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Abstract

These lectures are devoted to some properties of periodic composites in electrophysics.
On the one hand, the characterization of smooth periodic electric fields among the set
of smooth periodic gradients fields is investigated. The laminate fields are also studied
in this perspective. On the other hand, the study of the Hall effect in composites shows
a gap between the dimension two preserving the bounds of the Hall coefficient, and the
dimension three involving unexpected effective properties.
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Notations

• (e1, . . . , ed) denotes the canonical basis of Rd.

• Id denotes the unit matrix of Rd×d, and R⊥ denotes the 90◦ rotation matrix in R2×2.

• For A ∈ Rd×d, AT denotes the transpose of the matrix A.

• For ξ, η ∈ Rd, ξ ⊗ η denotes the matrix [ξi ηj]1≤i,j≤d.

• Y denotes any closed parallelepiped of Rd, and Yd := [−1/2, 1/2]d.

• 〈·〉 denotes the average over Y .

• Ck
] (Y ) denotes the space of k-continuously differentiable Y -periodic functions on Rd.

• L2
] (Y ) denotes the space of Y -periodic functions in L2(Rd), and H1

] (Y ) denotes the space

of functions ϕ ∈ L2
] (Y ) such that ∇ϕ ∈ L2

] (Y )d.

• For any open set Ω of Rd, C∞c (Ω) denotes the space of smooth functions with compact
support in Ω, and D ′(Ω) the space of distributions on Ω.

• For u ∈ C1(Rd) and U = (Uj)1≤j≤d ∈ C1(Rd)d,

∇u :=

(
∂u

∂xi

)
1≤i≤d

and DU :=
(
∇U1, . . . ,∇Ud

)
=

[
∂Uj
∂xi

]
1≤i,j≤d

. (0.1)

The partial derivative
∂u

∂xi
will be sometimes denoted ∂iu.

• For Σ = [Σij]1≤i,j≤d ∈ C
1(Rd)d×d,

Div (Σ) :=

(
d∑
i=1

∂Σij

∂xi

)
1≤j≤d

and Curl (Σ) :=

(
∂Σik

∂xj
− ∂Σjk

∂xi

)
1≤i,j,k≤d

. (0.2)

• For ξ11 , . . . , ξ
d−1 in Rd, the cross product ξ1 × · · · × ξd−1 is defined by

ξ ·
(
ξ1 × · · · × ξd−1

)
= det

(
ξ, ξ1, . . . , ξd−1

)
, for any ξ ∈ Rd, (0.3)

where det is the determinant with respect to the canonical basis (e1, . . . , ed), or equiva-
lently, the kth coordinate of the cross product is given by

(
ξ1 × · · · × ξd−1

)
· ek = (−1)k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ11 ··· ξd−1
1

...
...

...

ξ1k−1 ··· ξd−1
k−1

ξ1k+1 ··· ξd−1
k+1

...
...

...

ξ1d ··· ξd−1
d

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (0.4)
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1 Composites

1.1 Effective properties in periodic composites

For the sake of simplicity the spatial period will be Yd := [−1/2, 1/2]d in the sequel. Consider a
periodic conductor in Rd characterized by a matrix-valued conductivity σ ∈ L∞(Rd)d×d which
is Yd-periodic, i.e.

σ(y + k) = σ(y), a.e. y ∈ Rd, ∀ k ∈ Zd, (1.1)

and which satisfies the following bounds for given α, β > 0,

σ(y) ≥ α Id and σ−1(y) ≥ β−1 Id, a.e. y ∈ Rd. (1.2)

The Ohm law linking an electric field ∇u in L2(Yd)
d and a divergence free current field j in

L2(Yd)
d is given by

j = σ∇u, with div (j) = 0 in Rd. (1.3)

Then, the effective (constant) conductivity σ∗ associated with σ is defined by

〈j〉 = σ∗〈∇u〉. (1.4)

Mathematically, the matrix σ∗ is the homogenized limit as ε → 0 of the sequence σ(x
ε
) which

is εYd-periodic (see [6] for details). More precisely, by virtue of the Lax-Milgram theorem there
exists for any λ ∈ Rd, a unique solution uλ ∈ H1

loc(Rd) to the cell problem{
div (σ∇uλ) = 0 in Rd

y 7→ uλ(y)− λ · y is Yd-periodic.
(1.5)

Then, σ∗ is given by the following periodic limit

(σ∇uλ)
(x
ε

)
⇀
〈
σ∇uλ

〉
=: σ∗λ weakly in L2

] (Yd)
d, (1.6)

which corresponds to (1.4) with j = σ∇uλ.
On the other hand, when the matrix-valued conductivity σ is symmetric, the periodic ho-

mogenization formula (1.6) combined with the cell problem (1.5) is equivalent to the variational
principal

σ∗λ · λ = min
{〈
σ (λ+∇ϕ) · (λ+∇ϕ)

〉
: ϕ ∈ H1

] (Y )
}

=
〈
σ∇uλ · ∇uλ

〉
, for λ ∈ Rd. (1.7)

1.2 Positivity properties of the electric fields

1.2.1 The two-dimensional case

Let σ be a Yd-periodic matrix-valued satisfying (1.2). We have the following result:

Theorem 1.1 (Alessandrini, Nesi [1]). Assume that d = 2. Let U be the vector-valued defined
by U := (ue1 , ue2) according to (1.5). Then, the Yd-periodic electric field DU satisfies

〈DU〉 = I2 and det (DU) > 0 in Rd. (1.8)

Proof. The proof is based on complex analysis and in particular the quasi-conformal mappings,
which is out the scope of this lecture. The strict inequality is far to be evident.
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Figure 1: The periodic chainmail

1.2.2 Change of sign of the electric field determinant in dimension three

The previous result is specific to dimension 2. Indeed, we have the following result:

Theorem 1.2 (Milton, Nesi, B. [10]). There exists a periodic tridimensional electric field DU
in L2

] (Y3)
3×3 with 〈DU〉 = I3, such that det (DU) changes of sign.

Proof. The proof is based on the periodic chainmail as shown in figure 1 and figure 2. Each
high-conductivity chain of the periodic lattice is built from two disjoint and orthogonal links
and each link is isometric to a fixed compact torus with a circular section. Let Q] be the open
Y3-periodic set consisting of all points within the chains, and let Q be the intersection of Q]

with Y3. The set Q is a union of (see figure 2 and figure 3 below):

• one complete link Q1 centered in the cube Y3 orthogonal to the y1 axis, of inner radius
ρ > 1/4 and outer radius R < 1/2;

• two symmetric (with respect to the plane y3 = 0) half-links Q+
2 , Q

−
2 such that the axis of

the link which contains Q+
2 , resp.Q−2 , is the line passing through the point (0, 0, 1), resp.

(0, 0,−1), in direction y2.

