the equation (2.8) is equivalent to

(2.9) (σ(x)− x)σ(y) = σ(f̃)− f̃ ,

‡Here x and y denote the coordinate functions on the curve E.
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where f̃ ∈ C(x, y) is the rational function corresponding to f via φ∗. The coefficients of

f̃ as a rational function over E belong to a finitely generated extension F of Q(t).
There exists a Q-embedding ψ of F into C that maps t onto a transcendental complex

number. Since σ and E are defined over Q(t), we apply ψ to (2.9) and we find

(σ(x)− x)σ(y) = σ(f)− f,

where f belongs to C(E) the field of rational functions on the complex algebraic curve
E defined by the kernel polynomial K(x, y, ψ(t)) and where σ is the automorphism
of C(E) induced by the automorphism of the walk corresponding to E. In [DHRS17,
§3.2], the authors proved that there is no such equation. This concludes the proof by
contradiction. �

3. Generating functions of walks, genus one case

In this section we consider the situation where the kernel curve E is an elliptic curve.
By Remark 1.10, this corresponds to the case where the set of steps is not included in an
half plane. Moreover, we work under the assumption that the group of the walk is infinite.
In [DR19], the authors study the finite group case and prove that the uniformization of
the generating series is an elliptic function over an elliptic curve isogeneous to the kernel
curve. This allows them to prove that for any genus one kernel curve and finite group of
the walk, the generating series is holonomic with respect to any of the two variables x, y.
Unfortunately, the t-dependency is not known for general weighted models of genus one
with finite group.

Our strategy follows the basic lines of the one employed in the genus zero situation.
However, our uniformization procedure in the genus one case is more delicate and differs
from previous works such as [FIM99, KR12, DR19] that relied on the uniformization of el-
liptic curves over C by a fundamental parallelogram of periods. Over a non-archimedean
field C, there might be a lack of non-trivial lattices. One has to consider multiplicative
analogues, that is, discrete subgroups of C∗ of the form qZ. Then, rigid analytic geome-
try gives a geometric meaning to the quotient C∗/qZ. This geometric quotient is called
a Tate curve (see [Roq70] for more details). For simplicity of exposition, we won’t give
here many details on this non-archimedean geometry The multiplicative uniformization
of the kernel curve allows us as in §2.2 to attach to the incomplete generating series

Q(x, 0, t) and Q(0, y, t) some meromorphic functions F̃ i(s) satisfying

F̃ i(qs)− F̃ i(s) = bi(s),

for some q ∈ C∗ and bi(s) ∈ Cq, the field of q-periodic meromorphic functions over C∗.
This process detailed in §3.1, 3.2 and 3.3 has many advantages. Though technical, it is
much more simple than the uniformization by a fundamental parallelogram of periods
since we only have to deal with one generator of the fundamental group of the elliptic
curve, precisely the loop around the origin in C∗. Moreover, it gives a unified framework
to study the genus zero and one case, namely, the Galois theory of q-difference equations.
This is the content of §3.4 where we apply the Galoisian criteria of Appendix C to
translate the differential algebraicity of the generating series in terms of the existence of
a telescoper. Finally, we show how one can apply the results of [DHRS18] to our context
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in order to conclude that there is no such telescoper for all but 9 of the non-degenerate
unweighted models of genus one with infinite group.

3.1. Uniformization of the kernel curve. Let us fix a weighted model of genus
one. By Lemma 1.11, the norm of the J-invariant J(E) of the kernel curve is such
that |J(E)| > 1. By Proposition B.2, there exists q ∈ C such that 0 < |q| < 1 and
J(E) = J(Eq) = 1

|q| , where Eq is the elliptic curve attached to the Tate curve C∗/qZ (see

Proposition 3.1, Lemmas B.5, and B.7). The curve Eq can be analytically uniformized
by C∗ thanks to special functions, which have their origins in the theory of Jacobi q-
theta functions (see Proposition 3.1 below). Finally, since E and Eq have the same
J-invariant, there exists an algebraic isomorphism between these two elliptic curves. In
order to describe the uniformization of the kernel curve E, one needs to explicit this
algebraic isomorphism. This is not completely obvious since Eq is given by its Tate
normal form in P2, i.e. by an equation of the form

Y 2 +XY = X3 +BX + C̃.

Therefore, many intermediate results are quite technical and we choose to postpone
these results to the appendix B. The following proposition describes the multiplicative
uniformization of an elliptic curve given by a Tate normal form.

Following [Roq70, Page 28], we set sk =
∑

n>0
nkqn

1−qn ∈ C for k ≥ 1.

Proposition 3.1. The series

• X(s) =
∑

n∈Z
qns

(1−qns)2 − 2s1;

• Y (s) =
∑

n∈Z
(qns)2

(1−qns)3 + s1;

are q-periodic meromorphic functions over C∗. Furthermore X(s) = X(1/s), and X(s)
has a pole of order 2 at any element of the form qZ. Moreover, the analytic map

π : C∗ → P2(C),
s 7→ [X(s) : Y (s) : 1]

is onto and his image is Eq, the elliptic curve defined by the following Tate normal form

(3.1) Y 2 +XY = X3 +BX + C̃,

where B = −5s3 and C̃ = − 1
12(5s3 + 7s5). Moreover, π(s1) = π(s2) if and only if

s1 ∈ s2q
Z.

Proof. This is [FvdP04, Theorem 5.1.4, Corollary 5.1.5, and Theorem 5.1.10]. �

In the notation of Section 1.2, set D(x) := ∆x(x, 1). Let us write the kernel polynomial

K (x, y, t) = Ã0(x) + Ã1(x)y + Ã2(x)y2 = B̃0(y) + B̃1(y)x+ B̃2(y)x2

with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. For i ≥ 1, let D(i)(x) denote the i-th derivative
with respect to x of D(x). The analytic uniformization of the kernel curve is given by
the following proposition.
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Theorem 3.2. There exists a root a of D(x) in C such that |a|, |D(2)(a)−2|, |D(i)(a)| < 1

for i = 3, 4, |q|1/2 < |D(1)(a)| < 1. For any such a, there exists u ∈ C∗ with |u| = 1 such
that the map φ given by

φ : C∗ → E,
s 7→ (x(s), y(s)),

is surjective where

x(s) = a+
D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

(3.2)

y(s) =

D(1)(a)(2u3Y (s)+u3X(s))

2

(
u2X(s)+u2

12
−D(1)(a)

6

)2 − Ã1

(
a+ D(1)(a)

u2X(s)+u2

12
−D(2)(a)

6

)

2Ã2

(
a+ D(1)(a)

u2X(s)+u2

12
−D(2)(a)

6

) .

Proof. Lemma A.1 and Lemma B.7 guaranty the existence of a. The element a allows
us to write down the isomorphism between the kernel curve E and one of its Weierstrass
normal form E1. More precisely, by Proposition B.4, the application wE

E1 → E ⊂ P1(C)×P1(C)
[x1 : y1 : 1] 7→ (x, y)

where

x = a+
D(1)(a)

x1 − D(2)(a)
6

and y =

D(1)(a)y1

2(x1−D(1)(a)
6

)2
− Ã1

(
a+ D(1)(a)

x1−D(2)(a)
6

)
2Ã2

(
a+ D(1)(a)

x1−D(2)(a)
6

) ,

is an isomorphism between the elliptic curve E1 ⊂ P2(C) given by the equation
y2

1 = 4x3
1 − g2x1 − g3 and the kernel curve E. Now, it remains to explicit the isomor-

phism between Eq and one of its Weierstrass normal form Ẽ1. By Lemma B.5, the

application
wT : Eq → Ẽ1,

[X : Y : 1] 7→ [X + 1
2 : 2Y +X : 1]

induces an isomorphism be-

tween Eq and the curve Ẽ1 given by y2 = 4x3−h2x−h3. Since E and Eq have the same
J-invariants and are therefore isomorphic, the same holds for their Weierstrass normal

forms. Thus, there exists u ∈ C∗ such that
ψ : Ẽ1 → E1,

[x : y : 1] 7→ [u2x : u3y : 1]
induces

an isomorphism of elliptic curves (see Lemma B.6). To conclude, we set φ = wE◦ψ◦wT ◦π
where π is the uniformization of Eq by C∗ given in Proposition 3.1. The norm estimate
on u is Lemma B.7. �

Remark 3.3. • Note that by construction φ(s1) = φ(s2) if and only if if s1 ∈ s2q
Z

(see Proposition 3.1).
• Via φ, the field of rational functions over E can be identified with field of q-

periodic meromorphic functions over C.
• The conditions on a are crucial to guaranty the meromorphic continuation of the

generating series (see the proof of Lemma 3.7).
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• The symmetry arguments between x and y of Remark 1.2 can be pushed further
and one can construct another uniformization of E as follows. Denoting by E(y)
the polynomial ∆y(y, 1). One can prove that there exist a root b ∈ C∗ of E

such that |b|, |E(2)(b)− 2|, |E(i)(b)| < 1 for i = 3, 4 and |q|1/2 < |E(1)(b)| < 1 and
v ∈ C∗ with |v| = 1 such that the analytic map ψ given by

ψ : C∗ → E,
s 7→ (x(s), y(s)),

is surjective with y(s) = b + E(1)(b)

v2X(s)+ v2

12
−E(2)(b)

6

(see [DR19, (2.16)] for similar

arguments).

3.2. The group of the walk. The following proposition gives an explicit form for the
automorphisms of C∗ induced via φ by the automorphisms σ, ι1, ι2 of E.

Proposition 3.4. There exists q in C∗ such that the automorphism of C∗ defined by
σq : s 7→ qs induces via φ the automorphism σ, that is σ ◦ φ = φ ◦ σq. Similarly, the
involutions ι̃1, ι̃2 of C∗, that are defined by ι̃1(s) = 1/s and ι̃2(s) = q/s, induce via φ
the automorphisms ι1, ι2.

Proof. The automorphism σ corresponds to the addition by a prescribed point Ω of
E (see [Dui10, Prop. 2.5.2]). Let π : C∗ → Eq be the surjective map defined in
Proposition 3.1. By [FvdP04, Exercise 5.1.9], the map π is a group isomorphism between
the multiplicative group (C∗, ∗) and the Mordell-Weil group of Eq

§. Moreover, since
Eq and E are elliptic curves, any isomorphism between Eq and E is a group morphism
between their respective Mordell-Weil groups. This proves that φ is a group morphism.
Then, there exists q ∈ C∗ such that σ ◦ φ = φ ◦ σq. Since φ is q-invariant, the element
q is determined modulo qZ (see Remark 3.3). This proves the first statement.
Let us denote by ι̃1, ι̃2 some automorphisms of C∗, obtained by pulling back to C∗ via
φ the automorphisms ι1, ι2 of E. The automorphisms ι̃1, ι̃2 are uniquely determined
up to multiplication by some power of q. The automorphisms of C∗ are of the form

s 7→ ls±1 with l ∈ C∗. Note that x(qZ) = a, and (a, −B(a)
2A(a) ) ∈ E is fixed by ι1. Indeed,

by construction D(a) = 0. This proves that ι̃1(1) belongs to qZ. Since ι1 is not the
identity, we can modify ι̃1 by a suitable power of q to get ι̃1(s) = 1/s. The expression
of ι̃2 follows with σ = ι2 ◦ ι1. �

Remark 3.5. • The choice of the element q is unique up to multiplication by qZ.
Since |q| 6= 1, we can choose q such that |q|1/2 ≤ |q| < |q|−1/2.
• Pursuing the symmetry arguments of Remark 3.3, we easily note that Propo-

sition 3.4 has a straightforward analogue when one replaces φ by ψ and one
exchanges ι̃1 and ι̃2.

The proof of the following lemma is straightforward.

§ This is the group whose underlying set is the set of points of E and whose group law is given by
the addition on the elliptic curve E.
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Lemma 3.6. The automorphism σ has infinite order if and only if q and q are multi-
plicatively independent¶, that is, there is no (r, l) ∈ Z2 \ (0, 0) such that qr = ql.

3.3. Meromorphic continuation. In this section, we prove that the functions

F 1(x, t) := K(x, 0, t)Q(x, 0, t), and F 2(y, t) := K(0, y, t)Q(0, y, t),

can be meromorphically continued to C∗. We follow the ideas initiated in [FIM99]. We
note that, since |t| < 1, the series F 1(x, t) and F 2(y, t) converge on the affinoid subset
U = {(x, y) ∈ E ⊂ P1(C)×P1(C)||x| ≤ 1, |y| ≤ 1} of E. With Lemma A.3, U is not
empty. For (x, y) ∈ U , we have

0 = xy + F 1(x, t) + F 2(y, t) + td−1,−1Q(0, 0, t).

Set Ux = {(x, y) ∈ E ⊂ P1(C) × P1(C)||x| ≤ 1}. Note that F 1(x, t) is analytic on Ux.
We continue F 2(y, t) on Ux by setting

F 2(y, t) = −xy − F 1(x, t)− td−1,−1Q(0, 0, t).

