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Abstract The main motivation of our work is to create an efficient algorithm that1

decides hypertranscendence of solutions of linear differential equations, via the2

parameterized and differential Galois theories. To achieve this, we expand the repre-3

sentation theory of linear differential algebraic groups and develop new algorithms that4

calculate unipotent radicals of parameterized differential Galois groups for differential5

equations whose coefficients are rational functions. Berman and Singer presented an6
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algorithm calculating the differential Galois group for differential equations without7

parameters whose differential operator is a composition of two completely reducible8

differential operators. We use their algorithm as a part of our algorithm. As a result, we9

find an effective criterion for the algebraic independence of the solutions of parame-10

terized differential equations and all of their derivatives with respect to the parameter.11
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1 Introduction27

A special function is said to be hypertranscendental if it does not satisfy any alge-28

braic differential equation. The study of functional hypertranscendence has recently29

appeared in various areas of mathematics. In combinatorics, the question of the hyper-30

transcendence of generating series is frequent because it gives information on the31

growth of the coefficients: for instance, the work of Kurkova and Raschel [30] solved32

a famous conjecture about the differential algebraic behaviour of generating series of33

walks on the plane. Dreyfus et al. [18] gave criteria to test the hypertranscendence34

of generating series associated to p-automatic sequences and more generally Mahler35

functions, generalizing the work of Nguyen [40], Nishioka [41], and Randé [46]. Also,36

when the derivation encodes the continuous deformation of an auxiliary parameter,37

the hypertranscendence is connected to the notion of isomonodromic deformation (see38

the work of Mitschi and Singer [37]).39

The work of Cassidy et al. and Hardouin et al. [13,22] were motivated by a study40

of hypertranscendence using Galois theory. Starting from a linear functional equation41

with coefficients in a field with a “parametric” derivation, they were able to construct42

a geometric object, called the parameterized differential Galois group, whose symme-43

tries control the algebraic relations between the solutions of the functional equation44

and all of their derivatives. The question of hypertranscendence of solutions of linear45

functional equations is thus reduced to the computation of the parameterized differ-46

ential Galois groups of the equations (see for instance the work of Arreche [1] on the47

incomplete gamma function γ (x, t) and the work [18]). The parameterized differential48

Galois groups are linear differential algebraic groups as introduced by Kolchin and49

developed by Cassidy [8]. These are groups of matrices whose entries satisfy systems50
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of polynomial differential equations, called defining equations of the parameterized51

differential Galois group.52

Then, in this context of Galois theory, one can address a direct problem, that is,53

the question of the algorithmic computation of the parameterized differential Galois54

group. For linear functional equations of order 2, one can find a Kovacic-type algorithm55

initiated by Dreyfus [17] and completed by Arreche [2]. In [36], Minchenko et al.56

gave an algorithm that allows to test if the parameterized differential Galois group57

is reductive and to compute the group in that case. In [35], they also show how to58

compute the parameterized differential Galois group if its quotient by the unipotent59

radical is conjugate to a group of matrices with constant entries with respect to the60

parametric derivations. The algorithms of [35,36] rely on bounds on the order of the61

defining equations of the parameterized differential Galois group, which allows to62

use the algorithm obtained by Hrushovski [24] and has been further analyzed and63

improved by Feng [19] in the case of no parametric derivations.64

In this paper, we study the parameterized differential Galois group of a differential65

operator of the form L1(L2(y)) = 0 where L1, L2 are completely reducible differ-66

ential operators. This situation goes beyond the previously studied cases, because the67

parameterized Galois group of such an equation is no longer reductive and its quotient68

by its unipotent radical might not be constant. If there is no parametric derivation,69

this problem was solved by Berman and Singer in [4] for differential operators and70

rephrased using Tannakian categories by Hardouin [21]. The general case is however71

more complicated because, unlike the case of no parameters, the order of the defining72

equations of the parameterized differential Galois group is no longer controlled by the73

order of the functional equation L1(L2(y)) = 0. Therefore, we present an algorithm74

that relies on bounds (see Sect. 3.3.3) and, in a generic situation, we find a description75

of the parameterized differential Galois group. In this description, the defining equa-76

tions of the unipotent radical are obtained by applying standard operations to linear77

differential operators (cf. [21]).78

However, by a careful study of the extension of completely reducible representations79

of quasi-simple linear differential algebraic groups, we are able to deduce a complete80

and effective criterion to test the hypertranscendence of solutions of inhomogeneous81

linear differential equations (Theorem 4.7).82

The paper is organized as follows. We start with a brief review of the basic notions83

in differential algebra, linear differential algebraic groups, and linear differential equa-84

tions with parameters in Sect. 2. Our algorithmic results for calculating parameterized85

differential Galois groups are presented in Sect. 3. Our effective criterion for hypertran-86

scendence of solutions of extensions of irreducible differential equations is contained87

in Sect. 4.2, which is preceded by Sect. 4.1, where we extend results of Minchenko and88

Ovchinnikov [34] for the purposes of the hypertranscendence criterion. We use this89

criterion to prove hypertranscendence results for the Lommel differential equation in90

Sect. 4.3.91

2 Preliminary notions92

We shall start with some basic notions of differential algebra and then recall what93

linear differential algebraic groups and their representations are.94
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2.1 Differential algebra95

Definition 2.1 A differential ring is a ring R with a finite set � = {δ1, . . . , δm}96

of commuting derivations on R. A �-ideal of R is an ideal of R stable under any97

derivation in �.98

In the present paper,� will consist of one or two elements. Let R be a�-ring. For99

any δ ∈ �, we denote100

Rδ = {r ∈ R | δ(r) = 0},101

which is a �-subring of R and is called the ring of δ-constants of R. If R is a field102

and a differential ring, then it is called a differential field, or �-field for short. For103

example, R = Q(x, t), � = {δ, ∂}, and ∂ = ∂/∂x , δ = ∂/∂t , forms a differential104

field. The notion of R-�-algebra is defined analogously.105

The ring of �-differential polynomials K {y1, . . . , yn} in the differential indeter-106

minates, or�-indeterminates, y1, . . . , yn and with coefficients in a�-field (K ,�), is107

the ring of polynomials in the indeterminates formally denoted108

{
δ

i1
1 · . . . · δim

m yi
∣∣ i1, . . . , im ≥ 0, 1 ≤ i ≤ n

}
109

with coefficients in K . We endow this ring with a structure of K -�-algebra by setting110

111

δk

(
δ

i1
1 · . . . · δim

m yi

)
= δ

i1
1 · . . . · δik+1

k · . . . · δim
m yi .112

Definition 2.2 (See [32, Corollary 1.2 (ii)]) A differential field (K ,�) is said to be113

differentially closed or �-closed for short, if, for every (finite) set of �-polynomials114

F ⊂ K {y1, . . . , yn}, if the system of differential equations F = 0 has a solution with115

entries in some �-field extension L , then it has a solution with entries in K .116

For ∂ ∈ �, the ring K [∂] of differential operators, or ∂-operators for short, is the K -117

vector space with basis 1, ∂, . . . , ∂n, . . . endowed with the following multiplication118

rule:119

∂ · a = a · ∂ + ∂(a).120

To a ∂-operator L as above, one can associate the linear homogeneous ∂-polynomial121

L(y) = an∂
n y + · · · + a1∂y + a0 y ∈ K {y}.122

In what follows, we assume that every field is of characteristic zero.123

2.2 Linear differential algebraic groups and their unipotent radicals124

In this section, we first introduce the basic terminology of Kolchin-closed sets, lin-125

ear differential algebraic groups and their representations. We then define unipotent126

radicals of linear differential algebraic groups, reductive linear differential algebraic127
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groups and their structural properties. We continue with the notion of conjugation to128

constants of linear differential algebraic groups.129

Let (k, δ) be a differentially closed field, C = kδ , and (F, δ) a δ-subfield of k.130

2.2.1 First definitions131

Definition 2.3 A Kolchin-closed (or δ-closed, for short) set W ⊂ kn is the set of132

common zeroes of a system of δ-polynomials with coefficients in k, that is, there133

exists S ⊂ k{y1, . . . , yn} such that134

W = {
a ∈ kn | f (a) = 0 for all f ∈ S

}
.135

We say that W is defined over F if W is the set of zeroes of δ-polynomials with136

coefficients in F . More generally, for an F-δ-algebra R,137

W (R) = {
a ∈ Rn | f (a) = 0 for all f ∈ S

}
.138

Definition 2.4 If W ⊂ kn is a Kolchin-closed set defined over F , the δ-ideal139

I(W ) = { f ∈ F{y1, . . . , yn} | f (w) = 0 for all w ∈ W (k)}140

is called the defining δ-ideal of W over F . Conversely, for a subset S of F{y1, . . . , yn},141

the following subset is δ-closed in kn and defined over F :142

V(S) = {
a ∈ kn | f (a) = 0 for all f ∈ S

}
.143

Remark 2.5 Since every radical δ-ideal of F{y1, . . . , yn} is generated as a radical144

δ-ideal by a finite set of δ-polynomials (see, for example, [47, Theorem, page 10],145

[27, Sects. VII. 27–28]) the Kolchin topology is Ritt–Noetherian, that is, every strictly146

decreasing chain of Kolchin-closed sets has a finite length.147

Definition 2.6 Let W ⊂ kn be a δ-closed set defined over F . The δ-coordinate ring148

F{W } of W over F is the F-�-algebra149

F{W } = F{y1, . . . , yn}/I(W ).150

If F{W } is an integral domain, then W is said to be irreducible. This is equivalent to151

I(W ) being a prime δ-ideal.152

Example 2.7 The affine space An is the irreducible Kolchin-closed set kn . It is defined153

over F , and its δ-coordinate ring over F is F{y1, . . . , yn}.154

Definition 2.8 Let W ⊂ kn be a δ-closed set defined over F . Let I(W ) = p1 ∩· · ·∩pq155

be a minimal δ-prime decomposition of I(W ), that is, the pi ⊂ F{y1, . . . , yn} are156

prime δ-ideals containing I(W ) and minimal with this property. This decomposition157

is unique up to permutation (see [27, Sect. VII. 29]). The irreducible Kolchin-closed158

sets Wi = V(pi ) are defined over F and called the irreducible components of W . We159

have W = W1 ∪ · · · ∪ Wq .160
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Definition 2.9 Let W1 ⊂ kn1 and W2 ⊂ kn2 be two Kolchin-closed sets defined over161

F . A δ-polynomial map (morphism) defined over F is a map162

ϕ : W1 → W2, a 	→ ( f1(a), . . . , fn2(a)), a ∈ W1163

where fi ∈ F{y1, . . . , yn1} for all i = 1, . . . , n2.164

If W1 ⊂ W2, the inclusion map of W1 in W2 is a δ-polynomial map. In this case,165

we say that W1 is a δ-closed subset of W2.166

Example 2.10 Let GLn ⊂ kn be the group of n × n invertible matrices with entries167

in k. One can see GLn as a Kolchin-closed subset of kn2 × k defined over F , defined168

by the equation det(X)y − 1 in F
{
kn2 × k

} = F{X, y}, where X is an n × n-matrix169

of δ-indeterminates over F and y a δ-indeterminate over F . One can thus identify170

the δ-coordinate ring of GLn over F with F{Y, 1/ det(Y )}, where Y = (yi, j )1≤i, j≤n171

is a matrix of δ-indeterminates over F . We also denote the special linear group that172

consists of the matrices of determinant 1 by SLn ⊂ GLn .173

Similarly, if V is a finite-dimensional F-vector space, GL(V ) is defined as the group174

of invertible k-linear maps of V ⊗F k. To simplify the terminology, we will also treat175

GL(V ) as Kolchin-closed sets tacitly assuming that some basis of V over F is fixed.176

Remark 2.11 If K is a field, we denote the group of invertible matrices with coefficients177

in K by GLn(K ).178

Definition 2.12 ([8, Chapter II, Sect. 1, p. 905]) A linear differential algebraic group179

G ⊂ kn2
defined over F is a subgroup of GLn that is a Kolchin-closed set defined180

over F . If G ⊂ H ⊂ GLn are Kolchin-closed subgroups of GLn , we say that G is a181

δ-closed subgroup, or δ-subgroup of H .182

Proposition 2.13 Let G ⊂ GLn be a linear algebraic group defined over F. We have:183

(1) G is a linear differential algebraic group.184

(2) Let H ⊂ G be a δ-subgroup of G defined over F, and the Zariski closure H ⊂ G185

be the closure of H with respect to the Zariski topology. In this case, H is a linear186

algebraic group defined over F, whose polynomial defining ideal over F is187

I(H) ∩ F[Y ] ⊂ I(H) ⊂ F{Y } ,188

where Y = (yi, j )1≤i, j≤n is a matrix of δ-indeterminates over F.189

Definition 2.14 Let G be a linear differential algebraic group defined over F . The190

irreducible component of G containing the identity element e is called the identity191

component of G and denoted by G◦. The linear differential algebraic group G◦ is a192

δ-subgroup of G defined over F . The linear differential algebraic group G is said to be193

connected if G = G◦, which is equivalent to G being an irreducible Kolchin-closed194

set [8, p. 906].195

Definition 2.15 ([9], [43, Definition 6]) Let G be a linear differential algebraic group196

defined over F and let V be a finite-dimensional vector space over F . A δ-polynomial197
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group homomorphism ρ : G → GL(V ) defined over F is called a representation198

of G over F . We shall also say that V is a G-module over F . By a faithful (respec-199

tively, simple, semisimple) G-module, we mean a faithful (respectively, irreducible,200

completely reducible) representation ρ : G → GL(V ).201

The image of a δ-polynomial group homomorphism ρ : G → H is Kolchin closed202

[8, Proposition 7]. Moreover, if ker(ρ) = {e}, then ρ is an isomorphism of linear203

differential algebraic groups between G and ρ(G) [8, Proposition 8].204

Definition 2.16 [10, Theorem 2] A linear differential algebraic group G is unipotent205

if one of the following equivalent conditions holds:206

(1) G is conjugate to a differential algebraic subgroup of the group of unipotent upper207

triangular matrices;208

(2) G contains no elements of finite order > 1;209

(3) G has a descending normal sequence of differential algebraic subgroups210

G = G0 ⊃ G1 ⊃ · · · ⊃ G N = {e}211

with Gi/Gi+1 isomorphic to a differential algebraic subgroup of the additive212

group Ga .213

One can show that a linear differential algebraic group G defined over F admits214

a largest normal unipotent differential algebraic subgroup defined over F [33, Theo-215

rem 3.10].216

Definition 2.17 Let G be a linear differential algebraic group defined over F . The217

largest normal unipotent differential algebraic subgroup of G defined over F is called218

the unipotent radical of G and denoted by Ru(G). The unipotent radical of a linear219

algebraic group H is also denoted by Ru(H).220

Note that, for a linear differential algebraic group G, we always have221

Ru(G) ⊂ Ru(G)222

and this inclusion can be strict [33, Example 3.17].223

2.2.2 Almost direct products and reductive linear differential algebraic group224

We recall what reductive linear differential algebraic groups are and how they decom-225

pose into almost direct products of tori and quasi-simple subgroups.226

Definition 2.18 A linear differential algebraic group G is said to be simple if {e} and227