Note that the set Q as well as its complementary Y3\Q are symmetric with respect to reflection
in the three planes yi = 0, i = 1, 2, 3.
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Q1

Q2
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Q2
+

y3

y2

y1

Figure 2: The period Q of the chainmail with two half links crossing a central one

Let σκ, for κ > 0, be the Y3-periodic conductivity function defined by

σκ(y) :=

{
κ I3 if y ∈ Q]

I3 if y ∈ Y \Q],
(1.9)

and let Uκ be the solution in H1
loc(Y3)

3 of{
Div (σκDUκ) = 0 in R3

Uκ(y)− y is Y3-periodic, with 〈Uκ〉 = 0.
(1.10)

By the periodic homogenization formula and the definition (1.12) of U we have

ˆ
Y3

σκDUκ : DUκ = inf
V ∈H1

] (Y )3

ˆ
Y3

σκ (Id +DV ) : (Id +DV )

≤
ˆ
Y3

σκDU : DU =

ˆ
Y3\Q

DU : DU,

(1.11)

hence DUκ is bounded in L2(Y )9 and strongly converges to 0 in L2(Q)9. Since Uκ has a zero
Y3-average, the Poincaré-Wirtinger inequality applied to Y implies that Uκ weakly converges
(up to a subsequence) in H1

loc(R)3 as κ→∞ to a vector-valued function U satisfying

for i = 1, 2,


∆ui = 0 in R3 \Q]

ui(y)− yi is Y3-periodic

ui = 0 in Q,

and


∆u3 = 0 in R3 \Q]

u3(y)− y3 is Y3-periodic

u3 = 0 in Q1

u3 = ±1/2 in Q±2 .

(1.12)
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Figure 3: A cross section of the chainmail period

Thanks to the strong convergence of Uκ to U , the change of sign of det (DUκ) then follows
from the change of sign of det (DU) which will be now proved.

On the one hand, by symmetry the matrix DU is diagonal on axis y3. On the other hand,
due to the 1-periodicity and the oddness of the function y3 7→ u3(y)−y3, we have u3(0, 0, ρ) = 0
by link Q1, and by link Q+

2 ,

u3(0, 0, 1/2− ρ)− (1/2 + ρ) = u3(0, 0, 1/2 + ρ)− (1/2 + ρ)

= u3(0, 0, ρ− 1/2)− (ρ− 1/2)

= −u3(0, 0, 1/2− ρ) + 1/2− ρ,
(1.13)

hence u3(0, 0, 1/2− ρ) = 1/2. It follows that

∃ τ ∈ (1/2− ρ, ρ),
∂u3
∂y3

(0, 0, τ) =
1

1− 4ρ
< 0 (since ρ > 1/4). (1.14)

Moreover, the strong maximum principle yields

∂ui
∂yi

(0, 0, y3) > 0 for any (0, 0, y3) ∈ Y3 \Q and i = 1, 2. (1.15)

Therefore, we obtain that

det (DU) (0, 0, τ) =
∂u1
∂y1

(0, 0, τ)
∂u2
∂y2

(0, 0, τ)
∂u3
∂y3

(0, 0, τ) < 0, (1.16)

which also implies that det (DU) is negative in the neighborhood (0, 0, τ). The proof is now
complete.

The previous pointwise properties of the electric fields suggest to characterize the electric
fields among the smooth periodic (or not) vector (or matrix) fields defined in Rd. This is the
subject of the next section.
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2 Realizability of electric fields

2.1 The vector field case

Definition 2.1. Let Ω be an (bounded or not) open set of Rd, d ≥ 2, and let u ∈ H1(Ω). The
vector-valued field ∇u is said to be a realizable electric field in Ω if there exist a symmetric
positive definite matrix-valued σ ∈ L∞loc(Ω)d×d such that

div (σ∇u) = 0 in D ′(Ω). (2.1)

If σ can be chosen isotropic (σ → σId), the field ∇u is said to be isotropically realizable in Ω.

2.1.1 Isotropic and anisotropic realizability

Theorem 2.2 (Milton, Treibergs, B. [11]). Let Y be a closed parallelepiped of Rd. Consider
u ∈ C1(Rd), d ≥ 2, such that

∇u is Y -periodic and 〈∇u〉 6= 0. (2.2)

i) Assume that
∇u 6= 0 everywhere in Rd. (2.3)

Then, ∇u is an isotropically realizable electric field locally in Rd associated with a con-
tinuous conductivity.

ii) Assume that ∇u satisfies condition (2.2), and is a realizable electric field in R2 associated
with a smooth Y -periodic conductivity. Then, condition (2.3) holds true.

iii) There exists a gradient field ∇u satisfying (2.2), which is a realizable electric field in R3

associated with a smooth Y3-periodic conductivity, and which admits a critical point y0,
i.e. ∇u(y0) = 0.

Remark 2.3. Part i) of Theorem 2.2 provides a local result in the smooth case, and still holds
without the periodicity assumption on ∇u. It is then natural to ask if the local result remains
valid when the potential u is only Lipschitz continuous. The answer is negative as shown in
Example 2.4 below. We may also ask if a global realization of a periodic gradient can always
be obtained with a periodic isotropic conductivity σ. The answer is still negative as shown in
Example 2.6.

The underlying reason for these negative results is that the proof of Theorem 2.2 is based
on the rectification theorem which needs at least C1-regularity and is local.

Example 2.4. Let χ : R→ R be the 1-periodic characteristic function which agrees with the
characteristic function of [0, 1/2] on [0, 1]. Consider the function u defined in R2 by

u(x) := x2 − x1 +

ˆ x1

0

χ(t) dt, for any x = (x1, x2) ∈ R2. (2.4)

The function u is Lipschitz continuous, and

∇u = χ e2 + (1− χ) (e2 − e1) a.e. in ∈ R2. (2.5)

The discontinuity points of ∇u lie on the lines {x1 = 1/2 (1 + k)}, k ∈ Z. Let Q := (−r, r)2
for some r ∈ (0, 1/2).
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Assume that there exists a positive function σ ∈ L∞(Q) such that σ∇u is divergence free
in Q. Let v be a stream function such that σ∇u = R⊥∇v a.e. in Q. The function v is unique
up to an additive constant, and is Lipschitz continuous. On the one hand, we have

0 = ∇u · ∇v = (e2 − e1) · ∇v a.e. in (−r, 0)× (−r, r), (2.6)

hence v(x) = f(x1 + x2) for some Lipschitz continuous function f defined in [−2r, r]. On the
other hand, we have

0 = ∇u · ∇v = e2 · ∇v a.e. in (0, r)× (−r, r), (2.7)

hence v(x) = g(x1) for some Lipschitz continuous function g in [0, r]. By the continuity of v on
the line {x1 = 0}, we get that f(x2) = g(0), hence f is constant in [−r, r]. Therefore, we have

∇v = 0 a.e. in (−r, 0)× (0, r) and σ∇u = σ (e2 − e1) 6= 0 a.e. in (−r, 0)× (0, r), (2.8)

which contradicts the equality σ∇u = R⊥∇v a.e. in Q. Therefore, the field ∇u is non-zero
a.e. in R2, but is not an isotropically realizable electric field in the neighborhood of any point
of the lines {x1 = 1/2 (1 + k)}, k ∈ Z.