Composing F i(x, t) with the surjective map

φ : C∗ → E
s 7→ (x(s), y(s)),

we define the functions F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t) for any s in the set

Ux := φ−1(Ux) ∩ {s ∈ C∗||s| ∈ [|q|1/2, |q|−1/2[}.
The goal of the following lemma is to prove that Ux is an annulus whose size is large

enough in order to continue the functions F̆ 1, F̆ 2, to the whole C∗ (see Figure 3).

Lemma 3.7. Let |s| ∈ [|q|1/2, |q|−1/2[. The following statements hold:

• if |s| ∈]|D(1)(a)|, |D(1)(a)|−1[, then |x(s)| < 1;

• if |s| = |D(1)(a)|±1, then |x(s)| = 1;
• otherwise |x(s)| > 1.

In conclusion, Ux = [|D(1)(a)|, |D(1)(a)|−1].

Proof. From the definition of X(s), we have X(s) = X(1/s) so that x(s) = x(1/s).

Using this symmetry, we just have to prove Lemma 3.7 for |s| ∈ [|q|1/2, 1]. We have

(3.3) |x(s)| =

∣∣∣∣∣a+
D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣∣ ≤ max

(
|a|,

∣∣∣∣∣ D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣∣
)
,

with equality if |a| 6=
∣∣∣∣ D(1)(a)

u2X(s)+u2

12
−D(2)(a)

6

∣∣∣∣. Remember that |u| = 1, |a| < 1, and

|q|1/2 < |D(1)(a)| < 1, see Theorem 3.2. Let us first assume that |s| ∈ [|D(1)(a)|, 1[. By

Lemma B.3, |u2X(s)| = |s| and by Lemma B.8, |u212 −
D(2)(a)

6 | < |D(1)(a)|. Therefore∣∣∣∣∣ D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣∣ =

∣∣∣∣∣D(1)(a)

s

∣∣∣∣∣ .
¶Note that multiplicatively independent is sometimes replaced in the literature by non-commensurable

(see [Roq70, §6]).
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|x(s)| > 1

|x(s)| > 1

|x(s)| < 1

Figure 3. The plain circles correspond to |s| = |q|±1/2. The dashed
circles correspond to |x(s)| = 1.

Combining this equality with (3.3) and |a| < 1, we find that |x(s)| < 1 if

|s| ∈]|D(1)(a)|, 1[, and |x(s)| = 1 if |s| = |D(1)(a)|.
Assume now that |s| = 1. By construction, |x(1)| = |a| < 1. So let us assume that

s 6= 1. Since |u212 −
D(2)(a)

6 | < |D(1)(a)| < 1 and |u2X(s)| ≥ 1 by Lemma B.3, we find∣∣∣∣∣ D(1)(a)

u2X(s) + u2

12 −
D(2)(a)

6

∣∣∣∣∣ =

∣∣∣∣∣D(1)(a)

u2X(s)

∣∣∣∣∣ ≤ |D(1)(a)| < 1.

This concludes the proof of the first two points.
Assume that |s| ∈]|q|1/2, |D(1)(a)|[. By Lemma B.3, |u2X(s)| = |X(s)| = |s|. Since∣∣∣∣∣u2

12
− D(2)(a)

6

∣∣∣∣∣ < |D(1)(a)| < 1,

we find that |u2X(s) + u2

12 −
D(2)

6 | < |D
(1)(a)| and therefore, |x(s)| > 1. If we have

|s| = |q|1/2 < |D(1)(a)| then Lemma B.3 implies that |u2X(s)| = |X(s)| ≤ |s| < |D(1)(a)|.
Since |u212 −

D(2)(a)
6 | < |D(1)(a)|, we deduce that |u2X(s) + u2

12 −
D(2)(a)

6 | < |D(1)(a)| and
therefore, |x(s)| > 1. This concludes the proof. �

Remark 3.8. By symmetry between x and y, one could have define Uy = {(x, y) ∈ E ⊂
P1(C)×P1(C)||y| ≤ 1} and continue F 1(x, t) on Uy by setting

F 1(x, t) = −xy − F 2(y, t)− td−1,−1Q(0, 0, t).

Then, the composition of the F i with the surjective map ψ defined in Remark 3.3 yields
to functions F̆ i that are defined on Uy := ψ−1(Uy) ∩ {s ∈ C∗||s| ∈ [|q|1/2, |q|−1/2[}. The

analogue of Lemma 3.7 is as follows. For |s| ∈ [|q|1/2, |q|−1/2[, the following statements
hold:

• if |s| ∈]|E(1)(b)|, |E(1)(b)|−1[, then |y(s)| < 1;
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• if |s| = |E(1)(b)|±1 then |y(s)| = 1;
• otherwise |y(s)| > 1.

By Proposition 3.4, the automorphism of the walk corresponds to the q-dilatation on
C∗. The following lemma shows that one can cover C∗ either with the q-orbit of the set
Ux or with the q-orbit of Uy.

Lemma 3.9. The following statement hold:

• |q| 6= 1;
• moreover, up to replace q by some convenient qZ-multiple, the following hold:

– if either d−1,1 = 0 or d1,−1 6= 0, then,⋃
`∈Z

σ`q(Ux) = C∗;

– if either d−1,1 6= 0 or d1,−1 = 0 then,⋃
`∈Z

σ`q(Uy) = C∗.

Proof. Let us first prove that |q| 6= 1. By Remark 3.5, one can choose q so that we have

|q|1/2 ≤ |q| < |q|−1/2. By construction, x(1) = a. Let b ∈ P1(C) such that (a, b) ∈ E.
Since ι1(a, b) = (a, b) we have ι2(a, b) 6= (a, b) by Lemma 1.12. So let a′ ∈ P1(C) distinct
from a such that σ(a, b) = (a′, b). Then, x(q) = a′. By Lemma 3.7, |x(s)| < 1 for |s| = 1.
Thus, it suffices to prove that |x(q)| = |a′| ≥ 1 to conclude that |q| 6= 1.

Remember that K (x, y, t) = Ã−1(x)+Ã0(x)y+Ã1(x)y2 = B̃−1(y)+B̃0(y)x+B̃1(y)x2

with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. With ι1(a, b) = (a, b) and the formulas in §1.3, one
finds that

b2 =
A−1(a)

A1(a)
=
Ã−1(a)

Ã1(a)
.

Let ν be the valuation at X = 0 of Ã−1(X)

Ã1(X)
. Lemma A.2 with |a| < 1 gives |b|2 = |a|ν .

Note that Ã1 and Ã−1 are polynomial of degree at most two in X, so the integer ν
belongs to {−2,−1, 0, 1, 2}. We have

(3.4) a′ =
B̃−1(b)

B̃1(b)a
.

We will prove that |a′| ≥ 1 with a case by case study of the values of ν.
Remember that

(3.5)

Ã−1 = d−1,−1 + d0,−1x+ d1,−1x
2

Ã1 = d−1,1 + d0,1x+ d1,1x
2

B̃−1 = d−1,−1 + d−1,0y + d−1,1y
2

B̃1 = d1,−1 + d1,0y + d1,1y
2.

Case ν ≥ 1. Then, |b| = |a|ν/2 < 1. Combining (3.4) and Lemma A.2, we find

|a||a′| = |b|l where l is the valuation at X = 0 of B̃−1(X)

B̃1(X)
. This gives |a′| = |a|lν/2−1.

Since l belongs to {−2, . . . , 2} and ν is in {1, 2}, we get −3 ≤ lν/2− 1 ≤ 1. If lν/2− 1
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equals 1 then ν must be equal to 2 and by (3.5), we must have d−1,−1 = d0,−1 = 0 and
d−1,1 6= 0. By Remark 1.10, we must have d−1,0d1,−1 6= 0 so that l = 1 and lν/2− 1 = 0.
A contradiction. Then, lν/2− 1 ≤ 0 and |a′| ≥ 1.

Case ν = 0. Then, |b| = 1. With Lemma A.3 and |a| < 1, we obtain |a′| > 1.

Case ν ≤ −1. Then |b| = |a|ν/2 > 1. Combining (3.4) and Lemma A.2, we find

|a′| = |a|lν/2−1 where l ∈ {−2, . . . , 2} is the degree in X of B̃−1(X)

B̃1(X)
. Since l belongs to

{−2, . . . , 2} and ν is in {−1,−2}, we get 1 ≥ lν/2 − 1 ≥ −3. If lν/2 − 1 = 1 then
ν = −2 and by (3.5), we must have d−1,1 = d0,1 = 0 and d−1,−1 6= 0. By Remark 1.10,
we must have d−1,0d1,1 6= 0 so that l = −1 and lν/2 − 1 = 0. A contradiction. Then,
lν/2− 1 ≤ 0 and |a′| ≥ 1.

Assume that either d−1,1 = 0 or d1,−1 6= 0 and let us prove that⋃
`∈Z

σ`q(Ux) = C∗.

By Lemma A.4, there exists (a0, b0) ∈ E such that |a0| = 1 and σ(a0, b0) = (a1, b1)

with |a1| ≤ 1. By Lemma 3.7, there exists s0 ∈ C∗ with |s0| = |D(1)(a)|±1 such that

x(s0) = a0. Since |q|1/2 ≤ |q| < |q|−1/2 and |q|1/2 < |D(1)(a)| < 1, we find that

|q| < |qs0| < |q|−1/2. Since |x(qs0)| = |a1| ≤ 1, we conclude using Lemma 3.7 that

• either |qs0| ∈ Ux. This proves that

Ux ∩ σq(Ux) = [|D(1)(a)|, |D(1)(a)|−1] ∩ σq([|D(1)(a)|, |D(1)(a)|−1]) 6= ∅.

Since |q| 6= 1, we deduce that⋃
`∈Z

σ`q(Ux) = C∗.

• or |qs0| ∈ [|q||D(1)(a)|, |q||D(1)(a)|−1]. Replacing q by q/q allows to conclude.

• or |qs0| ∈ [|q|−1|D(1)(a)|, |q|−1|D(1)(a)|−1]. Replacing q by qq allows to conclude.

The proof for Uy is obtained by a symmetry argument using Lemma A.4 and Remark 3.8.
�

According to Lemma 3.9, we define some auxiliary functions as follows

• if d−1,1 = 0, we define, for i = 1, 2, the function F̃ i(s) on Ux as F i(φ(s), t);

• if d−1,1 6= 0, the function F̃ i(s) is defined on Uy as F i(ψ(s), t).

A priori the auxiliary functions F̃ 1(s), F̃ 2(s) are defined on Ux if d−1,1 = 0 and on
Uy otherwise. Theorem 3.10 below shows that one can meromorphically continue the

functions F̃ i(s) on C∗ so that they satisfy some non-homogeneous rank 1 linear q-
difference equations.

Theorem 3.10. The auxiliary functions F̃ 1(s), F̃ 2(s) can be continued meromorphically
on C∗ so that they satisfy

F̃ 1(qs)− F̃ 1(s) = b1

and

F̃ 2(qs)− F̃ 2(s) = b2,
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where b1 = (x(qs) − x(s))y(qs) and b2 = (y(qs) − y(s))x(s) are two q-periodic mero-
morphic functions over C∗.

Proof. The proof is completely similar to the proof of Lemma 2.5 and relies on the fact
that either the q-orbit of Ux or the q-orbit of Uy covers C∗. �

Note that by Remark 3.3, the coefficients b1, b2 of the q-difference can be identified
with rational functions on the algebraic curve E.

3.4. Differential transcendence. The strategy to study the differential transcendence
of generating functions of non-degenerate weighted models of genus one with infinite
group is similar to the one employed in §2. One first relate the differential behavior of
the incomplete generating series to the differential algebraic properties of their associated
auxiliary functions. Then, one applies to these auxiliary functions the Galois theory of q-
difference equations. However, since the coefficients of the q-difference equations satisfied
by the auxiliary functions are no longer rational but elliptic, the Galoisian criteria as
well as the descent method to obtain some “simple telescopers” are quite technical and
postponed to Appendix C. Then, one obtains a first criteria to guaranty the differential
transcendence of the incomplete generating series.

Theorem 3.11. Assume that the weighted model is non-degenerate, of genus one, and
that the group of the walk is infinite. If Q(x, 0, t) is

(
d
dx ,

d
dt

)
-differentially algebraic over

Q then there exist c0, . . . , cn ∈ C not all zero and h ∈ Cq such that

(3.6) c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h.

A symmetrical result holds for Q(0, y, t) replacing b1 by b2.