G are the only normal differential algebraic subgroups of G.228

Definition 2.19 A quasi-simple linear (differential) algebraic group is a finite central229

extension of a simple non-commutative linear (differential) algebraic group.230

Definition 2.20 [33, Definition 3.12] A linear differential algebraic group G defined231

over F is said to be reductive if Ru(G) = {e}.232
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By definition, the following holds for linear differential algebraic groups:233

simple ⇒ quasi-simple ⇒ reductive.234

Example 2.21 SL2 is quasi-simple but not simple, while PSL2 is simple.235

Proposition 2.22 [36, Remark 2.9] Let G ⊂ GLn be a linear differential algebraic236

group defined over F. If G ⊂ GLn is a reductive linear algebraic group, then G is a237

reductive linear differential algebraic group.238

Proposition 2.23 Let G ⊂ GL(V ) be a linear differential algebraic group. The fol-239

lowing statements are equivalent:240

(1) the G-module V is semisimple;241

(2) V is semisimple as a G-module, where G ⊂ GL(V ) stands for the Zariski closure;242

(3) G is reductive;243

(4) V is semisimple as a G
◦
-module;244

(5) V is semisimple as a G◦-module.245

Proof For every subspace U ⊂ V , the set N of elements g ∈ GL(V ) preserving U246

is an algebraic subgroup of GL(V ). Therefore, U is G-invariant if and only if it is247

G-invariant:248

G ⊂ N ⇔ G ⊂ N .249

This implies (1) ⇔ (2). The equivalences (2) ⇔ (3) ⇔ (4) are well-known (see, for250

example, [50, Chapter 2]). Since the Kolchin topology contains the Zariski topology251

of GL(V ), G◦ is Zariski irreducible, hence, equals G
◦
. Applying (1) ⇔ (2) to the case252

of a connected G, we obtain (4) ⇔ (5). ��253

Definition 2.24 Let G be a group and G1, . . . ,Gn some subgroups of G. We say that254

G is the almost direct product of G1, . . . ,Gn if255

(1) the commutator subgroups [Gi ,G j ] = {e} for all i �= j ;256

(2) the morphism257

ψ : G1 × · · · × Gn → G, (g1, . . . , gn) 	→ g1 · . . . · gn258

is an isogeny, that is, a surjective map with a finite kernel.259

We summarize some results on the decomposition of reductive, algebraic and dif-260

ferential algebraic, groups in the theorem below. We refer to Definition 2.3 for the261

notation G(C) with G a linear (differential) algebraic group defined over C .262

Theorem 2.25 Let G ⊂ GLn be a linear differential algebraic group defined over F.263

Assume that G ⊂ GLn is a connected reductive algebraic group. Then264

(1) G is an almost direct product of a torus H0 and non-commutative normal quasi-265

simple linear algebraic groups H1, . . . , Hs defined over Q;266
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(2) G is an almost direct product of a Zariski dense δ-closed subgroup G0 of H0 and267

some δ-closed subgroups Gi of Hi for i = 1, . . . , s;268

(3) moreover, either Gi = Hi or Gi is conjugate by a matrix of Hi to Hi (C);269

The Hi ’s are called the quasi-simple components of G; the Gi ’s are called the δ-quasi-270

simple components of G.271

Proof Part (1) can be found in [25, Theorem 27.5, p. 167]. Parts (2) and (3) are272

contained in [33, proof of Lemma 4.5] and [11, Theorems 15 and 18]. ��273

Remark 2.26 As noticed in [36, Sect. 5.3.1], the decomposition of G as above can be274

made effective.275

Proposition 2.27 If ν : G1 × G2 → G is a surjective homomorphism of linear276

differential algebraic groups and V is a simple G-module, then V , viewed as a G1×G2-277

module via ν, is isomorphic to V1 ⊗ V2, where each Vi is a simple Gi -module.278

Proof Since ν is surjective, V is simple as a G1 × G2-module. Let V1 be a simple279

(non-zero) G1-submodule of V and U ⊂ V the sum of all G1-submodules isomorphic280

to V1. Since all elements of G2 send V1 to an isomorphic submodule, we obtain that281

U is G1 × G2-invariant. Since V is G1 × G2-simple, U = V . We choose a direct sum282

decomposition283

V =
⊕
j∈J

U j , U j ∼= V1 for all j ∈ J,284

and, for each j ∈ J , a non-zero u j ∈ U j , and let V2 = span j∈J {u j } ⊂ V . We see285

that, as G1-modules, V ∼= V1 ⊗ V2, where G1 acts trivially on V2.286

By [51, Exercise 11.30], every endomorphism of V1⊗V2 commuting with the action287

of G1 has the form idV1 ⊗A, where A is an endomorphism of V2. This means that V2288

has a structure of a G2-module such that the G1-module isomorphism V ∼= V1 ⊗ V2289

extends to a G1 × G2-module isomorphism. Since V is G1 × G2-simple, V2 is G2-290

simple. It remains to note that the representation Gi → GL(Vi ), i = 1, 2, is differential291

since it is isomorphic to a subrepresentation of the representation Gi → GL(V ). ��292

Definition 2.28 A connected linear differential algebraic group T is called a δ-torus293

if there is an isomorphism α of T onto a Zariski dense δ-subgroup T ′ ⊂ (
k×)n , n ≥ 0.294

Let T ′
C = (

C×)n . By [8, Proposition 31], T ′
C ⊂ T ′. Let TC = α−1(T ′

C ). The δ-295

subgroup TC does not depend on the choice ofα: since any differential homomorphism296 (
C×)n → (

k×)m is monomial in each of the m components, its image is contained in297 (
C×)m .298

Corollary 2.29 Let G ⊂ GL(V ) be a connected linear differential algebraic group.299

If the G-module V is simple and non-constant, then there exists a δ-torus T ⊂ G such300

that V is semisimple and non-constant as a T -module.301

Proof Since V is simple, G is reductive by Proposition 2.23. By Theorem 2.25, G302

decomposes as an almost direct product of a δ-torus G0 and δ-quasi-simple components303

Gi , 1 ≤ i ≤ s. By Proposition 2.27, V is a tensor product of simple Gi -modules Wi .304
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By [33, Theorem 3.3], representations of Gi on Wi are polynomial, that is, extend to305

algebraic representations ρi : Gi → GL(Wi ).306

Since V is non-constant, there is an i , 0 ≤ i ≤ s, such that Wi is non-constant.307

If i > 0, then Gi = Gi . Indeed, otherwise Gi � H(C), where H = Gi is a308

quasi-simple algebraic group defined over C (see Theorem 2.25). Since all algebraic309

representations of H are defined over Q (see, for example, [5, Sect. 5]), ρi (Gi ) is310

conjugate to constants, which contradicts the assumption on Wi . Thus, Gi = Gi , and311

we can take T to be a maximal torus of Gi (see [25, Sects. 21.3–21.4]). If i = 0, let312

T = G0. ��313

2.2.3 Conjugation to constants314

Conjugation to constants will play an essential role in our arguments. We recall what315

it means. As before, k is a differentially closed field containing F and C is the field316

of δ-constants of k.317

Definition 2.30 Let G ⊂ GLn be a linear algebraic group over F . We say that G is318

conjugate to constants if there exists h ∈ GLn such that hGh−1 ⊂ GLn(C). Similarly,319

we say that a representation ρ : G → GLn is conjugate to constants if ρ(G) is320

conjugate to constants in GLn .321

Proposition 2.31 Let ρ : G ⊂ GL(W ) → GL(V ) be a representation of a linear322

differential algebraic group G such that G ⊂ GL(W ) is a connected reductive linear323

algebraic group. Assume that ρ is defined over the field C. With notation of Theorem324

2.25, assume that Z acts by constant weights on V and that, for all i = 1, . . . , s,325

either Hi �= Gi or ρ|Hi is the identity. Then there exists g ∈ G such that326

ρ(gGg−1) ⊂ GL(V )(C).327

Proof Let S = {i | Hi = Gi }. By assumption, ρ(Hi ) = {1} for all i ∈ S. By Theorem328

2.25, for all i /∈ S, there exists gi ∈ Gi such that gi Hi g
−1
i ⊂ Gi (C). Set329

g =
∏
i∈S

gi ∈ G.330

Let h ∈ G. Since G is the almost direct product of Z and of its δ-quasi-simple331

components, there exist z ∈ Z and, for i ∈ {1, . . . , s}, an element hi ∈ Hi such that332

h = zh1 · . . . · hs . Now,333

ρ(ghg−1) = ρ(z)
∏
i /∈S

ρ(gi hi g
−1
i ).334

Since ρ is defined over the constants and gi hi g
−1
i ∈ Gi (C) for all i /∈ S, we find that335

ρ
(
gi hi g

−1
i

) ⊂ GL(V )(C).336

Since ρ(z) is also constant, the same holds for ρ
(
ghg−1

)
. ��337
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2.3 Parameterized differential modules338

In this section, we recall the basic definitions of differential modules and prolongation339

functors for differential modules with parameters. We then continue with the notion340

of complete integrability of differential modules and its relation to conjugation to341

constants of parameterized differential Galois groups. We also show a new result,342

Proposition 2.54, which relates the conjugation to constants of a linear differential343

algebraic group and of its identity component.344

2.3.1 Differential modules and prolongations345

Let K be a � = {∂, δ}-field. We denote by k (respectively, C) the field of ∂ (respec-346

tively, D)-constants of K . We assume for simplicity that (k, δ) is differentially closed347

(this assumption was relaxed in [20,39,53]). Therefore, unless explicitly mentioned,348

any Kolchin-closed set considered in the rest of the paper is a subset of some kn .349

Definition 2.32 A ∂-module M over K is a left K [∂]-module that is a finite-350

dimensional vector space over K .351

Let M be a ∂-module over K and let {e1, . . . , en} be a K -basis of M . Let A =352

(ai, j ) ∈ K n×n be the matrix defined by353

∂(ei ) = −
n∑

j=1

a j,i e j , i = 1, . . . , n. (2.1)354

Then, for any element m = ∑n
i=1 yi ei , where Y = (y1, . . . , yn)

T ∈ K n , we have355

∂(m) =
n∑

i=1

∂(yi )ei −
n∑

i=1

⎛
⎝

n∑
j=1

ai, j y j

⎞
⎠ ei .356

Thus, the equation ∂(m) = 0 translates into the linear differential system ∂(Y ) = AY .357

Definition 2.33 Let M be a ∂-module over K and {e1, . . . , en} be a K -basis of M .358

We say that the linear differential system ∂(Y ) = AY , as above, is associated to the359

∂-module M (via the choice of a K -basis). Conversely, to a given linear differential360

system ∂(Y ) = AY , A = (ai, j ) ∈ K n×n , one associates a ∂-module M over K ,361

namely M = K n with the standard basis (e1, . . . , en) and action of ∂ given by (2.1).362

Another choice of a K -basis X = BY , where B ∈ GLn(K ), leads to the differential363

system364

∂(X) = (B−1 AB − B−1∂(B))X.365
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Definition 2.34 We say that a linear differential system ∂(X) = ÃX , with Ã ∈ K n×n ,366

is K -equivalent (or gauge equivalent over K ) to a linear differential system ∂(X) =367

AX , with A ∈ K n×n , if there exists B ∈ GLn(K ) such that368

Ã = B−1 AB − B−1∂(B).369

One has the following correspondence between linear differential systems and linear370

differential equations. For L = ∂n + an−1∂
n−1 + · · · + a0 ∈ K [∂], one can consider371

the companion matrix372

AL =

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0

0
. . .

. . .
...

