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Abstract

The main motivation of our work is to create an efficient algorithm that decides hypertran-
scendence of solutions of linear differential equations, via the parameterized differential and
Galois theories. To achieve this, we expand the representation theory of linear differential al-
gebraic groups and develop new algorithms that calculate unipotent radicals of parameterized
differential Galois groups for differential equations whose coefficients are rational functions.
P. Berman and M.F. Singer presented an algorithm calculating the differential Galois group for
differential equations without parameters whose differential operator is a composition of two
completely reducible differential operators. We use their algorithm as a part of our algorithm.
As a result, we find an effective criterion for the algebraic independence of the solutions of pa-
rameterized differential equations and all of their derivatives with respect to the parameter.

1 Introduction

A special function is said to be hypertranscendental if it does not satisfy any algebraic differential
equations. The study of functional hypertranscendence has recently appeared in various areas of
mathematics. In combinatorics, the question of the hypertranscendence of generating series is
frequent because it gives information on the growth of the coefficients: for instance, the work of
Kurkova and Raschel [29] solved a famous conjecture about the differential algebraic behaviour of
generating series of walks on the plane. Dreyfus, Roques, and Hardouin [18] gave criteria to test
the hypertranscendence of generating series associated to p-automatic sequences and more gen-
erally Mahler functions, generalizing the work of Nguyen [39], Nishioka [40], and Randé [44]. Also,
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when the derivation encodes the continuous deformation of an auxiliary parameter, the hyper-
transcendence is connected to the notion of isomonodromic deformation (see the work of Mitschi
and Singer [36]).

The work of Cassidy, Hardouin, and Singer [13, 22] were motivated by a study of hypertran-
scendence using Galois theory. Starting from a linear functional equation with coefficients in a
field with a “parametric” derivation, they were able to construct a geometric object, called the pa-
rameterized differential Galois group, whose symmetries control the algebraic relations between
the solutions of the functional equation and all of their derivatives. The question of hypertran-
scendence of solutions of linear functional equations is thus reduced to the computation of the
parameterized differential Galois groups of the equations (see for instance the work of Arreche
[1] on the incomplete gamma function γ(x, t ) and the work [18]). The parameterized differential
Galois groups are linear differential algebraic groups as introduced by Kolchin and developed by
Cassidy [8]. These are groups of matrices whose entries satisfy systems of polynomial differential
equations, called defining equations of the parameterized differential Galois group.

Then, in this context of Galois theory, one can address a direct problem, that is, the question of
the algorithmic computation of the parameterized differential Galois group. For linear functional
equations of order 2, one can find a Kovacic-type algorithm initiated by Dreyfus [17] and completed
by Arreche [2]. In [35], Minchenko, Ovchinnikov, and Singer gave an algorithm that allows to test
if the parameterized differential Galois group is reductive and to compute the group in that case.
In [34], they also show how to compute the parameterized differential Galois group if its quotient
by the unipotent radical is conjugate to a group of matrices with constant entries with respect to
the parametric derivations. The algorithms of [34, 35] rely on bounds on the order of the defining
equations of the parameterized differential Galois group, which allows to use the algorithm ob-
tained by Hrushovski [23] and has been further analyzed and improved by Feng [19] in the case of
no parametric derivations.

In this paper, we study the parameterized differential Galois group of a differential operator
of the form L1(L2(y)) = 0 where L1,L2 are completely reducible differential operators. This situ-
ation goes beyond the previously studied cases, because the parameterized Galois group of such
an equation is no longer reductive and its quotient by its unipotent radical might not be constant.
If there is no parametric derivation, this problem was solved by Berman and Singer in [4] for dif-
ferential operators and rephrased using Tannakian categories by Hardouin [21]. The general case
is however more complicated because, unlike the case of no parameters, the order of the defining
equations of the parameterized differential Galois group is no longer controlled by the order of the
functional equation L1(L2(y)) = 0. Therefore, we present an algorithm that relies on bounds (see
Section 3.3.3) and, in a generic situation, we find a description of the parameterized differential
Galois group. In this description, the defining equations of the unipotent radical are obtained by
applying standard operations to linear differential operators (cf. [21]).

However, by a careful study of the extension of completely reducible representations of quasi-
simple linear differential algebraic groups, we are able to deduce a complete and effective criterion
to test the hypertranscendence of solutions of inhomogeneous linear differential equations (The-
orem 4.7).

The paper is organized as follows. We start with a brief review of the basic notions in differen-
tial algebra, linear differential algebraic groups, and linear differential equations with parameters
in Section 2. Our algorithmic results for calculating parameterized differential Galois groups are
presented in Section 3. Our effective criterion for hypertranscendence of solutions of extensions
of irreducible differential equations is contained in Section 4.2, which is preceded by Section 4.1,
where we extend results of Minchenko and Ovchinnikov [33] for the purposes of the hypertran-
scendence criterion. We use this criterion to prove hypertranscendence results for the Lommel
differential equation in Section 4.3.
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2 Preliminary notions

We shall start with some basic notions of differential algebra and then recall what linear differential
algebraic groups and their representations are.

2.1 Differential algebra

Definition 2.1. A differential ring is a ring R with a finite set ∆ of commuting derivations on R. A
∆-ideal of R is an ideal of R stable under any derivation in ∆.

In the present paper, ∆will consist of one or two elements. Let R be a ∆-ring. For any δ ∈∆, we
denote

Rδ = {r ∈ R |δ(r ) = 0},

which is a ∆-subring of R and is called the ring of δ-constants of R. If R is a field and a differential
ring, then it is called a differential field, or∆-field for short. For example, R =Q(x, t ),∆= {δ,∂}, and
∂= ∂/∂x, δ= ∂/∂t , forms a differential field. The notion of R-∆-algebra is defined analogously.

The ring of ∆-differential polynomials K {y1, . . . , yn} in the differential indeterminates, or ∆-
indeterminates, y1, . . . , yn and with coefficients in a ∆-field (K ,∆), is the ring of polynomials in
the indeterminates formally denoted{

δ
i1
1 · . . . ·δim

m yi
∣∣ i1, . . . , im ≥ 0, 1 ≤ i ≤ n

}
with coefficients in K . We endow this ring with a structure of K -∆-algebra by setting

δk

(
δ

i1
1 · . . . ·δim

m yi

)
= δi1

1 · . . . ·δik+1
k · . . . ·δim

m yi .

Definition 2.2 (see [31, Corollary 1.2(ii)]). A differential field (K ,∆) is said to be differentially closed
or ∆-closed for short, if, for every (finite) set of ∆-polynomials F ⊂ K {y1, . . . , yn}, if the system of
differential equations F = 0 has a solution with entries in some ∆-field extension L, then it has a
solution with entries in K .

For ∂ ∈∆, the ring K [∂] of differential operators, or ∂-operators for short, is the K -vector space
with basis 1,∂, . . . ,∂n , . . . endowed with the following multiplication rule: ∂ · a = a · ∂+ ∂(a). To a
∂-operator L as above, one can associate the linear homogeneous ∂-polynomial L(y) = an∂

n y +
. . .+a1∂y +a0 y ∈ K {y}. In what follows, we assume that every field is of characteristic zero.

2.2 Linear differential algebraic groups and their unipotent radicals

In this section, we first introduce the basic terminology of Kolchin-closed sets, linear differential
algebraic groups and their representations. We then define unipotent radicals of linear differential
algebraic groups, reductive linear differential algebraic groups and their structural properties. We
continue with the notion of conjugation to constants of linear differential algebraic groups.

Let (k,δ) be a differentially closed field and C = kδ. Let (F,δ) be a δ-subfield of k.

2.2.1 First definitions

Definition 2.3. A Kolchin-closed (or δ-closed, for short) set W ⊂ kn is the set of common zeroes of
a system of δ-polynomials with coefficients in k, that is, if there exists S ⊂ k{y1, . . . , yn} such that

W = {
a ∈ kn | f (a) = 0 for all f ∈ S

}
.

3



We say that W is defined over F if W is the set of zeroes of δ-polynomials with coefficients in F .
More generally, for a δ-F -algebra R,

W (R) = {
a ∈ Rn | f (a) = 0 for all f ∈ S

}
.

Definition 2.4. If W ⊂ kn is a Kolchin-closed set defined over F , the δ-ideal

I(W ) = { f ∈ F {y1, . . . , yn} | f (w) = 0 for all w ∈W (k)}

is called the defining δ-ideal of W over F . Conversely, for a subset S of F {y1, . . . , yn}, the following
subset is δ-closed in kn and defined over F :

V(S) = {
a ∈ kn | f (a) = 0 for all f ∈ S

}
.

Remark 2.5. Since every radical δ-ideal of F {y1, . . . , yn} is generated as a radical δ-ideal by a fi-
nite set of δ-polynomials (see, for example, [45, Theorem, page 10], [26, Sections VII.27-28]), the
Kolchin topology is Ritt–Noetherian, that is, every strictly decreasing chain of Kolchin-closed sets
has a finite length.

Definition 2.6. Let W ⊂ kn be a δ-closed set defined over F . The δ-coordinate ring F {W } of W over
F is the F -∆-algebra

F {W } = F {y1, . . . , yn}
/
I(W ).

If F {W } is an integral domain, then W is said to be irreducible. This is equivalent to I(W ) being a
prime δ-ideal.

Example 2.7. The affine space An is the irreducible Kolchin-closed set kn . It is defined over F , and
its δ-coordinate ring over F is F {y1, . . . , yn}.

Definition 2.8. Let W ⊂ kn be a δ-closed set defined over F . Let I(W ) = p1 ∩ . . .∩ pq be a mini-
mal δ-prime decomposition of I(W ), that is, the pi ⊂ F {y1, . . . , yn} are prime δ-ideals containing
I(W ) and minimal with this property. This decomposition is unique up to permutation (see [26,
Section VII.29]). The irreducible Kolchin-closed sets Wi = V(pi ) are defined over F and called the
irreducible components of W . We have W =W1 ∪ . . .∪Wq .

Definition 2.9. Let W1 ⊂ kn1 and W2 ⊂ kn2 be two Kolchin-closed sets defined over F . A δ-
polynomial map (morphism) defined over F is a map

ϕ : W1 →W2, a 7→ (
f1(a), . . . , fn2 (a)

)
, a ∈W1 ,

where fi ∈ F {y1, . . . , yn1 } for all i = 1, . . . ,n2.
If W1 ⊂ W2, the inclusion map of W1 in W2 is a δ-polynomial map. In this case, we say that W1

is a δ-closed subset of W2.

Example 2.10. Let GLn ⊂ kn be the group of n ×n invertible matrices with entries in k. One can

see GLn as a Kolchin-closed subset of kn2 ×k defined over F , defined by the equation det(X )y−1 in

F
{

kn2×k
}= F {X , y}, where X is an n×n-matrix ofδ-indeterminates over F and y aδ-indeterminate

over F . One can thus identify the δ-coordinate ring of GLn over F with F {Y ,1/det(Y )}, where Y =
(yi , j )1≤i , j≤n is a matrix of δ-indeterminates over F . We also denote the special linear group that
consists of the matrices of determinant 1 by SLn ⊂ GLn .

Similarly, if V is a finite-dimensional F -vector space, GL(V ) is defined as the group of invertible
k-linear maps of V ⊗F k. To simplify the terminology, we will also treat GL(V ) as Kolchin-closed sets
tacitly assuming that some basis of V over F is fixed.
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Remark 2.11. If K is a field, we denote the group of invertible matrices with coefficients in K by
GLn(K ).

Definition 2.12 ([8, Chapter II, Section 1, p. 905]). A linear differential algebraic group G ⊂ kn2

defined over F is a subgroup of GLn that is a Kolchin-closed set defined over F . If G ⊂ H ⊂ GLn are
Kolchin-closed subgroups of GLn , we say that G is a δ-closed subgroup, or δ-subgroup of H .

Proposition 2.13. Let G ⊂ GLn be a linear algebraic group defined over F . We have:

(1) G is a linear differential algebraic group.

(2) Let H ⊂G be a δ-subgroup of G defined over F , and the Zariski closure H ⊂G be the closure of
H with respect to the Zariski topology. In this case, H is a linear algebraic group defined over
F , whose polynomial defining ideal over F is

I(H)∩F [Y ] ⊂ I(H) ⊂ F {Y } ,

where Y = (yi , j )1≤i , j≤n is a matrix of δ-indeterminates over F .

Definition 2.14. Let G be a linear differential algebraic group defined over F . The irreducible com-
ponent of G containing the identity element e is called the identity component of G and denoted
by G◦. The linear differential algebraic group G◦ is a δ-subgroup of G defined over F . The linear
differential algebraic group G is said to be connected if G = G◦, which is equivalent to G being an
irreducible Kolchin-closed set [8, p. 906].

Definition 2.15 ([9],[42, Definition 6]). Let G be a linear differential algebraic group defined over
F and let V be a finite-dimensional vector space over F . A δ-polynomial group homomorphism
ρ : G → GL(V ) defined over F is called a representation of G over F . We shall also say that V is a
G-module over F . By a faithful (respectively, simple, semisimple) G-module, we mean a faithful
(respectively, irreducible, completely reducible) representation ρ : G → GL(V ).

The image of a δ-polynomial group homomorphism % : G → H is Kolchin closed [8, Proposi-
tion 7]. Moreover, if ker(%) = {e}, then ρ is an isomorphism of linear differential algebraic groups
between G and ρ(G) [8, Proposition 8].