Proof. Since the group of the walk is of infinite order, the automorphism σ is of infinite
order. Therefore by Lemma 3.6 the elements q and q defined in Proposition 3.4 are
multiplicatively independent. Assume that Q(x, 0, t) is

(
d
dx ,

d
dt

)
-differentially algebraic

over Q. Let F̃ 1(s) be the auxiliary function defined above.
We denote by Cq.Cq the compositum of the fields Cq and Cq inside the field of

meromorphic functions over C∗. We claim that F̃ 1(s) is (∂s,∆t,q)-differentially algebraic
over Cq.Cq(`q, `q). Let us prove this claim when d−1,1 = 0, the proof when d−1,1 6= 0
being similar. Reasoning as in Lemma 2.6, one can show that, for n,m ∈ N, one has

(∂nt ∂
m
x F

1)(x(s), t) =
1

∂s(x(s))m
∆n
t,q∂

m
s (F̃ 1(s)) +

∑
i≤2n+m,j<n

ri,j∆
j
t,q∂

i
s(F̃

1(s)),

where ri,j ∈ Cq(`q)(x(s), ∂ls∂
k
t (x(s)), . . . ). By construction, x(s) is in Cq so that

Lemma D.5 implies that ∂ls∂
k
t (x(s)) ∈ Cq(`q) for any positive integers k, l. Then, the

field Cq(`q)(x(s), ∂ls∂
k
t (x(s)), . . . ) generated by x and its derivatives with respect to ∂s

and ∂t is contained in Cq.Cq(`q, `q). Thus, any non-trivial polynomial relation between
the x-t-derivatives of Q(x, 0, t) yields to a non-trivial polynomial relation between the

derivatives of F̃ 1(s) with respect to ∂s and ∆t,q over Cq.Cq(`q, `q). This proves the
claim.

By Theorem 3.10, the function F̃ 1(s) satisfies F̃ 1(qs) − F̃ 1(s) = b1(s) with b1(s) ∈
Cq ⊂ Cq.Cq(`q, `q). Since F̃ 1(s) is (∂s,∆t,q)-differentially algebraic over Cq.Cq(`q, `q),
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Proposition D.6 and Corollary D.14 imply that there exist m ∈ N and d0, . . . , dm ∈ Cq

not all zero and g ∈ Cq.Cq(`q) such that

d0b1 + d1∂s(b1) + · · ·+ dm∂
m
s (b1) = σq(g)− g.

Since b1 is in Cq, Lemma D.13 allows to perform a descent on the coefficients of the
telescoping relation above. Thus, there exist c0, . . . , cn ∈ C not all zero and h ∈ Cq such
that

c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h.

This concludes the proof. The symmetry argument between x and y gives the proof for
Q(0, y, t). �

Theorem 3.11 has an easy corollary concerning the differential transcendence of the
complete generating series for weighted models of genus one with infinite group.

Theorem 3.12. For any non-degenerate weighted model of genus one with infinite group,
the following statements are equivalent:

(1) the series Q(x, 0, t) is
(
d
dx ,

d
dt

)
-differentially algebraic over Q;

(2) there exist c0, . . . , cn ∈ C not all zero and h ∈ Cq such that

c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h;

(3) the series Q(x, 0, t) is d
dx -differentially algebraic over C.

Furthermore, if none of the above conditions hold, then Q(x, y, t) is
(
d
dx ,

d
dt

)
-differentially

transcendental over Q.

Remark 3.13. Similarly, we may prove that the following statements are equivalent:

(1) The series Q(0, y, t) is
(
d
dy ,

d
dt

)
-differentially algebraic over Q.

(2) There exist c0, . . . , cn ∈ C not all zero and h ∈ Cq such that

c0b2 + c1∂s(b2) + · · ·+ cn∂
n
s (b2) = σq(h)− h.

(3) The series Q(0, y, t) is d
dy -differentially algebraic over C.

Furthermore, if none of the above conditions holds thenQ(x, y, t) is
(
d
dy ,

d
dt

)
-differentially

transcendental over Q.

Proof. Since the group is infinite, the automorphism σ is of infinite order. Therefore
by Lemma 3.6 the elements q and q defined in Proposition 3.4 are multiplicatively
independent.

Theorem 3.11 gives (1)⇒ (2). Assume that (2) holds. There exist c0, . . . , cn ∈ C not
all zero and h ∈ Cq such that

(3.7) c0b1 + c1∂s(b1) + · · ·+ cn∂
n
s (b1) = σq(h)− h.

Combining (3.7) with the functional equation satisfied by F̃ 1(s) and using the commu-
tativity of σq and ∂s, one finds that

(3.8) σq

[
c0F̃

1(s) + · · ·+ cn∂
n
s (F̃ 1(s))− h

]
= c0F̃

1(s) + · · ·+ cn∂
n
s (F̃ 1(s))− h.
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Since F̃ 1 and h are meromorphic over C∗, there exists g ∈ Cq such that

c0F̃
1(s) + · · ·+ cn∂

n
s (F̃ 1(s))− h = g.

Therefore, F̃ 1(s) is ∂s-differentially algebraic over Cq. Reasoning as in Lemma 2.6,
one finds a non-trivial algebraic relation with coefficients in Cq between the first n-
th derivatives of F 1 with respect to ∂x evaluated in (x(s), t). Any element of Cq =
C(x(s), y(s)) is algebraic over C(x(s)). Therefore, the first n-th derivatives of F 1 with
respect to ∂x evaluated in (x(s), t) are still algebraically dependent over C(x(s)). We
conclude that F 1(x, t) = K(x, 0, t)Q(x, 0, t) is d

dx -differentially algebraic over C(x) and
therefore over Q by Remark 1.3. This proves that (2) ⇒ (3). Statement (3) implies
obviously (1). �

As a corollary, one finds criteria ensuring the differential transcendence of the incom-
plete generating series.

Corollary 3.14. For all but 9 of the non-degenerate unweighted models of genus one,
with an infinite group, the generating series Q(x, 0, t) and Q(0, y, t) are respectively(
d
dx ,

d
dt

)
and

(
d
dy ,

d
dt

)
-transcendental over Q (see Figure 1).

If the weighted model is non-degenerate, of genus one, with an infinite group, and at
least one of the following situation holds:

• d2
1,0 − 4d1,1d1,−1 is not a square in Q;

• d2
0,1 − 4d1,1d−1,1 is not a square in Q;

• d1,1 = 0, d1,0d0,1 6= 0 and there are no Q points of E fixed by ι1 or ι2;
• d1,1 = d1,0 = 0, d0,1 6= 0;
• d1,1 = d0,1 = 0, d1,0 6= 0;

then, the generating series Q(x, 0, t) and Q(0, y, t) are respectively
(
d
dx ,

d
dt

)
and

(
d
dy ,

d
dt

)
-

transcendental over Q. In all the above cases, the complete generating series is
(
d
dx ,

d
dt

)
and

(
d
dy ,

d
dt

)
-transcendental over Q.

Proof of Corollary 3.14. By Theorem 3.12 and Remark 3.13, it is sufficient to prove
that the the generating series Q(x, 0, t) and Q(0, y, t) are respectively d

dx and d
dy -

transcendental over Q. This is

• the main result of [DHRS18, Section 5] for all but 9 of the unweighted non-
degenerate models of genus one with infinite group;
• of [DR19, Section 3.2] for the weighted models above.

�

Appendix A. Non-archemedean estimates

In this section, we give some non-archimedean estimates, which will be crucial to
uniformize the kernel curve.
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A.1. Discriminants of the kernel equation. Lemma A.1 relates the genus of the
kernel curve to the simplicity of the roots of the discriminant of the kernel polynomial.
It also ensures the existence of a root with convenient norm estimates. Let us remind,
see (1.4), that we have defined D(x) := ∆x(x, 1), where ∆x(x0, x1) is the discriminants

of the second degree homogeneous polynomials y 7→ K̃(x0, x1, y, 1, t).

Lemma A.1. For any non-degenerate weighted model of genus one, the following holds:

• all the roots of ∆x(x0, x1) in P1(C) are simple;

• the discriminant D(x) := ∆x(x, 1) has a root a ∈ C such that |a| < 1, |D(2)(a)−
2| < 1, and |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1 where D(i) denote the i-th derivative
with respect to x of D(x).

A symmetric statement holds for ∆y(y0, y1) by replacing D by E.

Proof. The first assertion is [DHRS17, Lemma 4.4]. First, let us prove the existence of a
root a ∈ C of D(x) such that |a| < 1. Suppose to the contrary that all the roots of D(x)
have a norm greater than or equal to 1. If α0 is zero then zero is a root: a contradiction.
Thus, we can assume that α0 is non-zero.

Let us first assume that α4 6= 0. The product of the roots of D(x) equals

α0

α4
=
t2(d2

−1,0 − 4d−1,−1d−1,1)

t2(d2
1,0 − 4d1,−1d1,1)

.

Then we conclude that |α0
α4
| = 1 so that each of the roots must have norm 1. Then,

considering the symmetric functions of the roots of D(x), we conclude that, for any
i = 0, . . . , 3, the element αi

α4
should have norm smaller than or equal to 1. Since

α2

α4
=
−4d−1,−1d1,1t

2 − 4d0,−1d0,1t
2 − 4d1,−1d−1,1t

2 + 2d−1,0d1,0t
2 + d2

0,0t
2 − 2td0,0 + 1

t2(d2
1,0 − 4d1,−1d1,1)

,

has norm strictly greater than 1, we find a contradiction.
Assume now that α4 = 0. Since the roots of ∆x(x0, x1) in P1(C) are simple, the

coefficient α3 is non-zero. The product of the roots of D(x) equals

−α0

α3
=

−t2(d2
−1,0 − 4d−1,−1d−1,1)

2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,−1 + d1,1d0,−1)
.

Then, it is clear that |α0
α3
| ≤ 1 and that each of the roots has norm 1. Thus, the symmetric

function α2
α3

should also have norm smaller than or equal to 1. But

−α2

α3
=
−4d−1,−1d1,1t

2 − 4d0,−1d0,1t
2 − 4d1,−1d−1,1t

2 + 2d−1,0d1,0t
2 + d2

0,0t
2 − 2td0,0 + 1

2t2d1,0d0,0 − 2td1,0 − 4t2(d0,1d1,−1 + d1,1d0,−1)
,

has norm strictly bigger than 1. We find a contradiction again.
Let a be a root of D(x) in C with |a| < 1. Since a, α1, α3, α4 have norm smaller than

1, |α2 − 1| < 1, and

• D(1)(a) = α1 + 2α2a+ 3α3a
2 + 4α4a

3;

• D(2)(a) = 2α2 + 6α3a+ 12α4a
2;

• D(3)(a) = 6α3 + 24α4a;

• D(4)(a) = 24α4,
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we have |D(2)(a) − 2| < 1, and |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1. The statement for
∆y(y0, y1) is symmetrical and we omit its proof. �

A.2. Automorphisms of the walk on the domain of convergence. In this section,
we study the action of the group of the walk on the product of the unit disks in P1(C)×
P1(C). This product is the fundamental domain of convergence of the generating series.

We need a preliminary lemma that explains how one can compute the norm of the
values of a rational function.

Lemma A.2. Let f ∈ C(X) be a non-zero rational function and let a ∈ P1(C). Let ν
(resp. d) be the valuation at X = 0 (resp. ∞) of f with the convention that ν = +∞,
d = −∞ if f = 0. The following statements hold:

• if |a| < 1, then |f(a)| = |a|ν ;
• if |a| > 1, then |f(a)| = |a|d.

Proof. Let us prove the first case, the second being completely symmetrical. Let us write

f(X) as

∑r1
i=ν1

ciX
i∑r2

j=ν2
djXj with cν1dν2 6= 0. If k > l, we note that |ak| < |al|. Then

|f(a)| =
|
∑r1

i=ν1
cia

i|
|
∑r2

j=ν2
djaj |

= |a|ν1−ν2 = |a|ν .

�

The following lemma explains how the fundamental involutions permute the interior
and the exterior of the fundamental domain of convergence.

Lemma A.3. For any non-degenerate weighted model, the following statements hold:

(1) for any a ∈ C with |a| = 1, there exist b± ∈ P1(C) with |b−| < 1, and |b+| > 1,
such that K(a, b±, t) = 0;

(2) for any b ∈ C with |b| = 1, there exist a± ∈ P1(C) with |a−| < 1, and |a+| > 1,
such that K(a±, b, t) = 0.

Proof. See [DR19, Section 1.3] for a similar result in the situation where C is replaced
by C.

The statements are symmetrical, so we only prove the first one. Since C is algebraically
closed and the model is non-degenerate, Proposition 1.6 implies that K(x, y, t) is of
degree 2 in y. Then, for any a ∈ C, there are two elements b± ∈ P1(C) such that
K(a, b±, t) = 0. let a ∈ C with |a| = 1. We write

(A.1) K(a, y, t) = tα+ βy + tγy2

where

• α = −
∑1

i=−1 di,−1a
i+1;

• β = a− t
∑1

i=−1 di,0a
i+1;

• γ = −
∑1

i=−1 di,1a
i+1.

Since |a| = 1, we find |β| = 1, |α|, |γ| ≤ 1. First let us prove that there is no
point (a0, b0) ∈ E such that |a0| = |b0| = 1. Indeed, suppose to the contrary that
|a0| = |b0| = 1 and K(a0, b0, t) = 0. Then, |β| = |a0| = 1 and |γ|, |α| ≤ 1 so that the
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equality |βb0| = |t(α+γb20)| implies |b0| < 1. We find a contradiction. From the equation
K(a, b, t) = 0, we deduce that

(A.2) if |b| < 1, then |tα| = |βb+ tγb2| = |βb| which gives |b| = |tα|;

(A.3) if |b| > 1, then |1
b
| < 1 and we find |tγ| =

∣∣∣∣ tαb2 +
β

b

∣∣∣∣ =

∣∣∣∣βb
∣∣∣∣ =

∣∣∣∣1b
∣∣∣∣ .