...
. . . 0 1

−a0 −a1 . . . −an−1

⎞
⎟⎟⎟⎟⎠
.373

The differential system ∂Y = AL Y induces a ∂-module structure on K n , which we374

denote by L . Conversely, the Cyclic vector lemma [45, Proposition 2.9] states that375

any ∂-module is isomorphic to a ∂-module L , of the above form, provided k � K .376

Definition 2.35 A morphism of ∂-modules over K is a homomorphism of K [∂]-377

modules.378

One can consider the category Diff K of ∂-modules over K :379

Definition 2.36 We can define the following constructions in Diff K :380

(1) The direct sum of two ∂-modules, M1 and M2, is M1 ⊕ M2 together with the381

action of ∂ defined by382

∂(m1 ⊕ m2) = ∂(m1)⊕ ∂(m2).383

(2) The tensor product of two ∂-modules, M1 and M2, is M1 ⊗K M2 together with384

the action of ∂ defined by385

∂(m1 ⊗ m2) = ∂(m1)⊗ m2 + m1 ⊗ ∂(m2).386

(3) The unit object 1 for the tensor product is the field K together with the left K [∂]-387

module structure given by388

(a0 + a1∂ + · · · + an∂
n)( f ) = a0 f + · · · + an∂

n( f )389

for f, a0, . . . , an ∈ K .390

(4) The internal Hom of two ∂-modules M1,M2 exists in Diff K and is denoted by391

Hom(M1,M2). It consists of the K -vector space HomK (M1,M2) of K -linear392

maps from M1 to M2 together with the action of ∂ given by the formula393

∂u(m1) = ∂(u(m1))− u(∂m1).394
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The dual M ∗ of a ∂-module M is the ∂-module Hom(M , 1).395

(5) An endofunctor D : Diff K → Diff K , called the prolongation functor, is defined396

as follows: if M is an object of Diff K corresponding to the linear differential397

system ∂(Y ) = AY , then D(M ) corresponds to the linear differential system398

∂(Z) =
(

A δ(A)
0 A

)
Z .399

The construction of the prolongation functor reflects the following idea. If U is a400

fundamental solution matrix of ∂(Y ) = AY in some �-field extension F of K , that401

is, ∂(U ) = AU and U ∈ GLn(F), then402

∂(δU ) = δ(∂U ) = δ(A)U + Aδ(U ).403

Then,

(
U δ(U )
0 U

)
is a fundamental solution matrix of ∂(Z) =

(
A δ(A)
0 A

)
Z . Endowed404

with all these constructions, it follows from [44, Corollary 3] that the category Diff K405

is a δ -tensor category (in the sense of [44, Definition 3] and [26, Definition 4.2.1]).406

In this paper, we will not consider the whole category Diff K but the δ-tensor sub-407

category generated by a ∂-module. More precisely, we have the following definition.408

Definition 2.37 Let M be an object of Diff K . We denote by {M }⊗,δ the smallest409

full subcategory of Diff K that contains M and is closed under all operations of linear410

algebra (direct sums, tensor products, duals, and subquotients) and under D. The411

category {M }⊗,δ is a δ-tensor category over k. We also denote by {M }⊗ the full tensor412

subcategory of Diff K generated by M . Then, {M }⊗ is a tensor category over k.413

Similarly, the category Vectk of finite-dimensional k-vector spaces is a δ-tensor414

category. The prolongation functor on Vectk is defined as follows: for a k-vector415

space V , the k-vector space D(V ) equals k[δ]≤1 ⊗k V , where k[δ]≤1 is considered416

as the right k-module of δ-operators up to order 1 and V is viewed as a left k-module.417

Definition 2.38 Let M be an object of Diff K . A δ-fiber functor ω : {M }⊗,δ →418

Vectk is an exact, faithful, k-linear, tensor compatible functor together with a natural419

isomorphism between DVectk ◦ ω and ω ◦ D{M }⊗,δ [26, Definition 4.2.7], where the420

subscripts emphasize the category on which we perform the prolongation. The pair421 ({M }⊗,δ, ω) is called a δ-Tannakian category.422

Theorem 2.39 [20, Corollaries 4.29 and 6.2] Let M be an object of Diff K . Since k423

is δ-closed, the category {M }⊗,δ admits a δ-fiber functor and any two δ-fiber functors424

are naturally isomorphic.425

Definition 2.40 Let M be an object of Diffk and ω : {M }⊗,δ → Vectk be a δ-fiber426

functor. The group Galδ(M ) of δ-tensor isomorphisms of ω is defined as follows.427

It consists of the elements g ∈ GL(ω(M )) that stabilize ω(V) for every ∂-module428

V obtained from M by applying the linear constructions (subquotient, direct sum,429

tensor product, and dual), and the prolongation functor. The action of g on ω(V) is430

obtained by applying the same constructions to g. We call Galδ(M ) the parameterized431

differential Galois group of (M , ω), or of M when there is no confusion.432
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Theorem 2.41 [44, Theorem 2] Let M be an object of Diff K and ω : {M }⊗,δ →433

Vectk be a δ-fiber functor. The group Galδ(M ) ⊂ GL(ω(M )) is a linear differential434

algebraic group defined over k, and ω induces an equivalence of categories between435

{M }⊗,δ and the category of finite-dimensional representations of Galδ(M ).436

Definition 2.42 We say that a ∂-module M over K is trivial if it is either (0) or437

isomorphic as ∂-module over K to 1n for some positive integer n. For G a linear438

differential algebraic group over k, we say that a G-module V is trivial if G acts439

identically on V .440

Remark 2.43 For M an object of Diff K and ω : {M }⊗,δ → Vectk a δ-fiber functor,441

the following holds: a ∂-module N in {M }⊗,δ is trivial if and only if ω(N ) is a442

trivial Galδ(M )-module.443

Remark 2.44 The parameterized differential Galois group depends a priori on the444

choice of a δ-fiber functor ω. However, since two δ-fiber functors for {M }⊗,δ are445

naturally isomorphic, we find that the parameterized differential Galois groups that446

these functors define are isomorphic as linear differential algebraic groups over k.447

Thus, if it is not necessary, we will speak of the parameterized differential Galois448

group of M without mentioning the δ-fiber functor.449

Forgetting the action of δ, one can similarly define the group Gal(M ) of tensor450

isomorphisms of ω : {M }⊗ → Vectk. By [14], the group Gal(M ) ⊂ GL(ω(M )) is451

a linear algebraic group defined over k, and ω induces an equivalence of categories452

between {M }⊗ and the category of k-finite-dimensional representations of Gal(M ).453

We call Gal(M ) the differential Galois group of M over K .454

Proposition 2.45 [22, Proposition 6.21] If M is an object of Diff K and ω :455

{M }⊗,δ → Vectk is a δ-fiber functor, then Galδ(M ) is a Zariski dense subgroup456

of Gal(M ) (see Proposition 2.13).457

Definition 2.46 A parameterized Picard–Vessiot extension, or PPV extension for458

short, of K for a ∂-module M over K is a �-field extension KM that is gener-459

ated over K by the entries of a fundamental solution matrix U of a differential system460

∂(X) = AX associated to M and such that K ∂
M = K ∂ . The field K (U ) is a Picard–461

Vessiot extension (PV extension for short), that is, a ∂-field extension of K generated by462

the entries of a fundamental solution matrix U of ∂(X) = AX such that K (U )∂ = K ∂ .463

A parameterized Picard–Vessiot extension associated to a ∂-module M depends a464

priori on the choice of a K -basis of M , which is equivalent to the choice of a linear465

differential system associated to M . However, one can show that gauge equivalent466

differential systems lead to parameterized Picard–Vessiot extensions that are isomor-467

phic as K -�-algebras. In [14], Deligne showed that a fiber functor corresponds to a468

Picard–Vessiot extension; it is shown in [20, Theorem 5.5] that the notions of δ-fiber469

functor and parameterized Picard–Vessiot extension are equivalent.470

Definition 2.47 Let M be a ∂-module over K . Let ∂(X) = AX be a differential471

system associated to M over K with A ∈ K n×n and let KM be a PPV extension472
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for ∂(X) = AX over K . The parameterized Picard–Vessiot group, or PPV-group for473

short is denoted by Galδ(KM /K ) and is the set of �-automorphisms of KM over474

K , whereas the Picard–Vessiot group (usually called the differential Galois group475

in the literature) of KM over K , by definition, is the set of ∂-automorphisms of a476

Picard–Vessiot extension K (U ) of K in KM , where U ∈ GLn(KM ) is a fundamental477

solution matrix of ∂(X) = AX . This group is denoted by Gal(KM /K ).478

Remark 2.48 Let U ∈ GLn(KM ) be a fundamental solution matrix of ∂(X) = AX .479

For any τ ∈ Galδ(KM /K ), there exists [τ ]U ∈ GLn(k) such that τ(U ) = U [τ ]U .480

The map481

Galδ(KM /K ) → GLn, τ 	→ [τ ]U482

is an embedding and identifies Galδ(KM /K ) with a δ-closed subgroup of GLn . One483

can show that another choice of fundamental solution matrix as well as another choice484

of gauge equivalent linear differential system yield a conjugate subgroup in GLn .485

Similarly, one can represent Gal(KM /K ) as a linear algebraic subgroup of GLn .486

With these representations of the Picard–Vessiot groups, one can show that Picard–487

Vessiot groups and differential Galois groups are isomorphic in the parameterized and488

non-parameterized cases.489

In the PPV theory, a Galois correspondence holds between differential algebraic490

subgroups of the PPV-group and �-sub-field extensions of KM (see [22, Theo-491

rem 6.20] for more details). Moreover, the δ-dimension of Galδ(M ) coincides with492

the δ-transcendence degree of KM over K (see [22, p. 374 and Proposition 6.26]493

for the definition of the δ-dimension and δ-transcendence degree and the proof of494

their equality). Moreover, the defining equations of the parameterized differential495

Galois group reflect the differential algebraic relations among the solutions (see [22,496

Proposition 6.24]). Therefore, given a ∂-module M over K , we find that the defining497

equations of the parameterized differential Galois group Galδ(M ) over k determine498

the differential algebraic relations between the solutions in KM over K .499

Definition 2.49 A ∂-module M is said to be completely reducible if, for every ∂-500

submodule N of M , there exists a ∂-submodule N ′ of M such that M = N ⊕501

N ′. We say that a ∂-operator is completely reducible if the associated ∂-module is502

completely reducible.503

By [45, Exercise 2.38], a ∂-module is completely reducible if and only if its differ-504

ential Galois group is a reductive linear algebraic group. Moreover, for a completely505

reducible ∂-module M , any object in {M }⊗ is completely reducible.506

2.3.2 Isomonodromic differential modules507

Definition 2.50 [13, Definition 3.8] Let A ∈ K n×n . We say that the linear differential508

system ∂Y = AY is isomonodromic (or completely integrable) over K if there exists509

B ∈ K n×n such that510

∂(B)− δ(A) = AB − B A.511
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Remark 2.51 One can show that a linear differential system ∂Y = AY is isomon-512

odromic if and only if there exists a �-field extension L of K and B ∈ K n×n such513

that the system514

{
∂Y = AY
δY = BY

515

has a fundamental solution matrix with coefficients in L .516

We recall a characterization of complete integrability in terms of the PPV theory.517

Proposition 2.52 [13, Proposition 3.9] Let M be a ∂-module over K and ∂(Y ) = AY ,518

with A ∈ K n×n, be an associated linear differential system. The following statements519

are equivalent:520

– Galδ(M ) is conjugate to constants in GL(ω(M )) (see Definition 2.30);521

– The linear differential system ∂(Y ) = AY is isomonodromic over K .522

The proof of the following result was provided to the authors by Michael F. Singer523

and will be used in the proof of Proposition 2.54.524

Lemma 2.53 Given a linear differential algebraic group G ⊂ GLn defined over a525

differentially closed field (k, δ) and any � = {∂, δ}-field K such that K ∂ = k, there526

exists a �-field extension F of K such that F∂ = k and G can be realized as a527

parameterized differential Galois group over F in the given faithful representation of528

G ⊂ GLn.529

Proof We first consider the “generic” case: we construct a �-field extension E of K530

with no new ∂-constants such that GLn is a parameterized differential Galois group of531

a ∂-module M over E . Assume we have constructed E and let EM be a PPV extension532

of M over E . For any differential algebraic subgroup G of GLn , let F be the fixed533

field of G in EM , i.e., the elements of EM fixed by G. By the PPV correspondence,534

G is the parameterized differential Galois group of EM over F . Moreover,535

K ∂ = k ⊂ F∂ ⊂ E∂M = k.536

To construct the fields EM and E for GLn , we shall follow the construction from [31,537

pp. 87–89]. Let {zi, j } be a set of n2 �-differential indeterminates over K . Let EM =538

K 〈zi, j 〉� be a �-field of differential rational functions in these indeterminates. Note539

that the δ-constants of EM are k, as in [31, Lemma 2.14]. Let Z = (zi, j ) ∈ GLn(EM )540

and A = (∂Z)(Z)−1. We then have that541

∂Z = AZ . (2.2)542

Let E be the �-field generated over K by the entries of A. Then, EM is a PPV543

extension of E for equation (2.2). Since Z is a matrix of�-differential indeterminates,544

any assignment Z 	→ Zg for g ∈ GLn(K ) defines a �-K -automorphism φg of EM545

over K . If we restrict to those g ∈ GLn = GLn(k), then φg leaves A fixed and so all546
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elements of E are left fixed. Therefore, GLn is a subgroup of the PPV-group of EM547

over E . Since this PPV-group is already a subgroup of GLn , we must have that the548

PPV-group of EM over E is GLn . ��549

The proof of the following result uses PPV theory, which does not appear in the550

statement. It is, therefore, of interest to find a direct proof of it as well.551

Proposition 2.54 Let G ⊂ GL(V ) be a linear differential algebraic group over k and552

let G◦ be the identity component of G. If G◦ is conjugate to constants in GL(V ), then553

the same holds for G.554

Proof By Lemma 2.53, let K be a�-field with K ∂ = k such that G is a parameterized555

differential Galois group of a ∂-module M over K and the embedding G ⊂ GL(V )556

is the faithful representation G → GL(ω(M )). Let L/K be a PPV extension for557

M over K . One can identify G with Galδ(L/K ), the group of automorphisms of L558

over K commuting with δ and ∂ . Let F be the subfield of L fixed by G◦. By the559

PPV correspondence [13, Theorem 9.5], the group of automorphisms of L over F560

commuting with {δ, ∂} coincides with G◦ and the extension F/K is algebraic since561

G/G◦ is finite.562

Let ∂(Y ) = AY be a linear differential system associated to M . The parameterized563

differential Galois group of M over F is G◦ and thus conjugate to constants by564

assumption. Proposition 2.52 implies that ∂(Y ) = AY is isomonodromic over F , that565

is, there exists B ∈ Fn×n such that566

∂(B)− δ(A) = AB − B A. (2.3)567

Let K0 be the subfield extension of F generated over K by the coefficients of the matrix568

B. Without loss of generality, we can assume that K0/K is a finite Galois extension569

in the classical sense. We denote by Gal(K0/K ) its differential Galois group and by570

r its degree. By [45, Exercise 1.24], there exist unique derivations, still denoted ∂ and571

δ extending ∂ and δ to K0. Moreover, any element of Gal(K0/K ) commutes with the572

action of δ and ∂ on K0. If we let573

C = 1

r

∑
τ∈Gal(K0/K )

τ (B),574

then C has coefficients in K and satisfies575

∂(A)− δ(C) = ∂(A)− 1

r

⎛
⎝ ∑
τ∈Gal(K0/K )

τ (δ(B))

⎞
⎠576

= ∂(A)− 1

r

⎛
⎝ ∑
τ∈Gal(K0/K )

τ (∂(A)− B A + AB)