Remark 2.5. The singularity of ∇u in Example 2.4 induces a jump of the current at the inter-
face {x1 = 0}. To compensate this jump we need to introduce formally an additional current
concentrated on this line, which would imply an infinite conductivity there. The assumption of
bounded conductivity (in L∞) leads to the former contradiction. Alternatively, with a smooth
approximation of ∇u around the line {x1 = 0}, then part i) of Theorem 2.2 applies which
allows us to construct a suitable conductivity. But this conductivity blows up as the smooth
gradient tends to ∇u.

Example 2.6. Consider the function u defined in R by

u(x) := x1 − cos (2πx2) , for any x = (x1, x2) ∈ R2. (2.9)

The function u is smooth, and its gradient ∇u is Y2-periodic, independent of the variable x1
and non-zero on R2.

Assume that there exists a smooth positive function σ defined in R2, which is a-periodic with
respect to x1 for some a > 0, and such that σ∇u is divergence free in R2. Set Q := (0, a)×(−r, r)
for some r ∈ (0, 1

2
). By an integration by parts and taking into account the periodicity of σ∇u

with respect to x1, we get that

0 =

ˆ
Q

div (σ∇u) dx

=

ˆ r

−r

(
σ∇u(a, x2)− σ∇u(0, x2)

)
· e1 dx2︸ ︷︷ ︸

=0

+

ˆ a

0

(
σ∇u(x1, r)− σ∇u(x1,−r)

)
· e2 dx1

= 2π sin (2πr)

ˆ a

0

(
σ(x1, r) + σ(x1,−r)

)
dx1 > 0,

(2.10)
which yields a contradiction. Therefore, the Y2-periodic field∇u is not an isotropically realizable
electric field in the torus.
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Proof of Theorem 2.2.

i) Let x0 ∈ Rd. First assume that d > 2. By the rectification theorem (see, e.g., [4]) there exist
an open neighborhood V0 of x0, an open set W0, and a C1-diffeomorphism Φ : V0 → W0 such
that DΦT ∇u = e1. Define vi := Φi+1 for i ∈ {1, . . . , d − 1}. Then, we get that ∇vi · ∇u = 0
in V0, and the rank of (∇v1, . . . ,∇vd−1) is equal to (d − 1) in V0. Consider the continuous
function

σ :=
|∇v1 × · · · × ∇vd−1|

|∇u|
> 0 in V0. (2.11)

Since by definition, the cross product ∇v1×· · ·×∇vd−1 is orthogonal to each ∇vi as is ∇u, then
due to the condition (2.3) combined with a continuity argument, there exists a fixed τ0 ∈ {±1}
such that

∇v1 × · · · × ∇vd−1 = τ0 σ∇u in V0. (2.12)

Moreover, Theorem 3.2 of [13] implies that ∇v1×· · ·×∇vd−1 is divergence free, and so is σ∇u.
Therefore, ∇u is an isotropically realizable electric field in V0.

When d = 2, the equality ∇v1 · ∇u = 0 in V0 yields for some fixed τ0 ∈ {±1},

τ0R⊥∇v1 =
|∇v1|
|∇u|︸ ︷︷ ︸
σ :=

∇u in V0, (2.13)

which also allows us to conclude the proof of (i).

ii) It is a straightforward consequence of [1] (Proposition 2, the smooth case).

iii) Ancona [3] first built an example of potential with critical points in dimension d ≥ 3.
The following construction is a regularization of the simpler example of [10] which allows us to
derive a change of sign for the determinant of the matrix electric field. Consider the periodic
chain-mail Q] ⊂ R3 of [10], and the associated isotropic two-phase conductivity σκ which is
equal to κ � 1 in Q] and to 1 elsewhere. Now, let us modify slightly the conductivity σκ

by considering a smooth Y3-periodic isotropic conductivity σ̃κ ∈ [1, κ] which agrees with σκ,
except within a thin boundary layer of each interlocking ring Q ⊂ Q], of width κ−1 from the
boundary of Q. Proceeding as in the proof of Theorem 1.2 it is easy to check that the smooth
periodic matrix-valued electric field DŨκ solution of

Div
(
σ̃κDŨκ

)
= 0 in R3, with 〈DŨκ〉 = I3, (2.14)

converges (as κ→∞) strongly in L2(Y3)
3×3 to the same limit DU as the electric field DUκ asso-

ciated with σκ. Then, by virtue of [10] det (DU) is negative around some point between two in-
terlocking rings, so is det

(
DŨκ

)
for κ large enough. This combined with

〈
det
(
DŨκ

)〉
= 1 and

the continuity ofDŨκ, implies that there exists some point y0 ∈ Y3 such that det
(
DŨκ(y0)

)
= 0.

Therefore, there exists ξ ∈ R3 \ {0} such that the potential u := Ũκ · ξ satisfies 〈∇u〉 = ξ and
∇u(y0) = DŨκ(y0) ξ = 0. Theorem 2.2 is thus proved. �

In dimension two we have the following characterization of realizable electric vector fields:

Theorem 2.7 (Milton, Treibergs, B. [11]). Let Y be a closed parallelogram of R2. Consider
a function u ∈ C1(R2) satisfying (2.2). Assume that there exists a function v ∈ C1(R2)
satisfying (2.2) such that

R⊥∇u · ∇v = det (∇u,∇v) > 0 everywhere in R2. (2.15)
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Then, ∇u is realizable in the torus with a symmetric positive definite matrix-valued conductivity
σ in C0

] (Y )2×2.
Conversely, assume that ∇u is realizable in R2 with a symmetric positive definite matrix-
valued conductivity σ in C2

] (Y )2×2. Then, there exists a function v ∈ C1(R2) satisfying (2.2)
and (2.15).

Remark 2.8. The result of Theorem 2.7 still holds under the less regular assumption

∇u ∈ L2
] (Y )2, ∇u 6= 0 everywhere in R2 and 〈∇u〉 6= 0. (2.16)

Then, the Y -periodic conductivity σ defined by the formula (2.17) below is only defined almost
everywhere in R2, and is not necessarily uniformly bounded from below or above in the cell
period Y . However, σ∇u remains divergence free in the sense of distributions on R2.

Proof of Theorem 2.7. Let u, v ∈ C1(R2) be two functions satisfying (2.2) and (2.15).
From (2.15) we easily deduce that ∇u does not vanish in R2. Then, we may define in R2 the
function

σ :=
1

|∇u|4

(
∂1u ∂2u
−∂2u ∂1u

)T (R⊥∇u · ∇v −∇u · ∇v
−∇u · ∇v |∇u·∇v|2+1

R⊥∇u·∇v

)(
∂1u ∂2u
−∂2u ∂1u

)
. (2.17)

Hence, σ is a symmetric positive definite matrix-valued function in C0
] (Y )2×2 with determi-

nant |∇u|−4. Moreover, a simple computation shows that σ∇u = −R⊥∇v, so that σ∇u is
divergence free in Rd. Therefore, ∇u is a realizable electric field in Rd associated with the
anisotropic conductivity σ.