Definition 2.16 ([10, Theorem 2]). A linear differential algebraic group G is unipotent if one of the
following equivalent conditions holds:

(1) G is conjugate to a differential algebraic subgroup of the group of unipotent upper triangular
matrices;

(2) G contains no elements of finite order > 1;

(3) G has a descending normal sequence of differential algebraic subgroups

G =G0 ⊃G1 ⊃ . . . ⊃GN = {e}

with Gi /Gi+1 isomorphic to a differential algebraic subgroup of the additive group Ga .

One can show that a linear differential algebraic group G defined over F admits a largest normal
unipotent differential algebraic subgroup defined over F [32, Theorem 3.10].

Definition 2.17. Let G be a linear differential algebraic group defined over F . The largest normal
unipotent differential algebraic subgroup of G defined over F is called the unipotent radical of
G and denoted by Ru(G). The unipotent radical of a linear algebraic group H is also denoted by
Ru(H).

Note that, for a linear differential algebraic group G , we always have Ru(G) ⊂ Ru(G) and this
inclusion can be strict [32, Example 3.17].
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2.2.2 Almost direct products and reductive linear differential algebraic group

We recall what reductive linear differential algebraic groups are and how they decompose into al-
most direct products of tori and quasi-simple subgroups.

Definition 2.18. A linear differential algebraic group G is said to be simple if {e} and G are the only
normal differential algebraic subgroups of G .

Definition 2.19. A quasi-simple linear (differential) algebraic group is a finite central extension of
a simple non-commutative linear (differential) algebraic group.

Definition 2.20 ([32, Definition 3.12]). A linear differential algebraic group G defined over F is said
to be reductive if Ru(G) = {e}.

By definition, the following holds for linear differential algebraic groups:

simple =⇒ quasi-simple =⇒ reductive.

Example 2.21. SL2 is quasi-simple but not simple, while PSL2 is simple.

Proposition 2.22 ([35, Remark 2.9]). Let G ⊂ GLn be a linear differential algebraic group defined
over F . If G ⊂ GLn is a reductive linear algebraic group, then G is a reductive linear differential
algebraic group.

Proposition 2.23. Let G ⊂ GL(V ) be a linear differential algebraic group. The following statements
are equivalent:

(1) the G-module V is semisimple;

(2) V is semisimple as a G-module, where G ⊂ GL(V ) stands for the Zariski closure;

(3) G is reductive;

(4) V is semisimple as a G
◦
-module;

(5) V is semisimple as a G◦-module.

Proof. For every subspace U ⊂ V , the set N of elements g ∈ GL(V ) preserving U is an algebraic
subgroup of GL(V ). Therefore, U is G-invariant if and only if it is G-invariant:

G ⊂ N ⇔G ⊂ N .

This implies (1)⇔(2). The equivalences (2)⇔(3)⇔(4) are well-known (see, for example, [48, Chap-
ter 2]). Since the Kolchin topology contains the Zariski topology of GL(V ), G◦ is Zariski irreducible,
hence, equals G

◦
. Applying (1)⇔(2) to the case of a connected G , we obtain (4)⇔(5).

Definition 2.24. Let G be a group and G1, . . . ,Gn some subgroups of G . We say that G is the almost
direct product of G1, . . . ,Gn if

(1) the commutator subgroups [Gi ,G j ] = {e} for all i 6= j ;

(2) the morphism ψ : G1 × . . .×Gn →G , (g1, . . . , gn) 7→ g1 · . . . · gn is an isogeny, that is, a surjective
map with a finite kernel.

We summarize some results on the decomposition of reductive, algebraic and differential alge-
braic, groups in the theorem below. We refer to Definition 2.3 for the notation G(C ) with G a linear
(differential) algebraic group defined over C .
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Theorem 2.25. Let G ⊂ GLn be a linear differential algebraic group defined over F . Assume that
G ⊂ GLn is a connected reductive algebraic group. Then

(1) G is an almost direct product of a torus H0 and non-commutative normal quasi-simple linear
algebraic groups H1, . . . , Hs defined overQ;

(2) G is an almost direct product of a Zariski dense δ-closed subgroup G0 of H0 and some δ-closed
subgroups Gi of Hi for i = 1, . . . , s ;

(3) moreover , either Gi = Hi or Gi is conjugate by a matrix of Hi to Hi (C ) ;

The Hi ’s are called the quasi-simple components of G ; the Gi ’s are called the δ-quasi-simple compo-
nents of G.

Proof. Part (1) can be found in [24, Theorem 27.5, page 167]. Parts (2) and (3) are contained in [32,
proof of Lemma 4.5] and [11, Theorems 15 and 18].

Remark 2.26. As noticed in [35, Section 5.3.1], the decomposition of G as above can be made
effective.

Proposition 2.27. If ν : G1 ×G2 → G is a surjective homomorphism of linear differential algebraic
groups and V is a simple G-module, then V , viewed as a G1 ×G2-module via ν, is isomorphic to
V1 ⊗V2, where each Vi is a simple Gi -module.

Proof. Since ν is surjective, V is simple as a G1 ×G2-module. Let V1 be a simple (non-zero) G1-
submodule of V and U ⊂ V the sum of all G1-submodules isomorphic to V1. Since all elements of
G2 send V1 to an isomorphic submodule, we obtain that U is G1×G2-invariant. Since V is G1×G2-
simple, U =V . We choose a direct sum decomposition

V =⊕
j∈J

U j , U j
∼=V1 for all j ∈ J ,

and, for each j ∈ J , a non-zero u j ∈U j , and let V2 = span j∈J {u j } ⊂ V . We see that, as G1-modules,
V ∼=V1 ⊗V2, where G1 acts trivially on V2.

By [51, Exercise 11.30], every endomorphism of V1 ⊗V2 commuting with the action of G1 has
the form idV1 ⊗A, where A is an endomorphism of V2. This means that V2 has a structure of a
G2-module such that the G1-module isomorphism V ∼= V1 ⊗V2 extends to a G1 ×G2-module iso-
morphism. Since V is G1 ×G2-simple, V2 is G2-simple. It remains to note that the representation
Gi → GL(Vi ), i = 1,2, is differential since it is isomorphic to a subrepresentation of the representa-
tion Gi → GL(V ).

Definition 2.28. A connected linear differential algebraic group T is called a δ-torus if there is an
isomorphism α of T onto a Zariski dense δ-subgroup T ′ ⊂ (k×)n , n ≥ 0.

Let T ′
C = (C×)n . By [8, Proposition 31], T ′

C ⊂ T ′. Let TC =α−1(T ′
C ). The δ-subgroup TC does not

depend on the choice of α: since any differential homomorphism (C×)n → (k×)m is monomial in
each of the m components, its image is contained in (C×)m .

Corollary 2.29. Let G ⊂ GL(V ) be a connected linear differential algebraic group. If the G-module
V is simple and non-constant, then there exists a δ-torus T ⊂G such that V is semisimple and non-
constant as a T -module.
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Proof. Since V is simple, G is reductive by Proposition 2.23. By Theorem 2.25, G decomposes as
an almost direct product of a δ-torus G0 and δ-quasi-simple components Gi , 1 ≤ i ≤ s. By Proposi-
tion 2.27, V is a tensor product of simple Gi -modules Wi . By [32, Theorem 3.3], representations of
Gi on Wi are polynomial, that is, extend to algebraic representations ρi : Gi → GL(Wi ). Since V is
non-constant, there is an i , 0 ≤ i ≤ s, such that Wi is non-constant. If i > 0, then Gi =Gi . Indeed,
otherwise Gi ' H(C ), where H = Gi is a quasi-simple algebraic group defined over C (see Theo-
rem 2.25). Since all algebraic representations of H are defined over Q (see, for example, [5, Sec-
tion 5]), ρi (Gi ) is conjugate to constants, which contradicts the assumption on Wi . Thus, Gi =Gi ,
and we can take T to be a maximal torus of Gi (see [24, Sections 21.3-21.4]). If i = 0, let T =G0.

2.2.3 Conjugation to constants

Conjugation to constants will play an essential role in our arguments. We recall what it means.
Recall that k is a differentially closed field containing F and C is the field of δ-constants of k.

Definition 2.30. Let G ⊂ GLn be a linear algebraic group over F . We say that G is conjugate to
constants if there exists h ∈ GLn such that hGh−1 ⊂ GLn(C ). Similarly, we say that a representation
ρ : G → GLn is conjugate to constants if ρ(G) is conjugate to constants in GLn .

Proposition 2.31. Let ρ : G ⊂ GL(W ) → GL(V ) be a representation of a linear differential algebraic
group G such that G ⊂ GL(W ) is a connected reductive linear algebraic group. Assume that ρ is
defined over the field C . With notation of Theorem 2.25, assume that Z acts by constant weights on
V and that, for all i = 1, . . . , s, either Hi 6=Gi or ρ|Hi is the identity. Then there exists g ∈G such that

ρ
(
gGg−1)⊂ GL(V )(C ).

Proof. Let S = {i |Hi = Gi }. By assumption, ρ(Hi ) = {1} for all i ∈ S. By Theorem 2.25, for all i ∉ S,
there exists gi ∈Gi such that gi Hi g−1

i ⊂Gi (C ). Set

g = ∏
i∈S

gi ∈G .

Let h ∈ G . Since G is the almost direct product of Z and of its δ-quasi-simple components, there
exist z ∈ Z and, for i ∈ {1, . . . , s}, an element hi ∈ Hi such that h = zh1 · . . . ·hs . Now,

ρ
(
g hg−1)= ρ(z)

∏
i∉S

ρ
(
gi hi g−1

i

)
.

Since ρ is defined over the constants and gi hi g−1
i ∈ Gi (C ) for all i ∉ S, we find that ρ

(
gi hi g−1

i

) ⊂
GL(V )(C ). Since ρ(z) is also constant, the same holds for ρ

(
g hg−1

)
.

2.3 Parameterized differential modules

In this section, we recall the basic definitions of differential modules and prolongation functors for
differential modules with parameters. We then continue with the notion of complete integrability
of differential modules and its relation to conjugation to constants of parameterized differential
Galois groups. We also show a new result, Proposition 2.54, which relates the conjugation to con-
stants of a linear differential algebraic group and of its identity component.

2.3.1 Differential modules and prolongations

Let K be a ∆= {∂,δ}-field. We denote by k (respectively, C ) the field of ∂ (respectively, ∆)-constants
of K . We assume for simplicity that (k,δ) is differentially closed (this assumption was relaxed in
[20, 53, 38]). Therefore, unless explicitly mentioned, any Kolchin-closed set considered in the rest
of the paper is a subset of some kn .
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Definition 2.32. A ∂-module M over K is a left K [∂]-module that is a finite-dimensional vector
space over K .

Let M be a ∂-module over K and let {e1, . . . ,en} be a K -basis of M . Let A = (ai , j ) ∈ K n×n be the
matrix defined by

∂(ei ) =−
n∑

j=1
a j ,i e j , i = 1, . . . ,n. (2.1)

Then, for any element m =∑n
i=1 yi ei , where Y = (y1, . . . , yn)T ∈ K n , we have

∂(m) =
n∑

i=1
∂(yi )ei −

n∑
i=1

(
n∑

j=1
ai , j y j

)
ei .

Thus, the equation ∂(m) = 0 translates into the linear differential system ∂(Y ) = AY .

Definition 2.33. Let M be a ∂-module over K and {e1, . . . ,en} be a K -basis of M . We say that the
linear differential system ∂(Y ) = AY , as above, is associated to the ∂-module M (via the choice
of a K -basis). Conversely, to a given linear differential system ∂(Y ) = AY , A = (ai , j ) ∈ K n×n , one
associates a ∂-module M over K , namely: M = K n with the standard basis (e1, . . . ,en) and action
of ∂ given by (2.1).

Another choice of a K -basis X = BY , where B ∈ GLn(K ), leads to the differential system ∂(X ) =
(B−1 AB −B−1∂(B))X .

Definition 2.34. We say that a linear differential system ∂(X ) = ÃX , with Ã ∈ K n×n , is K -equivalent
(or gauge equivalent over K ) to a linear differential system ∂(X ) = AX , with A ∈ K n×n , if there exists
B ∈ GLn(K ) such that Ã = B−1 AB −B−1∂(B).

One has the following correspondence between linear differential systems and linear differen-
tial equations. For L = ∂n +an−1∂

n−1 + . . .+a0 ∈ K [∂], one can consider the companion matrix

AL =


0 1 . . . 0

0
. . .

. . .
...

...
. . . 0 1

−a0 −a1 . . . −an−1

 .

The differential system ∂Y = ALY induces a ∂-module structure on K n , which we denote by L .
Conversely, the Cyclic vector lemma [49, Proposition 2.9] states that any ∂-module is isomorphic
to a ∂-module L , of the above form, provided k ( K .

Definition 2.35. A morphism of ∂-modules over K is a homomorphism of K [∂]-modules.

One can consider the category DiffK of ∂-modules over K :

Definition 2.36. We can define the following constructions in DiffK :

(1) The direct sum of two ∂-modules, M1 and M2, is M1 ⊕M2 together with the action of ∂
defined by ∂(m1 ⊕m2) = ∂(m1)⊕∂(m2).

(2) The tensor product of two ∂-modules, M1 and M2, is M1 ⊗K M2 together with the action of
∂ defined by ∂(m1 ⊗m2) = ∂(m1)⊗m2 +m1 ⊗∂(m2).

(3) The unit object 1 for the tensor product is the field K together with the left K [∂]-module
structure given by (a0 +a1∂+·· ·+an∂

n)( f ) = a0 f +·· ·+an∂
n( f ) for f , a0, . . . , an ∈ K .
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(4) The internal Hom of two ∂-modules M1,M2 exists in DiffK and is denoted by Hom(M1,M2).
It consists of the K -vector space HomK (M1,M2) of K -linear maps from M1 to M2 together
with the action of ∂ given by the formula ∂u(m1) = ∂(u(m1))−u(∂m1). The dual M∗ of a
∂-module M is the ∂-module Hom(M ,1).