⎞
⎠577

= ∂(A)− ∂(A)+ C A − AC. (2.4)578
579
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This shows that ∂(Y ) = AY is isomonodromic over K . By Proposition 2.52, we find580

that G is conjugate to constants in GLn . ��581

3 Calculating the parameterized differential Galois group of582

L1(L2( y)) = 0583

In this section, given two completely reducible ∂-modules L1 and L2, we study the584

parameterized differential Galois group of an arbitrary ∂-module extension U of L1585

by L2. In Sect. 3.1, we describe Galδ(U ) as a semi-direct product of a δ-closed586

subgroup of Hom(ω(L1), ω(L2)) by the parameterized differential Galois group587

Galδ(L1 ⊕ L2) (see Theorem 3.3). In Sect. 3.2, we perform a first reduction that588

allows us to set L1 equal to the trivial ∂-module 1.589

In Theorem 3.13, we show how one can recover a complete description of the590

parametrized differential Galois group of U from the knowledge of the parametrized591

differential Galois group of its reduction. In Sect. 3.3, we thus focus on the computation592

of the parameterized differential Galois group of an arbitrary ∂-module extension U593

of 1 by a completely reducible ∂-module L .594

We then show that one can decompose L in a “constant” and a “purely non-595

constant” part. This decomposition yields a decomposition of Ru(Galδ(U )). For K =596

k(x), the computation of Galδ(U ) for the “constant part” can be deduced from the597

algorithms contained in [35], whereas the computation of the “purely non-constant”598

part results from Sect. 3.3.2 and Theorem 3.19. Finally, in Sect. 3.3.3, we show, under599

some assumption on L , that Ru(Galδ(U )) is the product of the “constant” and “purely600

non-constant” parts (see Theorem 3.25).601

Throughout this section, K is a (δ, ∂)-field of characteristic zero, whose field of602

∂-constants k is assumed to be δ-closed. We denote also by C the field of δ-constants603

of k. We fix a δ-fiber functor ω : Diff K → Vectk on Diff K (see Definition 2.38). Any604

parameterized differential Galois group in this section shall be computed with respect605

to ω and is a linear differential algebraic group defined over k. Any representation is,606

unless explicitly mentioned, defined over k.607

3.1 Structure of the parameterized differential Galois group608

Let L1, L2 ∈ K [∂] be two completely reducible ∂-operators, and let us denote by609

L1 (respectively, by L2) the ∂-module corresponding to L1(y) = 0 (respectively,610

L2(y) = 0). The ∂-module U over K , corresponding to L1(L2(y)) = 0, is an611

extension of L1 by L2,612

0 �� L2
i �� U

p �� L1
�� 0613

in the category of ∂-modules over K .614

Definition 3.1 For any object X in {U }⊗,δ , we define Stab(X ) (respectively,615

Stabδ(X )) as the set of (respectively, δ-) tensor automorphisms in Gal(U ) (respec-616

tively, Galδ(U )) that induce the identity on ω(X ).617
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By [15, II. 1.36], Stab(X ) (respectively, Stabδ(X )) is a linear (respectively, dif-618

ferential) algebraic group over k. One has also that Stabδ(X ) is Zariski dense in619

Stab(X ). Moreover, we have:620

Lemma 3.2 For any object X in {U }⊗,δ , the group Stabδ(X ) (respectively,621

Stab(X )) is normal in Galδ(U ) (respectively, Gal(U )).622

Proof We prove only the parameterized statement. Let g ∈ Galδ(U ) and h ∈623

Stabδ(X ). One has to show that ghg−1 induces the identity on ω(X ). It is suffi-624

cient to remark that, by definition, any element of Galδ(U ) stabilizes ω(X ). ��625

The aim of this section is to prove the following theorem.626

Theorem 3.3 If L1,L2 are completely reducible ∂-modules over K and if U is a627

∂-module extension over K of L1 by L2, then628

(1) Galδ(U ) is an extension of Galδ(L1 ⊕ L2) by a δ-subgroup W ⊂ Hom(ω(L1),629

ω(L2)).630

(2) W is stable under the action of Galδ(L1 ⊕ L2) on Hom(ω(L1), ω(L2)) given631

by632

g ∗ φ = gφ(g−1) for any (g, φ) ∈ Galδ(L1 ⊕ L2)× Hom(ω(L1), ω(L2)).633

Remark 3.4 The parameterized differential Galois group Galδ(L1 ⊕ L2) acts on634

the objects of the δ-tensor category generated by ω(L1 ⊕ L2). The k-vector space635

Hom(ω(L1), ω(L2)) belongs to this category, and the action of Galδ(L1 ⊕ L2) on636

Hom(ω(L1), ω(L2)) detailed above is just the description of the Tannakian repre-637

sentation.638

Before proving this theorem, we need some intermediate lemmas.639

Lemma 3.5 The linear differential algebraic group Galδ(U ) is an extension of the640

reductive linear differential algebraic group Galδ(L1 ⊕L2) by the linear differential641

algebraic group Stabδ(L1 ⊕ L2).642

Proof Since {L1 ⊕ L2}⊗,δ is a full δ-tensor subcategory of {U }⊗,δ , the linear dif-643

ferential algebraic group Galδ(L1 ⊕ L2) is a quotient of Galδ(U ). We denote the644

quotient map by645

π : Galδ(U ) → Galδ(L1 ⊕ L2).646

Then ker π = Stabδ(L1 ⊕L2). Since L1 and L2 are completely reducible, L1 ⊕L2647

is completely reducible as well. This means that Galδ(L1 ⊕ L2) is reductive. Since648

the latter group is the Zariski closure of Galδ(L1 ⊕ L2) in GL(ω(L1 ⊕ L2)), [36,649

Remark 2.9] implies that Galδ(L1 ⊕ L2) is a reductive linear differential algebraic650

group. ��651

We will relate Stabδ(L1 ⊕ L2) to Ru(Galδ(U )) and describe more precisely the652

structure of the latter group. By the exactness of ω, ω(U ) is an extension of ω(L1)653

by ω(L2) in the category of representations of Galδ(U ).654
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Lemma 3.6 In the above notation, let s be a k-linear section of the exact sequence:655

0 �� ω(L2)
ω(i) �� ω(U) ω(p) �� ω(L1)

s
�� �� 0 (3.1)656

We consider the following map657

ζU : Galδ(U ) → Hom(ω(L1), ω(L2)), g 	→
(

x 	→ g(s(g−1x))− s(x)
)
.658

Then the restriction of the map ζU to Stabδ(L1 ⊕ L2) is a one-to-one morphism of659

linear differential algebraic groups. Moreover, the linear differential algebraic group660

Stabδ(L1 ⊕ L2) is abelian and coincides with Ru(Galδ(U )).661

Proof For all g1, g2 ∈ Galδ(U), we have:662

ζU (g1g2)(x) = g1ζU (g2)(g
−1
1 x)+ ζU (g1)(x). (3.2)663

If g1, g2 ∈ Stabδ(L1 ⊕ L2), eq. (3.2) gives664

ζU (g1g2) = ζU (g1)+ ζU (g2).665

This means that ζU is a morphism of linear differential algebraic groups from666

Stabδ(L1 ⊕ L2) to Hom(ω(L1), ω(L2)).667

Moreover, let {e j } j=1...s (respectively, { fi }i=1...r ) be a k-basis of ω(L2) (respec-668

tively, ω(L1)). Then669

{
ω(i)(ei ), s( f j )

}
i=1,...,s, j=1,...r670

is a k-basis ofω(U). If g ∈ Stabδ(L1 ⊕L2)∩ker(ζU ), then g induces the identity on671

{
ω(i)(ei ), s( f j )

}
i=1,...,s, j=1,...r672

and thereby on ω(U ). Therefore, by definition of Galδ(U ), the element g is the673

identity element and, therefore, ker
(
ζU
∣∣
Stabδ(L1⊕L2)

)
is trivial.674

Since Hom(ω(L1), ω(L2)) is abelian, the same holds for Stabδ(L1 ⊕L2). More-675

over, Stabδ(L1 ⊕ L2) is unipotent. Indeed, let e be the identity element in Galδ(U ),676

x ∈ ω(L1), and g ∈ Stabδ(L1 ⊕ L2). Since gs(x)− s(x) ∈ ω(L2), we have677

(g − e)2(s(x)) = (g − e)(gs(x)− s(x)) = g(gs(x)− s(x))− (gs(x)− s(x)) = 0.678

Reasoning as above, we find that (g − e)2 is zero on ω(U ). By Lemma 3.2,679

Stabδ(L1 ⊕ L2) is also normal and, hence, must be contained in Ru(Galδ(U )).680

By [10, Theorem 1], the image of a unipotent linear differential algebraic group is681

unipotent. By Lemma 3.5, Stabδ(L1 ⊕L2) is the kernel of the projection of Galδ(U )682
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on the reductive linear differential algebraic group Galδ(L1 ⊕ L2). It follows that683

Ru(Galδ(U )) is contained in Stabδ(L1 ⊕ L2), which ends the proof. ��684

Remark 3.7 Since two sections of (3.1) differ by a map fromω(L1) toω(L2), one sees685

that, when restricted to Ru(Galδ(U )) = Stabδ(L1 ⊕L2), the map ζU is independent686

of the choice of the section.687

By the above lemma, Ru(Galδ(U )) is an abelian normal subgroup of Galδ(U ).688

Since Galδ(L1 ⊕L2) is the quotient of Galδ(U ) by Ru(Galδ(U )) and Ru(Galδ(U ))689

is abelian, the linear differential algebraic group Galδ(L1 ⊕ L2) acts by conjugation690

on Ru(Galδ(U )). The lemma below shows that this action is compatible with the691

action of Galδ(L1 ⊕ L2) on Homk(ω(L1), ω(L2)).692

Lemma 3.8 For all g1 ∈ Galδ(U ), g2 ∈ Ru(Galδ(U )), and x ∈ ω(L1), we have693

ζU
(
g1g2g1

−1)(x) = g1
(
ζU (g2)

(
g−1

1 x
)) = g1 ∗ ζU (g2)(x),694

where ∗ denotes the natural action of Galδ(L1 ⊕ L2) on Hom(ω(L1), ω(L2)) via695

g ∗ φ = g ◦ φ ◦ g−1 for φ ∈ Hom(ω(L1), ω(L2)) and g ∈ Galδ(L1 ⊕ L2).696

Proof Let e denote the identity element in Galδ(U ). From (3.2), we find that, for all697

x ∈ ω(L1),698

g1ζU
(
g1

−1)(g−1
1 x

) = ζU (e)(x)− ζU (g1)(x) = −ζU (g1)(x). (3.3)699

Applying repeatedly (3.2), we deduce that700

ζU (g1g2g1
−1)(x) = g1(ζU (g2g1

−1)(g−1
1 x))+ ζU (g1)(x)701

= g1(g2ζU (g1
−1)(g−1

2 g−1
1 x)+ ζU (g2)(g

−1
1 x))+ ζU (g1)(x)702

= g1ζU (g2)(g
−1
1 x)+ g1g2g−1

1 (g1ζU (g
−1
1 )(g−1

1 g1g−1
2 g−1

1 x))703

+ ζU (g1)(x),704
705

for all x ∈ ω(L1). Since706

g1g2g1
−1, g1g−1

2 g1
−1 ∈ Ru(Galδ(U )) = Stabδ(L1 ⊕ L2),707

we get that, for all x ∈ ω(L1),708

g1g2g−1
1 (g1ζU (g

−1
1 )(g−1

1 g1g−1
2 g−1

1 x))+ ζU (g1)(x)709

= g1ζU (g
−1
1 )(g−1

1 x)+ ζU (g1)(x) = 0.710
711

We conclude that, for all x ∈ ω(L1),712

ζU (g1g2g1
−1)(x) = g1ζU (g2)(g

−1
1 x).713

��714
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Proof of Theorem 3.3 By the above, Galδ(U ) is an extension of Galδ(L1 ⊕ L2) by715

Ru(Galδ(U )). The action of Galδ(L1 ⊕ L2) on Ru(Galδ(U )) is deduced from the716

action by conjugation of Galδ(U ) on its unipotent radical.717

Combining Lemmas 3.6 and 3.8, we can identify via ζU , the unipotent radical718

Ru(Galδ(U )) with a δ-closed subgroup of Hom(ω(L1), ω(L2)) and the action of719

Galδ(L1 ⊕ L2) on Ru(Galδ(U )) by conjugation with the action of Galδ(L1 ⊕ L2)720

on Hom(ω(L1), ω(L2)), induced by the Galδ(L1⊕L2)-module structure onω(L1⊕721

L2). ��722

Remark 3.9 The extension in Theorem 3.3 does not split in general. For example,723

G =
⎧⎨
⎩

⎛
⎝

a 0 0
0 1 b
0 0 1

⎞
⎠ ∈ GL3(k)

∣∣∣∣ δ(b) = δ(a)

a

⎫⎬
⎭724

is a linear differential algebraic group such that the quotient map G → G/Ru(G) ∼=725

k× does not have any δ-polynomial section. Indeed, otherwise, G would have a projec-726

tion onto Ru(G) ∼= C = kδ , which is impossible, because G is strongly connected [12,727

Example 2.25].728

Remark 3.10 If K = k(x) and ∂ = ∂
∂x , the knowledge of R = Ru(Galδ(U )) allows729

one to compute G = Galδ(U ) algorithmically. Indeed, one can compute the nor-730

malizer N of R in GL(ω(U )). Note that G ⊂ N . By the differential version of731

the Chevalley theorem [33, Theorem 5.1] (see also [6, proof of Theorem 5.6]), there732

is U0 ∈ {U }⊗,δ and a differential representation ρ : N → GL(ω(U0)) such that733

R = ker ρ. The proof of this Chevalley theorem leads to a constructive procedure to734

find U0 and ρ. Since Galδ(U0) = ρ(G) is reductive, one can compute it [36]. We can735

find G as ρ−1(Galδ(U0)).736

In view of Remark 3.10, our aim is to compute the parameterized differential Galois737

group of U . To this purpose, we will perform a first reduction that will allow us to738

simplify our computation.739

3.2 A first reduction740

Let L1, L2 ∈ K [∂] be two completely reducible ∂-operators. Let us denote the741

∂-module over K corresponding to L1(y) = 0 (respectively, L2(y) = 0) by L1742

(respectively, by L2). The ∂-module U corresponding to L1(L2(y)) = 0 is an exten-743

sion of L1 by L2,744

0 �� L2
i �� U p �� L1

�� 0 (3.4)745

in the category of ∂-modules over K . In this section, we recall the methods of [4] to746

show that we can restrict ourselves to the case in which L1 is of the form ∂ − ∂b
b for747

some b ∈ K ∗.748
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We first describe the reduction process in terms of ∂-modules. Since the functor749