Conversly, let u be a function in C1(R) satisfying (2.2) such that ∇u is realizable in R2

with a symmetric positive definite conductivity σ in C2
] (Y )2×2. Consider the unique (up to

an additive constant) potential v solution of div (σ∇v) = 0 in Rd, with ∇v ∈ L2
] (Y )d and

〈∇v〉 = R⊥ 〈∇u〉. By the classical regularity results on second-order elliptic pde’s v belongs to
C1(R2). Set U := (u, v), by (2.2) we have

det
(
〈DU〉

)
= R⊥〈∇u〉 · 〈∇v〉 =

∣∣〈∇u〉∣∣2 > 0. (2.18)

Hence, by Theorem 1.1 we have det (DU) > 0 a.e. in R2. On the other hand, assume that
there exists a point y0 ∈ R2 such that det (DU) (y0) = 0. Then, there exists ξ ∈ R2 \ {0} such
that the potential w := Uξ satisfies ∇w(y0) = DU(y0) ξ = 0, which contradicts Proposition 2
of [1] (the smooth case). Therefore, we get that R⊥∇u · ∇v = det (DU) > 0 everywhere in R2,
that is (2.15). �

Example 2.9. Go back to the Examples 2.4 and 2.6 which provide examples of gradients
which are not isotropically realizable electric fields. However, in the context of Theorem 2.7 we
can show that the two gradient fields are realizable electric fields associated with anisotropic
conductivities:

1. Consider the function u defined by (2.4), and define the function v by

v(x) := −x1 +

ˆ x2

0

χ(t) dt, for any x = (x1, x2) ∈ R2. (2.19)

We have
∇v = χ (e2 − e1) + (1− χ) (− e1) a.e. in R2, (2.20)
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which combined with (2.5) implies that

∇u · ∇v = R⊥∇u · ∇v = 1 a.e. in R2. (2.21)

Hence, after a simple computation formula (2.17) yields the rank-1 laminate (see Sec-
tion 2.2.2) conductivity

σ = χ

(
2 1
1 1

)
+ (1− χ)

1

4

(
1 1
1 5

)
a.e. in R2. (2.22)

This combined with (2.5) yields

σ∇u = χ (e1 + e2) + (1− χ) e1 a.e. in R2, (2.23)

which is divergence free in D ′(R2) since (e1 + e2 − e1) ⊥ e1.

2. Consider the function u defined by (2.9), and define the function v by v(x) := x2. Then,
formula (2.17) yields the smooth conductivity

σ =
1(

1 + 4π2 sin2(2πx2)
)2 ((1 + 4π2 sin2(2πx2)

)2
+ 4π2 sin2(2πx2) − 2π sin(2πx2)

− 2π sin(2πx2) 1

)
,

(2.24)
This implies that σ∇u = e1 which is obviously divergence free in R2.

2.1.2 Isotropic realizability in the whole space

In the previous section we have shown that not all gradients ∇u satisfying (2.2) and (2.3) are
isotropically realizable when we assume σ is periodic. In the present section we will prove that
the isotropic realizability actually holds in the whole space Rd when we relax the periodicity
assumption on σ. To this end consider for a smooth periodic gradient field ∇u ∈ C1

] (Y )d, the
following gradient dynamical system

dX

dt
(t, x) = ∇u

(
X(t, x)

)
X(0, x) = x,

for t ∈ R, x ∈ Rd, (2.25)

where t will be referred to as the time. First, we will extend the local rectification result of
Theorem 2.2 to the whole space involving a hyperplane. Then, using an alternative approach
we will obtain the isotropic realizability in the whole space replacing the hyperplane by an
equipotential. Finally, we will give a necessary and sufficient for the isotropic realizability in
the torus.

We have the following result:

Proposition 2.10. Let u be a function in C2(Rd) such that ∇u satisfies (2.2) and (2.3). Also
assume that there exists an hyperplane H := {x ∈ Rd : x · ν = h} such that each trajectory
X(·, x) of (2.25), for x ∈ Rd, intersects H only at one point zH(x) = X

(
τH(x), x

)
and at a

unique time τH(x) ∈ R, in such a way that ∇u is not tangential to H at zH(x). Then, the
gradient ∇u is an isotropically realizable electric field in Rd.

11



!

Figure 4: The trajectories crossing the line {x1 = 0} and the equipotential {u = 0}

Example 2.11. Go back to Example 2.6 with the function u defined in R2 by (2.9). The
gradient field ∇u is smooth and Y2-periodic. The solution of the dynamical system (2.25)
which reads as

dX1

dt
(t, x) = 1, X1(0, x) = x1,

dX2

dt
(t, x) = 2π sin

(
2πX2(t, x)

)
, X2(0, x) = x2,

for t ∈ R, x ∈ R2, (2.26)

is given explicitly by (see figure 4)

X(t, x) =

 (t+ x1) e1 +
[
n+ 1

π
arctan

(
e4π

2t tan(πx2)
)]
e2 if x2 ∈

(
n− 1

2
, n+ 1

2

)
(t+ x1) e1 +

(
n+ 1

2

)
e2 if x2 = n+ 1

2
,

(2.27)

where n is an arbitrary integer.
Consider the line {x1 = 0} as the hyperplane H. Then, we have τH(x) = −x1. Moreover,

using successively the explicit formula (2.27) and the semigroup property

X
(
s,X(t, x)

)
= X(s+ t, x) ∀ s, t ∈ R, ∀x ∈ Rd, (2.28)

we have

X
(
−X1(t, x), X(t, x)

)
= X

(
− t− x1, X(t, x)

)
= X(−x1, x), ∀ t ∈ R. (2.29)

Hence, the function v defined by v(x) := X2(−x1, x) satisfies

v
(
X(t, x)

)
= X2

(
−X1(t, x), X(t, x)

)
= X2(−x1, x) = v(x), ∀ t ∈ R. (2.30)

The function v is thus a first integral of system (2.25). It follows that

d

dt

[
v
(
X(t, x)

)]
= 0 = ∇v

(
X(t, x)

)
· dX
dt

(t, x) = ∇v
(
X(t, x)

)
· ∇u

(
X(t, x)

)
, (2.31)
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which, taking t = 0, implies that ∇u · ∇v = 0 in R2. Moreover, putting t = −x1 in (2.27), we
get that for any n ∈ Z,

v(x) =

{
n+ 1

π
arctan

(
e−4π

2x1 tan(πx2)
)

if x2 ∈
(
n− 1

2
, n+ 1

2

)
n+ 1

2
if x2 = n+ 1

2
.

(2.32)

Therefore, by (2.13) ∇u is an isotropically realizable electric field in the whole space R2, with
the smooth conductivity

σ :=
|∇v|
|∇u|

=


1 + tan2(πx2)

e4π2x1 + e−4π2x1 tan2(πx2)
if x2 /∈ 1

2
+ Z

e4π
2x1 if x2 ∈ 1

2
+ Z.