(5) An endofunctor D : DiffK → DiffK , called the prolongation functor, is defined as follows: if M

is an object of DiffK corresponding to the linear differential system ∂(Y ) = AY , then D(M )

corresponds to the linear differential system ∂(Z ) =
(

A δ(A)
0 A

)
Z .

The construction of the prolongation functor reflects the following idea. If U is a fundamental
solution matrix of ∂(Y ) = AY in some ∆-field extension F of K , that is, ∂(U ) = AU and U ∈ GLn(F ),
then

∂(δU ) = δ(∂U ) = δ(A)U + Aδ(U ).

Then,

(
U δ(U )
0 U

)
is a fundamental solution matrix of ∂(Z ) =

(
A δ(A)
0 A

)
Z . Endowed with all these

constructions, it follows from [43, Corollary 3] that the category DiffK is a δ-tensor category (in the
sense of [43, Definition 3] and [25, Definition 4.2.1]).

In this paper, we will not consider the whole category DiffK but the δ-tensor subcategory gen-
erated by a ∂-module. More precisely, we have the following definition.

Definition 2.37. Let M be an object of DiffK . We denote by {M }⊗,δ the smallest full subcategory
of DiffK that contains M and is closed under all operations of linear algebra (direct sums, tensor
products, duals, and subquotients) and under D . The category {M }⊗,δ is a δ-tensor category over
k. We also denote by {M }⊗ the full tensor subcategory of DiffK generated by M . Then, {M }⊗ is a
tensor category over k.

Similarly, the category Vectk of finite-dimensional k-vector spaces is a δ-tensor category. The
prolongation functor on Vectk is defined as follows: for a k-vector space V , the k-vector space D(V )
equals k[δ]≤1 ⊗k V , where k[δ]≤1 is considered as the right k-module of δ-operators up to order 1
and V is viewed as a left k-module.

Definition 2.38. Let M be an object of DiffK . A δ-fiber functor ω : {M }⊗,δ → Vectk is an exact,
faithful, k-linear, tensor compatible functor together with a natural isomorphism between DVectk ◦
ω and ω◦D{M }⊗,δ [25, Definition 4.2.7], where the subscripts emphasize the category on which we

perform the prolongation. The pair
(
{M }⊗,δ,ω

)
is called a δ-Tannakian category.

Theorem 2.39 ([20, Corollaries 4.29 and 6.2]). Let M be an object of DiffK . Since k is δ-closed, the
category {M }⊗,δ admits a δ-fiber functor and any two δ-fiber functors are naturally isomorphic.

Definition 2.40. Let M be an object of Diffk and ω : {M }⊗,δ → Vectk be a δ-fiber functor. The
group Galδ(M ) of δ-tensor isomorphisms of ω is defined as follows. It consists of the elements
g ∈ GL(ω(M )) that stabilize ω(V ) for every ∂-module V obtained from M by applying the linear
constructions (subquotient, direct sum, tensor product, and dual), and the prolongation functor.
The action of g on ω(V ) is obtained by applying the same constructions to g . We call Galδ(M ) the
parameterized differential Galois group of (M ,ω), or of M when there is no confusion.

Theorem 2.41 ([43, Theorem 2]). Let M be an object of DiffK and ω : {M }⊗,δ → Vectk be a δ-fiber
functor. The group Galδ(M ) ⊂ GL(ω(M )) is a linear differential algebraic group defined over k,
and ω induces an equivalence of categories between {M }⊗,δ and the category of finite-dimensional
representations of Galδ(M ).
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Definition 2.42. We say that a ∂-module M over K is trivial if it is either (0) or isomorphic as ∂-
module over K to 1n for some positive integer n. For G a linear differential algebraic group over k,
we say that a G-module V is trivial if G acts identically on V .

Remark 2.43. For M an object of DiffK and ω : {M }⊗,δ → Vectk a δ-fiber functor, the following
holds: a ∂-module N in {M }⊗,δ is trivial if and only if ω(N ) is a trivial Galδ(M )-module.

Remark 2.44. The parameterized differential Galois group depends a priori on the choice of a
δ-fiber functor ω. However, since two δ-fiber functors for {M }⊗,δ are naturally isomorphic, we
find that the parameterized differential Galois groups that these functors define are isomorphic as
linear differential algebraic groups over k. Thus, if it is not necessary, we will speak of the parame-
terized differential Galois group of M without mentioning the δ-fiber functor.

Forgetting the action of δ, one can similarly define the group Gal(M ) of tensor isomorphisms
of ω : {M }⊗ → Vectk. By [14], the group Gal(M ) ⊂ GL(ω(M )) is a linear algebraic group defined
over k, and ω induces an equivalence of categories between {M }⊗ and the category of k-finite-
dimensional representations of Gal(M ). We call Gal(M ) the differential Galois group of M over
K .

Proposition 2.45 ([22, Proposition 6.21]). If M is an object of DiffK and ω : {M }⊗,δ → Vectk is a
δ-fiber functor, then Galδ(M ) is a Zariski dense subgroup of Gal(M ) (see Proposition 2.13).

Definition 2.46. A parameterized Picard–Vessiot extension, or PPV extension for short, of K for a ∂-
module M over K is a∆-field extension KM that is generated over K by the entries of a fundamen-
tal solution matrix U of a differential system ∂(X ) = AX associated to M and such that K ∂

M
= K ∂.

The field K (U ) is a Picard–Vessiot extension (PV extension for short), that is, a ∂-field extension of K
generated by the entries of a fundamental solution matrix U of ∂(X ) = AX such that K (U )∂ = K ∂.

A parameterized Picard–Vessiot extension associated to a ∂-module M depends a priori on the
choice of a K -basis of M , which is equivalent to the choice of a linear differential system associated
to M . However, one can show that gauge equivalent differential systems lead to parameterized
Picard–Vessiot extensions that are isomorphic as K -∆-algebras. In [14], Deligne showed that a fiber
functor corresponds to a Picard–Vessiot extension; it is shown in [20, Theorem 5.5] that the notions
of δ-fiber functor and parameterized Picard–Vessiot extension are equivalent.

Definition 2.47. Let M be a ∂-module over K . Let ∂(X ) = AX be a differential system associated
to M over K with A ∈ K n×n and let KM be a PPV extension for ∂(X ) = AX over K . The param-
eterized Picard–Vessiot group, or PPV-group for short is denoted by Galδ(KM /K ) and is the set of
∆-automorphisms of KM over K , whereas the Picard–Vessiot group (usually called the differen-
tial Galois group in the literature) of KM over K , by definition, is the set of ∂-automorphisms of a
Picard–Vessiot extension K (U ) of K in KM , where U ∈ GLn(KM ) is a fundamental solution matrix
of ∂(X ) = AX . This group is denoted by Gal(KM /K ).

Remark 2.48. Let U ∈ GLn(KM ) be a fundamental solution matrix of ∂(X ) = AX . For any τ ∈
Galδ(KM /K ), there exists [τ]U ∈ GLn(k) such that τ(U ) =U [τ]U . The map

Galδ(KM /K ) → GLn , τ 7→ [τ]U

is an embedding and identifies Galδ(KM /K ) with a δ-closed subgroup of GLn . One can show that
another choice of fundamental solution matrix as well as another choice of gauge equivalent linear
differential system yield a conjugate subgroup in GLn . Similarly, one can represent Gal(KM /K ) as
a linear algebraic subgroup of GLn . With these representations of the Picard–Vessiot groups, one
can show that Picard–Vessiot groups and differential Galois groups are isomorphic in the parame-
terized and non-parameterized cases.
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In the PPV theory, a Galois correspondence holds between differential algebraic subgroups of
the PPV-group and ∆-sub-field extensions of KM (see [22, Theorem 6.20] for more details). More-
over, the δ-dimension of Galδ(M ) coincides with the δ-transcendence degree of KM over K (see
[22, p. 374 and Proposition 6.26] for the definition of the δ-dimension and δ-transcendence degree
and the proof of their equality). Moreover, the defining equations of the parameterized differen-
tial Galois group reflect the differential algebraic relations among the solutions (see [22, Propo-
sition 6.24]). Therefore, given a ∂-module M over K , we find that the defining equations of the
parameterized differential Galois group Galδ(M ) over k determine the differential algebraic rela-
tions between the solutions in KM over K .

Definition 2.49. A ∂-module M is said to be completely reducible if, for every ∂-submodule N

of M , there exists a ∂-submodule N ′ of M such that M = N ⊕N ′. We say that a ∂-operator is
completely reducible if the associated ∂-module is completely reducible.

By [49, Exercise 2.38], a ∂-module is completely reducible if and only if its differential Galois
group is a reductive linear algebraic group. Moreover, for a completely reducible ∂-module M , any
object in {M }⊗ is completely reducible.

2.3.2 Isomonodromic differential modules

Definition 2.50 ([13, Definition 3.8]). Let A ∈ K n×n . We say that the linear differential system ∂Y =
AY is isomonodromic (or completely integrable) over K if there exists B ∈ K n×n such that ∂(B)−
δ(A) = AB −B A.

Remark 2.51. One can show that a linear differential system ∂Y = AY is isomonodromic if and
only if there exists a ∆-field extension L of K and B ∈ K n×n such that the system{

∂Y = AY

δY = BY

has a fundamental solution matrix with coefficients in L.

We recall a characterization of complete integrability in terms of the PPV theory.

Proposition 2.52 ([13, Proposition 3.9]). Let M be a ∂-module over K and ∂(Y ) = AY , with A ∈
K n×n , be an associated linear differential system. The following statements are equivalent:

• Galδ(M ) is conjugate to constants in GL(ω(M )) (see Definition 2.30);

• The linear differential system ∂(Y ) = AY is isomonodromic over K .

The proof of the following result was provided to the authors by Michael F. Singer and will be
used in the proof of Proposition 2.54.

Lemma 2.53. Given a linear differential algebraic group G ⊂ GLn defined over a differentially closed
field (k,δ) and any ∆ = {∂,δ}-field K such that K ∂ = k, there exists a ∆-field extension F of K such
that F ∂ = k and G can be realized as a parameterized differential Galois group over F in the given
faithful representation of G ⊂ GLn .

Proof. We first consider the “generic” case: we first construct a ∆-field extension E of K with no
new ∂-constants such that GLn is a parameterized differential Galois group of a ∂-module M over
E . Assume we have constructed E and let EM be a PPV extension of M over E . For any differential
algebraic subgroup G of GLn , let F be the fixed field of G in EM , i.e., the elements of EM fixed
by G . By the PPV correspondence, G is the parameterized differential Galois group of EM over F .
Moreover, K ∂ = k ⊂ F ∂ ⊂ E∂

M
= k.
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To construct the fields EM and E for GLn , we shall follow the construction from [30, pages 87–
89]. Let {zi , j } be a set of n2 ∆-differential indeterminates over K . Let EM = K 〈zi , j 〉∆ be a ∆-field of
differential rational functions in these indeterminates. Note that the δ-constants of EM are k, as in
[30, Lemma 2.14]. Let Z = (zi , j ) ∈ GLn(EM ) and A = (∂Z )(Z )−1. We then have that

∂Z = AZ . (2.2)

Let E be the ∆-field generated over K by the entries of A. Then, EM is a PPV extension of E for
equation (2.2). Since Z is a matrix of ∆-differential indeterminates, any assignment Z 7→ Z g for
g ∈ GLn(K ) defines a∆-K -automorphismφg of EM over K . If we restrict to those g ∈ GLn = GLn(k),
then φg leaves A fixed and so all elements of E are left fixed. Therefore, GLn is a subgroup of the
PPV-group of EM over E . Since this PPV-group is already a subgroup of GLn , we must have that the
PPV-group of EM over E is GLn .

The proof of the following result uses PPV theory, which does not appear in the statement. It is,
therefore, of interest to find a direct proof of it as well.

Proposition 2.54. Let G ⊂ GL(V ) be a linear differential algebraic group over k and let G◦ be the
identity component of G. If G◦ is conjugate to constants in GL(V ), then the same holds for G.

Proof. By Lemma 2.53, let K be a ∆-field with K ∂ = k such that G is a parameterized differential
Galois group of a ∂-module M over K and the embedding G ⊂ GL(V ) is the faithful representation
G → GL(ω(M )). Let L/K be a PPV extension for M over K . One can identify G with Galδ(L/K ),
the group of automorphisms of L over K commuting with δ and ∂. Let F be the subfield of L fixed
by G◦. By the PPV correspondence [13, Theorem 9.5], the group of automorphisms of L over F
commuting with {δ,∂} coincides with G◦ and the extension F /K is algebraic since G/G◦ is finite.