Hom(L1,−) is exact, (3.4) gives the exact sequence:750

0 �� Hom(L1,L2) �� Hom(L1,U) �� Hom(L1,L1) �� 0 (3.5)751

We pull back (3.5) by the diagonal embedding752

d : 1 → Hom(L1,L1), λ 	→ λ idL1,753

where 1 is the unit object. We obtain an exact sequence754

0 �� Hom(L1,L2) �� R(U ) �� 1 �� 0 (3.6)755

where R(U ) is the ∂-module deduced from U by the pullback. We call the ∂-module756

R(U ) the reduction of U . We recall that, as a K -vector space, R(U ) coincides with757

the set758

{
(φ, λ) ∈ Hom(L1,U )× 1

∣∣ p ◦ φ = λ idL1

}
.759

Remark 3.11 An effective interpretation of this reduction process in terms of matrix760

differential equations immediately follows from [4, page 15].761

Proposition 3.12 With notation above, we have762

(1) The parameterized differential Galois group Galδ(Hom(L1,L2)) is a quotient763

of Galδ(L1 ⊕ L2) and is a reductive linear differential algebraic group;764

(2) By Lemma 3.6, one can identify Ru(Galδ(U )) (respectively, Ru(Galδ(R(U ))))765

with a differential algebraic subgroup of Hom(ω(L1), ω(L2)) (respectively, of766

Hom (k,Hom(ω(L1), ω(L2)))). Then the canonical isomorphism767

φ : Hom (k,Hom(ω(L1), ω(L2))) → Hom(ω(L1), ω(L2)), ψ 	→ ψ(1)768

induces an isomorphism of linear differential algebraic groups between769

Ru(Galδ(R(U ))) and Ru(Galδ(U ));770

(3) By Lemma 3.8, Galδ(L1 ⊕ L2) (respectively, Galδ(Hom(L1,L2))) acts on771

Ru(Galδ(U )) (respectively, on Ru(Galδ(R(U )))). These actions are compati-772

ble with the isomorphism φ.773

Proof (1) Since Hom(L1,L2) (respectively, L1 ⊕ L2) is a subobject of {U }⊗,δ ,774

its parameterized differential Galois group is a quotient of Galδ(U ) by775

Stabδ(Hom(L1,L2)) (respectively, by Stabδ(L1 ⊕ L2) = Stabδ(L1) ∩776

Stabδ(L2)). It is not difficult to see that we have the inclusion777

Stabδ(L1 ⊕ L2) ⊂ Stabδ(Hom(L1,L2))778
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Since stabilizers of objects in {U }⊗,δ are normal in Galδ(U ) by Lemma 3.2, we779

can apply [10, Proposition 2] to get that780

Galδ(Hom(L1,L2)) = Galδ(U )
/

Stabδ(Hom(L1,L2))781

is a quotient of782

Galδ(L1 ⊕ L2) = Galδ(U )
/

Stabδ(L1 ⊕ L2)783

by784

Stabδ(Hom(L1,L2))
/

Stabδ(L1 ⊕ L2).785

The same reasoning in the non-parameterized case shows that Gal(Hom(L1,L2))786

is a quotient of Gal(L1 ⊕ L2). Since quotients of reductive algebraic groups are787

reductive, [36, Remark 2.9] allows us to conclude that Galδ(Hom(L1,L2)) is a788

reductive linear differential algebraic group.789

(2) Since R(U ) is an object of {U }⊗,δ , Galδ(R(U )) is a quotient of Galδ(U ), and790

we denote the canonical surjection by π . The image of Stabδ(Hom(L1,L2)) via791

π coincides with the stabilizer of Hom(L1,L2) in Galδ(R(U )) and, thus, with792

Ru(Galδ(R(U ))) by Lemmas 3.5 and 3.6.793

Let H ⊂ Ru(Galδ(R(U ))) be the image of Stabδ(L1 ⊕L2) by π . By [8, Propo-794

sition 7, page 908], H is a differential algebraic subgroup of Ru(Galδ(R(U ))).795

Since Stabδ(L1 ⊕ L2) is normal in Galδ(U ) and π is surjective, H is normal in796

Ru(Galδ(R(U ))), and we can consider the quotient map797

p : Ru(Galδ(R(U ))) → Ru(Galδ(R(U )))
/

H .798

Since quotients of unipotent linear differential algebraic groups are unipotent by799

[10, Theorem 1], the linear differential algebraic group Ru(Galδ(R(U )))/H is800

unipotent. Note that801

Ru
(

Galδ(R(U ))
)/

H = π
(

Stabδ(Hom(L1,L2))
)/
π
(

Stabδ(L1 ⊕ L2)
)

(3.7)802

The surjective morphism π is induced via δ-Tannakian equivalence by the inclu-803

sion of δ-Tannakian categories {R(U )}⊗,δ ⊂ {U }⊗,δ . This inclusion restricts to804

the inclusion of the usual Tannakian categories {R(U )}⊗ ⊂ {U }⊗, which shows,805

taking the Zariski closure, that π extends to a surjective morphism of algebraic806

groups π : Gal(U ) → Gal(R(U )). One can show that the quotient807

π(Stab(Hom(L1,L2)))
/
π(Stab(L1 ⊕ L2))808

coincides with the Zariski closure of Ru(Galδ(R(U )))/H .809

Let KL1⊕L2 (respectively, KHom(L1,L2)) denote the usual PV extension of L1 ⊕810

L2 (respectively, of Hom(L1,L2)) over K . Let KU (respectively, K R(U )) denote811
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the usual PV extension of U (respectively, of R(U ))) over K . We have the812

following tower of ∂-field extensions:813

KU

�����������

�����������

K R(U )

����������
KL1⊕L2

�����������

KHom(L1,L2)

K

814

We see that815

Gal
(
KL1⊕L2

/
KHom(L1,L2)

) = Stab(Hom(L1,L2))
/

Stab(L1 ⊕ L2) .816

Since KHom(L1,L2) is a PV extension of K , the group Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
817

is normal in Gal
(
KL1⊕L2/K

)
by the PV correspondence. Therefore,818

Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
is a reductive algebraic group. Since819

π : Stab(Hom(L1,L2))
/

Stab(L1 ⊕ L2))820

→ π
(

Stab(Hom(L1,L2))
)/
π
(

Stab(L1 ⊕ L2)
)

821
822

is a quotient map, we deduce from the above identifications that the Zariski clo-823

sure of Ru(Galδ(R(U )))/H is a reductive algebraic group. We conclude by [36,824

Remark 2.9] that Ru(Galδ(R(U )))/H is reductive. On the other hand, since825

Ru(Galδ(R(U )))/H is both unipotent and reductive, it must be equal to {e}, and826

we have827

π
(

Stabδ(L1 ⊕ L2)
) = π

(
Stabδ(Hom(L1,L2))

) = Ru(Galδ(R(U ))) . (3.8)828

We recall the notation of Lemma 3.6. We denote by s a k-linear section of the829

exact sequence of finite-dimensional representations of Galδ(U ):830

0 �� ω(L2)
ω(i) �� ω(U) ω(p) �� ω(L1)

s
�� �� 0 .831

Then, we identify Ru(Galδ(U )) = Stabδ(L1⊕L2)with the image of Stabδ(L1⊕832

L2) by833

ζU : Ru(Galδ(U )) → Homk(ω(L1), ω(L2)) , g 	→ (
x 	→ gs(g−1x)− s(x)

)
.834

123

Journal: 208 Article No.: 1442 TYPESET DISK LE CP Disp.:2016/7/5 Pages: 46 Layout: Small-X



R
ev

is
ed

Pr
oo

f

C. Hardouin et al.

Since ω is compatible with Hom, the map835

r : k → ω(R(U )), λ 	→ (λs, λ),836

is a k-linear section of t837

0 �� Hom(ω(L1), ω(L2)) �� ω(R(U ))
t �� k
r

��
�� 0838

We apply again Lemma 3.6 to identify Ru(Galδ(R(U ))) = π(Stabδ(L1 ⊕ L2))839

with its image via840

ζR(U ) : Galδ(R(U )) → Hom(k,Homk(ω(L1), ω(L2)))841

g 	→ (λ 	→ gr(λ)g−1 − r(λ)) .842
843

Identifying Hom(k,Hom(ω(L1), ω(L2)))with Hom(ω(L1), ω(L2)) via φ, we844

find that845

ζU = φ ◦ ζR(U ) ◦ π. (3.9)846

We have847

Ru(Galδ(U )) = ζU (Stabδ(L1 ⊕ L2))848

= ζR(U ) ◦ π(Stabδ(L1 ⊕ L2)) = Ru(Galδ(R(U ))),849
850

where we have used Remark 3.7.851

(3) The compatibility of the actions comes from Lemma 3.8, (3.9), and (3.8).852

��853

We combine Proposition 3.12 and Theorem 3.3 in the following Theorem.854

Theorem 3.13 If L1,L2 are completely reducible ∂-modules over K and if U is a855

∂-module extension of L1 by L2, then856

(1) Galδ(U ) is an extension of Galδ(L1⊕L2)by a δ-subgroup W ofω(Hom(L1,L2)).857

(2) W = Ru(Galδ(R(U ))), where R(U ) is an extension of 1 by the completely858

reducible ∂-module Hom(L1,L2), and the action of Galδ(L1 ⊕ L2) on W is859

given by composing the quotient map of Galδ(L1 ⊕L2) on Galδ(Hom(L1,L2))860

with the action of Galδ(Hom(L1,L2)) on ω(Hom(L1,L2)).861

3.3 The unipotent radical of the parameterized differential Galois group of an862

extension of 1 by a completely reducible ∂-module L863

Let L be a completely reducible ∂-module over K and U be an extension of 1 by864

L . In this section, we study Ru(Galδ(U )).865
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In terms of ∂-operators, the situation corresponds to the following. Let L ∈ K [∂] be866

a completely reducible ∂-operator and L be the associated ∂-module. An extension U867

of 1 byL corresponds to an inhomogeneous differential equation of the form L(y) = b868

for some b ∈ K ∗. The main result of [4] is to show that Ru(Gal(U )) = ω(L0), where869

L0 is the largest ∂-module of L such that870

(1) L = L1L0;871

(2) L1(y) = b has a solution in K .872

From Lemma 3.6, we know that Ru(Galδ(U )) can be identified with a differential873

algebraic subgroup W ofω(L0), stable under the natural action of Galδ(L ) onω(L ).874

In [21], the result of [4] was rephrased in Tannakian terms and it was proved that L0875

is the smallest subobject of L such that the pushout of the extension U by the quotient876

map π : L → L/L0 is a trivial (split) extension. Such a characterization no longer877

holds in general in the parameterized setting. Indeed, the classification of differential878

algebraic subgroups of vector groups shows that W coincides with the zero set of879

a finite system of linear homogeneous differential equations with coefficients in k.880

Therefore, we have two possibilities:881

– either W is given by linear homogeneous polynomials and it is a finite-dimensional882

vector space over k, that is, W is an algebraic subgroup of ω(L0);883

– or W is given by linear homogeneous δ-polynomials of order greater than 0, and884

W is a vector space over C = kδ .885

In the first case, we deduce from the δ-Tannakian equivalence for the category {L }⊗,δ886

that W = ω(L̃0) for a submodule L̃0 of L if and only if it is an algebraic subgroup887

of ω(L0). In this situation, we show that L̃0 is the smallest ∂-submodule of L such888

that the parameterized differential Galois group of the pushout of the extension U by889

the quotient map π : L → L/L̃0 is reductive (see Theorem 3.19). This last condition890

can be tested by an algorithm contained in [36].891

If W is not given by linear homogeneous δ-polynomials of order 0, then W is not892

of the form ω(L̃ ) for any L̃ . Moreover, the order of the defining equations of W can893

be as high as required even for second order differential equations:894

Example 3.14 For n ≥ 0, let895

z(x, t, n) =
n∑

j=0

t j ln(x + j) ; a(x, t, n) = ∂z(x, t, n)

∂x
=

n∑
j=0

t j

x + j
∈ k(x) ,896

where k is a differentially closed field with respect to ∂/∂t containing Q(t). Then the897

function z(x, t, n) satisfies the following second order differential equation in y(x, t)898

over k(x):899

∂
(
∂y(x,t)
∂x

/
a(x, t, n)

)

∂x
= 0 ⇐⇒ ∂2 y(x, t)

∂x2 −
∂a(x,t,n)

∂x

a(x, t, n)

∂y(x, t)

∂x
= 0.900
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Since ln(x), . . . , ln(x + n) are algebraically independent over k(x) by [16,42], and901

∂n+1z(x,t,n)
∂tn+1 = 0, and902

k(x)(ln(x), . . . , ln(x + n)) = k(x)
(
∂ j (z(x, t, n))

∂t j

∣∣∣ j ≥ 0

)
,903

we have904

Galδ =
{(

1 a
0 1

) ∣∣∣ ∂
n+1a

∂tn+1 = 0

}
.905

In Sect. 3.3.1, we give a decomposition of L into “constant and purely non-906

constant” parts, which allows us to distinguish between the two cases for the unipotent907

radical W described above. In Sect. 3.3.2, we treat the “purely non-constant case”. In908

Sect. 3.3.3, we give a general algorithm to compute Ru(Galδ(U )) under the assump-909

tion that L has no non-zero trivial ∂-submodules in the sense of Definition 2.42.910

3.3.1 Decomposition of the completely reducible ∂-module L911

The following lemma gives a decomposition of a completely reducible ∂-module into912

a direct sum of ∂-modules, a “constant” one and a “purely non-constant” one.913

Lemma 3.15 Let L be a completely reducible ∂-module and ρ : Galδ(L ) →914

GL(ω(L )) be the representation of the parameterized differential Galois group of915

L on ω(L ). Then there exist ∂-submodules Lc and Lnc of L such that916

– L = Lc ⊕ Lnc;917

– the representation of Galδ(L ) on Lc is conjugate to constants in GL(ω(Lc)),918

that is, any differential system associated to Lc is isomonodromic by Proposition919

2.52;920

– Lc is maximal for the properties above, that is, there is no non-zero ∂-submodule921

N of Lnc such that the representation of Galδ(L ) on N is conjugate to constants922

in GL(ω(N )).923

Proof Let L1, . . . ,Lr be irreducible ∂-submodules such that L = L1 ⊕ . . .⊕ Lr .924

We have925

GL(ω(L )) =
r∏

i=1

GL(ω(Li )) .926

Let S be the set of indices i in {1, . . . , r} such that the representation of Galδ(L ) on927

ω(Li ) is conjugate to constants in GL(ω(Li )). Setting928

Lc =
⊕
i∈S

Li and Lnc =
⊕
i /∈S

Li929

allows to conclude the proof. ��930

123

Journal: 208 Article No.: 1442 TYPESET DISK LE CP Disp.:2016/7/5 Pages: 46 Layout: Small-X



R
ev

is
ed

Pr
oo

f

Calculating differential Galois groups. . .