Using K(a, b±, t) = 0, we find

(A.4) b−b+ =
α

γ
,

with the convention that b+ is [1 : 0] if γ = 0. If γ = 0 then b− = −tα
β has norm smaller

than 1, which concludes the proof in that case. Assume now that γ 6= 0. Since |b+|
and |b−| cannot have norm 1, we just need to discard the cases “|b+| < 1 and |b−| < 1”
or “|b+| > 1 and |b−| > 1”. If α = 0, then one of the root is zero, say b− = 0, and

|b+| = |β|
|tγ| > 1, which concludes the proof in that case. If α 6= 0 then one can suppose

to the contrary that |b+| < 1 and |b−| < 1. From (A.2), we obtain |b+| = |b−| = |tα|,
which gives

|b+b−| = |tα|2 =
|α|
|γ|
.

Then, |t2α| = 1
|γ| ≥ 1, which contradicts |t2α| < 1. Suppose to the contrary that |b+| > 1

and |b−| > 1. By (A.3), |b+| = |b−| = 1
|tγ| which gives

|b+b−| =
1

|tγ|2
=
|α|
|γ|
.

Thus, |t2α| = 1
|γ| ≥ 1, and once again, we find a contradiction. �

Lemma A.4 explains how the the intersection of the fundamental domain of conver-
gence of the generating series and its image by σ is non-empty. This result is therefore
crucial in order to continue the generating series to the whole C∗.

Lemma A.4. For any non-degenerate weighted model, the following statements hold:

• if d−1,1 = 0 or d1,−1 6= 0 there exists (a, b) ∈ E with |a| = 1 such that σ(a, b) =
(a′, b′) with |a′| ≤ 1;
• if d−1,1 6= 0 or d1,−1 = 0 there exists (a, b) ∈ E with |b| = 1 such that σ(a, b) =

(a′, b′) with |b′| ≤ 1.

Proof. Using the symmetry between x and y mentioned in Remark 1.2, we only prove
the first statement of Lemma A.4.

Let a ∈ P1(C) such that |a| = 1. By Lemma A.3, there exist b+ ∈ P1(C) with |b+| > 1
and b− ∈ C with |b−| < 1 such that (a, b±) ∈ E. Let Bi as in (1.2) and let ν (resp d) be

the valuation at 0 (resp ∞) of the rational fraction B−1(y)
B1(y) =

∑1
j=−1 d−1,jy

j∑1
j=−1 d1,jy

j
∈ C(y) (note

that B1 is not identically zero by Proposition 1.6). We claim that either ν ≥ 0 or d ≤ 0.
If d1,−1 6= 0 then ν ≥ 0. If d−1,1 = 0 then either d ≤ 0 or d = 1. In the latter situation,
we must have d1,1 = d1,0 = 0 and d−1,0 6= 0. Since the model is non-degenerate, we must
have d1,−1 6= 0 by Proposition 1.6. In that case, ν ≥ 0. This proves the claim.
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Let a+, a− ∈ P1(C) such that ι2(a, b+) = (a+, b+) and ι2(a, b−) = (a−, b−). This
gives

(A.5) a+ =
B−1(b+)

B1(b+)a
and a− =

B−1(b−)

B1(b−)a
.

Since σ(a, b−) = (a+, b+) (resp σ(a, b+) = (a−, b−)), it is enough to prove that either
a+ or a− has norm smaller or equal to 1. If d ≤ 0, we combine (A.5), Lemma A.2 and
|b+ | > 1 to find |aa+| = |a+| = |b+|d ≤ 1. If ν ≥ 0, we combine (A.5), Lemma A.2 and
|b−| < 1 to find |aa−| = |a−| = |b−|ν ≤ 1. This ends the proof. �

Appendix B. Tate curves and their normal forms

Let (C, | |) be a complete non-archimedean algebraically closed valued field of zero
characteristic and let q ∈ C such that 0 < |q| < 1. In this section, we recall some of
the basic properties of elliptic curves over non-archimedean fields. The period lattice is
here replaced by a discrete multiplicative group of the form qZ. Then, the quotient of
C by a period lattice is replace by the so called Tate curve, which corresponds to the
naive quotient of the multiplicative group C∗ by qZ. However, in the non-archimedean
context, only elliptic curves with J-invariant of norm greater than equal to one can be
analytically uniformized by Tate curves (see Proposition B.2). The analytic geometry
behind is the rigid analytic geometry as developed in [FvdP04]. We will not introduce
this theory here but we just recall briefly the algebraic geometrical and special functions
aspects of Tate curves.

B.1. Special functions on a Tate curve. We recall that any holomorphic function f
on C∗ can be represented by an everywhere convergent Laurent series

∑
n∈Z ans

n with
an ∈ C. Moreover any non-zero meromorphic function on C∗ can be written as g

h such
that the holomorphic functions g and h have no common zeros. We shall denote by
Mer(C∗) the field of meromorphic functions over C∗.

Remark B.1. If k is a complete non-archimedian sub-valued field of C and q belongs to
k, every result quoted above still holds over k.

The analytification of the elliptic curve Eq is isomorphic to the Tate curve, which is
the rigid analytic space corresponding to the naive quotient of C∗/qZ. The curve Eq is
therefore a“canonical” elliptic curve. A natural question is ”Given an elliptic curve E
defined over C, is there a q such that E is isomorphic to Eq?” The answer is positive
under certain assumption on the J-invariant J(E) of E.

Proposition B.2 (Theorem 5.1.18 in [FvdP04]). Let E be an elliptic curve over C such
that |J(E)| > 1. Then, there exists q ∈ C such that 0 < |q| < 1 and E is isomorphic to
the elliptic curve Eq.

Remind that we have defined sk =
∑

n>0
nkqn

1−qn ∈ C for k ≥ 1, and

X(s) =
∑
n∈Z

qns

(1− qns)2
− 2s1, Y (s) =

∑
n∈Z

(qns)2

(1− qns)3
+ s1.
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They are q-periodic meromorphic functions over C∗. By Proposition 3.1, the field Cq of
q-periodic meromorphic functions over C∗ coincides with the field generated over C by
X(s) and Y (s).

Since we need to understand what is the pullback of the fundamental domain of con-
vergence of the generating series via this uniformization, we prove some basic properties
on the norm of X(s). Remind that X(s) = X(1/s) and X(qs) = X(s). Thus it suffices

to study |X(s)| for |q|1/2 ≤ |s| ≤ 1. The following study follows the arguments of [Sil94,
§V.4].

Lemma B.3. Let s ∈ C∗. The following holds:

• If |q|1/2 < |s| < 1, then |X(s)| = |s|;
• If |s| = 1, then |X(s)| ≥ 1;

• If |s| = |q|1/2, then |X(s)| ≤ |s|.

Proof. Since X(s) has a pole in s = 1 we may further assume that s 6= 1. Let us rewrite
X(s):

X(s) =
s

(1− s)2
+
∑
n>0

qns

(1− qns)2
+

qns−1

(1− qns−1)2
− 2

qn

1− qn
.

This means that we have

(B.1) |X(s)| ≤ max

(∣∣∣∣ s

(1− s)2

∣∣∣∣ ,
∣∣∣∣∣∑
n>0

qns

(1− qns)2
+

qns−1

(1− qns−1)2
− 2

qn

1− qn

∣∣∣∣∣
)
,

with equality when | s
(1−s)2 | 6= |

∑
n>0

qns
(1−qns)2 + qns−1

(1−qns−1)2
− 2 qn

1−qn |. Let us consider

s ∈ C∗ \ {1} with |q|1/2 ≤ |s| ≤ 1. Using |q| < 1 we find that |qns| ≤ |qs| < 1
for every n ≥ 1. This shows that the norm of qns is strictly smaller than 1. Then,∣∣∣ qns

(1−qns)2

∣∣∣ = |qns| < |s|. On the other hand, |qn| ≤ |q| < |s| and | q
n

1−qn | < |s|. Finally,

when |q|1/2 < |s|, we have |qns−1| ≤ |qs−1| < |qq−1/2| < |s| and therefore
∣∣∣ qns−1

(1−qns−1)2

∣∣∣ =

|qns−1| < |s|. This proves that, for any s ∈ P1(C) such that |q|1/2 < |s| ≤ 1, we have

(B.2)

∣∣∣∣∣∑
n>0

qns

(1− qns)2
+

qns−1

(1− qns−1)2
− 2

qn

1− qn

∣∣∣∣∣ < |s|.
When, |q|1/2 = |s| and n ≥ 2, we have |qns−1| ≤ |q2s−1| = |q2q−1/2| < |s|, and there-

fore
∣∣∣ qns−1

(1−qns−1)2

∣∣∣ = |qns−1| < |s|. Moreover, if |q|1/2 = |s| then |qs−1| = |qq−1/2| = |s|.

Therefore
∣∣∣ qs−1

(1−qs−1)2

∣∣∣ = |qs−1| = |s|. We conclude that

(B.3)

∣∣∣∣∣∑
n>0

qns

(1− qns)2
+

qns−1

(1− qns−1)2
− 2

qn

1− qn

∣∣∣∣∣ = |s|.

It remains to consider the term s
(1−s)2 . If |s| < 1 then we have

∣∣∣ s
(1−s)2

∣∣∣ = |s|. Combining

with (B.1), (B.2) and (B.3) respectively, we obtain the result when |q|1/2 < |s| < 1 and
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|q|1/2 = |s| < 1 respectively. If |s| = 1 and s 6= 1 then |1−s| ≤ 1. Thus,
∣∣∣ s

(1−s)2

∣∣∣ ≥ |s| = 1,

which, combined with (B.1) and (B.2) concludes the proof. �

B.2. Tate and Weierstrass normal forms. In [DR19], the authors generalize the
results of [KR12] and attach a Weierstrass normal form to the kernel curve. The follow-
ing proposition proves that, with some care, their result passes to a non-archimedean
framework.

Let us consider a non-degenerate weighted model of genus one and let us write its ker-

nel polynomial as follows: K (x, y, t) = Ã0(x) + Ã1(x)y + Ã2(x)y2 = B̃0(y) + B̃1(y)x +

B̃2(y)x2 with Ãi(x) ∈ C[x] and B̃i(y) ∈ C[y]. The following proposition gives a Weier-
strass normal form for the kernel curve.

Proposition B.4. Let a ∈ C be as in Lemma A.1. Let E1 be the elliptic curve defined
by the Weierstrass equation

(B.4) y2
1 = 4x3

1 − g2x1 − g3,

with

g2 =
D(2)(a)2

3
− 2

D(1)(a)D(3)(a)

3
(B.5)

g3 = −D(2)(a)3

27
+

D(1)(a)D(2)(a)D(3)(a)

9
− D(1)(a)2D(4)(a)

6
.

Then, the rational map

E1 → E ⊂ P1(C)×P1(C)
[x1 : y1 : 1] 7→ (x, y)

where

x = a+
D(1)(a)

x1 − D(2)(a)
6

and y =

D(1)(a)y1

2(x1−D(1)(a)
6

)2
− Ã1

(
a+ D(1)(a)

x1−D(2)(a)
6

)
2Ã2

(
a+ D(1)(a)

x1−D(2)(a)
6

) ,

is an isomorphism of elliptic curves that sends the point O = [1 : 0 : 0] in E1 to the

point

(
a,
−Ã1(a)

2Ã2(a)

)
∈ E.

Proof. This is the same proof as in [DR19, Proposition 18]. Note that there is only one
configuration here since we have chosen a root of the discriminant |a| < 1 which can not
be infinity. �

We recall that the J-invariant J(E1) of the elliptic curve E1 given in a Weierstrass

form y2
1 = 4x3

1− g2x1− g3 equals to J(E1) = 123 g32
g32−27g23

. For a weighted model of genus

one, the J-invariant J(E) of the kernel curve has modulus strictly greater than 1 by
Lemma 1.11. Since J(E) = J(E1), Proposition B.2 shows that there exists q ∈ C∗ such
that 0 < |q| < 1 and E1 is isomorphic to Eq. In order to explicit this isomorphism, we
need to understand how one passes from to a Tate normal form to a Weierstrass normal
form. This is the content of the following lemmas.
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Lemma B.5. [§6, Page 29 in [Roq70]] In the notation of Proposition 3.1, the change
of variable X = x− 1

12 and Y = 1
2(y − x+ 1

12) maps the Tate equation

Y 2 +XY = X3 +BX + C̃

onto the Weierstrass equation

y2 = 4x3 − h2x− h3,

where h2 = 1
12 + 20s3 and h3 = −1

63
+ 7

3s5.

As detailed above, the elliptic curves E1 and Eq are isomorphic. The following lemma
gives the form of an explicit isomorphism between theses two curves.