Let ∂(Y ) = AY be a linear differential system associated to M . The parameterized differential
Galois group of M over F is G◦ and thus conjugate to constants by assumption. Proposition 2.52
implies that ∂(Y ) = AY is isomonodromic over F , that is, there exists B ∈ F n×n such that

∂(B)−δ(A) = AB −B A. (2.3)

Let K0 be the subfield extension of F generated over K by the coefficients of the matrix B . Without
loss of generality, we can assume that K0/K is a finite Galois extension in the classical sense. We
denote by Gal(K0/K ) its differential Galois group and by r its degree. By [49, Exercise 1.24], there
exist unique derivations, still denoted ∂ and δ extending ∂ and δ to K0. Moreover, any element of
Gal(K0/K ) commutes with the action of δ and ∂ on K0. If we let

C = 1

r

∑
τ∈Gal(K0/K )

τ(B),

then C has coefficients in K and satisfies

∂(A)−δ(C ) = ∂(A)− 1

r

( ∑
τ∈Gal(K0/K )

τ(δ(B))

)

= ∂(A)− 1

r

( ∑
τ∈Gal(K0/K )

τ (∂(A)−B A+ AB)

)
= ∂(A)−∂(A)+C A− AC . (2.4)

This shows that ∂(Y ) = AY is isomonodromic over K . By Proposition 2.52, we find that G is conju-
gate to constants in GLn .
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3 Calculating the parameterized differential Galois group of
L1(L2(y)) = 0

In this section, given two completely reducible ∂-modules L1 and L2, we study the parameter-
ized differential Galois group of an arbitrary ∂-module extension U of L1 by L2. In Section 3.1,
we describe Galδ(U ) as a semi-direct product of a δ-closed subgroup of Hom(ω(L1),ω(L2)) by
the parameterized differential Galois group Galδ(L1 ⊕L2) (see Theorem 3.3). In Section 3.2, we
perform a first reduction that allows us to set L1 equal to the trivial ∂-module 1.

In Theorem 3.13, we show how one can recover a complete description of the parametrized
differential Galois group of U from the knowledge of the parametrized differential Galois group of
its reduction. In Section 3.3, we thus focus on the computation of the parameterized differential
Galois group of an arbitrary ∂-module extension U of 1 by a completely reducible ∂-module L .
We then show that one can decompose L in a “constant” and a “purely non-constant” part. This
decomposition yields a decomposition of Ru(Galδ(U )). For K = k(x), the computation of Galδ(U )
for the “constant part” can be deduced from the algorithms contained in [34], whereas the com-
putation of the “purely non-constant” part results from Section 3.3.2 and Theorem 3.19. Finally,
in Section 3.3.3, we show, under some assumption on L , that Ru(Galδ(U )) is the product of the
“constant” and “purely non-constant” parts (see Theorem 3.25).

Throughout this section, K is a (δ,∂)-field of characteristic zero, whose field of ∂-constants k is
assumed to be δ-closed. We denote also by C the field of δ-constants of k. We fix a δ-fiber functor
ω : DiffK → Vectk on DiffK (see Definition 2.38). Any parameterized differential Galois group in this
section shall be computed with respect toω and is a linear differential algebraic group defined over
k. Any representation is, unless explicitly mentioned, defined over k.

3.1 Structure of the parameterized differential Galois group

Let L1,L2 ∈ K [∂] be two completely reducible ∂-operators, and let us denote by L1 (respectively,
by L2) the ∂-module corresponding to L1(y) = 0 (respectively, L2(y) = 0). The ∂-module U over K ,
corresponding to L1(L2(y)) = 0, is an extension of L1 by L2,

0 // L2
i // U

p // L1
// 0 ,

in the category of ∂-modules over K .

Definition 3.1. For any object X in {U }⊗,δ, we define Stab(X ) (respectively, Stabδ(X )) as the set of
(respectively, δ-) tensor automorphisms in Gal(U ) (respectively, Galδ(U )) that induce the identity
on ω(X ).

By [15, II.1.36], Stab(X ) (respectively, Stabδ(X )) is a linear (respectively, differential) algebraic
group over k. One has also that Stabδ(X ) is Zariski dense in Stab(X ). Moreover, we have:

Lemma 3.2. For any object X in {U }⊗,δ, the group Stabδ(X ) (respectively, Stab(X )) is normal in
Galδ(U ) (respectively, Gal(U )).

Proof. We prove only the parameterized statement. Let g ∈ Galδ(U ) and h ∈ Stabδ(X ). One has
to show that g hg−1 induces the identity on ω(X ). It is sufficient to remark that, by definition, any
element of Galδ(U ) stabilizes ω(X ).

The aim of this section is to prove the following theorem.

Theorem 3.3. If L1,L2 are completely reducible ∂-modules over K and if U is a ∂-module extension
over K of L1 by L2, then
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(1) Galδ(U ) is an extension of Galδ(L1 ⊕L2) by a δ-subgroup W ⊂ Hom(ω(L1),ω(L2)).

(2) W is stable under the action of Galδ(L1 ⊕L2) on Hom(ω(L1),ω(L2)) given by

g ∗φ= gφ(g−1) for any (g ,φ) ∈ Galδ(L1 ⊕L2)×Hom(ω(L1),ω(L2)).

Remark 3.4. The parameterized differential Galois group Galδ(L1 ⊕L2) acts on the objects of the
δ-tensor category generated by ω(L1 ⊕L2). The k-vector space Hom(ω(L1),ω(L2)) belongs to
this category, and the action of Galδ(L1 ⊕L2) on Hom(ω(L1),ω(L2)) detailed above is just the
description of the Tannakian representation.

Before proving this theorem, we need some intermediate lemmas.

Lemma 3.5. The linear differential algebraic group Galδ(U ) is an extension of the reductive linear
differential algebraic group Galδ(L1⊕L2) by the linear differential algebraic group Stabδ(L1⊕L2).

Proof. Since {L1 ⊕L2}⊗,δ is a full δ-tensor subcategory of {U }⊗,δ, the linear differential algebraic
group Galδ(L1 ⊕L2) is a quotient of Galδ(U ). We denote the quotient map by π : Galδ(U ) →
Galδ(L1 ⊕L2). Then kerπ= Stabδ(L1 ⊕L2). Since L1 and L2 are completely reducible, L1 ⊕L2

is completely reducible as well. This means that Galδ(L1⊕L2) is reductive. Since the latter group is
the Zariski closure of Galδ(L1⊕L2) in GL(ω(L1⊕L2)), [35, Remark 2.9] implies that Galδ(L1⊕L2)
is a reductive linear differential algebraic group.

We will relate Stabδ(L1 ⊕L2) to Ru(Galδ(U )) and describe more precisely the structure of the
latter group. By the exactness of ω, ω(U ) is an extension of ω(L1) by ω(L2) in the category of
representations of Galδ(U ).

Lemma 3.6. In the above notation, let s be a k-linear section of the exact sequence :

0 // ω(L2)
ω(i ) // ω(U )

ω(p) // ω(L1)
s

ll // 0 . (3.1)

We consider the following map

ζU : Galδ(U ) → Hom(ω(L1),ω(L2)), g 7→ (
x 7→ g (s(g−1x))− s(x)

)
.

Then the restriction of the map ζU to Stabδ(L1⊕L2) is a one-to-one morphism of linear differential
algebraic groups. Moreover, the linear differential algebraic group Stabδ(L1 ⊕L2) is abelian and
coincides with Ru(Galδ(U )).

Proof. For all g1, g2 ∈ Galδ(U ), we have:

ζU (g1g2)(x) = g1ζU (g2)(g−1
1 x)+ζU (g1)(x). (3.2)

If g1, g2 ∈ Stabδ(L1 ⊕L2), equation (3.2) gives

ζU (g1g2) = ζU (g1)+ζU (g2).

This means that ζU is a morphism of linear differential algebraic groups from Stabδ(L1 ⊕L2) to
Hom(ω(L1),ω(L2)).

Moreover, let {e j } j=1...s (resp., { fi }i=1...r ) be a k-basis of ω(L2) (resp. ω(L1)). Then{
ω(i )(ei ), s( f j )

}
i=1,...,s, j=1,...r
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is a k-basis of ω(U ). If g ∈ Stabδ(L1 ⊕L2)∩ker(ζU ), then g induces the identity on{
ω(i )(ei ), s( f j )

}
i=1,...,s, j=1,...r

and thereby on ω(U ). Therefore, by definition of Galδ(U ), the element g is the identity element

and, therefore, ker
(
ζU

∣∣
Stabδ(L1⊕L2)

)
is trivial.

Since Hom(ω(L1),ω(L2)) is abelian, the same holds for Stabδ(L1⊕L2). Moreover, Stabδ(L1⊕
L2) is unipotent. Indeed, let e be the identity element in Galδ(U ), x ∈ω(L1), and g ∈ Stabδ(L1 ⊕
L2). Since g s(x)− s(x) ∈ω(L2), we have

(g −e)2(s(x)) = (g −e)(g s(x)− s(x)) = g (g s(x)− s(x))− (g s(x)− s(x)) = 0.

Reasoning as above, we find that (g − e)2 is zero on ω(U ). By Lemma 3.2, Stabδ(L1 ⊕L2) is also
normal and, hence, must be contained in Ru(Galδ(U )). By [10, Theorem 1], the image of a unipo-
tent linear differential algebraic group is unipotent. By Lemma 3.5, Stabδ(L1 ⊕L2) is the kernel
of the projection of Galδ(U ) on the reductive linear differential algebraic group Galδ(L1 ⊕L2). It
follows that Ru(Galδ(U )) is contained in Stabδ(L1 ⊕L2), which ends the proof.

Remark 3.7. Since two sections of (3.1) differ by a map from ω(L1) to ω(L2), one sees that, when
restricted to Ru(Galδ(U )) = Stabδ(L1⊕L2), the map ζU is independent of the choice of the section.

By the above lemma, Ru(Galδ(U )) is an abelian normal subgroup of Galδ(U ). Since Galδ(L1 ⊕
L2) is the quotient of Galδ(U ) by Ru(Galδ(U )) and Ru(Galδ(U )) is abelian, the linear differential
algebraic group Galδ(L1 ⊕L2) acts by conjugation on Ru(Galδ(U )). The lemma below shows that
this action is compatible with the action of Galδ(L1 ⊕L2) on Homk(ω(L1),ω(L2)).

Lemma 3.8. For all g1 ∈ Galδ(U ), g2 ∈ Ru(Galδ(U )), and x ∈ω(L1), we have

ζU

(
g1g2g1

−1)(x) = g1
(
ζU (g2)

(
g−1

1 x
))= g1 ∗ζU (g2)(x),

where ∗ denotes the natural action of Galδ(L1 ⊕L2) on Hom(ω(L1),ω(L2)) via

g ∗φ= g ◦φ◦ g−1 for φ ∈ Hom(ω(L1),ω(L2)) and g ∈ Galδ(L1 ⊕L2).

Proof. Let e denote the identity element in Galδ(U ). From (3.2), we find that, for all x ∈ω(L1),

g1ζU

(
g1

−1)(g−1
1 x

)= ζU (e)(x)−ζU (g1)(x) =−ζU (g1)(x). (3.3)

Applying repeatedly (3.2), we deduce that

ζU

(
g1g2g1

−1) (x) = g1
(
ζU

(
g2g1

−1)(g−1
1 x

))+ζU (g1)(x)

= g1
(
g2ζU

(
g1

−1)(g−1
2 g−1

1 x
)+ζU (g2)

(
g−1

1 x
))+ζU (g1)(x)

= g1ζU (g2)
(
g−1

1 x
)+ g1g2g−1

1

(
g1ζU

(
g−1

1

)(
g−1

1 g1g−1
2 g−1

1 x
))+ζU (g1)(x),

for all x ∈ω(L1). Since

g1g2g1
−1, g1g−1

2 g1
−1 ∈ Ru(Galδ(U )) = Stabδ(L1 ⊕L2),

we get that, for all x ∈ω(L1),

g1g2g−1
1

(
g1ζU

(
g−1

1

)(
g−1

1 g1g−1
2 g−1

1 x
))+ζU (g1)(x) = g1ζU

(
g−1

1

)
(g−1

1 x)+ζU (g1)(x) = 0.

We conclude that, for all x ∈ω(L1),

ζU

(
g1g2g1

−1)(x) = g1ζU (g2)
(
g−1

1 x
)
.
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Proof of Theorem 3.3. By the above, Galδ(U ) is an extension of Galδ(L1⊕L2) by Ru(Galδ(U )). The
action of Galδ(L1 ⊕L2) on Ru(Galδ(U )) is deduced from the action by conjugation of Galδ(U ) on
its unipotent radical.

Combining Lemma 3.6 and Lemma 3.8, we can identify via ζU , the unipotent radical
Ru(Galδ(U )) with a δ-closed subgroup of Hom(ω(L1),ω(L2)) and the action of Galδ(L1 ⊕L2) on
Ru(Galδ(U )) by conjugation with the action of Galδ(L1 ⊕L2) on Hom(ω(L1),ω(L2)), induced by
the Galδ(L1 ⊕L2)-module structure on ω(L1 ⊕L2).

Remark 3.9. The extension in Theorem 3.3 does not split in general. For example,

G =


a 0 0
0 1 b
0 0 1

 ∈ GL3(k)

∣∣∣∣δ(b) = δ(a)

a


is a linear differential algebraic group such that the quotient map G →G/Ru(G) ∼= k× does not have
any δ-polynomial section. Indeed, otherwise, G would have a projection onto Ru(G) ∼= C = kδ,
which is impossible, because G is strongly connected [12, Example 2.25].

Remark 3.10. If K = k(x) and ∂ = ∂
∂x , the knowledge of R = Ru(Galδ(U )) allows one to compute

G = Galδ(U ) algorithmically. Indeed, one can compute the normalizer N of R in GL(ω(U )). Note
that G ⊂ N . By the differential version of the Chevalley theorem [32, Theorem 5.1] (see also [6, proof
of Theorem 5.6]), there is U0 ∈ {U }⊗,δ and a differential representation% : N → GL(ω(U0)) such that
R = ker%. The proof of this Chevalley theorem leads to a constructive procedure to find U0 and %.
Since Galδ(U0) = %(G) is reductive, one can compute it [35]. We can find G as %−1(Galδ(U0)).

In view of Remark 3.10, our aim is to compute the parameterized differential Galois group of
U . To this purpose, we will perform a first reduction that will allow us to simplify our computation.