Remark 3.16 The above construction is effective. Let L be a completely reducible931

∂-module over K = C(z) with ∂(z) = 1 and ∂(C) = 0. There are many algorithms932

that compute a factorization of L into a direct sum of irreducible ∂-submodules: see,933

for instance, [23,48]. Thus, we can find a linear differential system associated to L934

of the form935

∂(Y ) =

⎛
⎜⎜⎜⎝

A1 0 . . . 0
0 A2 . . . 0
...
. . .

. . .
...

0 . . . 0 Ar

⎞
⎟⎟⎟⎠ Y936

with Ai ∈ K ni ×ni for all i = 1, . . . , r and such that ∂(Y ) = Ai Y is an irreducible937

differential system. For all i = 1, . . . , r , let Li be a ∂-module associated to ∂(Y ) =938

Ai Y . Let S be the set of indices i such that there exists a matrix Bi ∈ K ni ×ni such939

that940

δ(Ai )− ∂(Bi ) = Bi Ai − Ai Bi .941

Since there are algorithms to find rational solutions of linear differential systems (see942

[3]), the construction of the set S is also effective. We can set943

Lc =
⊕
i∈S

Li and Lnc =
⊕
i /∈S

Li .944

This decomposition motivates the following definition.945

Definition 3.17 A ∂-module L over K is said to be constant if the representation946

of Galδ(L ) on ω(L ) is conjugate to constants in GL(ω(L )). On the contrary, the947

∂-module L is said to be purely non-constant if there is no non-zero ∂-submodule948

N of L such that the representation of Galδ(L ) on ω(N ) is conjugate to constants949

in GL(ω(N )).950

Remark 3.18 We say that a G-module V is purely non-constant if, for every non-zero951

G-submodule W of V , the induced representation ρ : G → GL(W ) is non-constant.952

By the Tannakian equivalence, a ∂-module L is purely non-constant if and only if the953

Galδ(L )-module ω(L ) is purely non-constant.954

Recall that U is a ∂-module extension of 1 by L . We consider the pushout of955

0 �� L �� U �� 1 �� 0956

by the projection of L on Lc (respectively, on Lnc). We find two exact sequences of957

∂-modules:958

0 �� Lc
�� Uc

�� 1 �� 0 (3.10)959

and960

0 �� Lnc
�� Unc

�� 1 �� 0 (3.11)961
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We deduce from Lemma 3.6 that962

– Ru(Galδ(U )) is a differential algebraic subgroup of ω(L );963

– Ru(Galδ(Uc)) is a differential algebraic subgroup of ω(Lc);964

– Ru(Galδ(Unc)) is a differential algebraic subgroup of ω(Lnc).965

The quotient Galδ(Uc)
/

Ru(Galδ(Uc)) is Galδ(Lc), which is, by construction, con-966

jugate to constants. We can use [35] to compute Ru(Galδ(Uc)). Sect. 3.3.2 shows how967

to compute the unipotent radical of the parameterized differential Galois group of968

an extension of 1 by a purely non constant completely reducible module. Finally,969

Sect. 3.3.3 shows how to combine Sect. 3.3.2 with [35] to deduce Ru(Galδ(U )) from970

the computation of Ru(Galδ(Uc)) and Ru(Galδ(Unc)).971

3.3.2 The purely non-constant case972

The aim of this section is to prove the following theorem.973

Theorem 3.19 Let L be a purely non-constant completely reducible ∂-module over974

K . Let U be a ∂-module extension of 1 by L . Then, Ru(Galδ(U )) = ω(L̃0), where975

L̃0 is the smallest ∂-submodule of L such that Galδ(U /L̃0) is reductive.976

By Theorem 3.13, Ru(Galδ(U )) is a δ-closed subgroup of ω(L ), which is stable977

under the action of Galδ(L ). We show that any such subgroup is a k-vector subspace.978

We conclude this with a proof of Theorem 3.19.979

The algorithm contained in [36] allows one to test whether the unipotent radical980

of a linear algebraic group is trivial. This algorithm relies on bounds on the order of981

the defining equations of the parameterized differential Galois group. Combined with982

Theorem 3.19, we find a complete algorithm to compute Ru(Galδ(U )).983

Theorem 3.19 implies among other things that Ru(Galδ(U )) is an algebraic sub-984

group of Ru(Gal(U )). Despite the fact that Galδ(U ) (respectively, Galδ(L )) is985

Zariski dense in Gal(U ) (respectively, Gal(L )), it might happen that Ru(Galδ(U ))986

is contained in a proper Zariski closed subgroup of Ru(Gal(U )) as it is shown in the987

following example.988

Example 3.20 Let V = spank{x2, xy, y2, x ′y − xy′} ⊂ k{x, y}, and let us consider989

the following representation ρ : PSL2 → GL(V ) (cf. [34, Example 3.7]):990

(
a b
c d

)
mod

{(
1 0
0 1

)
,

(−1 0
0 −1

)}
	→

⎛
⎜⎜⎝

a2 ab b2 a′b − ab′
2ac ad + bc 2bd 2(bc′ − ad ′)
c2 cd d2 c′d − cd ′
0 0 0 1

⎞
⎟⎟⎠ . (3.12)991

Note that ρ(PSL2) = Ga
3 �PSL2, and we have: Ru(PSL2) = {e} whereas Ru(Ga

3 �992

PSL2) = Ga
3. By [49, Theorem 1.1 and Lemma 2.2], we can construct a ∂-module993

U such that Galδ(U ) = PSL2, and ρ is the representation of Galδ(U ) on ω(U ) (so994

that Gal(U ) = Ga
3 � PSL2). We can also construct a ∂-module L such that U is an995

extension of 1 by L in the given representation.996
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For a subset B of a k-vector space V , we denote by kB the smallest k-subspace of997

V that contains B. Note that kB consists of all finite linear combinations of elements998

of B with coefficients in k.999

Proposition 3.21 Let G be a reductive linear differential algebraic group and V1000

a purely non-constant completely reducible G-module. Then every G-invariant δ-1001

subgroup A ⊂ V is a submodule.1002

Proof We need only to show that A is k-invariant. Let us assume that G is connected.1003

The general case will follow by Propositions 2.23 and 2.54, which imply that V is1004

completely reducible and purely non-constant as a G◦-module.1005

Let us prove that A is k-invariant by induction on dim V . Let B be minimal among1006

the non-zero G-invariant δ-subgroups of V that are contained in A, which exists by1007

the Ritt–Noetherianity of the Kolchin topology. In what follows, we shall prove that1008

kB = B. Assuming this, by the semisimplicity of V , let W ⊂ V be a G-invariant1009

k-subspace such that V = B ⊕ W . Then A = B ⊕ (W ∩ A), and k(W ∩ A) = W ∩ A1010

by the inductive hypothesis. Therefore, kA = A.1011

Let us show that there exists x ∈ k\C such that x B = B. Since V is purely1012

non-constant, V ′ = kB is purely non-constant, and so it contains a simple non-1013

constant submodule U . By Corollary 2.29, there exists a δ-torus T ⊂ G such that1014

U semisimple and non-constant as a T -module. By the construction of T (see the1015

proof of Corollary 2.29) and Proposition 2.27, every simple G-module is semisimple1016

as a T -module. Therefore, V and V ′ are semisimple as T -modules. Hence, T is an1017

algebraic torus, and there is a direct sum of weight spaces1018

V ′ =
⊕
χ

V ′
χ (3.13)1019

over all algebraic characters χ : T → k×. By definition,1020

V ′
χ = {

v ∈ V ′ | t (v) = χ(t)v for all t ∈ T
}
.1021

Note that V ′
χ , viewed as C-linear spaces, are weight spaces with respect to T (C) = TC .1022

Since any character χ (being defined by monomials) is uniquely determined by its1023

restriction to T (C), the direct sum (3.13) is also the weight space decomposition of1024

the C-space V ′ with respect to the action of TC . SinceTC ⊂ T ⊂ G and the δ-subgroup1025

B ⊂ V ′ is G-invariant, B is also TC -invariant. Moreover, B is a C-vector space [8,1026

Proposition 11]. Therefore, we have the weight decomposition of the C-space with1027

respect to the action of TC :1028

B =
⊕
χ

Bχ , where Bχ =
(

B ∩ V ′
χ

)
.1029

Since V ′ = kB, V ′
χ = kBχ . In particular, Bχ is non-zero if V ′

χ is. By the definition of1030

T , there is a character χ of T such that χ(T ) �⊂ C and V ′
χ �= {0}. Therefore, there exist1031

b ∈ Bχ , b �= 0, and t ∈ T such that t acts on b by multiplication by a non-constant1032
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element x . We fix such an x . Due to the G-invariance of x B, we obtain that B ∩ x B1033

is a G-invariant non-trivial δ-subgroup of B. Since B is minimal, x B = B.1034

On the one hand, the set S = {a ∈ k | aB ⊂ B} is a C-subalgebra of k. On the1035

other hand,1036

S =
⋂
b∈B

ϕ−1
b (B), ϕb : k → V, t 	→ tb ,1037

is a δ-subgroup of k. Therefore, by [29, Theorem II. 6.3, p. 97], S = C or k. Since1038

x ∈ S, S = k. ��1039

Proof (Proof of Theorem 3.19) By Theorem 3.13, Ru(Galδ(U )) is a δ-closed sub-1040

group W of ω(L ) which is stable under the action of Galδ(L ). Proposition 3.211041

shows that W is a k-vector space and thereby a Galδ(L )-module. By δ-Tannakian1042

equivalence for the category {L }⊗,δ , we obtain that W is of the form ω(W ) for some1043

∂-submodule W ⊂ L ⊂ U . Thus, it remains to prove that W is the smallest ∂-1044

submodule L̃0 of L such that the parameterized differential Galois group of U /L̃01045

is reductive.1046

Let us show that the set V of subobjects W of L such that Ru(Galδ(U /W )) = {1}1047

admits a smallest subobject with respect to the inclusion. It is enough to prove that, if1048

V1 and V2 belong to V, their intersection W lies in V. Denote by G, G1, and G2 the1049

parameterized differential Galois groups of U /W , U /V1, and U /V2, respectively.1050

The quotient maps U /W → U /Vi give rise to homomorphisms ϕi : G → Gi ,1051

i = 1, 2. Since Gi are reductive, Ru(G) ⊂ ker ϕi . Therefore, it suffices to show1052

that ker ϕ1 ∩ ker ϕ2 = {1}. For each g ∈ G, the condition g ∈ ker ϕi means that1053

g(u)− u ∈ ω(Vi ) for all u ∈ ω(U ). Therefore, every element of ker ϕ1 ∩ ker ϕ2 acts1054

trivially on ω(U )/ω(W ).1055

As in the notation of Lemma 3.6, let s be a k-linear section of the last arrow of the1056

following exact sequence1057

0 → ω(L ) → ω(U ) → k → 01058

and let ζU be its associated cocycle. By Lemma 3.6 and Proposition 3.21, the cocycle1059

ζU identifies Ru(Galδ(U )) with a k-vector subgroup W = ω(W ) of ω(L ) for some1060

∂-submodule W ⊂ U . To conclude the proof, we have to show that W = ω(L̃0).1061

It follows from the definition of ζ that the diagram1062

Galδ(U )

ρ

��

ζU �� ω(L )

β

��
Galδ(U /W )

ζU /W �� ω(L /W )

(3.14)1063

where the vertical arrows are induced by the quotient maps, is commutative. By the1064

definition of W and exactness of ω, the composition βζU vanishes on Ru(Galδ(U )).1065

Since ω(U /W ) is a faithful Galδ(U /W )-module and ω(L /W ) has no non-zero1066
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trivial Galδ(L /W )-submodule by assumption, and therefore no non-zero trivial1067

Galδ(U /W )-submodules by assumption, Propositions 3.22 and 3.23 below show that1068

Ru(Galδ(U /W )) = ρ(Ru(Galδ(U ))) .1069

Since ζ is one-to-one on the unipotent radical, we conclude that the linear differential1070

algebraic group Galδ(U /W ) is reductive. Therefore, W ⊃ L̃0. If we replace W with1071

a ∂-submodule V ⊂ U in the above diagram such that Galδ(U /V) is reductive, we1072

obtain that1073

ω(V) ⊃ ζU (Ru(Galδ(U ))) = W .1074

Thus, ω(L̃0) ⊃ W . ��1075

Recall that unipotent linear differential algebraic groups are connected. (Otherwise1076

they would have unipotent finite quotients, which is impossible.) Therefore, for every1077

linear differential algebraic group G, we have Ru(G) = Ru(G◦) = Ru(G)◦.1078

Proposition 3.22 Letρ : G → H be a surjective homomorphism of linear differential1079

algebraic groups. Assume that, for every proper subgroup N ⊂ Ru(H) that is normal1080

in H, the group Ru(H/N ) is not central in (H/N )◦ = H◦/N. Then ρ(Ru(G)) =1081

Ru(H).1082

Proof Let N = ρ(Ru(G)) ⊂ Ru(H). By the surjectivity of ρ, the group N is normal1083

in H . Consider the epimorphism of quotients1084

ν : G/Ru(G) → H/N1085

induced by ρ. The linear differential algebraic group ν−1(Ru(H/N ))◦ is normal in1086

the reductive linear differential algebraic group (G/Ru(G))◦. Therefore, it is reductive1087

itself. By Theorem 2.25, ν−1(Ru(H/N ))◦ is an almost direct product of a δ-closed1088

subgroup Z of a central torus T ⊂ (G/Ru(G))◦ and of quasi-simple linear differential1089

algebraic groups Hi . Since the subgroups Hi coincide with their commutator groups,1090

they cannot have unipotent images unless ν(Hi ) = {e}. We conclude that ν(Z) =1091