Lemma B.6. Let y2 = 4x3−h2x−h3 be the Weierstrass normal form (resp. Y 2+XY =

X3 +BX+C̃ its Tate normal form ) of Eq as in Lemma B.5 and let y2
1 = 4x3

1−g2x1−g3

be the Weierstrass normal form of E1 as in Proposition B.4.
There exists u ∈ C∗ such that the following map

Eq → E1,
(X,Y ) 7→ (u2(X + 1

12), u3(2Y +X))

is an isomorphism of elliptic curves. Moreover, the following holds

• h2 = g2
u4

and h3 = g3
u6

;

• ∆q = ∆1
u12

where ∆1 and ∆q denote the discriminants of the Weierstrass equations
of E1 and Eq respectively.

Proof. From [Sil09, Proposition 3.1, Chapter III], we deduce that any isomorphism be-
tween the elliptic curves E1 and Eq is given by x1 = u2x+ α and y1 = u3y + βu2x+ γ
with u ∈ C∗, α, β, γ ∈ C. Since both equations are in Weierstrass normal form, we
necessarily have α = β = γ = 0. This proves the first point. From y2

1 = 4x3
1− g2x1− g3,

we substitute x1, y1 by x, y to find

u6y2 = 4u6x3 − g2u
2x− g3.

Dividing the both sides by u6 we find h2 = g2
u4

and h3 = g3
u6

. The assertion on the

discriminants follows from ∆q = h3
2 − 27h2

3 and ∆1 = g3
2 − 27g2

3. �

The lemma below gives some precise estimate for the norms of ∆q = h3
2 − 27h2

3 and
∆1 = g3

2 − 27g2
3, the discriminants of the elliptic curves Eq, E1, and the element u defined

in Lemma B.6.

Lemma B.7. The following statement hold:

• |∆q| = |q|, with |h2 − 1
12 | = |q| and |h3 − (− 1

63
)| = |q|;

• |∆1| = |q| with |g2 − 4
3 | < 1, |g3 − (− 8

27)| < 1;
• |u| = 1;

• |D(1)(a)| ∈] |q|1/2, 1[.

Proof. Following [Roq70, Pages 29-30], we find |∆q| = |q|, |s3| = |q| = |s5|. Combining
the latter norm estimates with Lemma B.5, we find |h2− 1

12 | = |q| and |h3−(− 1
63

)| = |q|.
Let us prove the second point. It follows from (1.5) that |1 − α2| < 1 and |αi| < 1

for i = 0, 1, 3, 4. By Lemma A.1, |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1, |D(2)(a) − 2| < 1.
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Combining these norm estimates with (B.5), we find |g2− 4
3 | < 1, |g3−(− 8

27)| < 1. Since

|J(E1)| = |J(Eq)| = |123g2
∆1
| = |123h2

∆q
| and |g2| = |h2| = 1, we find |∆q| = |∆1| = |q|. By

Lemma B.6, ∆q = ∆1
u12

, and then |u| = 1.

Let us prove the last point. Let us expand ∆1 = g3
2 − 27g2

3 with the expression of g2, g3

given in (B.5):

∆1 =
(
D(2)(a)2

3 − 2D(1)(a)D(3)(a)
3

)3
− 27

(
−D(2)(a)3

27 + D(1)(a)D(2)(a)D(3)(a)
9 − D(1)(a)2D(4)(a)

6

)2

= D(2)(a)6

27 − 2D(1)(a)D(2)(a)4D(3)(a)
9 + 4D(1)(a)2D(2)(a)2D(3)(a)2

9 − 8D(1)(a)3D(3)(a)3

27

−D(2)(a)6

27 − D(1)(a)2D(2)(a)2D(3)(a)2

3 − 3D(1)(a)4D(4)(a)2

4 + 2D(1)(a)D(2)(a)4D(3)(a)
9

−D(1)(a)2D(2)(a)3D(4)(a)
3 + D(1)(a)3D(2)(a)D(3)(a)D(4)(a)

= D(1)(a)2D(2)(a)2D(3)(a)2

9 − 8D(1)(a)3D(3)(a)3

27 − 3D(1)(a)4D(4)(a)2

4

−D(1)(a)2D(2)(a)3D(4)(a)
3 + D(1)(a)3D(2)(a)D(3)(a)D(4)(a).

Since |D(1)(a)|, |D(3)(a)|, |D(4)(a)| < 1, |D(2) − 2| < 1 , the previous expression is a

sum of terms that are all strictly smaller in norm than |D(1)(a)|2. This proves that

|∆1| = |q| < |D(1)(a)|2.
�

The following estimate will be required to uniformize the generating series.

Lemma B.8. In the notation of Theorem 3.2, we have |u212 −
D(2)(a)

6 | < |D(1)(a)|.

Proof. Using (B.5) and the norm estimate on the D(i)(a)’s, we get

(B.6) g2 =
D(2)(a)2

3
+ D(1)(a)ω, g3 =

−D(2)(a)3

27
+ D(1)(a)ω′,

where |ω|, |ω′| < 1. This proves that

g3

g2
=
−D(2)(a)

9
+ D(1)(a)ω′′

with |ω′′| < 1. Then, we find∣∣∣∣∣u2

12
− D(2)(a)

6

∣∣∣∣∣ =

∣∣∣∣∣u2

12
+

3g3

2g2
− 3g3

2g2
− D(2)(a)

6

∣∣∣∣∣ ≤ max

(∣∣∣∣u2

12
+

3g3

2g2

∣∣∣∣ , ∣∣∣∣32D(1)(a)ω′′
∣∣∣∣) .

Finally, with the norm estimate of Lemma B.7, it is sufficient to show that |u212 + 3g3
2g2
| ≤ |q|.

By Lemma B.6, we have u2

12 = g3h2
12g2h3

. By Lemma B.7, |h2− 1
12 | = |q| and |h3− (− 1

63
)| =

|q|. Then, by Lemma B.7 again, we find∣∣∣∣u2

12
+

3g3

2g2

∣∣∣∣ =

∣∣∣∣ g3h2

12g2h3
+

3g3

2g2

∣∣∣∣ =

∣∣∣∣g3

g2

∣∣∣∣ ∣∣∣∣ h2

12h3
+

3

2

∣∣∣∣ =

∣∣∣∣h2 + 18h3

12h3

∣∣∣∣
= |h2+18h3| =

∣∣∣∣(h2 −
1

12

)
+ 18

(
h3 −

(
− 1

63

))∣∣∣∣ ≤ max

(∣∣∣∣h2 −
1

12

∣∣∣∣ , ∣∣∣∣h3 −
(
− 1

63

)∣∣∣∣) ≤ |q|.
�
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Appendix C. Difference Galois theory

In this section, we establish some criteria to guaranty the transcendence of functions
satisfying a difference equation of order 1. This criteria is based on the Galois theory
of difference fields as developed in [vdPS97] but generalizes some of the existing results
in the literature, for instance the assumption that the field of constants is algebraically
closed (see for instance Theorem C.8).

The algebraic framework of this section is difference algebra and more precisely the
notion of difference fields. A difference field is a pair (K,σ) where K is a field and σ is
an automorphism of K. The field σ-constants Kσ of (K,σ) is formed by the elements
f ∈ K such that σ(f) = f . An extension (K,σK) ⊂ (L, σL) of difference fields is a field
extension K ⊂ L such that σL coincides with σK on K. If there is no confusion, we shall
denote by σ the automorphism σK and σL. For a complete introduction on difference
algebra, we shall refer to [Coh65].

C.1. Rank one difference equations. In this section, we focus on rank one difference
equations.

Lemma C.1. Let (K,σ) ⊂ (L, σ) be an extension of difference fields such that Lσ = Kσ.
Let x ∈ L. The following statements are equivalent

(1) x is algebraic over Kσ;
(2) there exists r ∈ N∗ such that σr(x) = x.

Proof. Assume that x is algebraic over Kσ. Then, σ induces a permutation on the set
of roots of the minimal polynomial of x over Kσ. Thus, there exists r ∈ N∗ such that
σr(x) = x. Conversely, if there exists r ∈ N∗ such that σr(x) = x, the polynomial

P (X) =
∏r−1
i=0 (X − σi(x)) ∈ L[X] is fixed by σ and thereby P (X) ∈ Lσ[X] = Kσ[X].

Since P (x) = 0, we have proved that x is algebraic over Kσ. �

Lemma C.2. Let (K,σ) ⊂ (L, σ) be an extension of difference fields such that Lσ = Kσ.
Let f ∈ L and 0 6= c ∈ K, such that σ(f) = f+c. The following statements are equivalent

(1) f ∈ K;
(2) f is algebraic over K;
(3) There exists α ∈ K such that σ(α) = α+ c.

Moreover, let K be the algebraic closure of K endowed with a structure of σ-field ex-
tension of K. For all α ∈ K, i ∈ Z we denote by αi the element of K such that
σi(f − α) = f − αi. If f is transcendental over K then for i, j ∈ Z such that i 6= j, the
elements αj and αi are distinct.

Proof. Let us prove the first part of the proposition. The first statement implies trivially
the second one. Assume that f is algebraic over K and let P (X) = Xn + an−1X

n−1 +
. . . a0 ∈ K[X] be its minimal polynomial over K. Note that n 6= 0. Using σ(f)− f = c
and P (f) = 0, we find that σ(P (f)) − P (f) = 0 = (nc + σ(an−1) − an−1)fn−1 +
bn−2f

n−2 + · · · + b0 with bi ∈ K for i = 0, . . . , n − 2. By minimality of P (X), we find
that σ(an−1) − an−1 = −nc with an−1 ∈ K. Then, σ(α) − α = c with α = an−1

−n ∈ K.
We have shown that the second statement implies the third. Finally, assume that there
exists α ∈ K such that σ(α) = α+ c. With σ(f)− f = c, we find that σ(α− f) = α− f .
This gives that α− f ∈ Lσ = Kσ and the element f belongs to K.
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Now, let us assume that f is transcendental over K. Suppose to the contrary that
there exist α ∈ K and i > j ∈ Z such that

αi = (σi(α)− c− σ(c)− · · · − σi−1(c)) = αj = (σj(α)− c− σ(c)− · · · − σj−1(c)).

The latter equality gives σr(β) − β = γ where r = i − j > 0, β = σj(α) and
γ = σi−1(c) + · · · + σj(c). Since α is algebraic over K, the same holds for β. Let
P (X) = Xn + an−1X

n−1 + · · ·+ a0 ∈ K[X] \K be the minimal polynomial of β over
K. Using the fact that σr(β)− β = γ and the minimality of P , we conclude, as above,

that σr(an−1) − an−1 = −nγ, that is σr(β̃) − β̃ = γ where β̃ = an−1

−n ∈ K. Combining

this equality with σr(σj(f))− σj(f) = γ, we find that β̃ − σj(f) ∈ L is fixed by σr. By

Lemma C.1, this means that β̃ − σj(f) is algebraic over Kσ, which yields to f algebraic
over K. We find a contradiction. �

Lemma C.3. Let (K,σ) ⊂ (L, σ) be an extension of difference fields such that Lσ = Kσ.
Let f ∈ L and 0 6= c ∈ K, such that σ(f) = f + c. Assume that f is transcendental over
K. If there exists g ∈ K(f) such that σ(g)− g ∈ K[f ], then g ∈ K[f ].

Proof. Let K be an algebraic closure of K, endowed with a structure of σ-field extension
of K. Since f is transcendental over K, we can write a partial fraction decomposition of
g ∈ K(f). Let R be the largest integer such that there exists α ∈ K so that the element

1
(f−α)R

appears in the partial fraction decomposition of g. Suppose to the contrary that

R > 0 and let α ∈ K such that 1
(f−α)R

appears in the partial fraction decomposition of

g. We deduce from Lemma C.2 applied to K and f , that the elements {αi, i ∈ Z} are all
distinct. Then, there exists N , the largest integer such that σN ( 1

(f−α)R
) appears in the

partial fraction decomposition of g. The element σN+1( 1
(f−α)R

) appears in the partial

fraction decomposition of σ(g). This proves that σN+1( 1
(f−α)R

) appears in the partial

fraction decomposition of σ(g)− g. A contradiction with σ(g)− g ∈ K[f ]. This proves
that g ∈ K[f ]. �

C.2. Differential transcendence criteria. In this section, a (σ, ∂,∆)-field K is a
difference field (K,σ) endowed with two derivations ∂,∆ commuting with σ such that
∂∆ − ∆∂ = cK∂ with cK ∈ Kσ. We assume that ∂ is non-trivial on K, that is, it
is not the zero derivation. The element cK has to be considered as part of the data
of the notion of (σ, ∂,∆)-field. An extension of (σ, ∂,∆)-fields is an inclusion of two
(σ, ∂,∆)-fields (K,σK , ∂K ,∆K) ⊂ (L, σL, ∂L,∆L) such that

• K ⊂ L is a field extension;
• σK , ∂K ,∆K are the restrictions of σL, ∂L,∆L to K;
• cK = cL.

If there is no confusion, we shall omit the subscripts K , L. If σ is the identity, we shall
speak of (∂,∆)-fields, (∂,∆)-fields extension for short.