3.2 A first reduction

Let L1,L2 ∈ K [∂] be two completely reducible ∂-operators. Let us denote the ∂-module over K
corresponding to L1(y) = 0 (respectively, L2(y) = 0) by L1 (respectively, by L2). The ∂-module U

corresponding to L1(L2(y)) = 0 is an extension of L1 by L2,

0 // L2
i // U

p // L1
// 0 , (3.4)

in the category of ∂-modules over K . In this section, we recall the methods of [4] to show that we
can restrict ourselves to the case in which L1 is of the form ∂− ∂b

b for some b ∈ K ∗.
We first describe the reduction process in terms of ∂-modules. Since the functor Hom(L1,−) is

exact, (3.4) gives the exact sequence:

0 // Hom(L1,L2) // Hom(L1,U ) // Hom(L1,L1) // 0 , (3.5)

We pull back (3.5) by the diagonal embedding

d : 1 → Hom(L1,L1), λ 7→λ idL1 ,

where 1 is the unit object. We obtain an exact sequence

0 // Hom(L1,L2) // R(U ) // 1 // 0 , (3.6)

where R(U ) is the ∂-module deduced from U by the pullback. We call the ∂-module R(U ) the
reduction of U . We recall that, as a K -vector space, R(U ) coincides with the set{

(φ,λ) ∈ Hom(L1,U )×1
∣∣ p ◦φ=λ idL1

}
.
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Remark 3.11. An effective interpretation of this reduction process in terms of matrix differential
equations immediately follows from [4, page 15].

Proposition 3.12. With notation above, we have

(1) The parameterized differential Galois group Galδ(Hom(L1,L2)) is a quotient of Galδ(L1 ⊕
L2) and is a reductive linear differential algebraic group;

(2) By Lemma 3.6, one can identify Ru(Galδ(U )) (respectively, Ru(Galδ(R(U )))) with a differen-
tial algebraic subgroup of Hom(ω(L1),ω(L2)) (respectively, of Hom(k,Hom(ω(L1),ω(L2)))).
Then the canonical isomorphism

φ : Hom(k,Hom(ω(L1),ω(L2))) → Hom(ω(L1),ω(L2)), ψ 7→ψ(1)

induces an isomorphism of linear differential algebraic groups between Ru(Galδ(R(U ))) and
Ru(Galδ(U )) ;

(3) By Lemma 3.8, Galδ(L1⊕L2) (respectively, Galδ(Hom(L1,L2))) acts on Ru(Galδ(U )) (respec-
tively, on Ru(Galδ(R(U )))). These actions are compatible with the isomorphism φ.

Proof.

(1) Since Hom(L1,L2) (respectively, L1 ⊕L2) is a sub-object of {U }⊗,δ, its parameterized dif-
ferential Galois group is a quotient of Galδ(U ) by Stabδ(Hom(L1,L2)) (respectively, by
Stabδ(L1 ⊕L2) = Stabδ(L1)∩ Stabδ(L2)). It is not difficult to see that we have the inclu-
sion

Stabδ(L1 ⊕L2) ⊂ Stabδ(Hom(L1,L2))

Since stabilizers of objects in {U }⊗,δ are normal in Galδ(U ) by Lemma 3.2, we can apply [10,
Proposition 2] to get that

Galδ(Hom(L1,L2)) = Galδ(U )
/

Stabδ(Hom(L1,L2))

is a quotient of
Galδ(L1 ⊕L2) = Galδ(U )

/
Stabδ(L1 ⊕L2)

by
Stabδ(Hom(L1,L2))

/
Stabδ(L1 ⊕L2).

The same reasoning in the non-parameterized case shows that Gal(Hom(L1,L2)) is a quo-
tient of Gal(L1 ⊕L2). Since quotients of reductive algebraic groups are reductive, [35, Re-
mark 2.9] allows us to conclude that Galδ(Hom(L1,L2)) is a reductive linear differential al-
gebraic group.

(2) Since R(U ) is an object of {U }⊗,δ, Galδ(R(U )) is a quotient of Galδ(U ), and we denote the
canonical surjection by π. The image of Stabδ(Hom(L1,L2)) via π coincides with the stabi-
lizer of Hom(L1,L2) in Galδ(R(U )) and, thus, with Ru(Galδ(R(U ))) by Lemmas 3.5 and 3.6.

Let H ⊂ Ru(Galδ(R(U ))) be the image of Stabδ(L1⊕L2) byπ. By [8, Proposition 7, page 908],
H is a differential algebraic subgroup of Ru(Galδ(R(U ))). Since Stabδ(L1 ⊕L2) is normal
in Galδ(U ) and π is surjective, H is normal in Ru(Galδ(R(U ))), and we can consider the
quotient map

p : Ru(Galδ(R(U ))) → Ru(Galδ(R(U )))
/

H .
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Since quotients of unipotent linear differential algebraic groups are unipotent by [10, Theo-
rem 1], the linear differential algebraic group Ru(Galδ(R(U )))/H is unipotent. Note that

Ru
(

Galδ(R(U ))
)/

H =π(
Stabδ(Hom(L1,L2))

)/
π
(

Stabδ(L1 ⊕L2)
)

. (3.7)

The surjective morphism π is induced via δ-Tannakian equivalence by the inclusion of δ-
Tannakian categories {R(U )}⊗,δ ⊂ {U }⊗,δ. This inclusion restricts to the inclusion of the
usual Tannakian categories {R(U )}⊗ ⊂ {U }⊗, which shows, taking the Zariski closure, that
π extends to a surjective morphism of algebraic groups π : Gal(U ) → Gal(R(U )). One can
show that the quotient

π(Stab(Hom(L1,L2)))
/
π(Stab(L1 ⊕L2))

coincides with the Zariski closure of Ru(Galδ(R(U )))/H .

Let KL1⊕L2 (respectively, KHom(L1,L2)) denote the usual PV extension of L1 ⊕L2 (respec-
tively, of Hom(L1,L2)) over K . Let KU (respectively, KR(U )) denote the usual PV extension
of U (respectively, of R(U ))) over K . We have the following tower of ∂-field extensions:

KU

qqqqqqqqqqq

NNNNNNNNNNN

KR(U )

LLLLLLLLLL
KL1⊕L2

qqqqqqqqqq

KHom(L1,L2)

K

We see that

Gal
(
KL1⊕L2

/
KHom(L1,L2)

)= Stab(Hom(L1,L2))
/

Stab(L1 ⊕L2) .

Since KHom(L1,L2) is a PV extension of K , the group Gal
(
KL1⊕L2

/
KHom(L1,L2)

)
is normal in

Gal
(
KL1⊕L2 /K

)
by the PV-correspondence. Therefore, Gal

(
KL1⊕L2

/
KHom(L1,L2)

)
is a reduc-

tive algebraic group. Since

π : Stab(Hom(L1,L2))
/

Stab(L1 ⊕L2)) →π
(

Stab(Hom(L1,L2))
)/
π
(

Stab(L1 ⊕L2)
)

is a quotient map, we deduce from the above identifications that the Zariski closure of
Ru(Galδ(R(U )))/H is a reductive algebraic group. We conclude by [35, Remark 2.9] that
Ru(Galδ(R(U )))/H is reductive. On the other hand, since Ru(Galδ(R(U )))/H is both unipo-
tent and reductive, it must be equal to {e}, and we have

π
(

Stabδ(L1 ⊕L2)
)=π(

Stabδ(Hom(L1,L2))
)= Ru(Galδ(R(U ))) . (3.8)

We recall the notation of Lemma 3.6. We denote by s a k-linear section of the exact sequence
of finite-dimensional representations of Galδ(U ):

0 // ω(L2)
ω(i ) // ω(U )

ω(p) // ω(L1)
s

ll // 0 .
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Then, we identify Ru(Galδ(U )) = Stabδ(L1 ⊕L2) with the image of Stabδ(L1 ⊕L2) by

ζU : Ru(Galδ(U )) → Homk(ω(L1),ω(L2)) , g 7→ (
x 7→ g s(g−1x)− s(x)

)
.

Since ω is compatible with Hom, the map r : k →ω(R(U )), λ 7→ (λs,λ), is a k-linear section
of t

0 // Hom(ω(L1),ω(L2)) // ω(R(U ))
t // k
r
nn

// 0 .

We apply again Lemma 3.6 to identify Ru(Galδ(R(U ))) = π
(

Stabδ(L1 ⊕L2)
)

with its image
via

ζR(U ) : Galδ(R(U )) → Hom(k,Homk(ω(L1),ω(L2))) , g 7→ (
λ 7→ g r (λ)g−1 − r (λ)

)
.

Identifying Hom(k,Hom(ω(L1),ω(L2))) with Hom(ω(L1),ω(L2)) via φ, we find that

ζU =φ◦ζR(U ) ◦π. (3.9)

We have

Ru
(

Galδ(U )
)= ζU

(
Stabδ(L1 ⊕L2)

)= ζR(U ) ◦π
(

Stabδ(L1 ⊕L2)
)= Ru

(
Galδ(R(U ))

)
,

where we have used Remark 3.7.

(3) The compatibility of the actions comes from Lemma 3.8, (3.9), and (3.8).

We combine Proposition 3.12 and Theorem 3.3 in the following Theorem.

Theorem 3.13. If L1,L2 are completely reducible ∂-modules over K and if U is a ∂-module exten-
sion of L1 by L2, then

(1) Galδ(U ) is an extension of Galδ(L1 ⊕L2) by a δ-subgroup W of ω(Hom(L1,L2)).

(2) W = Ru(Galδ(R(U ))), where R(U ) is an extension of 1 by the completely reducible ∂-module
Hom(L1,L2), and the action of Galδ(L1 ⊕L2) on W is given by composing the quotient
map of Galδ(L1 ⊕ L2) on Galδ(Hom(L1,L2)) with the action of Galδ(Hom(L1,L2)) on
ω(Hom(L1,L2)).

3.3 Unipotent radical of parameterized differential Galois group of an exten-
sion of 1 by a completely reducible ∂-module L

Let L be a completely reducible ∂-module over K and U be an extension of 1 by L . In this section,
we study Ru(Galδ(U )).

In terms of ∂-operators, the situation corresponds to the following. Let L ∈ K [∂] be a completely
reducible ∂-operator and L be the associated ∂-module. An extension U of 1 by L corresponds
to an inhomogeneous differential equation of the form L(y) = b for some b ∈ K ∗. The main result
of [4] is to show that Ru(Gal(U )) =ω(L0), where L0 is the largest ∂-module of L such that

(1) L = L1L0 ;

(2) L1(y) = b has a solution in K .
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From Lemma 3.6, we know that Ru(Galδ(U )) can be identified with a differential algebraic sub-
group W of ω(L0), stable under the natural action of Galδ(L ) on ω(L ). In [21], the result of [4]
was rephrased in Tannakian terms and it was proved that L0 is the smallest subobject of L such
that the pushout of the extension U by the quotient map π : L → L /L0 is a trivial (split) exten-
sion. Such a characterization no longer holds in general in the parameterized setting. Indeed,
the classification of differential algebraic subgroups of vector groups shows that W coincides with
the zero set of a finite system of linear homogeneous differential equations with coefficients in k.
Therefore, we have two possibilities:

• either W is given by linear homogeneous polynomials and it is a finite-dimensional vector
space over k, that is, W is an algebraic subgroup of ω(L0) ;

• or W is given by linear homogeneous δ-polynomials of order greater than 0, and W is a vector
space over C = kδ.

In the first case, we deduce from the δ-Tannakian equivalence for the category {L }⊗,δ that W =
ω(L̃0) for a submodule L̃0 of L if and only if it is an algebraic subgroup ofω(L0). In this situation,
we show that L̃0 is the smallest ∂-submodule of L such that the parameterized differential Galois
group of the pushout of the extension U by the quotient map π : L → L /L̃0 is reductive (see
Theorem 3.19). This last condition can be tested by an algorithm contained in [35].

If W is not given by linear homogeneous δ-polynomials of order 0, then W is not of the form
ω(L̃ ) for any L̃ . Moreover, the order of the defining equations of W can be as high as required
even for second order differential equations:

Example 3.14. For n ≥ 0, let

z(x, t ,n) =
n∑

j=0
t j ln(x + j ) ; a(x, t ,n) = ∂z(x, t ,n)

∂x
=

n∑
j=0

t j

x + j
∈ k(x) ,

where k is a differentially closed field with respect to ∂/∂t containing Q(t ). Then the function
z(x, t ,n) satisfies the following second order differential equation in y(x, t ) over k(x) :

∂
(
∂y(x,t )
∂x

/
a(x, t ,n)

)
∂x

= 0 ⇐⇒ ∂2 y(x, t )

∂x2 −
∂a(x,t ,n)

∂x

a(x, t ,n)

∂y(x, t )

∂x
= 0.

Since ln(x), . . . , ln(x+n) are algebraically independent over k(x) by [41, 16], and ∂n+1z(x,t ,n)
∂t n+1 = 0, and

k(x)(ln(x), . . . , ln(x +n)) = k(x)

(
∂ j (z(x, t ,n))

∂t j

∣∣∣ j ≥ 0

)
,

we have

Galδ =
{(

1 a
0 1

) ∣∣∣ ∂n+1a

∂t n+1 = 0

}
.

In Section 3.3.1, we give a decomposition of L into “constant and purely non-constant” parts,
which allows us to distinguish between the two cases for the unipotent radical W described
above. In Section 3.3.2, we treat the “purely non-constant case”. In Section 3.3.3, we give a gen-
eral algorithm to compute Ru(Galδ(U )) under the assumption that L has no non-zero trivial ∂-
submodules in the sense of Definition 2.42.
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3.3.1 Decomposition of the completely reducible ∂-module L

The following lemma gives a decomposition of a completely reducible ∂-module into a direct sum
of ∂-modules, a “constant” one and a “purely non-constant” one.