Ru(H/N ). Since Z is central in (G/Ru(G))◦ and ν is surjective, the group ν(Z) is1092

central in (H/N )◦. It follows from the assumption that N = Ru(H). ��1093

Proposition 3.23 The assumption on H in Proposition 3.22 is satisfied if there exists1094

a short exact sequence1095

0 → V → U → 1 → 01096

of H◦-modules, where U is a faithful H◦-module and V is a H◦-semisimple module1097

with no non-zero trivial H◦-submodule.1098

Remark 3.24 Note that if the H◦-module V has no trivial H◦-submodules, then V1099

has no non-zero C-vector space fixed by the action of H◦. Indeed, let f be a nonzero1100

element of a C-vector space fixed by H◦, then the k-vector space spanned by f is1101

fixed by H◦.1102
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Proof It suffices to prove the statement for connected H . Let N ⊂ Ru(H) be a δ-1103

subgroup that is normal in H and such that Ru(H/N ) is central in H/N . Since we1104

have a commutative diagram1105

H �� H/N

Ru(H)
��

��

�� Ru(H/N ),
��

��1106

the latter implies that, for all g ∈ Ru(H), one has hgh−1 ∈ gN . Let u ∈ U be an1107

element whose image in 1 is non-zero. Moreover, Ru(H) acts trivially on V because1108

V is H -semi-simple. Thus, the map1109

ζ : Ru(H) → V, g 	→ gu − u1110

is an H -equivariant one-to-one homomorphism of linear differential algebraic groups1111

(see proofs of Lemmas 3.6 and 3.8), that is, for all h ∈ H and g ∈ Ru(H), we have1112

hgu − hu = hgh−1u − u.1113

The δ-subgroups ζ(Ru(H)) and ζ(N ) of V are thus stable under the action of H . Note1114

that ζ(Ru(H)) and ζ(N ) are C-vector spaces since, as δ-subgroup of V , they are zero1115

sets linear homogeneous differential equations over k.1116

Let n ∈ N be such that hgh−1 = gn and n′ ∈ N be such that gng−1 = n′. Then1117

h(gu − u) = hgu − hu = gnu − u = n′gu − u + n′u − n′u1118

= n′(gu − u)+ n′u − u = gu − u + n′u − u,1119
1120

since gu − u ∈ V and Ru(H) acts trivially on V . Therefore, H acts trivially on1121

ζ(Ru(H))/ζ(N ). Since ζ(Ru(H)) is H -semisimple as H -module over C , the H -1122

module1123

ζ(Ru(H))/ζ(N ) ⊂ ζ(Ru(H)) ⊂ V1124

is a C-vector space fixed by the action of H . This contradicts the assumption on V . It1125

follows that Ru(H) = N . ��1126

3.3.3 A general algorithm1127

Will will explain a general algorithm to compute the unipotent radical of a ∂-module1128

extension U of 1 by a completely reducible ∂-module L . We recall that L can be1129

decomposed as the direct sum of a constant ∂-module Lc and a purely non-constant1130

∂-module Lnc. Considering the pushouts of the extension U with respect to the1131

decomposition of L , we find the following two exact sequences of ∂-modules:1132

0 �� Lc
�� Uc

�� 1 �� 01133
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and1134

0 �� Lnc
�� Unc

�� 1 �� 01135

We assume that K = k(x) so that we can use the algorithm contained in [35] to1136

compute Ru(Galδ(Uc)) and the algorithm of Sect. 3.3.2 to compute Ru(Galδ(Unc)).1137

The quotient map U → U /Uc = Unc induces an epimorphism α : Galδ(U ) →1138

Galδ(Unc). Similarly, we find an epimorphism β : Galδ(U ) → Galδ(Uc). The fol-1139

lowing theorem allows us to compare Ru(Galδ(U ))with the groups computed above.1140

Theorem 3.25 Let K = k(x), L ,U ,Uc,Unc be as above. Assume that L has no1141

non-zero trivial ∂-submodule. Then the map1142

α × β : Ru(Galδ(U )) → Ru(Galδ(Unc))× Ru(Galδ(Uc))1143

is an isomorphism of linear differential algebraic groups.1144

Proof We will use the notion of differential type τ(G) of a linear differential algebraic1145

group G (see [12, Sect. 2.1] and [35, Definition 2.2]). Recall that, in the ordinary case,1146

τ can only take the values −1, 0, or 1. We will also use the following result:1147

Lemma 3.26 [12, Eq. (1), p. 195] Let G be a linear differential algebraic group and H1148

be a normal differential algebraic subgroup of G. Then τ(G) = max{τ(H), τ (G/H)}.1149

Let us consider the commutative diagram:1150

Ru((Galδ(Uc))� �

��

Ru((Galδ(U ))� �

��

β�� α �� Ru((Galδ(Unc))� �

��
ω(Uc) ω(U ) = ω(Uc)⊕ ω(Unc)�� �� ω(Unc)

(3.15)1151

Here, the vertical arrows correspond to embedding (that is, a one-to-one homomor-1152

phism) via the associated cocycles (see (3.14)). The horizontal arrows of the lower1153

row correspond to natural projections. Note that Ru((Galδ(Uc)), Ru((Galδ(U )), and1154

Ru((Galδ(Unc)) are all abelian groups (see Theorem 3.3). It follows from (3.15) that1155

α × β is an embedding. Then, by [12, Corollary 2.4] and Lemma 3.26,1156

τ(Ru(Galδ(U )) ≤ τ(Ru(Galδ(Uc))× Ru(Galδ(Unc)))1157

= max{τ(Ru(Galδ(Uc))), τ (Ru(Galδ(Unc)))} .1158
1159

Since α and β are surjective, we find that1160

τ(Ru(Galδ(U )) = max{τ(Ru(Galδ(Uc))), τ (Ru(Galδ(Unc)))} .1161

If Ru(Galδ(Unc)) �= {e}, it is isomorphic to a non-trivial vector group over k and its1162

differential type is 1 (see [12, Example 2.9]). Moreover, since the unipotent radicals1163
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considered above are δ-closed subgroups of vector groups, they are either algebraic1164

groups and their differential type is 1, or finite-dimensional C-vector spaces of dif-1165

ferential type 0. If Ru(Galδ(Unc) = {e}, we have nothing to prove. Thus, we assume1166

that Ru(Galδ(Unc) �= {e} and that its differential type is 1. By the discussion above,1167

we can also assume that1168

τ(Ru(Galδ(U ))) = 1.1169

Since L has no non-zero trivial ∂-submodule, the same holds for Lc and Lnc.1170

By Propositions 3.22 and 3.23, α and β are surjective. Let R0 ⊂ Ru(Galδ(U ))1171

stand for the strong identity component of Ru(Galδ(U )) ([12, Definition 2.6]).1172

Since Ru(Galδ(Unc)) is algebraic by Theorem 3.19, it is strongly connected by [12,1173

Lemma 2.8 and Example 2.9]. We have1174

α(R0) = Ru(Galδ(Unc))1175

(Indeed, otherwise α(R0) � Ru(Galδ(Unc)). By definition of the strong identity1176

component, we find that1177

τ(Ru(Galδ(U ))/R0) < 1.1178

However,1179

τ(Ru(Galδ(Unc))/α(R0)) = 1,1180

because Ru(Galδ(Unc)) is strongly connected. Therefore, we have a surjective map1181

Ru(Galδ(U ))/R0 → Ru(Gnc)/α(R0)1182

from a linear differential algebraic group of differential type smaller than 1 onto a linear1183

differential algebraic group of differential type 1, which is impossible. Therefore, the1184

group product map1185

R0 × ker α → Ru(Galδ(U )), (r0, x) 	→ r0x1186

is onto. To finish the proof, it suffices to show that1187

β(ker α) = Ru(Galδ(Uc)).1188

If β(R0) �= {e}, it is strongly connected and1189

τ(β(R0)) = τ(R0) = 1.1190

Since τ(Ru(Galδ(Unc))) = 0 (see [35, Theorem 2.13]), we have β(R0) = {e} (by1191

Lemma 3.26). Thus,1192

β(ker α) = Ru(Galδ(Unc)). ��1193
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4 Criteria of hypertranscendance1194

We start with a new result in the representation theory of quasi-simple and reductive1195

linear differential algebraic groups, which we further use for a hypertranscendence1196

criterion.1197

4.1 Extensions of the trivial representation1198

Let (k, δ) be a δ-closed field such that char k = 0 and let C be its field of δ-constants.1199

Let G ⊂ GLn(k) be a connected linear differential algebraic group over k. We recall1200

the definition of the Lie algebra of G, following [8, Chapter 3].1201

Definition 4.1 A k-linear derivation D of the field of fractions k〈G〉 of the δ-1202

coordinate ring k{G} of G is called a differential derivation if D ◦ δ = δ ◦ D.1203

In particular, every differential derivation is determined by its values on the matrix1204

entries that differentially generate k{G} and, therefore, can be represented by an n ×n1205

matrix. The group G acts by right translations on the set of differential derivations of1206

k〈G〉.1207

Definition 4.2 The set Lie G of invariant differential derivations, denoted also by g,1208

is called the Lie algebra of G.1209

This is a C-Lie subalgebra of the Lie algebra gln(k) = Lie GLn(k) of all n × n1210

matrices. Moreover, g is also a δ-subgroup of the additive group of gln(k). Every1211

δ-homomorphism of linear differential algebraic groups gives rise (by taking the dif-1212

ferential) to a C-homomorphism of their Lie algebras. We refer to [8, Chapter 3] for1213

the details.1214

Definition 4.3 A g-module (respectively, C-g-module) is a finite-dimensional k-1215

vector space (respectivelty, C-vector space, possibly infinite-dimensional) V together1216

with a C-Lie algebra homomorphism ν : g → gl(V ), where gl(V ) denotes the Lie1217

algebra of k-linear endomorphisms of V .1218

Every G-module V is also a g-module, where ν = dρ : g → gl(V ) is the differential1219

(see [8, pp. 928–929]) of the homomorphism ρ : G → GL(V ). (Formally, to agree1220

with the above definitions, we assume that a basis of V is chosen, hence we can identify1221

GL(V ) and gl(V ) with GLn(k) and gln(k), respectively.) The definitions of simple,1222

semisimple, and other types of g-modules that we use here are analogues to those for1223

G-modules.1224

It follows from [8, Proposition 20] that, if G ⊂ GLn(k) is given by polynomial1225

equations, then Lie G coincides with the Lie algebra of the group G considered as an1226

algebraic group. Moreover, for an arbitrary linear differential algebraic group G ⊂1227

GLn(k), the Lie algebra Lie G of its Zariski closure G coincides with the k-span of1228

Lie G in gln(k). Recall that, in the case of G = G, Lie G is a G-module, which is called1229

adjoint, where the action of G is induced from its action on gln(k) by conjugation.1230

The differential of the corresponding homomorphism Ad : G → GL(g) gives the1231
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k-Lie algebra map ad : g → gl(g) defining the structure of the g-module on g, also1232

called adjoint. One has (adx)(y) = [x, y] for all x, y ∈ g.1233

For any group, Lie algebra, or ring R, we denote the set of R-module homomor-1234

phisms by HomR(V,W ).1235

For a C-Lie algebra g, let gk = k ⊗C g denote the k-Lie algebra with the bracket1236

determined by1237

[x ⊗ ξ, y ⊗ η] = xy ⊗ [ξ, η] ∀x, y ∈ k, ξ, η ∈ g.1238

We have the inclusion1239

g � C ⊗ g ⊂ k ⊗ g = gk.1240

If g ⊂ h are Lie algebras, then we also consider h as a g-module under the adjoint1241

action.1242

Lemma 4.4 Let H ⊂ GLn(C) be a reductive algebraic group and h = Lie H ⊂1243

gln(C). Let g ⊂ hk be a C-Lie subalgebra containing h and1244

0 → V → W → 1 → 0 (4.1)1245

an exact sequence of g-modules (over k). If1246

(1) sequence (4.1) splits as a sequence of h-modules and1247

(2) Homhk(hk, V ) = 0 (in other words, V does not contain quotients of the adjoint1248

representation of hk),1249

then sequence (4.1) splits.1250

Proof If one chooses a basis {e1, . . . , en−1, en} of W such that V = span{e1,1251

. . . , en−1}, then the matrix ρ(ξ) ∈ gl(W ) corresponding to ξ ∈ g can be written1252

in the form1253

(
α(ξ) ϕ(ξ)

0 0

)
,1254

where α : g → gl(V ) determines the g-module structure on V and ϕ : g → V is a1255

C-linear map. The fact that ρ defines a homomorphism of Lie algebras is the following1256

condition on ϕ:1257

ϕ ([ξ, η]) = α(ξ)ϕ(η)− α(η)ϕ(ξ) ∀ξ, η ∈ g. (4.2)1258

Choosing another vector for en , one obtains another C-linear map ϕ′ : g → V , which1259

is called equivalent to ϕ. Sequence (4.1) splits if and only if ϕ is equivalent to 0.1260

Let us choose en in such a way that1261

ϕ(ξ) = 0 ∀ξ ∈ h, (4.3)1262
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which is possible due to assumption (1). It follows from (4.2) and (4.3) that1263

ϕ ([ξ, η]) = α(ξ)ϕ(η) ∀ξ ∈ h, η ∈ g. (4.4)1264

Since H is reductive, by [52, p. 97, Theorem] and [50, Chapter 2], there exist simple1265

h-submodules h1, . . . , hm in h such that h = ⊕m
i=1 hi . Let B ⊂ k be a C-basis of k as1266

a C-vector space. For each a ∈ k and i , 1 ≤ i ≤ m, a ⊗hi is a simple C-h-submodule1267

of hk and1268

hk =
⊕

1≤i≤m
b∈B

b ⊗ hi . (4.5)1269

For every C-h-submodule I ⊂ hk, let I ′ be a maximal sum of the simple components1270

in decomposition (4.5) with I ′ ∩ I = {0}. Such an h-submodule I ′ exists by Zorn’s1271

lemma. We will show that1272

hk = I ⊕ I ′. (4.6)1273

Let S = b ⊗ hi for some b ∈ B and 1 ≤ i ≤ m. If S ∩ (I ⊕ I ′) = {0}, then1274

I ∩ (S ⊕ I ′) = {0}. Indeed, if v ∈ I and v = v1 + v2, where v1 ∈ S and v2 ∈ I ′, then1275

v2 = v − v1 ∈ S ∩ (I ⊕ I ′), and so v = v1 ∈ I ∩ S = {0}. By the maximality of I ′,1276