(2.33)

It may be checked by a direct calculation that σ∇u is divergence free in R2.

Remark 2.12. The hyperplane assumption of Theorem 2.10 does not hold in general. Indeed,
we have the following heuristic argument:

Let H be a line of R2, and let Σ be a smooth curve of R2 having an S-shape across H.
Consider a smooth periodic isotropic conductivity σ which is very small in the neighborhood
of Σ. Let u be a smooth potential solution of div (σ∇u) = 0 in R2 satisfying (2.2), (2.3), and let
v be the associated stream function satisfying σ∇u = R⊥∇v in R2. The potential v is solution
of div (σ−1∇v) = 0 in R2. Then, since σ−1 is very large in the neighborhood of Σ, the curve Σ
is close to an equipotential of v and thus close to a current line of u. Therefore, some trajectory
of (2.25) has an S-shape across H. This makes impossible the regularity of the time τH which
is actually a multi-valued function.

Now, replacing a hyperplane by an equipotential (see figure 1 above) we have the more
general result:

Theorem 2.13 (Milton, Treibergs, B. [11]). Let u be a function in C3(Rd) such that ∇u
satisfies (2.2) and (2.3). Then, the gradient field ∇u is an isotropically realizable electric field
in Rd.

Proof of Theorem 2.13. On the one hand, for a fixed point x ∈ Rd, define the function
f : R→ R by f(t) := u

(
X(t, x)

)
, for t ∈ R. The function f is in C3(R), and

f ′(t) =
dX

dt
(t, x) · ∇u

(
X(t, x)

)
=
∣∣∇u(X(t, x)

)∣∣2 , ∀ t ∈ R. (2.34)

Since ∇u is periodic, continuous and does not vanish in Rd, there exists a constant m > 0 such
that f ′ ≥ m in R. It follows that

f(t)− f(0)

t
≥ m, ∀ t ∈ R \ {0}, (2.35)

which implies that
lim
t→∞

f(t) =∞ and lim
t→−∞

f(t) = −∞. (2.36)

This combined with the monotonicity and continuity of f thus shows that there exists a unique
τ(x) ∈ R such that

u
(
X(τ(x), x)

)
= 0. (2.37)
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On the other hand, similar to the hyperplane case, we have that for any x ∈ Rd,

∂

∂t

[
u
(
X(t, x)

)]∣∣∣∣
t=τ(x)

=
∣∣∇u(X(τ(x), x)

)∣∣2 > 0. (2.38)

Hence, from the implicit function theorem combined with the C2-regularity of (t, x) 7→ u
(
X(t, x)

)
we deduce that x 7→ τ(x) is a function in C2(Rd).

Now, define the function w in Rd by

w(x) :=

ˆ τ(x)

0

∆u
(
X(s, x)

)
ds, for x ∈ Rd, (2.39)

which belongs to C1(Rd) since u ∈ C3(Rd). Note that the semigroup property (2.28) and (2.37)
yield

u
[
X
(
τ(x)− t,X(t, x)

)]
= u

[
X
(
τ(x), x

)]
= 0, ∀ t ∈ R, (2.40)

which by the uniqueness of τ(x) implies that

τ
(
X(t, x)

)
= τ(x)− t, ∀ t ∈ R. (2.41)

Then, using (2.28), (2.41) and the change of variable r := s + t, we get that for any (t, x) in
R× Rd,

w
(
X(t, x)

)
=

ˆ τ(x)−t

0

∆u
(
X(s+ t, x)

)
ds =

ˆ τ(x)

t

∆u
(
X(r, x)

)
dr, (2.42)

which implies that

∂

∂t

[
w
(
X(t, x)

)]
= ∇w

(
X(t, x)

)
· ∇u

(
X(t, x)

)
= −∆u

(
X(t, x)

)
. (2.43)

Finally, define the conductivity σ by

σ(x) := ew(x) = exp

(ˆ τ(x)

0

∆u
(
X(s, x)

)
ds

)
, for x ∈ R2, (2.44)

which belongs to C1(Rd). Applying (2.43) with t = 0, we obtain that

div (σ∇u) = ew (∇w · ∇u+ ∆u) = 0 in Rd, (2.45)

which concludes the proof. �

Remark 2.14. In the proof of Theorem 2.13 the condition that ∇u is non-zero everywhere is
essential to obtain both:

- the uniqueness of the time τ(x) for each trajectory to reach the equipotential {u = 0},
- the regularity of the function x 7→ τ(x).

2.1.3 Isotropic realizability in the torus

We have the following characterization of the isotropic realizability in the torus:

Theorem 2.15 (Milton, Treibergs, B. [11]). Let u be a function in C3(Rd) such that ∇u
satisfies (2.2) and (2.3). Then, the gradient field ∇u is isotropically realizable with a positive
conductivity σ ∈ L∞] (Y ), with σ−1 ∈ L∞] (Y ), if there exists a constant C > 0 such that

∀x ∈ Rd,

∣∣∣∣∣
ˆ τ(x)

0

∆u
(
X(t, x)

)
dt

∣∣∣∣∣ ≤ C, (2.46)
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where X(t, x) is defined by (2.25) and τ(x) by (2.37).
Conversely, if ∇u is isotropically realizable with a positive conductivity σ ∈ C1

] (Y ), then the
boundedness (2.46) holds.

Example 2.16. For the function u of Example 2.11 and for x = (x1, 0), we have by (2.39) and
(2.27),

w(x) = 4π2

ˆ τ(x)

0

cos
(
2πX2(s, x)

)
ds = 4π2 τ(x),

and by (2.37),
X1

(
τ(x), x

)
= τ(x) + x1 = cos

(
2πX2(τ(x), x)

)
= 1.

Therefore, we get that σ0(x1, 0) = 4π2 (1−x1), which contradicts the boundedness (2.46). This
is consistent with the negative conclusion of Example 2.6.

Proof of Theorem 2.15.

Sufficient condition: Without loss of generality we may assume that the period is Y = [0, 1]d.
Define the function σ0 by

σ0(x) := exp

(ˆ τ(x)

0

∆u
(
X(t, x)

)
dt

)
, for x ∈ Rd, (2.47)

and consider for any integer n ≥ 1, the conductivity σn defined by the average over the (2n+1)d

integer vectors of [−n, n]d:

σn(x) :=
1

(2n+ 1)d

∑
k∈Zd∩[−n,n]d

σ0(x+ k), for x ∈ Rd. (2.48)

On the one hand, by (2.46) σn is bounded in L∞(Rd). Hence, there is a subsequence of n,
still denoted by n, such that σn converges weakly-∗ to some function σ in L∞(Rd). Moreover,
we have for any x ∈ Rd and any k ∈ Zd (denoting |k|∞ := max

1≤i≤d
|ki|),

∣∣ (2n+ 1)d σn(x+ k)− (2n+ 1)d σn(x)
∣∣ =

∣∣∣ ∑
|j−k|∞≤n

σ0(x+ j)−
∑
|j|∞≤n

σ0(x+ j)
∣∣∣

≤
∑

|j−k|∞≤n
|j|∞>n

σ0(x+ j) +
∑

|j−k|∞>n
|j|∞≤n

σ0(x+ j)

≤ C nd−1,

(2.49)

where C is a constant independent of n and x. This implies that σ(· + k) = σ(·) a.e. in Rd,
for any k ∈ Zd. The function σ is thus Y -periodic and belongs to L∞] (Y ). Moreover, since by
virtue of (2.46) and (2.47) σ0 is bounded from below by e−C , so is σn and its limit σ. Therefore,
σ−1 also belongs to L∞] (Y ).