Lemma 3.15. Let L be a completely reducible ∂-module and ρ : Galδ(L ) → GL(ω(L )) be the
representation of the parameterized differential Galois group of L on ω(L ). Then there exist ∂-
submodules Lc and Lnc of L such that

• L =Lc ⊕Lnc ;

• the representation of Galδ(L ) on Lc is conjugate to constants in GL(ω(Lc )), that is, any dif-
ferential system associated to Lc is isomonodromic by Proposition 2.52;

• Lc is maximal for the properties above, that is, there is no non-zero ∂-submodule N of Lnc

such that the representation of Galδ(L ) on N is conjugate to constants in GL(ω(N )).

Proof. Let L1, . . . ,Lr be irreducible ∂-submodules such that L =L1 ⊕ . . .⊕Lr . We have

GL(ω(L )) =
r∏

i=1
GL(ω(Li )) .

Let S be the set of indices i in {1, . . . ,r } such that the representation of Galδ(L ) on ω(Li ) is conju-
gate to constants in GL(ω(Li )). Setting

Lc =
⊕
i∈S

Li and Lnc =
⊕
i∉S

Li

allows to conclude the proof.

Remark 3.16. The above construction is effective. Let L be a completely reducible ∂-module over
K =C(z) with ∂(z) = 1 and ∂(C) = 0. There are many algorithms that compute a factorization of L

into a direct sum of irreducible ∂-submodules: see, for instance, [50, 46]. Thus, we can find a linear
differential system associated to L of the form

∂(Y ) =


A1 0 . . . 0
0 A2 . . . 0
...

. . .
. . .

...
0 . . . 0 Ar

Y

with Ai ∈ K ni×ni for all i = 1, . . . ,r and such that ∂(Y ) = Ai Y is an irreducible differential system.
For all i = 1, . . . ,r , let Li be a ∂-module associated to ∂(Y ) = Ai Y . Let S be the set of indices i such
that there exists a matrix Bi ∈ K ni×ni such that

δ(Ai )−∂(Bi ) = Bi Ai − Ai Bi .

Since there are algorithms to find rational solutions of linear differential systems (see [3]), the con-
struction of the set S is also effective. We can set Lc =⊕

i∈S Li and Lnc =⊕
i∉S Li .

This decomposition motivates the following definition.

Definition 3.17. A ∂-module L over K is said to be constant if the representation of Galδ(L ) on
ω(L ) is conjugate to constants in GL(ω(L )). On the contrary, the ∂-module L is said to be purely
non-constant if there is no non-zero ∂-submodule N of L such that the representation of Galδ(L )
on ω(N ) is conjugate to constants in GL(ω(N )).
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Remark 3.18. We say that a G-module V is purely non-constant if, for every non-zero G-
submodule W of V , the induced representation ρ : G → GL(W ) is non-constant. By the Tannakian
equivalence, a ∂-module L is purely non-constant if and only if the Galδ(L )-module ω(L ) is
purely non-constant.

Recall that U is a ∂-module extension of 1 by L . We consider the pushout of

0 // L // U // 1 // 0

by the projection of L on Lc (respectively, on Lnc ). We find two exact sequences of ∂-modules:

0 // Lc
// Uc

// 1 // 0 , (3.10)

and
0 // Lnc

// Unc
// 1 // 0 . (3.11)

We deduce from Lemma 3.6 that

• Ru(Galδ(U )) is a differential algebraic subgroup of ω(L ) ;

• Ru(Galδ(Uc )) is a differential algebraic subgroup of ω(Lc ) ;

• Ru(Galδ(Unc )) is a differential algebraic subgroup of ω(Lnc ).

The quotient Galδ(Uc )
/

Ru(Galδ(Uc )) is Galδ(Lc ), which is, by construction, conjugate to con-
stants. We can use [34] to compute Ru(Galδ(Uc )). Section 3.3.2 shows how to compute the unipo-
tent radical of the parameterized differential Galois group of an extension of 1 by a purely non
constant completely reducible module. Finally, Section 3.3.3 shows how to combine Section 3.3.2
with [34] to deduce Ru(Galδ(U )) from the computation of Ru(Galδ(Uc )) and Ru(Galδ(Unc )) .

3.3.2 The purely non-constant case

The aim of this section is to prove the following theorem.

Theorem 3.19. Let L be a purely non-constant completely reducible ∂-module over K . Let U be a
∂-module extension of 1 by L . Then, Ru(Galδ(U )) =ω(L̃0), where L̃0 is the smallest ∂-submodule
of L such that Galδ(U /L̃0) is reductive.

By Theorem 3.13, Ru(Galδ(U )) is a δ-closed subgroup ofω(L ), which is stable under the action
of Galδ(L ). We show that any such subgroup is a k-vector subspace. In this attempt, we first treat
the cases in which Galδ(L ) is a torus or SL2. We conclude with the general situation and the proof
of Theorem 3.19.

The algorithm contained in [35] allows one to test whether the unipotent radical of a linear
algebraic group is trivial. This algorithm relies on bounds on the order of the defining equations
of the parameterized differential Galois group. Combined with Theorem 3.19, we find a complete
algorithm to compute Ru(Galδ(U )). Theorem 3.19 implies among other things that Ru(Galδ(U ))
is an algebraic subgroup of Ru(Gal(U )). Despite the fact that Galδ(U ) (respectively, Galδ(L )) is
Zariski dense in Gal(U ) (respectively, Gal(L )), it might happen that Ru(Galδ(U )) is contained in a
proper Zariski closed subgroup of Ru(Gal(U )) as it is shown in the following example.

Example 3.20. Let V = spank{x2, x y, y2, x ′y − x y ′} ⊂ k{x, y}, and let us consider the following rep-
resentation ρ : PSL2 → GL(V ) (cf. [33, Example 3.7]):

PSL2 3
(

a b
c d

)
mod

{(
1 0
0 1

)
,

(−1 0
0 −1

)}
7→


a2 ab b2 a′b −ab′

2ac ad +bc 2bd 2(bc ′−ad ′)
c2 cd d 2 c ′d − cd ′
0 0 0 1

 . (3.12)
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Note that ρ(PSL2) = G3
a o PSL2, and we have: Ru(PSL2) = {e} whereas Ru(G3

a o PSL2) = G3
a . By [47,

Theorem 1.1 and Lemma 2.2], we can construct a ∂-module U such that Galδ(U ) = PSL2, and ρ

is the representation of Galδ(U ) on ω(U ) (so that Gal(U ) = G3
a o PSL2). We can also construct a

∂-module L such that U is an extension of 1 by L in the given representation.

For a subset B of a k-vector space V , we denote kB the smallest k-subspace of V that contains
B . Note that kB consists of all finite linear combinations of elements of B with coefficients in k.

Proposition 3.21. Let G be a reductive linear differential algebraic group and V a purely non-
constant completely reducible G-module. Then every G-invariant δ-subgroup A ⊂V is a submodule.

Proof. We need only to show that A is k-invariant. Let us assume that G is connected. The general
case will follow by Propositions 2.23 and 2.54, which imply that V is completely reducible and
purely non-constant as a G◦-module.

Let us prove that A is k-invariant by induction on dimV . Let B be minimal among the non-zero
G-invariant δ-subgroups of V that are contained in A, which exists by the Ritt–Noetherianity of the
Kolchin topology. In what follows, we shall prove that kB = B . Assuming this, by the semisimplicity
of V , let W ⊂ V be a G-invariant k-subspace such that V = B ⊕W . Then A = B ⊕ (W ∩ A), and
k(W ∩ A) =W ∩ A by the inductive hypothesis. Therefore, kA = A.

Let us show that there exists x ∈ k\C such that xB = B . Since V is purely non-constant, V ′ = kB
is purely non-constant, and so it contains a simple non-constant submodule U . By Corollary 2.29,
there exists a δ-torus T ⊂ G such that U semisimple and non-constant as a T -module. By the
construction of T (see the proof of Corollary 2.29) and Proposition 2.27, every simple G-module
is semisimple as a T -module. Therefore, V and V ′ are semisimple as T -modules. Hence, T is an
algebraic torus, and there is a direct sum of weight spaces

V ′ =⊕
χ

V ′
χ (3.13)

over all algebraic characters χ : T → k×. By definition,

V ′
χ =

{
v ∈V ′ | t (v) =χ(t )v for all t ∈ T

}
.

Note that V ′
χ, viewed as C -linear spaces, are weight space with respect to T (C ) = TC . Since any

character χ (being defined by monomials) is uniquely determined by its restriction to T (C ), the
direct sum (3.13) is also the weight space decomposition of the C -space V ′ with respect to the
action of TC . SinceTC ⊂ T ⊂ G and the δ-subgroup B ⊂ V ′ is G-invariant, B is also TC -invariant.
Moreover, B is a C -vector space [8, Proposition 11]. Therefore, we have the weight decomposition
of the C -space with respect to the action of TC :

B =⊕
χ

Bχ, where Bχ =
(
B ∩V ′

χ

)
.

Since V ′ = kB , V ′
χ = kBχ. In particular, Bχ is non-zero if V ′

χ is. By the definition of T , there is a

character χ of T such that χ(T ) 6⊂ C and V ′
χ 6= {0}. Therefore, there exist b ∈ Bχ, b 6= 0, and t ∈ T

such that t acts on b by multiplication by a non-constant element x. We fix such an x. Due to the
G-invariance of xB , we obtain that B ∩ xB is a G-invariant non-trivial δ-subgroup of B . Since B is
minimal, xB = B .

On the one hand, the set S = {a ∈ k |aB ⊂ B} is a C -subalgebra of k. On the other hand,

S = ⋂
b∈B

ϕ−1
b (B), ϕb : k →V , t 7→ tb ,

is a δ-subgroup of k. Therefore, by [28, Theorem II.6.3, page 97], S =C or k. Since x ∈ S, S = k.
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Proof of Theorem 3.19. By Theorem 3.13, Ru(Galδ(U )) is a δ-closed subgroup W of ω(L ) which is
stable under the action of Galδ(L ). Proposition 3.21 shows that W is a k-vector space and thereby
a Galδ(L )-module. By δ-Tannakian equivalence for the category {L }⊗,δ, we obtain that W is of the
form ω(W ) for some ∂-submodule W ⊂ L ⊂ U . Thus, it remains to prove that W is the smallest
∂-submodule L̃0 of L such that the parameterized differential Galois group of U /L̃0 is reductive.

Let us show that the set V of subobjects W of L such that Ru(Galδ(U /W )) = {1} admits a small-
est subobject with respect to the inclusion. It is enough to prove that, if V1 and V2 belong to V, their
intersection W lies in V. Denote by G , G1, and G2 the parameterized differential Galois groups
of U /W , U /V1, and U /V2, respectively. The quotient maps U /W → U /Vi give rise to homomor-
phisms ϕi : G → Gi , i = 1,2. Since Gi are reductive, Ru(G) ⊂ kerϕi . Therefore, it suffices to show
that kerϕ1 ∩kerϕ2 = {1}. For each g ∈G , the condition g ∈ kerϕi means that g (u)−u ∈ω(Vi ) for all
u ∈ω(U ). Therefore, every element of kerϕ1 ∩kerϕ2 acts trivially on ω(U )/ω(W ).

As in the notation of Lemma 3.6, let s be a k-linear section of the last arrow of the following
exact sequence

0 →ω(L ) →ω(U ) → k → 0

and let ζU be its associated cocycle. By Lemma 3.6 and Proposition 3.21, the cocycle ζU identi-
fies Ru(Galδ(U )) with a k-vector subgroup W = ω(W ) of ω(L ) for some ∂-submodule W ⊂ U . To
conclude the proof, we have to show that W =ω(L̃0).

It follows from the definition of ζ that the diagram

Galδ(U )

%

��

ζU // ω(L )

β

��
Galδ(U /W )

ζU /W // ω(L /W )

(3.14)

where the vertical arrows are induced by the quotient maps, is commutative. By the definition of
W and exactness of ω, the composition βζU vanishes on Ru(Galδ(U )). Since ω(U /W ) is a faithful
Galδ(U /W )-module andω(L /W ) has no non-zero trivial Galδ(L /W )-module by assumption, and
therefore no non-zero trivial Galδ(U /W )-submodules by assumption, Propositions 3.22 and 3.23
below show that

Ru(Galδ(U /W )) = ρ(Ru(Galδ(U ))) .

Since ζ is one-to-one on the unipotent radical, we conclude that the linear differential algebraic
group Galδ(U /W ) is reductive. Therefore, W ⊃ L̃0. If we replace W with a ∂-submodule V ⊂U in
the above diagram such that Galδ(U /V ) is reductive, we obtain that

ω(V ) ⊃ ζU (Ru(Galδ(U ))) =W .

Thus, ω(L̃0) ⊃W .

Recall that unipotent linear differential algebraic groups are connected. (Otherwise they would
have unipotent finite quotients, which is impossible.) Therefore, for every linear differential alge-
braic group G , we have Ru(G) = Ru(G◦) = Ru(G)◦.

Proposition 3.22. Let % : G → H be a surjective homomorphism of linear differential algebraic
groups. Assume that, for every proper subgroup N ⊂ Ru(H) that is normal in H, the group Ru(H/N )
is not central in (H/N )◦ = H◦/N . Then %(Ru(G)) = Ru(H).