S ⊂ I ′, which contradicts S ∩ (I ⊕ I ′) = {0}. Therefore,1277

S ∩ (I ⊕ I ′) �= {0}. (4.7)1278

Since S is a simple h-module, (4.7) implies that S ⊂ I ⊕ I ′. Thus, (4.6) holds and1279

therefore hk is a semisimple h-module. (cf. [7, Section 4.1]).1280

The C-h-module g is semisimple. Indeed, every h-invariant subspace J ⊂ g has a1281

complementary invariant subspace J ′ in hk , since hk is semisimple. Therefore,1282

g = J ⊕ (
J ′ ∩ g

)
.1283

Thus, to prove that ϕ is the zero map, it suffices to show that ϕ(J ) = {0} for every1284

simple C-h-submodule J ⊂ g. Since such J is isomorphic to hi for some i , 1 ≤ i ≤ m,1285

we have the h-equivariant C-linear map1286

μ : h
π→ hi � J ⊂ g

ϕ→ V,1287

where π is the projection with respect to an h-invariant decomposition h = hi ⊕ h′
i ,1288

and the h-equivariance of ϕ is implied by (4.4) . Since μ extends to the k-linear hk-1289

equivariant map hk → V , assumption (2) yields that μ is the zero map. Therefore,1290

ϕ(J ) = {0}. ��1291

Lemma 4.5 Let G be a connected linear differential algebraic group and g be its1292

Lie algebra. Any G-module W is completely reducible if and only if it is completely1293

reducible as a g-module.1294

Proof Let GW denote the image of G in GL(W ). The G-module W is completely1295

reducible if and only if it is completely reducible as a GW -module. The latter is1296
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equivalent to W being completely reducible as a GW -module. Since char k = 0,1297

this is equivalent to the semisimplicity of W viewed as the Lie GW -module (see [52,1298

page 97,Theorem]). Since Lie GW is the k-span of Lie GW ⊂ gl(W ), W is completely1299

reducible as a Lie GW if and only if it is completely reducible as a Lie GW -module.1300

Since, by [8, Proposition 22], Lie GW is an image of g in gl(W ), W is completely1301

reducible as a g-module if and only if W is completely reducible as a Lie GW -module.1302

��1303

Theorem 4.6 Let G be a connected linear differential algebraic group over k and1304

0 → V → W → 1 → 0 (4.8)1305

an exact sequence of G-modules, where V is faithful and semisimple. Let G denote1306

the Zariski closure of G in GL(V ). If V , viewed as a G-module, does not contain1307

non-zero submodules isomorphic to a quotient of the adjoint module for G, that is, if1308

HomG(Lie G, V ) = 0,1309

then sequence (4.8) splits.1310

Proof By Lemma 4.5, it is sufficient to show that W is completely reducible as a g-1311

module. Since G admits a faithful completely reducible representation (given by V ),1312

it is reductive. Therefore, by [33, Lemma 4.5], there is a δ-isomorphism ν : H̃ → G,1313

where H̃ ⊂ GLr (k) is a δ-group such that its δ-subgroup HC = H̃ ∩ GLr (C) is1314

Zariski dense (the Zariski topology on H̃ is induced from GLr (k)).1315

Let H = ν(HC ) and h = Lie H . We will show that h and g satisfy the hypotheses1316

of Lemma 4.4, which would thus yield the proof (in particular, we will identify g1317

with a subalgebra of hk). The differential algebraic group H � HC is reductive.1318

Indeed, if its unipotent radical were non-trivial, Ru(HC ) ∩ H̃ would be a non-trivial1319

normal unipotent differential algebraic subgroup of H̃ , which is impossible due to the1320

reductivity of G � H̃ .1321

Let us show that ν extends to an algebraic isomorphism ν : HC → G of the Zariski1322

closures. By [33, Theorem 3.3], this would follow if the G-module V is completely1323

reducible and HC is reductive. It only remains to prove the latter. Since HC is reductive,1324

Cr is a completely reducible HC -module. Therefore, kr is completely reducible as an1325

HC -module. Thus, HC is reductive.1326

The differential dν defines an isomorphism between k-Lie algebras Lie HC and1327

Lie G. Since Lie HC ⊂ glr (C) and any C-basis of glr (C) is also a k-basis of glr (k),1328

we obtain that any C-basis of Lie HC is k-linearly independent. Since Lie HC is the1329

k-span of Lie HC , we can therefore write1330

Lie HC = k ⊗C Lie HC .1331

Applying dν, this implies that1332

Lie G = k ⊗C h = hk.1333
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Therefore, we have1334

h ⊂ g ⊂ hk.1335

Since every δ-representation of HC is polynomial and HC is reductive, every δ-1336

representation of HC is completely reducible. Therefore, W is completely reducible as1337

an H -module (and h-module), and so sequence (4.8) splits as a sequence of h-modules.1338

Finally, using [52, p. 97, Theorem] and Lie G = gk, we conclude that1339

Homgk(gk, V ) = HomLie G

(
Lie G, V

) = HomG

(
Lie G, V

) = 0.1340

��1341

4.2 A practical criterion of hypertranscendance1342

Let� = {∂, δ} be a set of two derivations. Let K be a�-field such that K ∂ = k (recall1343

that k is δ-closed). From the results of the previous sections, we obtain the following1344

criterion for the hypertranscendence of the solutions of L(y) = b, for irreducible1345

L ∈ K [∂].1346

Theorem 4.7 Let L ∈ K [∂] be an irreducible ∂-operator such that Gal(L) is a quasi-1347

simple linear algebraic group. Denote n = ord L and m = dim Gal(L). Suppose that1348

m �= n. Let b ∈ K ∗ and F a �-field extension of K such that F∂ = k and F1349

contains z, a solution of L(y) = b, and u1, . . . , un, K -linearly independent solutions1350

of L(y) = 0. Then1351

– the functions v1, . . . , vm, z, . . . , ∂n−1z and all their derivatives with respect to δ1352

are algebraically independent over K , where {v1, . . . , vm} ⊂ {u1, . . . , ∂
n−1u1,1353

. . . , un, . . . , ∂
n−1un} is a maximal algebraically independent over K subset1354

if and only if1355

• the linear differential system ∂(B) − δ(AL) = AL B − B AL, where AL denotes1356

the companion matrix of L, has no solutions B ∈ K n×n and1357

• the linear differential equation L(y) = b has no solutions in K .1358

Example 4.8 If L ∈ K [∂] and Gal(L) = SLn , where n = ord L ≥ 2, then L is1359

irreducible and dim L �= dim Gal(L) = n2 − 1. In this situation, in Theorem 4.7, we1360

can take1361

{v1, . . . , vm} = {u1, . . . , ∂
n−1u1, . . . , un−1, . . . , ∂

n−1un−1, un, . . . , ∂
n−2un} .1362

Proof (Proof of Theorem 4.7) Let L (respectively, U ) be the ∂-module associated to1363

L (respectively, to (∂ − ∂(b)/b)L). Since the�-field KU generated by u1, . . . , un, z1364

in F is a PPV extension for U over K , the differential transcendence degree of1365

KU over K equals the differential dimension of Galδ(U ). Since L corresponds to1366

the differential system ∂Y = ALY , Proposition 2.52 together with Theorem 2.25(3)1367

imply that the first hypothesis is equivalent to Galδ(L ) = Gal(L ).1368
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Since L is irreducible, there is no non-zero trivial ∂-submodule N of L such1369

that the representation of Galδ(L ) on ω(N ) is conjugate to constants, that is, L1370

is purely non-constant. By Theorem 3.19, Ru(Galδ(U )) = ω(L̃0), where L̃0 is1371

the smallest ∂-submodule of L such that Galδ(U /L̃0) is reductive. Since L is1372

irreducible, either L̃0 is zero or L̃0 = L . The module L̃0 is zero if and only1373

if Ru(Galδ(U )) = {e}. Moreover, Ru(Galδ(U )) = {e} if and only if ω(U ) is a1374

Galδ(L )-module. Since dimk ω(L ) = n, the Galδ(L )-module ω(L ) is not adjoint.1375

Since Gal(L) is a quasi-simple linear algebraic group, Lie(Gal(L)) is simple (see [25,1376

Sect. 14.2]), and therefore its adjoint representation is irreducible. This implies that1377

HomGal(L)(Lie(Gal(L)), ω(L )) = 0.1378

Therefore, by the above and Theorem 4.6, we find that L̃0 is zero if and only if the1379

sequence of Galδ(L )-modules1380

0 → ω(L ) → ω(U ) → k → 01381

splits, which, by [13, Theorem 3.5], is equivalent to the existence of a solution in K1382

of the equation L(y) = b, in contradiction with the second hypothesis. Therefore,1383

we find that the second hypothesis is equivalent to Ru(Gal(U )) = (kn,+), that1384

is, the vector group Gn
a and Galδ(U ) = Gn

a � Gal(L ). The latter is equivalent to1385

v1, . . . , vm, z, . . . , ∂n−1z being a differential transcendence basis of KU over K . ��1386

Remark 4.9 The condition in the statement of Theorem 4.7 to have no solutions B ∈1387

K n×n is equivalent to the fact that Galδ(L ) is not conjugate to constants. For K a1388

computable field, this condition can be tested through various algorithms that find1389

rational solutions (see, for instance, [3]). However, one can sometimes easily prove1390

the non-integrability of the system by taking a close look at the topological generators1391

of the parameterized differential Galois group such as the monodromy or the Stokes1392

matrices. This is the strategy employed in Lemma 4.10.1393

4.3 Application to the Lommel equation1394

We apply Theorem 4.7 to the differential Lommel equation, which is a non-1395

homogeneous Bessel equation1396

d2 y

dx2 + 1

x

dy

dx
+
(

1 − α2

x2

)
y = xμ−1, (4.9)1397

depending on two parameters, α,μ ∈ C.1398

We will study the differential dependence of the solutions of (4.9) with respect1399

to the parameter α. To this purpose, we consider α as a new variable, transcendental1400

over C, and suppose that μ ∈ Z. We endow the field C(α, x) with the derivations1401

δ = ∂
∂α

and ∂ = ∂
∂x , � = {δ, ∂}. Let k be a δ-closure of C(α). We extend ∂ to k1402

as the zero derivation. We extend � to K = k(x), the field of rational functions in x1403

with coefficients in k, so that C(α, x) is a �-subfield of K . Indeed, let A = k ⊗C(α)1404
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C(α, x), which is a �-algebra over C(α, x), and A∂ = k. Since C(α, x)∂ = C(α),1405

the multiplication homomorphism ϕ : A → K , is injective (see [29, Corollary 1,1406

p. 87]). Therefore, there is an extension of � onto K making ϕ a �-homorphism so1407

that C(α, x) ⊂ K is a �-field extension via ϕ.1408

Let L be a ∂-module over K associated to the Bessel differential equation1409

L(y) = d2 y

dx2 + 1

x

dy

dx
+
(

1 − α2

x2

)
y = 0 (4.10)1410

and let U be a ∂-module over K associated to the Lommel differential equation. We1411

have:1412

0 → L → U → 1 → 0 . (4.11)1413

Lemma 4.10 The parameterized differential Galois group of L over K is SL2.1414

Proof The differential Galois group of L over K is known to be SL2 (see [28]). By1415

[11], we know that either Galδ(M ) = SL2 or Galδ(L ) is conjugate to constants in1416

SL2. Suppose that we are in the second situation, that is, there exists P ∈ SL2 such1417

that1418

P Galδ(L )P−1 ⊂ {M ∈ SL2 | δ(M) = 0}.1419

The coefficients of (4.10) lie in C(α, x). Moreover, for a fixed value of α in C, the1420

point zero is a parameterized regular singular point of (4.10) (see [37, Definition 2.3]).1421

If we fix a fundamental solution Z0 of (4.10) and follow [37, p. 922], we are able to1422

compute the parameterized monodromy matrices of (4.10) around zero. For a suitable1423

choice of Z0, we find the following parameterized monodromy matrix,1424

M0 =
(
ζ 0
0 ζ ,

)
1425

where ζ = e2iπα and ζ = e−2iπα (see [38, p. 35]). By [37, Theorem3.5], M0 belongs1426

to some conjugate of Galδ(L ). This means that there exists Q ∈ GL2 such that1427

δ(QM0 Q−1) = 0. Since conjugate matrices have the same spectrum and the spectrum1428

of M0 is not δ-constant, we find a contradiction. ��1429

Let Jα(x) be the Bessel function of the first kind and let Yα(x) be the Bessel function1430

of the second kind. A solution of the Lommel differential equation is the Lommel1431

function sμ,α(x), which is defined as follows1432

sμ,α(x) = 1

2
π

[
Yα(x)

∫ x

0
xμ Jα(x) dx − Jα(x)

∫ x

0
xμYα(x) dx

]
.1433

Proposition 4.11 The functions, Jα(x),Yα(x),
d

dx (Yα)(x), sμ,α(x) and d
dx sμ,α(x)1434

and all their derivatives of all order with respect to ∂
∂α

are algebraically indepen-1435

dent over C(α, x). Moreover, the parameterized differential Galois group of U is1436

isomorphic to a semi-direct product Ga
2 � SL2.1437
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Proof Since Galδ(L ) = SL2, we just need to prove that L(y) = xμ−1 has no solution1438

g in K in order to apply Theorem 4.7 to the Lommel differential equation. Thus,1439

suppose on the contrary that L(y) = xμ−1 has a rational solution g ∈ k(x). Using1440

partial-fraction decomposition, one can show that the only possible pole of g is zero.1441

If we write1442

g =
n∑

j=m

a j x j , m, n ∈ Z, m ≤ n, a j ∈ k, aman �= 0,1443

then the highest and lowest order terms of L(g) ∈ k[x, 1/x] are1444

an xn �= 0 and (m2 − α2)am xm−2 �= 0,1445

respectively. Since different powers of x are linearly independent over k and n �= m−2,1446

L(g)− xμ−1 contains at least one non-zero term. Contradiction. ��1447
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