On the other hand, by virtue of Theorem 2.13 the gradient field ∇u is realizable in Rd

with the conductivity σ0. This combined with the Y -periodicity of ∇u yields div (σn∇u) = 0
in Rd. Hence, using the weak-∗ convergence of σn in L∞(Rd) we get that for any ϕ ∈ C∞c (Rd),
∇u · ∇ϕ ∈ L1(Rd) and

0 = lim
n→∞

ˆ
Rd
σn∇u · ∇ϕdx =

ˆ
Rd
σ∇u · ∇ϕdx. (2.50)
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Therefore, we obtain that div (σ∇u) = 0 in D ′(Rd), so that ∇u is isotropically realizable with
the Y -periodic bounded conductivity σ.

Necessary condition: Let σ be a positive function in C1
] (Y ) such that div (σ∇u) = 0 in Rd.

Then, the function w := lnσ also belongs to C1
] (Y ), and solves the equation ∇w ·∇u+ ∆u = 0

in Rd. Therefore, using (2.25) we obtain that for any x ∈ Rd,

ˆ τ(x)

0

∆u
(
X(t, x)

)
dt = −

ˆ τ(x)

0

∇w
(
X(t, x)

)
· ∇u

(
X(t, x)

)
dt

= −
ˆ τ(x)

0

∇w
(
X(t, x)

)
· dX
dt

(t, x) dt

= w
(
X(0, x)

)
− w

(
X(τ(x), x)

)
= w(x)− w

(
X(τ(x), x)

)
,

(2.51)

which implies (2.46) due to the boundedness of w in Rd. �

Remark 2.17. If we also assume that σ0 of (2.46) is uniformly continuous in Rd, then the
previous proof combined with Ascoli’s theorem implies that the conductivity σ is continuous.
Indeed, the sequence σn defined by (2.48) is then equi-continuous.

2.2 The matrix field case

Definition 2.18. Let Ω be an (bounded or not) open set of Rd, d ≥ 2, and let U = (u1, . . . , ud)
be a function in H1(Ω)d. The matrix-valued field DU is said to be a realizable matrix-valued
electric field in Ω if there exists a symmetric positive definite matrix-valued σ ∈ L∞loc(Ω)d×d

such that
Div (σDU) = 0 in Ω. (2.52)

2.2.1 The periodic framework

Theorem 2.19 (Milton, Treibergs, B. [11]). Let Y be a closed parallelepiped of Rd, d ≥ 2.
Consider a function U ∈ C1(Rd)d such that

DU is Y -periodic and det
(
〈DU〉

)
6= 0. (2.53)

i) Assume that (1.8) holds. Then, DU is a realizable electric matrix field in Rd associated
with a continuous conductivity.

ii) Assume that d = 2, and that DU is a realizable electric matrix field in R2, satisfying
(2.53) and associated with a smooth conductivity in R2. Then, condition (1.8) holds true.

iii) In dimension d = 3, there exists a smooth matrix field DU satisfying (2.53) and associated
with a smooth periodic conductivity, such that det (DU) takes positive and negative values
in R3.

Remark 2.20. Similarly to Remark 2.8 the assertions i) and ii) of Theorem 2.19 still hold
under the less regular assumptions that

DU ∈ L2
] (Y )d×d and det

(
〈DU〉DU

)
> 0 a.e. in Rd. (2.54)

Then, the Y -periodic conductivity σ defined by the formula (2.55) below is only defined a.e.
in Rd, and is not necessarily uniformly bounded from below or above in the cell period Y .
However, σDU remains divergence free in the sense of distributions on Rd.
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Figure 5: A rank-2 laminate with m2 = 2, and directions ξ1, ξ1,2 = ξ2, ξ2,2 = ξ3

Proof of Theorem 2.19.

i) Let U ∈ C1(Rd)d be a vector-valued function satisfying (2.53). Then, we can define the
matrix-valued function σ by

σ := det
(
〈DU〉DU

)
(DU−1)TDU−1 = det

(
〈DU〉

)
Cof (DU)DU−1, (2.55)

where Cof denotes the Cofactors matrix. It is clear that σ is a Y -periodic continuous symmetric
positive definite matrix-valued function. Moreover, Piola’s identity (see, e.g., [13], Theorem 3.2)
implies that

Div
(
Cof (DU)

)
= 0 in Rd. (2.56)

Hence, σDU is Divergence free in Rd. Therefore, DU is a realizable electric matrix field
associated with the continuous conductivity σ.

ii) Let DU be an electric matrix field satisfying condition (2.53) and associated with a smooth
conductivity in R2. By the regularity results for second-order elliptic pde’s the function U is
smooth in R2. Moreover, by virtue of Theorem 1.2 we have det

(
〈DU〉DU

)
> 0 a.e. in R2.

Therefore, as in the proof of Theorem 2.7 we conclude that (1.8) holds.

iii) This is an immediate consequence of the counter-example of [10] combined with the regu-
larization argument used in the proof of Theorem 2.2 iii). �

Remark 2.21. The conductivity σ defined by (2.55) can be derived by applying the coordinate
change x′ = U−1(x) to the homogeneous conductivity

∣∣ det〈DU〉
∣∣ Id.

2.2.2 The laminate fields

Definition 2.22. Let d, n be two positive integers. A rank-n laminate in Rd is a multi-scale
microstructure defined at n ordered scales εn � · · · � ε1 depending on a small positive
parameter ε→ 0, and in multiple directions in Rd \ {0}, by the following process (see figure 5):
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• At the smallest scale εn, there is a set of mn rank-1 laminates, the ith one of which is com-
posed, for i = 1, . . . ,mn, of an εn-periodic repetition in the direction ξi,n of homogeneous
layers with constant positive definite conductivity matrices σhi,n, h ∈ Ii,n.

• At the scale εk, there is a set of mk laminates, the ith one of which is composed, for i =
1, . . . ,mk, of an εk-periodic repetition in the direction ξi,k of homogeneous layers and/or
a selection of the mk+1 laminates which are obtained at stage (k + 1) with conductivity
matrices σhi,j, for j = k + 1, . . . , n, h ∈ Ii,j.

• At the scale ε1, there is a single laminate (m1 = 1) which is composed of an ε1-periodic
repetition in the direction ξ1 ∈ Rd \ {0} of homogeneous layers and/or a selection of
the m2 laminates which are obtained at the scale ε2 with conductivity matrices σhi,j, for
j = 2, . . . , n, h ∈ Ii,j.