Proof. Let N = %(Ru(G)) ⊂ Ru(H). By the surjectivity of %, the group N is normal in H . Consider
the epimorphism of quotients

ν : G/Ru(G) → H/N
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induced by %. The linear differential algebraic group ν−1(Ru(H/N ))◦ is normal in the reduc-
tive linear differential algebraic group (G/Ru(G))◦. Therefore, it is reductive itself. By Theo-
rem 2.25, ν−1(Ru(H/N ))◦ is an almost direct product of a δ-closed subgroup Z of a central torus
T ⊂ (G/Ru(G))◦ and of quasi-simple linear differential algebraic groups Hi . Since the subgroups
Hi coincide with their commutator groups, they cannot have unipotent images unless ν(Hi ) = {e}.
We conclude that ν(Z ) = Ru(H/N ). Since Z is central in (G/Ru(G))◦ and ν is surjective, the group
ν(Z ) is central in (H/N )◦. It follows from the assumption that N = Ru(H).

Proposition 3.23. The assumption on H in Proposition 3.22 is satisfied if there exists a short exact
sequence

0 →V →U → 1 → 0

of H◦-modules, where U is a faithful H◦-module and V is a H◦-semisimple module with no non-
zero trivial H◦-submodule.

Remark 3.24. Note that if the H◦-module V has no trivial H◦-submodules, then V has no no zero
C -vector space fixed by the action of H◦. Indeed, let f be a nonzero element of a C -vector space
fixed by H◦, then the k-vector space spanned by f is fixed by H◦.

Proof. It suffices to prove the statement for connected H . Let N ⊂ Ru(H) be a δ-subgroup that is
normal in H and such that Ru(H/N ) is central in H/N . Since we have a commutative diagram

H // H/N

Ru(H)
?�

OO

// Ru(H/N ),
?�

OO

the latter implies that, for all g ∈ Ru(H), one has hg h−1 ∈ g N . Let u ∈ U be an element whose
image in 1 is non-zero. Moreover, Ru(H) acts trivially on V because V is H-semi-simple. Thus, the
map

ζ : Ru(H) →V , g 7→ g u −u

is an H-equivariant one-to-one homomorphism of linear differential algebraic groups (see proofs
of Lemmas 3.6 and 3.8), that is, for all h ∈ H and g ∈ Ru(H), we have

hg u −hu = hg h−1u −u.

The δ-subgroups ζ(Ru(H)) and ζ(N ) of V are thus stable under the action of H . Note that ζ(Ru(H))
and ζ(N ) are C -vector spaces since, as δ-subgroup of V , they are zero sets linear homogeneous
differential equations over k.

Let n ∈ N be such that hg h−1 = g n and n′ ∈ N be such that g ng−1 = n′. Then

h(g u −u) = hg u −hu = g nu −u = n′g u −u +n′u −n′u = n′(g u −u)+n′u −u = g u −u +n′u −u,

since g u −u ∈V and Ru(H) acts trivially on V . Therefore, H acts trivially on ζ(Ru(H))/ζ(N ). Since
ζ(Ru(H)) is H-semisimple as H-module over C , the H-module

ζ(Ru(H))/ζ(N ) ⊂ ζ(Ru(H)) ⊂V

is a C -vector space fixed by the action of H . This contradicts the assumption on V . It follows that
Ru(H) = N .
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3.3.3 A general algorithm

Will will explain a general algorithm to compute the unipotent radical of a ∂-module extension U

of 1 by a completely reducible ∂-module L . We recall that L can be decomposed as the direct sum
of a constant ∂-module Lc and a purely non-constant ∂-module Lnc . Considering the pushouts of
the extension U with respect to the decomposition of L , we find the following two exact sequences
of ∂-modules:

0 // Lc
// Uc

// 1 // 0 ,

and
0 // Lnc

// Unc
// 1 // 0 .

We assume that K = k(x) so that we can use the algorithm contained in [34] to compute
Ru(Galδ(Uc )) and the algorithm of Section 3.3.2 to compute Ru(Galδ(Unc )). The quotient map
U → U /Uc = Unc induces an epimorphism α : Galδ(U ) → Galδ(Unc ). Similarly, we find an epi-
morphism β : Galδ(U ) → Galδ(Uc ). The following theorem allows us to compare Ru(Galδ(U )) with
the the groups computed above.

Theorem 3.25. Let K = k(x), L ,U ,Uc ,Unc be as above. Assume that L has no non-zero trivial
∂-submodule. Then the map

α×β : Ru(Galδ(U )) → Ru(Galδ(Unc ))×Ru(Galδ(Uc ))

is an isomorphism of linear differential algebraic groups.

Proof. We will use the notion of differential type τ(G) of a linear differential algebraic group G (see
[12, Section 2.1] and [34, Definition 2.2]). Recall that, in the ordinary case, τ can only take the values
−1, 0, or 1. We will also use the following result:

Lemma 3.26 ([12, Equation (1), p. 195]). Let G be a linear differential algebraic group and H be a
normal differential algebraic subgroup of G. Then τ(G) = max{τ(H),τ(G/H)} .

Let us consider the commutative diagram:

Ru((Galδ(Uc ))� _

��

Ru((Galδ(U ))� _

��

βoo α // Ru((Galδ(Unc ))� _

��
ω(Uc ) ω(U ) =ω(Uc )⊕ω(Unc )oo // ω(Unc )

(3.15)

Here, the vertical arrows correspond to embedding (that is, a one-to-one homomorphism) via the
associated cocycles (see (3.14)). The horizontal arrows of the lower row correspond to natural pro-
jections. Note that Ru((Galδ(Uc )), Ru((Galδ(U )), and Ru((Galδ(Unc )) are all abelian groups (see
Theorem 3.3). It follows from (3.15) that α×β is an embedding. Then, by [12, Corollary 2.4] and
Lemma 3.26,

τ
(
Ru(Galδ(U )

)≤ τ(Ru(Galδ(Uc ))×Ru(Galδ(Unc ))
)= max

{
τ
(
Ru(Galδ(Uc ))

)
,τ

(
Ru(Galδ(Unc ))

)}
.

Since α and β are surjective, we find that

τ
(
Ru(Galδ(U )

)= max
{
τ
(
Ru(Galδ(Uc ))

)
,τ

(
Ru(Galδ(Unc ))

)}
.

If Ru(Galδ(Unc )) 6= {e}, it is isomorphic to a non-trivial vector group over k and its differential type
is 1 (see [12, Example 2.9]). Moreover, since the unipotent radicals considered above are δ-closed
subgroups of vector groups, they are either algebraic groups and their differential type is 1, or
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finite-dimensional C -vector spaces of differential type 0. If Ru(Galδ(Unc ) = {e}, we have nothing to
prove. Thus, we assume that Ru(Galδ(Unc ) 6= {e} and that its differential type is 1. By the discussion
above, we can also assume that

τ(Ru(Galδ(U ))) = 1.

Since L has no non-zero trivial ∂-submodule, the same holds for Lc and Lnc . By Propositions 3.22
and 3.23, α and β are surjective. Let R0 ⊂ Ru(Galδ(U )) stand for the strong identity component of
Ru(Galδ(U )) ([12, Definition 2.6]). Since Ru(Galδ(Unc )) is algebraic by Theorem 3.19, it is strongly
connected by [12, Lemma 2.8 and Example 2.9]. We have

α(R0) = Ru(Galδ(Unc ))

(Indeed, otherwiseα(R0) ( Ru(Galδ(Unc )). By definition of the strong identity component, we find
that

τ
(
Ru(Galδ(U ))/R0

)< 1.

However, τ(Ru(Galδ(Unc ))/α(R0)) = 1, because Ru(Galδ(Unc )) is strongly connected. Therefore,
we have a surjective map

Ru(Galδ(U ))/R0 → Ru(Gnc )/α(R0)

from a linear differential algebraic group of differential type smaller than 1 onto a linear differential
algebraic group of differential type 1, which is impossible. Therefore, the group product map

R0 ×kerα→ Ru(Galδ(U )), (r0, x) 7→ r0x

is onto. To finish the proof, it suffices to show that

β(kerα) = Ru(Galδ(Uc )).

Ifβ(R0) 6= {e}, it is strongly connected and τ(β(R0)) = τ(R0) = 1. Since τ
(
Ru(Galδ(Unc ))

)= 0 (see [34,
Theorem 2.13]), we have β(R0) = {e} (by Lemma 3.26). Thus,

β(kerα) = Ru(Galδ(Unc )).

4 Criteria of hypertranscendance

We start with a new result in the representation theory of quasi-simple and reductive linear differ-
ential algebraic groups, which we further use for a hypertranscendence criterion.

4.1 Extensions of the trivial representation

Let (k,δ) be a δ-closed field such that chark = 0 and let C be its field of δ-constants. Let G ⊂ GLn(k)
be a connected linear differential algebraic group over k. We recall the definition of the Lie algebra
of G , following [8, Chapter 3].

Definition 4.1. A k-linear derivation D of the field of fractions k〈G〉 of the δ-coordinate ring k{G}
of G is called a differential derivation if D ◦δ= δ◦D .

In particular, every differential derivation is determined by its values on the matrix entries that
differentially generate k{G} and, therefore, can be represented by an n×n matrix. The group G acts
by right translations on the set of differential derivations of k〈G〉.
Definition 4.2. The set LieG of invariant differential derivations, denoted also by g, is called the
Lie algebra of G .
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This is a C -Lie subalgebra of the Lie algebra gln(k) = LieGLn(k) of all n ×n matrices. Moreover,
g is also a δ-subgroup of the additive group of gln(k). Every δ-homomorphism of linear differential
algebraic groups gives rise (by taking the differential) to a C -homomorphism of their Lie algebras.
We refer to [8, Chapter 3] for the details.

Definition 4.3. A g-module (respectively, C -g-module) is a finite-dimensional k-vector space (re-
spectivelty, C -vector space, possibly infinite-dimensional) V together with a C -Lie algebra homo-
morphism ν : g→ gl(V ), where gl(V ) denotes the Lie algebra of k-linear endomorphisms of V .

Every G-module V is also a g-module, where ν = dρ : g → gl(V ) is the differential (see [8,
pp. 928-929]) of the homomorphism ρ : G → GL(V ). (Formally, to agree with the above defini-
tions, we assume that a basis of V is chosen, hence we can identify GL(V ) and gl(V ) with GLn(k)
and gln(k), respectively.) The definitions of simple, semisimple, and other types of g-modules that
we use here are analogues to those for G-modules.

It follows from [8, Proposition 20] that, if G ⊂ GLn(k) is given by polynomial equations, then
LieG coincides with the Lie algebra of the group G considered as an algebraic group. Moreover,
for the Zariski closure G ⊂ GLn(k) of G , we have LieG ⊂ LieG and LieG is the k-span of LieG in
gln(k). Recall that, in this case, LieG is a G-module, which is called adjoint, where the action of G
is induced from its action on gln(k) by conjugation. The differential of the corresponding homo-
morphism Ad : G → GL(g) gives the k-Lie algebra map ad : g → gl(g) defining the structure of the
g-module on g, also called adjoint. One has (adx)(y) = [x, y] for all x, y ∈ g.

For any group, Lie algebra, or ring R, we denote the set of R-module homomorphisms by
HomR (V ,W ).

For a C -Lie algebra g, let gk = k⊗C g denote the k-Lie algebra with the bracket determined by

[x ⊗ξ, y ⊗η] = x y ⊗ [ξ,η] ∀x, y ∈ k, ξ,η ∈ g.

We have the inclusion
g'C ⊗g⊂ k⊗g= gk.

If g⊂ h are Lie algebras, then we also consider h as a g-module under the adjoint action.

Lemma 4.4. Let H ⊂ GLn(C ) be a reductive algebraic group and h= Lie H ⊂ gln(C ). Let g⊂ hk be a
C -Lie subalgebra containing h and

0 →V →W → 1 → 0 (4.1)

an exact sequence of g-modules (over k). If

(1) sequence (4.1) splits as a sequence of h-modules and

(2) Homhk
(hk,V ) = 0 (in other words, V does not contain quotients of the adjoint representation

of hk),

then sequence (4.1) splits.

Proof. If one chooses a basis {e1, . . . ,en−1,en} of W such that V = span{e1, . . . ,en−1}, then the matrix
%(ξ) ∈ gl(W ) corresponding to ξ ∈ g can be written in the form(

α(ξ) ϕ(ξ)
0 0

)
,

where α : g→ gl(V ) determines the g-module structure on V and ϕ : g→V is a C -linear map. The
fact that % defines a homomorphism of Lie algebras is the following condition on ϕ:

ϕ
(
[ξ,η]

)=α(ξ)ϕ(η)−α(η)ϕ(ξ) ∀ξ,η ∈ g. (4.2)
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Choosing another vector for en , one obtains another C -linear mapϕ′ : g→V , which is called equiv-
alent to ϕ. Sequence (4.1) splits if and only if ϕ is equivalent to 0.

Let us choose en in such a way that

ϕ(ξ) = 0 ∀ξ ∈ h, (4.3)

which is possible due to assumption (1). It follows from (4.2) and (4.3) that

ϕ
(
[ξ,η]

)=α(ξ)ϕ(η) ∀ξ ∈ h, η ∈ g. (4.4)

Since H is reductive, by [52, page 97, Theorem] and [48, Chapter 2], there exist simple h-

submodules h1, . . . ,hm in h such that h =
m⊕

i=1
hi . Let B ⊂ k be a C -basis of k as a C -vector space.