Example C.4. As proved in §D, the following fields are (σ, ∂,∆)-fields, that correspond
respectively to the framework of the genus zero and genus one kernel curve. Remind
that σq denote the automorphism of Mer(C∗) defined by f(s) 7→ f(qs) and Cq denote
the field of meromorphic functions fixed by σq. In the two examples, we have ∆q,t =
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∂t(q)`q(s)∂s +∂t where `q is the so called q-logarithm. That is, an element ofMer(C∗)
satisfying σq(`q) = `q + 1, and cK = ∂t(q)∂s(`q) ∈ Cq.

• Let q ∈ C∗ with |q| 6= 1. Then, the inclusion

(Cq(s, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q)

is an extension of (σ, ∂,∆)-fields.
• Let q and q two elements of C∗ such that |q|, |q| 6= 1, that are multiplicatively

independent, that is, there are no r, l ∈ Z2 \ (0, 0) such that qr = ql. Since
Cq ⊂Mer(C∗) and Cq ⊂ Mer(C∗), we consider Cq.Cq ⊂ Mer(C∗), the field
compositum of Cq and Cq inside Mer(C∗). Then, the inclusion

(Cq.Cq(`q, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q)

is an extension of (σ, ∂,∆)-fields.

Definition C.5. Let (K, ∂,∆) ⊂ (L, ∂,∆). An element f ∈ L is said to be (∂,∆)-
differentially algebraic over K if there exists N ∈ N, such that the elements

• ∂i(f) for i ≤ N are algebraically dependent over K if ∆ is a K-multiple of ∂;
• ∂i∆j(f) for i, j ≤ N are algebraically dependent over K otherwise.

Otherwise, we will say that f is (∂,∆)-transcendental over K.

Remark C.6. Note that since ∂∆−∆∂ = c∂ with c ∈ Kσ ⊂ K, the (∂,∆)-field extension
of K generated by some element f ∈ L coincides with the field extension of K generated
by the set {∂i∆j(f), for i, j ∈ N}.

The following lemma will be crucial in many arguments:

Lemma C.7. If K ⊂ M is a σ-field extension such that Mσ = K and K ⊂ L is a
σ-field extension with Lσ = L. Then M and L are linearly disjoint over K.

Proof. Let c1, . . . , cr ∈ L be K-linearly independent elements, that become dependent
over M . Up to a permutation of the ci’s, a minimal linear relation among these elements
over M has the following form

(C.1) c1 +
r∑
i=2

λici = 0,

with λi ∈M for i = 2, . . . , r. Computing σ((C.1))− (C.1), we find
r∑
i=2

(σ(λi)− λi)ci = 0.

By minimality, σ(λi) = λi and λi ∈ Mσ = K. By K-linear independence of the ci, we
find that λi = 0 for i = 2, . . . , r and then c1 = 0. A contradiction. �

The following statement, whose proof is due to Michael Singer, is a version of an
old theorem of Ostrowski [Ost46, Kol68] and its proof follows the lines of the proof of
[DHRS18, Proposition 3.6]. In this last paper, it was assumed that Kσ is algebraically
closed, which is not the case in this article. One could use the powerful scheme-theoretic
tools developed in [OW15] to prove the result in our more general setting. Instead we
will argue in a more elementary way to reduce Theorem C.8 to the case where Kσ is
algebraically closed.
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Theorem C.8. Let (K,σ, ∂,∆) be a (σ, ∂,∆)-field such that Kσ is relatively alge-
braically closed in K, that is there are no proper algebraic extension of Kσ inside K. Let
(L, σ, ∂,∆) be a (σ, ∂,∆)-ring extension of (K,σ, ∂,∆). Let f ∈ L and b ∈ K such that
σ(f) = f + b. If f is (∂,∆)-differentially algebraic over K then there exist `1, `2 ∈ N,
ci,j ∈ Kσ not all zero and g ∈ K such that

(C.2)
∑

0≤i≤`1,
0≤j≤`2

ci,j∂
i∆j(b) = σ(g)− g.

Furthermore, we may take `2 = 0 in the case where ∂ and ∆ are K-linearly dependent.
We call (C.2) a telescoping relation for b.

The proof of this result depends on results from the Galois theory of linear difference
equations and we will refer to [DHRS18, Appendix A] and the references given there for
relevant facts from this theory. Let (K,σ) be a difference field and consider the system
of difference equations

σ(y0)− y0 = b0, . . . , σ(yn)− yn = bn, with b0, . . . , bn ∈ K.(C.3)

Let us see (C.3) as a system σ(Y ) = AY , where A ∈ GL2(n+1)(K) is a diagonal bloc

matrix A = Diag(A0, . . . , An) with Ai =

(
1 bi
0 1

)
which correspond to the equation

σ(yi)− yi = bi. A Picard-Vessiot extension for σ(Y ) = AY is a difference ring extension
(R, σ) of (K,σ) such that:

• there exists U ∈ GL2(n+1)(R) such that σ(U) = AU ;

• R is generated as a K-algebra by the entries of U and det(U)−1;
• R is a simple difference ring, that is, the σ-ideals of R are {0} and R.

We will need the following result.

Lemma C.9 (Proposition A.9 in [DHRS18]). Assume that (K,σ) is a difference field
with Kσ algebraically closed. Let R be a Picard-Vessiot extension for the system (C.3)
and z0, . . . , zn ∈ R be solutions of this system. If z0, . . . , zn are algebraically dependent
over K, then there exist ci ∈ Kσ, not all zero, and g ∈ K such that

c0b0 + . . .+ cnbn = σ(g)− g.

Before proving Theorem C.8, we give a slight generalization of Lemma C.9.

Lemma C.10. Let (K,σ) be a difference field with Kσ relatively algebraically closed in
K and let b0, . . . , bn be some elements in K. Let (L, σ) be a σ-ring extension of (K,σ).
Let z0, . . . , zn ∈ L be solutions of σ(zi)−zi = bi. If z0, . . . , zn are algebraically dependent
over K, then there exist ci ∈ Kσ, not all zero, and g ∈ K such that

c0b0 + . . .+ cnbn = σ(g)− g.

Proof. Let k be the algebraic closure of Kσ. We extend σ to be the identity on k‖.

Under the assumption that Kσ is relatively algebraically closed, the ring K̃ = K ⊗Kσ k

is an integral domain and in fact is a field. We have K̃σ = k. Let L̃ = L⊗Kσ k. We then

‖On the other hand, there is no unique procedure to extend a field automorphism of Kσ to the
algebraic closure k. Indeed, these extensions are controlled by the Galois group of the field k over Kσ.
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have a natural inclusion of K̃ ⊂ L̃. Let S = K̃[z0, . . . , zn] ⊂ L̃. It is easily seen that S

is a σ-ring extension of K̃. Let I be a maximal difference ideal in S and let R = S/I.

For each r = 0, . . . , n, let ur be the image of zr in R. Since K̃σ = k is algebraically
closed and R is a simple difference ring, we have that R is a Picard-Vessiot ring for the

system associated to σ(yr)− yr = br, r = 0, . . . , n, over K̃. The elements u0, . . . , un are
algebraically dependent over K and solutions of σ(yr)−yr = br, r = 0, . . . , n. Lemma C.9

proves that there exist ci ∈ k, not all zero, and g ∈ K̃ such that∑
0≤i≤n

cibi = σ(g)− g.

Let {dr} ⊂ k be a Kσ-basis of k. By Lemma C.7, it is also a K-basis of K̃. We may
write each ci and g as

ci =
∑
r

ci,rdr and g =
∑
r

grdr

for some ci,r ∈ Kσ and gr ∈ K. Since not all the ci are zero, there exists r such that ci,r
are not all zero. For this r, we have∑

i≤n
ci,rbi = σ(gr)− gr.

This yields the conclusion of the proof. �

Proof of Theorem C.8. Assuming that f is (∂,∆)-differentially algebraic over K, there
is some finite set {∂i0∆j0(f), . . . , ∂in∆jn(f)} ⊂ L of elements that are algebraically
dependent over K. Note that jk = 0 for all k if ∆ is K-linearly dependent from ∂. Since
σ commutes with ∆ and ∂, we have for all r = 0, . . . , n,

σ(∂ir∆jr(f))− ∂ir∆jr(f) = ∂ir∆jr(b).

To conclude it remains to apply Lemma C.10 with zr = ∂ir∆jr(f) and br = ∂ir∆jr(b)
for r = 0, . . . , n. �

Appendix D. Meromorphic functions on a Tate curve and their
derivations

In this section we translate the galoisian criteria of Theorem C.8 in the context of
elliptic functions field. We start by defining the derivations. Studying the transcendence
properties of the q-logarithm, we then perform a descent on the field of coefficients and
on the number of derivations involved in the telescoping relation.

D.1. Derivation on non-archemedean elliptic functions field. Let q ∈ C∗ such
that |q| 6= 1 and let σq denote the automorphism of Mer(C∗) defined by σq(f(s)) =
f(qs). We denote by Cq the field of meromorphic functions fixed by σq. By Proposition
3.1, it is the field of rational functions on the Tate curve Eq or E1/q, depending whether
|q| < 1 or |q| > 1. In this section, we construct, as in [DVH12, §2] a derivation of these
functions that encode their t-depencies and commute with σq.
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The fact that ∂s = s dds acts onMer(C∗), and its commutation with σq is straightfor-
ward. Unfortunately, the t-derivative of q may be non-trivial, implying a more compli-
cated commutation rule between ∂t = t ddt and σq. More precisely, we have

∂s ◦ σq = σq ◦ ∂s;
∂t ◦ σq = ∂t(q)σq ◦ ∂s + σq ◦ ∂t.

The following statement holds.

Lemma D.1. The ∂s-constants Mer(C∗)∂s = {f ∈ Mer(C∗)|∂s(f) = 0} of Mer(C∗)
are precisely the constant functions C.

Next Lemma introduces a twisted t-derivation that commutes with σq. Remind that
the q-logarithm `q has been defined in §2.3.

Lemma D.2 (Lemma 2.1 in [DVH12]). The following derivations of Mer(C∗){
∂s
∆t,q = ∂t(q)`q(s)∂s + ∂t,

commute with σq. Moreover, we have

∂s∆t,q −∆t,q∂s = ∂t(q)∂s(`q)∂s,

where ∂t(q)∂s(`q) ∈ Cq.

Remark D.3. Note that since ∂s,∆t,q commute with σq, we can derive the equation
σq(`q) = `q + 1 to find σq(∂s(`q)) = ∂s (`q) and σq(∆t,q(`q)) = ∆t,q(`q). We then
conclude that ∂s(`q),∆t,q(`q) belong to Cq.

The link with the iterates of ∆t,q and the derivatives ∂s, ∂t is now made in the following
lemma.

Lemma D.4. For any i ∈ N, there exist cj,k,l ∈ Cq such that

∆i
t,q = (∂t(q)`q)i∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t.

Proof. Let us prove the result by induction on i. For i = 1, this comes from the fact
that ∆t,q = ∂t(q)`q∂s + ∂t. Let us fix i ∈ N and assume that the result holds for i. We
find

∆i+1
t,q = (∂t(q)`q∂s + ∂t)

(∂t(q)`q)i∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t

 ,

that is

∆i+1
t,q = (∂t(q)`q)i+1∂i+1

s + ∆t,q((∂t(q)`q)i)∂is + (∂t(q)`q)i∂t∂
i
s+

i−1∑
k=0

k∑
j=0

i∑
l=0

∆t,q(cj,k,l`
j
q)∂ks ∂

l
t+

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l∂t(q)`j+1
q ∂k+1

s ∂lt+
i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l+1
t .

Note that the commutation of σq with ∆t,q implies that Cq is stabilized by ∆t,q. Since
by Remark D.3, ∆t,q(`q) belongs to Cq, we get that, for any integer j, any c̃ ∈ Cq, we
have ∆t,q(c̃(`q)j) = ∆t,q(c̃)(`q)j + c̃c(`q)j−1 where c = j∆t,q(`q) ∈ Cq. Therefore, with
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∆t,q(c̃) ∈ Cq, we find that ∆t,q(c̃(`q)j) ∈ Cq[`q] is of degree at most j in `q. With
∂t(q), cj,k,l ∈ Cq, this ends the proof. �

From now on, let us fix q ∈ C∗ with |q| 6= 1, that is multiplicatively independent to q,
that is there are no r, l ∈ Z2 \ (0, 0) such that qr = ql. Remind that Cq.Cq ⊂Mer(C∗)
is the compositum of fields and `q ∈Mer(C∗) is a solution of σq(`q) = `q + 1. We now
give examples of difference differential fields for σq, ∂s and ∆t,q.

Lemma D.5. The following statement hold.

(1) The field Cq(s, `q) is stabilized by σq, ∂s and ∆t,q. The field Cq(s) is stabilized
by σq, and ∂s. The field C(s) is stabilized by ∂s, ∂t.

(2) The field Cq.Cq(`q, `q) is stabilized by σq, ∂s and ∆t,q. The field Cq.Cq(`q) is
stabilized by σq, and ∂s. The field Cq(`q) is stabilized by ∂s, ∂t.