The laminate conductivity at stage k = 1, . . . , n, is denoted by Lεk(σ̂), where σ̂ is the whole
set of the constant laminate conductivities.

Due to the results of [14, 7] there exists a set P̂ of constant matrices in Rd×d, such that the
laminate Pε := Lεn(P̂ ) is a corrector (or a matrix electric field) associated with the conductivity
σε := Lεn(σ̂) in the sense of Murat-Tartar [16], i.e.

Pε ⇀ Id weakly in L2
loc(Rd)d×d

Curl (Pε)→ 0 strongly in H−1loc (Rd)d×d×d

Div (σεPε) is compact in H−1loc (Rd)d.

(2.57)

The weak limit of σεPε in L2
loc(Rd)d×d is then the homogenized limit of the laminate. The three

conditions of (2.57) satisfied by Pε extend to the laminate case the three respective conditions
〈DU〉 = Id

Curl (DU) = 0

Div (σDU) = 0,

(2.58)

satisfied by any electric matrix field DU in the periodic case.

Remark 2.23. In [7] it is proved that the two differential constraints of (2.57) can be derived by
a suitable control of the curl and the divergence jumps between two fields in any neighboring
layers of a rank-1 sub-laminate in the direction ξ = ξi,k and at the scale εk of the rank-n

laminate. More precisely, consider any pair (P, σ) where P is the (matrix of P̂ , resp. average of
matrices in P̂ ) electric field and σ is the (matrix of σ̂, resp. the effective) conductivity in any
(homogeneous, resp. composite) layer, and the pair (Q, τ) in any neighboring (homogeneous,
resp. composite) layer along the direction ξ at the scale εk (see figure 6 below). Then, the curl
convergence of (2.57) is obtained by the jump conditions

P −Q = ξ ⊗ η, for some η ∈ Rd, (2.59)

and the divergence convergence of (2.57) is obtained by the jump conditions

(σP − τQ)T ξ = 0. (2.60)
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· · · ξ−→

← εk →

Figure 6: Two neighboring layers in the direction ξ and at the scale εk

The laminate electric fields and their realizability may be defined as follows:

Definition 2.24. A laminate electric field is any rank-n laminate Lεn(P̂ ) built from a finite
set P̂ of Rd×d (according to Definition 2.22), and satisfying the two first conditions of (2.57).
Then, the laminate field Lεn(P̂ ) is said to be realizable if there exists a finite set σ̂ of positive
definite matrices such that the rank-n laminate conductivity Lεn(σ̂) satisfies the third condition
of (2.57).

Then, the extension of Theorem 2.19 to laminate fields is the following:

Theorem 2.25 (Milton, Nesi, B. [10] and Milton, Treibergs, B. [11]). Let d, n be two positive
integers, and let Lεn(P̂ ) be a rank-n laminate electric field. Then, a necessary and sufficient
condition for Lεn(P̂ ) to be a realizable laminate electric field is that det(Lεn(P̂ )) > 0 a.e. in Rd,
or equivalently that the determinant of each matrix in P̂ is positive.

Proof. The sufficient condition is proved in [11], while the necessary condition is established
in [10], Theorem 3.3 (see also [12], Theorem 2.13, for an alternative approach).

Proof of the sufficient condition. Consider a rank-n laminate field Pε = Lεn(P̂ ) satisfying the
two first convergence of (2.57) and det (Pε) > 0 a.e. in Rd, or equivalently det (P ) > 0 for any
P ∈ P̂ . Similarly to (2.55) consider the rank-n laminate conductivity defined by

σε := det
(
Pε
)

(P−1ε )T (Pε)
−1 = Lεn(σ̂), where σ̂ :=

{
det
(
P
)

(P−1)TP−1 : P ∈ P̂
}
. (2.61)

Then, the third condition of (2.57) is equivalent to the condition

Div
(
Cof (Pε)

)
is compact in H−1loc (Rd)d. (2.62)

Contrary to the periodic case Cof (Pε) is not divergence free in the sense of distributions.
However, following the homogenization procedure for laminates of [7], and using the quasi-
affinity of the Cofactors for gradients (see, e.g., [13]), condition (2.62) holds if any matrices
P,Q of two neighboring layers in some direction ξ = ξi,k of the laminate satisfy the jump
condition for the divergence (see Remark 2.23 above)(

Cof (P )− Cof (Q)
)T
ξ = 0. (2.63)

More precisely, at a given scale εk of the rank-n laminate the matrix P (or Q) is:

1. either a matrix in P̂ ,

2. or the average of rank-1 laminate electric fields obtained at the smallest scales εk+1, . . . , εn.

In the first case the matrix P is the constant value of the field in a homogeneous layer of the
rank-n laminate. In the second case the average of the Cofactors of the matrices involving
in these rank-1 laminates is equal to the Cofactors matrix of the average, that is Cof (P ), by
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virtue of the quasi-affinity of the Cofactors (see [13], Section 4.1.2) applied iteratively to the
rank-1 connected matrices in each rank-1 laminate.

Therefore, it remains to prove equality (2.63) for any matrices P,Q with positive determi-
nant, satisfying the curl jump condition (2.59). Using (2.59) and the multiplicativity of the
Cofactors matrix we get that(

Cof (P )− Cof (Q)
)T

= Cof (Q)T
[
Cof (Id + (ξ ⊗ η)Q−1)

T − Id
]

= Cof (Q)T
[
Cof (Id + ξ ⊗ λ)T − Id

]
, with λ := (Q−1)

T
η.

(2.64)

Moreover, if ξ · λ 6= −1, a simple computation yields

Cof (Id + ξ ⊗ λ)T = det (Id + ξ ⊗ λ) (Id + ξ ⊗ λ)−1 = (1 + ξ · λ) Id − ξ ⊗ λ, (2.65)

which extends to the case ξ · λ = −1 by a continuity argument. Therefore, it follows that(
Cof (P )− Cof (Q)

)T
= Cof (Q)T

(
(ξ · λ) Id − ξ ⊗ λ

)
, (2.66)

which implies the desired equality (2.63), since (ξ ⊗ λ) ξ = (ξ · λ) ξ.

Proof of the necessary condition. It is enough to prove that, at any scale εk of the lamination and
for two neighboring composite (or homogeneous) layers in some direction ξ = ξi,k, associated

with the homogenized (or in σ̂) conductivities σ, τ and the average (or in P̂ ) electric fields P ,
Q satisfying the jump conditions (2.59) and (2.60), we have

det (P ) det (Q) > 0. (2.67)

Indeed, we deduce from (2.67) and the rank-1 affinity of the determinant that the electric fields
in each phase have the same sign. This sign is positive since the global average of the electric
fields is equal to Id according to the first convergence of (2.57).