For each a ∈ k and i , 1 ≤ i ≤ m, a ⊗hi is a simple C -h-submodule of hk and

hk = ⊕
1≤i≤m

b∈B

b ⊗hi . (4.5)

For every C -h-submodule I ⊂ hk, let I ′ be a maximal sum of the simple components in decompo-
sition (4.5) with I ′∩ I = {0}. Such an h-submodule I ′ exists by Zorn’s lemma. We will show that

hk = I ⊕ I ′. (4.6)

Let S = b⊗hi for some b ∈ B and 1 ≤ i ≤ m. If S ∩ (
I ⊕ I ′

)= {0}, then I ∩ (
S ⊕ I ′

)= {0}. Indeed, if v ∈ I
and v = v1 + v2, where v1 ∈ S and v2 ∈ I ′, then v2 = v − v1 ∈ S ∩ (

I ⊕ I ′
)
, and so v = v1 ∈ I ∩S = {0}.

By the maximality of I ′, S ⊂ I ′, which contradicts S ∩ (
I ⊕ I ′

)= {0}. Therefore,

S ∩ (
I ⊕ I ′

) 6= {0}. (4.7)

Since S is a simple h module, (4.7) implies that S ⊂ I ⊕ I ′. Thus, (4.6) holds and therefore hk is a
semisimple h-module. (cf. [7, §4.1]).

The C -h-module g is semisimple. Indeed, every h-invariant subspace J ⊂ g has a complemen-
tary invariant subspace J ′ in hk , since hk is semisimple. Therefore,

g= J ⊕ (
J ′∩g

)
.

Thus, to prove that ϕ is the zero map, it suffices to show that ϕ(J ) = {0} for every simple C -h-
submodule J ⊂ g. Since such J is isomorphic to hi for some i , 1 ≤ i ≤ m, we have the h-equivariant
C -linear map

µ : h
π→ hi ' J ⊂ g

ϕ→V ,

where π is the projection with respect to an h-invariant decomposition h = hi ⊕ h′
i , and the h-

equivariance of ϕ is implied by (4.4) . Since µ extends to the k-linear hk -equivariant map hk → V ,
assumption (2) yields that µ is the zero map. Therefore, ϕ(J ) = {0}.

Lemma 4.5. Let G be a connected linear differential algebraic group and g be its Lie algebra. Any
G-module W is completely reducible if and only if it is completely reducible as a g-module.

Proof. Let GW denote the image of G in GL(W ). The G-module W is completely reducible if and
only if it is completely reducible as a GW module. The latter is equivalent to W being completely
reducible as a GW -module. Since chark = 0, this is equivalent to semisimplicity of W viewed as the
LieGW -module (see [52, page 97, Theorem]). Since LieGW is the k-span of LieGW ⊂ gl(W ), W is
completely reducible as a LieGW if and only if it is completely reducible as a LieGW -module. Since,
by [8, Proposition 22], LieGW is an image of g in gl(W ), W is completely reducible as a g-module if
and only if W is completely reducible as a LieGW -module.
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Theorem 4.6. Let G be a connected linear differential algebraic group over k and

0 →V →W → 1 → 0 (4.8)

an exact sequence of G-modules, where V is faithful and semisimple. Let G denote the Zariski closure
of G in GL(V ). If V , viewed as a G-module, does not contain non-zero submodules isomorphic to a
quotient of the adjoint module for G:

HomG (LieG ,V ) = 0,

then sequence (4.8) splits.

Proof. By Lemma 4.5, it is sufficient to show that W is completely reducible as a g-module. Since
G admits a faithful completely reducible representation (given by V ), it is reductive. Therefore, by
[32, Lemma 4.5], there is a δ-isomorphism ν : H̃ → G , where H̃ ⊂ GLr (k) is a δ-group such that its
δ-subgroup HC = H̃ ∩GLr (C ) is Zariski dense (the Zariski topology on H̃ is induced from GLr (k)).

Let H = ν(HC ) and h = Lie H . We will show that h and g satisfy the hypotheses of Lemma 4.4,
which would thus yield the proof (in particular, we will identify g with a subalgebra of hk). The
differential algebraic group H ' HC is reductive. Indeed, if its unipotent radical were non-trivial,
Ru(HC )∩ H̃ would be a non-trivial normal unipotent differential algebraic subgroup of H̃ , which
is impossible due to the reductivity of G ' H̃ .

Let us show that ν extends to an algebraic isomorphism ν : HC → G of the Zariski closures. By
[32, Theorem 3.3], this would follow if the G-module V is completely reducible and HC is reductive.
It only remains to prove the latter. Since HC is reductive, C r is a completely reducible HC -module.
Therefore, kr is completely reducible as an HC -module. Thus, HC is reductive.

The differential dν defines an isomorphism between k-Lie algebras Lie HC and LieG . Since
Lie HC ⊂ glr (C ) and any C -basis of glr (C ) is also a k-basis of glr (k), we obtain that any C -basis of
Lie HC is k-linearly independent. Since Lie HC is the k-span of Lie HC , we can therefore write

Lie HC = k⊗C Lie HC .

Applying dν, this implies that
LieG = k⊗C h= hk.

Therefore, we have
h⊂ g⊂ hk.

Since every δ-representation of HC is polynomial and HC is reductive, every δ-representation of
HC is completely reducible. Therefore, W is completely reducible as an H-module (and h-module),
and so sequence (4.8) splits as a sequence of h-modules. Finally, using [52, page 97, Theorem] and
LieG = gk, we conclude that

Homgk (gk,V ) = HomLieG

(
LieG ,V

)= HomG

(
LieG ,V

)= 0.

4.2 A practical criterion for hypertranscendance

Let ∆ = {∂,δ} be a set of two derivations. Let K be a ∆-field such that K ∂ = k (recall that k is δ-
closed). From the results of the previous sections, we obtain the following criterion for the hyper-
transcendence of the solutions of L(y) = b, for irreducible L ∈ K [∂].

Theorem 4.7. Let L ∈ K [∂] be an irreducible ∂-operator such that Gal(L) is a quasi-simple linear
algebraic group. Denote n = ordL and m = dimGal(L). Suppose that m 6= n. Let b ∈ K ∗ and F
a ∆-field extension of K such that F ∂ = k and F contains z, a solution of L(y) = b, and u1, . . . ,un ,
K -linearly independent solutions of L(y) = 0. We have:
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• the functions v1, . . . , vm , z, . . . ,∂n−1z and all their derivatives with respect to δ are algebraically
independent over K , where {v1, . . . , vm} ⊂ {u1, . . . ,∂n−1u1, . . . ,un , . . . ,∂n−1un} is a maximal alge-
braically independent over K subset

if and only if

• the linear differential system ∂(B)−δ(AL) = ALB −B AL , where AL denotes the companion ma-
trix of L, has no solutions B ∈ K n×n and

• the linear differential equation L(y) = b has no solutions in K .

Example 4.8. If L ∈ K [∂] and Gal(L) = SLn , where n = ordL ≥ 2, then L is irreducible and dimL 6=
dimGal(L) = n2 −1. In this situation, in Theorem 4.7, we can take

{v1, . . . , vm} = {u1, . . . ,∂n−1u1, . . . ,un−1, . . . ,∂n−1un−1,un , . . . ,∂n−2un} .

Proof of Theorem 4.7. Let L (respectively, U ) be ∂-module associated to L (respectively, to (∂−
∂(b)/b)L). Since the ∆-field KU generated by u1, . . . ,un , z in F is a PPV extension for U over K ,
the differential transcendence degree of KU over K equals the differential dimension of Galδ(U ).
Since L corresponds to the differential system ∂Y = ALY , Proposition 2.52 together with Theo-
rem 2.25(3) imply that the first hypothesis is equivalent to Galδ(L ) = Gal(L ).

Since L is irreducible, there is no non-zero trivial ∂-submodule N of L such that the represen-
tation of Galδ(L ) on ω(N ) is conjugate to constants, that is, L is purely non-constant. By Theo-
rem 3.19, Ru(Galδ(U )) =ω(L̃0), where L̃0 is the smallest ∂-submodule of L such that Galδ(U /L̃0)
is reductive. Since L is irreducible, either L̃0 is zero or L̃0 =L . The module L̃0 is zero if and only
if Ru(Galδ(U )) = {e}. Moreover, Ru(Galδ(U )) = {e} if and only if ω(U ) is a Galδ(L )-module. Since
dimkω(L ) = n, the Galδ(L )-module ω(L ) is not adjoint. Since Gal(L) is a quasi-simple linear al-
gebraic group, Lie(Gal(L)) is simple (see [24, Section 14.2]), and therefore its adjoint representation
is irreducible. This implies that

HomGal(L)(Lie(Gal(L)),ω(L )) = 0.

Therefore, by the above and Theorem 4.6, we find that L̃0 is zero if and only if the sequence of
Galδ(L )-modules

0 →ω(L ) →ω(U ) → k → 0

splits, which, by [13, Theorem 3.5], is equivalent to the existence of a solution in K of the equation
L(y) = b, in contradiction with the second hypothesis. Therefore, we find that the second hypoth-
esis is equivalent to Ru(Gal(U )) = (kn ,+), that is, the vector group Gn

a and Galδ(U ) = Gn
a oGal(L ).

The latter is equivalent to v1, . . . , vm , z, . . . ,∂n−1z being a differential transcendence basis of KU over
K .

Remark 4.9. The condition in the statement of Theorem 4.7 to have no solutions B ∈ K n×n is equiv-
alent to the fact that Galδ(L ) is not conjugate to constants. For K a computable field, this condition
can be tested through various algorithms that find rational solutions (see, for instance, [3]). How-
ever, one can sometimes easily prove the non-integrability of the system by taking a close look at
the topological generators of the parameterized differential Galois group such as the monodromy
or the Stokes matrices. This is the strategy employed in Lemma 4.10.

4.3 Application to the Lommel equation

We apply Theorem 4.7 to the differential Lommel equation, which is a non-homogeneous Bessel
equation

d 2 y

d x2 + 1

x

d y

d x
+

(
1− α2

x2

)
y = xµ−1, (4.9)
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depending on two parameters, α,µ ∈C.
We will study the differential dependence of the solutions of (4.9) with respect to the parameter

α. To this purpose, we considerα as a new variable, transcendental overC, and suppose that µ ∈Z.
We endow the field C(α, x) with the derivations δ= ∂

∂α and ∂= ∂
∂x , ∆= {δ,∂}. Let k be a δ-closure of

C(α). We extend ∂ to k as the zero derivation. We extend∆ to K = k(x), the field of rational functions
in x with coefficients in k, so that C(α, x) is a∆-subfield of K . Indeed, let A = k⊗C(α)C(α, x), which
is a ∆-algebra over C(α, x), and A ∂ = k. Since C(α, x)∂ = C(α), the multiplication homomorphism
ϕ : A → K , is injective (see [28, Corollary 1, page 87]). Therefore, there is an extension of ∆ onto K
making ϕ a ∆-homorphism so that C(α, x) ⊂ K is a ∆-field extension via ϕ.

Let L be a ∂-module over K associated to the Bessel differential equation

L(y) = d 2 y

d x2 + 1

x

d y

d x
+

(
1− α2

x2

)
y = 0 (4.10)

and let U be a ∂-module over K associated to the Lommel differential equation. We have:

0 →L →U → 1 → 0. (4.11)

Lemma 4.10. The parameterized differential Galois group of L over K is SL2.

Proof. The differential Galois group of L over K is known to be SL2 (see [27]). By [11], we know
that either Galδ(M ) = SL2 or Galδ(L ) is conjugate to constants in SL2. Suppose that we are in the
second situation, that is, there exists P ∈ SL2 such that

P Galδ(L )P−1 ⊂ {M ∈ SL2 |δ(M) = 0}.

The coefficients of (4.10) lie in C(α, x). Moreover, for a fixed value of α in C, the point zero is a pa-
rameterized regular singular point of (4.10) (see [36, Definition 2.3]). If we fix a fundamental solu-
tion Z0 of (4.10) and follow [36, page 922], we are able to compute the parameterized monodromy
matrices of (4.10) around zero. For a suitable choice of Z0, we find the following parameterized
monodromy matrix,

M0 =
(
ζ 0

0 ζ,

)
where ζ= e2iπα and ζ= e−2iπα (see [37, page 35]). By [36, Theorem 3.5], M0 belongs to some con-
jugate of Galδ(L ). This means that there exists Q ∈ GL2 such that δ(QM0Q−1) = 0. Since conjugate
matrices have the same spectrum and the spectrum of M0 is not δ-constant, we find a contradic-
tion.

Let Jα(x) be the Bessel function of the first kind and let Yα(x) be the Bessel function of the
second kind. A solution of the Lommel differential equation is the Lommel function sµ,α(x), which
is defined as follows

sµ,α(x) = 1

2
π

[
Yα(x)

∫ x

0
xµ Jα(x)d x − Jα(x)

∫ x

0
xµYα(x)d x

]
.

Proposition 4.11. The functions, Jα(x),Yα(x), d
d x (Yα)(x), sµ,α(x) and d

d x sµ,α(x) and all their deriva-

tives of all order with respect to ∂
∂α are algebraically independent over C(α, x). Moreover, the param-

eterized differential Galois group of U is isomorphic to a semi-direct product G2
a oSL2.

Proof. Since Galδ(L ) = SL2, we just need to prove that L(y) = xµ−1 has no solution g in K in order
to apply Theorem 4.7 to the Lommel differential equation. Thus, suppose on the contrary that
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L(y) = xµ−1 has a rational solution g ∈ k(x). Using partial-fraction decomposition, one can show
that the only possible pole of g is zero. If we write

g =
n∑

j=m
a j x j , m,n ∈Z, m ≤ n, a j ∈ k, am an 6= 0,

then the highest and lowest order terms of L(g ) ∈ k[x,1/x] are

an xn 6= 0 and (m2 −α2)am xm−2 6= 0,

respectively. Since different powers of x are linearly independent over k and n 6= m−2, L(g )−xµ−1

contains at least one non-zero term. Contradiction.
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