Proof. (1) Since σq(`q) = `q + 1, we easily see that Cq(s, `q), Cq(s) are stabilized by
σq. Since σq commutes with ∂s and ∆t,q, the field Cq is stabilized by ∂s and ∆t,q. It is
now clear that Cq(s) is stabilized by ∂s and ∆t,q(Cq(s)) ⊂ Cq(s, `q). By Remark D.3,
∆t,q(`q), ∂s(`q) ∈ Cq. Combining the lasts assertions, we obtain the result for Cq(s, `q).
Finally, the field C(s) is stable by ∂s, ∂t, since C is stable by ∂s, ∂t, and ∂s(s) = s,
∂t(s) = 0.
(2) Let us prove that Cq(`q) is stabilized by σq. Using σq(`q) = `q +1 and the commuta-
tion between σq and σq, we find that σq(`q)− `q ∈ Cq. Similarly, σq(Cq) ⊂ Cq, proving
that Cq(`q) is stabilized by σq. Using ∂s(Cq) ⊂ Cq and ∂s(`q) ∈ Cq, we find that the
field Cq.Cq(`q) is stabilized by σq and ∂s.

Let us now consider the field Cq.Cq(`q, `q). The field Cq(`q) is clearly stable by σq.
From what preceede, Cq(`q) is stable by σq, and therefore, Cq.Cq(`q, `q) is stable by σq.
The same arguments than those used in (1), prove that ∆t,q(Cq(`q)) ⊂ Cq.Cq(`q) and
∂s(Cq(`q)) ⊂ Cq(`q). It remains to prove that ∆t,q(Cq(`q)) ⊂ Cq.Cq(`q, `q). We note
that ∂t(q)`q∂s + ∂t = ∆t,q = ∆t,q + (∂t(q)`q − ∂t(q)`q)∂s. Since Cq is stabilized by ∆t,q

and ∂s, we find that ∆t,q(Cq) ⊂ Cq.Cq(`q, `q). Moreover, since ∂s(`q),∆t,q(`q) belong to
Cq, see Remark D.3, we find that ∆t,q(`q) ∈ Cq.Cq(`q, `q). We have shown the inclusion
∆t,q(Cq(`q)) ⊂ Cq.Cq(`q, `q). This concludes the proof for Cq.Cq(`q, `q).

Let us now consider Cq(`q). By Remark D.3 and ∂t = ∆t,q − ∂t(q)`q∂s, we find that
the inclusion holds ∂s(`q), ∂t(`q) ∈ Cq(`q). Since ∂s,∆t,q commute with σq, Cq is stable
by ∂s,∆t,q. With ∂t = ∆t,q − ∂t(q)`q∂s, it follows that ∂t(Cq) ⊂ Cq(`q). Finally, we
obtain that the field Cq(`q) is stable by ∂s, ∂t.

�

D.2. Difference Galois theory for elliptic function fields. In this section, we apply
the results of §C to the specific cases of elliptic function fields introduced in Lemma D.5.
We recall that the following fields extensions are (σ, ∂,∆)-fields extensions.

• Let q ∈ C∗ with |q| 6= 1. Then, let us consider

(Cq(s, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q).

• Let q and q two elements of C∗ such that |q|, |q| 6= 1, that are multiplicatively
independent. Let us consider

(Cq.Cq(`q, `q), σq, ∂s,∆t,q) ⊂ (Mer(C∗), σq, ∂s,∆t,q).
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In that framework, the criteria obtained in §C to guaranty the (∂s,∆t,q)-differential
transcendence of a solution of a rank one q-difference equation can be simplified and
some descent arguments prove that the existence of a telescoping relation involving
the two derivatives implies the existence of a telescoping relations involving only the
derivation ∂s. More precisely, we find the following proposition:

Proposition D.6. Let K ⊂Mer(C∗) be a (σq, ∂s)-field and let us assume that

(H1) L = K(`q) is a (σq, ∂s,∆t,q)-field;
(H2) Kσq = Lσq = Cq is relatively algebraically closed in L;
(H3) `q is transcendental over K.

Let f ∈ Mer(C∗), that satisfies σq(f) = f + b, for some b that belongs to a subfield of
K stable by ∂s, ∂t.

If f is (∂s,∆t,q)-differentially algebraic over L then, there exist m ∈ N, d0, . . . , dm ∈
Cq not all zero, and h ∈ K such that

d0b1 + d1∂s(b) + · · ·+ dm∂
m
s (b) = σq(h)− h.

Proof. Since f is (∂s,∆t,q)-differentially algebraic over L and Kσq is relatively alge-
braically closed, Theorem C.8 yields that there exist M ∈ N, ci,j ∈ Lσq not all zero, and
g ∈ L such that

(D.1)
∑
i,j≤M

ci,j∂
i
s∆

j
t,q(b) = σq(g)− g.

By Lemma D.4, for all i ∈ N, there exist cj,k,l ∈ Cq such that

(D.2) ∆i
t,q = (∂t(q)`q)i∂is +

i−1∑
k=0

k∑
j=0

i∑
l=0

cj,k,l`
j
q∂

k
s ∂

l
t.

The left hand side of (D.1) is a polynomial in `q with coefficients in K. By Lemma C.3
with (H2) and (H3), we find that g ∈ K[`q] as well.

Thus, let us write g =
∑R

k=0 αk`
k
q with αk ∈ K and αR 6= 0. Let

N = max{j ∈ N|∃i such that ci,j 6= 0}.

By (D.2), the coefficient of highest degree in `q of the left hand side of (D.1) is

(D.3)

∑
i≤M

ci,N (∂t(q))N∂N+i
s (b)

 `Nq .

On the other hand, we have

(D.4) σq(g)− g = `Rq (σq(αR)− αR)) + `R−1
q (σq(αR−1)− αR−1 +Rσq(αR)) + P (`q),

where P (X) ∈ K[X] is a polynomial of degree strictly smaller than R − 1. Then,
comparing (D.3) and (D.4), we find that

• either R < N so that

(D.5)
∑
i≤M

ci,N (∂t(q))N∂N+i
s (b) = 0,
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• either R = N so that

(D.6)
∑
i≤M

ci,N (∂t(q))N∂N+i
s (b) = σq(αN )− αN ,

• or R > N so that R > 0, 0 6= αR ∈ Lσq . We claim that R = N − 1. Indeed,
R > N − 1 implies σq(αR) = σq(αR), σq(αR−1) − αR−1 + RαR = 0 and then
σq(

αR−1

αR
) − αR−1

αR
+ R = 0 with

αR−1

αR
∈ K in contradiction with Lemma C.2

applied to f = `q. Thus, we get R = N − 1 and

(D.7)
∑
i≤M

ci,N
αR

(∂t(q))N∂N+i
s (b) = σq

(
αR−1

αR

)
− αR−1

αR
+R.

For all these cases, note that there exists i0 such that ci0,N 6= 0 by definition of N .
Since ∂s commutes with σq, we can derive (D.7) with respect to ∂s and obtain that in
any case, there exists dk ∈ Lσq = Cq not all zero and h ∈ K such that

(D.8)
∑

k≤M+1

dk∂
k
s (b) = σq(h)− h.

�

D.3. Transcendence properties. The goal of this subsection is to prove some tran-
scendence properties of the q-logarithm in order to perform some descent procedure on
telescopers. More precisely, we need to prove that the assumptions (H1) to (H3) of
Proposition D.6 are satisfied for the fields Cq(s) and Cq.Cq(`q, `q) for q and q two multi-
plicatively independent elements of C∗ with |q| 6= 1, |q| 6= 1. We recall that q and q are
multiplicatively independent if there are no (r, l) ∈ Z2 \ (0, 0) such that qr = ql. Remind
that Cq.Cq ⊂ Mer(C∗) is the compositum of fields and `q ∈ Mer(C∗) is a solution of
σq(y) = y + 1. With Lemma D.5, (H1) of Proposition D.6 is satisfied for K = Cq(s)
and K = Cq.Cq(`q).

Lemma D.7. Any element in a σq-extension of Cq
∗∗ that is algebraic over Cq and

invariant by σq is in C. Any element in a σq-extension of Cq that is algebraic over Cq

and invariant by σq is in C.

Proof. The two statements are symmetrical, so let us only prove the first one. First let
us prove that Cq ∩ Cq = C. Let f be an element of Cq that is σq-invariant. Suppose to
the contrary that f is non-constant. Then f has a non-zero pole c. Since σq(f) = f , the
multiplication by q induces a permutation of the poles of f modulo q. Since the set of
poles modulo q is a finite set, there exists m ∈ N such that qmc = qdc for some d ∈ Z.
A contradiction with the fact that q and q are multiplicatively independent. Now, let f
be in a σq-extension of Cq algebraic over Cq and invariant by σq. Let µ(X) ∈ Cq[X] be
the monic minimal polynomial of f above Cq. Since σq(f) = f , we easily see that the
coefficients of µ must be fixed by σq. Then, these coefficients belong to Cq ∩ Cq, which
is equal to C. Then, f is algebraic over C. The latter field being algebraically closed,
we conclude that f ∈ C. �

Lemma D.8. The following statements hold:

∗∗We recall that since σq and σq commute, the field Cq is a σq-field.
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(1) the fields Cq and Cq are linearly disjoint over C;
(2) for all α ∈ Cq.Cq, σq(α) 6= α+ 1 and σq(α) 6= α+ 1;
(3) for all α ∈ Cq(s), σq(α) 6= α+ 1.

Proof. (1) This is Lemmas D.7 and C.7 with K = C, M = Cq and L = Cq, σ = σq.
(2) Suppose to the contrary that there exists α ∈ Cq.Cq, such that σq(α) = α + 1.
Since Cq is by Proposition 3.1, the field of meromorphic functions over a Tate curve,
there exist x, y ∈ Cq such that x is transcendental over C, y algebraic of degree 2 over
C(x) and Cq = C(x, y). Since Cq is linearly disjoint from Cq over C, the field Cq.Cq
equals Cq(x, y) and there are P (X), Q(X) ∈ Cq(X) such that α = P (x)y+Q(x). Since
x, y are fixed by σq and y is of degree 2 over Cq(x), we deduce from σq(α) = α + 1
that P σq(x) = P (x) and Qσq(x)−Q(x) = 1 where P σq(X) (resp. Qσq(X)) denotes the
fraction obtained from P (X) (resp. Q(X)) by applying σq to the coefficients. Let Cq

be some algebraic closure of Cq. We endow Cq with a structure of σq-field extension of

Cq. Let us write Q(X) = cr
Xr + · · ·+ c1

X +R(X) with R ∈ Cq(X) with no pole at X = 0.

Then, since x is transcendental over Cq and fixed by σq

Qσq(x)−Q(x) = 1 =
σq(cr)− cr

xr
+ · · ·+ σq(c1)− c1

x
+Rσq(x)−R(x).

Using the transcendence of x over Cq, we find that 1 = σq(β̃) − β̃ for β̃ = R(0) ∈ Cq.

There exists a unique derivation extending ∂s to Cq and this derivation commutes with

σq. Denoting this derivation by ∂s and deriving 1 = σq(β̃) − β̃, we conclude that

∂s(β̃) ∈ Cq ∩Cqr . Note that q and qr are multiplicatively independent. By Lemma D.7,

we find that ∂s(β̃) ∈ C which leads to β̃ = cs + d for some c, d ∈ C. A contradiction

with 1 = σq(β̃)− β̃. The proof for q is similar.

(3) Let α ∈ Cq(s). Using the partial fraction decomposition of α in Cq(s), the fact that
σq(s) = qs and the transcendence of s over Cq, one can easily see that σq(α)− α 6= 1.

�

Lemma D.9. The following statements hold:

(1) the function `q (resp. `q) is transcendental over Cq.Cq;
(2) the function `q is transcendental over Cq(s). In particular, (H3) of Proposition

D.6 is satisfied for K = Cq(s).

Proof. (1) Since σq(`q) = `q + 1 and Cq ⊂ (Cq.Cq)
σq ⊂Mer(C∗)σq = Cq, we can apply

Lemma C.2 and find that `q is algebraic over Cq.Cq if and only if there exists α ∈ Cq.Cq
such that σq(α) = α+ 1. We conclude by Lemma D.8. The proof for `q is symmetrical.
(2) Since σq(`q) = `q + 1 and Cq ⊂ (Cq(s))σq ⊂ Mer(C∗)σq = Cq, we can apply
Lemma C.2 and find that `q is algebraic over Cq(s) if and only if there exists α ∈ Cq(s)
such that σq(α) = α+ 1. We again conclude by Lemma D.8.

�

Lemma D.10. The following statement hold:

(1) let f ∈ Cq. If there exists α ∈ Cq.Cq satisfying σq(α)− α = f , then there exists
β ∈ Cq such that σq(β)− β = f ;

(2) let f ∈ Cq.Cq. If there exists α ∈ Cq.Cq(`q) satisfying σq(α)−α = f , then, there

exist ã ∈ Cq, b̃ ∈ Cq.Cq such that σq(ã`q + b̃)− (ã`q + b̃) = f .
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Proof. (1) Analogously to the proof of Lemma D.8, let us write α = P (x)y + Q(x) for
P (X), Q(X) ∈ Cq(X) and Cq = C(x, y). Reasoning as in the proof of Lemma D.8, we
find that Qσq(x)−Q(x) = f . Since x is transcendental over Cq, we conclude as in Lemma

D.8 that there is β̃ ∈ Cq, for some Cq algebraic closure of Cq such that σq(β̃) − β̃ = f .

Since by Lemma D.7, Cq
σq

= C
σq
q = C, Lemma C.2 implies that there exists β ∈ Cq

such that σq(β)− β = f .
(2) First of all, let us note that since σq and σq commute, there exists d ∈ Cq such that

(D.9) σq(`q) = `q + d.

By Lemma D.9, the function `q is transcendental over Cq.Cq. This implies that `q /∈ Cq

and then d 6= 0. Since Cq.Cq(`q)
σq = Cq = Mer(C∗)σq = Cq.C

σq
q = Cq, Lemma C.3,

applied to σq(`q) = `q + d, implies that there exists P ∈ Cq.Cq[X] such that

f = σq(P (`q))− P (`q).

Now, let us write P (X) =
∑N

k=0 akX
k with ak ∈ Cq.Cq, and N minimal. We find

(D.10) f = (σq(aN )− aN )`Nq + (σq(aN−1)− aN−1 +Ndσq(aN ))`N−1
q +

terms of order less than N − 1.

We conclude in view of (D.10) that if N = 0 we are done by setting ã = 0 and b̃ = aN .
Let us now assume that N > 0. Then, by minimality of N , σq(aN ) = aN . We claim
that σq(aN−1)− aN−1 +Ndσq(aN ) = σq(aN−1)− aN−1 +NdaN 6= 0. To the contrary,
σq(aN−1) = aN−1 −NdaN implies σq(

aN−1

aN
+N`q) =

aN−1

aN
+N`q and

aN−1

aN
+N`q ∈ Cq,

contradicting the transcendence of `q over Cq.Cq, see Lemma D.9. This proves the claim.
If N > 1, then (D.10) with σq(aN ) = aN and σq(aN−1)− aN−1 +NdaN 6= 0, would give
an equation of order N − 1 which would contradicts the transcendence of `q over Cq.Cq.
This proves that N = 1 and f = σq(a1`q+a0)−(a1`q+a0) for some a1 ∈ Cq, a0 ∈ Cq.Cq.

�

Lemma D.11. The function `q is transcendental over Cq.Cq(`q). In particular, the
assumption (H3) of Proposition D.6 holds for K = Cq.Cq(`q).

Proof. By Lemma C.2, the function `q is algebraic over Cq.Cq(`q) if and only if we have
`q ∈ Cq.Cq(`q). Suppose to the contrary that `q ∈ Cq.Cq(`q). Since 1 = σq(`q)− `q, we

conclude by Lemma D.10 that there exist ã ∈ Cq, b̃ ∈ Cq.Cq such that 1 = σq(ã`q + b̃)−
(ã`q + b̃). Combining this equation with σq(`q) − `q = 1, we find that σq(`q) − `q =

σq(ã`q + b̃)− (ã`q + b̃), proving that σq(ã`q + b̃− `q) = ã`q + b̃− `q ∈ Cq. Then, there

exists b̃1 ∈ Cq.Cq such that

(D.11) `q = ã`q + b̃1.

Deriving (D.11) with respect to ∂s, we find

∂s(`q) = ∂s(ã)`q + ã∂s(`q) + ∂s(b̃1).

By Remark D.3, ∂s(`q), ∂s(`q) ∈ Cq.Cq. In virtue of the commutation between ∂s
and σq, σq, the fields Cq, Cq are stabilized by ∂s, which implies ∂s(ã), ∂s(b̃1) ∈ Cq.Cq.
By Lemma D.9, the function `q is transcendental over the latter field, we conclude



46 THOMAS DREYFUS AND CHARLOTTE HARDOUIN

that ∂s(ã) = 0 and therefore ã ∈ C. In particular it belongs to Cq and Cq. Using

1 = σq(ã`q + b̃)− (ã`q + b̃), we find

1− ãd = σq(̃b)− b̃,

where d = σq(`q)− `q ∈ Cq, see (D.9). Since 1− ãd ∈ Cq, we conclude by Lemma D.10,

that there exists b̃2 ∈ Cq such that 1 − ãd = σq(b̃2) − b̃2. Replacing the left hand side
gives

σq(`q)− `q − σq(ã`q) + ã`q = σq(b̃2)− b̃2.

This shows that `q − ã`q − b̃2 ∈ Cq and then, there exists c ∈ Cq such that `q + c =

ã`q + b̃2. Deriving this equation with respect to ∂s, we find (we use ∂s(ã) = 0)

∂s(`q) + ∂s(c) = ã∂s(`q) + ∂s(b̃2).

By Remark D.3, the left hand side of the equation belongs to Cq whereas the right hand
side is in Cq. By Lemma D.7, we conclude that ∂s(`q + c) ∈ C. This means that there
exist a0, b0 ∈ C such that `q = a0s+ b0 − c in contradiction with `q transcendental over
Cq(s), see Lemma D.9. �

We can now prove that our fields satisfy the assumption (H2) of Proposition D.6.

Lemma D.12. The following holds:

(1) Cq is relatively algebraically closed in Cq(s, `q);
(2) Cq is relatively algebraically closed in Cq.Cq(`q, `q).

In particular, (H2) of Proposition D.6 holds for K = Cq(s) and K = Cq.Cq(`q).

Proof. (1) The first point is a consequence of transcendence of s over Cq, and the tran-
scendence of `q over Cq(s), see Lemma D.9.
(2) Let us prove the second point. Let us start by proving that Cq is relatively alge-
braically closed in Cq.Cq. As in the proof of Lemma D.8, we have Cq = C(x, y) and
Cq.Cq = Cq(x, y) where y is of degree 2 over both C(x) and Cq(x). Let f ∈ Cq(x, y).
Then f = P (x)y + Q(x) with P (x), Q(x) ∈ Cq(x). If f is algebraic over Cq then
Lemma C.1 implies that σrq(f) = f for some r ∈ Z∗ and therefore σrq(P (x)) = P (x)
and σrq(Q(x)) = Q(x). We claim that P (x) and Q(x) are in C(x), and therefore that
f ∈ Cq. Let P (x) = P1(x)/P2(x) where P1(x), P2(x) ∈ Cq[x] are relatively prime
and P1(x) is monic. We then have that σrq(P1(x))P2(x) = σrq(P2(x))P1(x) and conse-
quently P1(x) divides σrq(P1(x)) (resp. σrq(P1(x)) divides P1(x)). Since P1(x) is monic,
P1(x) = σrq(P1(x)) and P2(x) = σrq(P2(x)). This implies that the coefficients of P1(x)
and P2(x) are left fixed by σrq . Note that by assumption, q and qr are multiplicatively
independent. Therefore, by Lemma D.7, applied with q replaced by qr, P1, P2 ∈ C[X].
The proof for Q is similar. This proves our claim and show that f ∈ Cq. Then Cq is
relatively algebraically closed in Cq.Cq.

Note that Lemma D.9 implies that `q is transcendental over Cq.Cq and Lemma D.11
implies that `q is transcendental over Cq.Cq(`q). Therefore Cq is relatively algebraically
closed in Cq.Cq(`q, `q).

�
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Finally, we prove a lemma that will allows us to descend some telescoping relations
on smaller base fields.

Lemma D.13. Let b ∈ Cq such that there exist N ∈ N, ci ∈ Cq with cN 6= 0, and
g ∈ Cq.Cq(`q, `q) that satisfy

(D.12)
N∑
i=0

ci∂
i
s(b) = σq(g)− g.

Then, there exist m ∈ N, d0, . . . , dm ∈ C not all zero and h ∈ Cq such that

d0b2 + d1∂s(b2) + · · ·+ dm∂
m
s (b2) = σq(h)− h.

Proof. First of all note that the left hand side of (D.12) belongs to Cq.Cq. By
Lemma D.11, the function `q is transcendental over Cq.Cq(`q). By Lemma C.3,

g ∈ Cq.Cq(`q)[`q]. So let us write g =
∑R

k=0 αk`
k
q with αk ∈ Cq.Cq(`q), αR 6= 0.

Claim. There exist m ∈ N, c′k ∈ Cq, c′m 6= 0, and α ∈ Cq.Cq(`q) such that

(D.13)

m∑
k=0

c′k∂
k
s (b) = σq(α)− α.

If R = 0 the claim is proved. Assume that R > 0. Then, we have

(D.14) σq(g)− g = `Rq (σq(αR)− αR)) + `R−1
q (σq(αR−1)− αR−1 +RαR) + P (`q),

where P (X) ∈ Cq.Cq(`q)[X] is a polynomial of degree smaller than R − 1. Then,
comparing (D.14) and (D.12), we find, by transcendence of `q over Cq.Cq(`q), see Lemma
D.11, that σq(αR) = αR. Let us prove that σq(αR−1) − αR−1 + RαR 6= 0. Indeed if
σq(αR−1) − αR−1 + RαR = 0 then σq(

αR−1

αR
) − αR−1

αR
+ R = 0 with

αR−1

αR
∈ Cq.Cq in

contradiction with Lemma D.9 and Lemma C.2. We then obtain that R = 1 since
otherwise we would deduce from (D.14) an algebraic relation for `q over Cq.Cq(`q),
contradicting Lemma D.11. Thus,

(D.15)
N∑
i=0

ci
α1
∂is(b) = σq

(
α0

α1

)
− α0

α1
+ 1.

Remind that α1 ∈ Cq and the latter field is stable by ∂s due to the commutation between
∂s and σq. By Lemma D.5, the field Cq.Cq(`q) is stabilized by ∂s. We can derive (D.15)
with respect to ∂s and using the commutation between σq and ∂s, we obtain our claim.

Claim. There exist M ∈ N, dk ∈ Cq, dM 6= 0 and β ∈ Cq.Cq such that

M∑
k=0

dk∂
k
s (b) = σq(β)− β.

Indeed, by Lemma D.10, we can find a ∈ Cq, b ∈ Cq.Cq such that

(D.16)

m∑
k=0

c′k∂
k
s (b) = σq(a`q + b)− (a`q + b).
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Either a = 0 and
∑

k c
′
k∂

k
s (b) = σq(b) − (b) for some b ∈ Cq.Cq. Or a 6= 0 and dividing

(D.16) by a and deriving with respect to ∂s, we find

m+1∑
k=0

dk∂
k
s (b) = σq(∂s(`q) + ∂s(b/a))− (∂s(`q) + ∂s(b/a)),

where the dk are in Cq, dm+1 = c′m
a 6= 0. Furthermore, by Remark D.3 and the fact that

Cq, Cq, are stable by ∂s, we find ∂s(`q) + ∂s(b/a) ∈ Cq.Cq. This proves the claim.
Now, let us consider an equation of the form

M∑
k=0

dk∂
k
s (b) = σq(β)− β,

with β ∈ Cq.Cq, dk ∈ Cq and dM 6= 0, minimal with respect to the maximal order of
derivation M of b. We can write this minimal equation as follows

dM∂
M
s (b) +

M−1∑
k=0

dk∂
k
s (b) = σq(β)− β,

with dM ∈ C∗q. Then dividing by dM , we find

∂Ms (b) +
M−1∑
k=0

dk
dM

∂ks (b) = σq

(
β

dM

)
− β

dM
.

Therefore, we can without loss of assumption assume that dM = 1. Now, if we compute
the element σq(σq(β)− β))− (σq(β)− β)) and use the fact that b ∈ Cq, we find

M−1∑
k=0

(σq(dk)− dk)∂ks (b) = σq(σq(β)− β)− (σq(β)− β).

By minimality, we find that, for all k, the element dk ∈ Cq is fixed by σq. This means
that dk ∈ C by Lemma D.7.

Since ∂Ms (b) +
∑M−1

k=0 dk∂
k
s (b) ∈ Cq and ∂Ms (b) +

∑M−1
k=0 dk∂

k
s (b) = σq(β) − β with

β ∈ Cq.Cq, Lemma D.10 shows that we have the existence of h ∈ Cq such that

∂Ms (b) +
M−1∑
k=0

dk∂
k
s (b) = σq(h)− h.

�

The results of Appendix D.3 are summarized in the following crucial corollary.

Corollary D.14. The assumptions of Proposition D.6 are satisfied for

• Genus zero case: K = Cq(s) and b ∈ C(s) with q ∈ C∗ such that |q| 6= 1;
• Genus one case: K = Cq.Cq(`q) and b ∈ Cq(`q) with q, q ∈ C∗ such that
|q|, |q| 6= 1 and q and q are multiplicatively independent.

Proof. The fact that the field K and b satisfy the assumptions (Hi) is Lemmas D.5, D.9,
D.11, and D.12. �
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