Now let us prove property (2.67) by contradiction. Namely, assume that there exist P , Q
such that det (P ) det (Q) ≤ 0. We have the following alternative:

1. If det (Q) = 0, there exists a non-zero vector η ∈ Rd such that Qη = 0. Hence, by the
jump conditions (2.59) and (2.60) we have Pη ‖ ξ and σPη ⊥ ξ, which implies that
Pη = 0 since σ is positive definite. Similarly, we have P ′η = 0 for any average electric
field P ′ at scale εk. Then, by considering successively the scales εk−1, . . . , ε1, we also have
P ′η = 0 for any average electric field P at any scale � εk. Since the global average
electric field is equal to Id at scale ε1, we finally obtain that η = 0, which yields the
contradiction.

2. Otherwise det (P ) > 0 and det (Q) < 0. Then, introduce a meso-scale ε′k between εk+1

and εk, and replace the two neighboring composites whose homogenized matrices are σ
and τ , by a rank-1 laminate at the scale ε′k, in the same direction ξ and such that the
volume fraction of τ is equal to

θ :=
det (P )

det (P )− det (Q)
∈ [0, 1]. (2.68)

Since the lamination direction is the same at the scales εk and ε′k, it is easy to deduce
from (2.59) and (2.60) that the average electric fields remain unchanged from the smallest
scale εn to the new scale ε′k. In particular, the average electric fields associated with σ
and τ are still P and Q. By virtue of the reiterated homogenization principle the average
electric field at the new scale is equal to the matrix Q′ := θ Q + (1− θ)P . However,
the determinant of Q′ is equal to 0 by (2.68), since P , Q are rank-1 connected and the
determinant is rank-1 affine. Therefore, we are led to the first case with Q′.
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This concludes the proof of Theorem 2.25.

3 Hall effect in composites

3.1 The Hall effect and the magneto-resistance

Consider a homogeneous conductor in Rd, with a matrix resistivity ρ0 which is the inverse of
the conductivity σ0. In the presence of a small magnitude magnetic field h ∈ Rd (i.e. |h| � 1),
classical physics claims that the perturbed resistivity ρh satisfies

ρ(−h) = (ρh)
T . (3.1)

Hence, the second-order expansion of the perturbed resistivity reads as:

• in dimension d = 2 (h is replaced by h e3 ⊥ to the plane conductor),

ρh = ρ0 + h r R⊥ + h2M + o(h2), with R⊥ :=

(
0 1
−1 0

)
, (3.2)

where r is the Hall coefficient and M is magneto-resistance which is a symmetric matrix;

• in dimension d = 3,

ρh = ρ0 + r E (h) + o(h), where E (h) :=

 0 h3 −h2
−h3 0 h1
h2 −h1 0

 . (3.3)

For a fixed divergence free current field j, the perturbed electric field eh := ρh j satisfies:

• in dimension d = 2,

eh = ρ0 j + h r R⊥ j︸ ︷︷ ︸
Hall field Eh

+h2M j + o(h2); (3.4)

• in dimension d = 3,
eh = ρ0 j + r j × h︸ ︷︷ ︸

Hall field Eh

+o(h). (3.5)

The Hall field which is both perpendicular to j and h is necessary to balance the magnetic force
acting on the moving charge carriers as shown in figure 7.

+ + + + + + + + + + +

– – – – – – – – – – –
j

h

Eh

Figure 7: The Hall field Eh
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3.2 The Hall coefficient in composites

3.2.1 The two-dimensional case

Let σ0(y) = ρ0(y)−1 be a Y2-periodic matrix-valued conductivity satisfying (1.2). Then, by
virtue of (1.5) and (1.6) the unperturbed effective (or homogenized) conductivity σ∗0 = (ρ∗0)

−1

is given by

σ∗0 =
〈
σ0DU0

〉
, where

{
div (σ0DU0) = 0 in R2

U0(y)− y is Y2-periodic.
(3.6)

Following the Bergman approach [5] we have the following result:

Theorem 3.1 (Milton, Manceau, B. [9]). The effective Hall coefficient is given by

r∗ =

〈
r det (σ0DU0)

〉
det (σ∗0)

. (3.7)

Moreover, the bounds of the Hall coefficient are preserved, i.e.

r1 ≤ r(y) ≤ r2 a.e. in Y2 ⇒ r1 ≤ r∗ ≤ r2. (3.8)

Proof. On the one hand, we need the periodic div-curl lemma: for any divergence free current
field j ∈ L2

] (Yd)
d and any curl free electric field e ∈ L2

] (Yd)
d,

〈j · e〉 = 〈j〉 · 〈e〉. (3.9)

Applied to the perturbed energy the div-curl lemma yields〈
(DUh)

TσhDUh
〉

=
〈
(DUh)

T
〉 〈
σhDUh

〉
=
〈
DUh

〉T
σ∗h
〈
DUh

〉
= σ∗h. (3.10)

On the other hand, the expansions of the perturbed quantities σh, ρh and their homogenized
σ∗h, ρ

∗
h read as {

σh = σ0 + s hR⊥ + o(h) ρh = ρ0 + r hR⊥ + o(h)

σ∗h = σ∗0 + s∗ hR⊥ + o(h) ρ∗h = ρ∗0 + r∗ hR⊥ + o(h).
(3.11)

Moreover, by σh ρh = I2 the coefficients s, s∗ are given in terms of the Hall coefficients r, r∗ by

s = − r det (σ0) and s∗ = − r∗ det (σ∗0) . (3.12)

Hence, putting (3.11) and (3.12) in the energy equalities (3.10) it follows that

σ∗h = σ∗0 + h
〈
s (DU0)

TR⊥DU0

〉
+ o(h)

= σ∗0 + h
〈
s det (DU0)R⊥

〉
+ o(h)

= σ∗0 + h s∗R⊥ + o(h).

(3.13)

This combined with (3.12) implies the formula (3.7) for the effective Hall coefficient r∗.
Now, the preservation of the bounds is a consequence of the quasi-affinity of the determinant

for divergence free functions in 2d (see, e.g., [13]),〈
det (σ0DU0)

〉
= det

(〈
σ0DU0

〉)
= det (σ∗0) . (3.14)

Using the positivity property (1.8) in the previous equality we get that

r1
〈

det (σ0DU0)
〉
≤
〈
r det (σ0DU0)

〉
≤ r2

〈
det (σ0DU0)

〉
, (3.15)

which combined with (3.7) concludes the proof.

22



3.2.2 Reversal of the sign of the Hall coefficient in dimension three

Let σ0 = ρ−10 be a Y3-periodic matrix-valued conductivity satisfying (1.2), and for h ∈ R3,
let ρh = σ−1h be a perturbed resistivity satisfying expansion (3.3). In dimension 3, due to the
possible anisotropy the first-order term of the effective resistivity ρ∗h = (σ∗h)

−1 involves not a
single Hall coefficient as in dimension 2, but a priori a full Hall matrix R∗ ∈ R3×3, i.e.

ρ∗h = ρ∗0 + E (R∗h) + o(h), where E (R∗j) = j ×R∗h, for j ∈ R3. (3.16)

Similarly, the perturbed conductivity σh and the effective perturbed conductivity σ∗h satisfy the
first-order expansions{

σ∗h = σ∗0 + E (Sh) + o(h), where S ∈ L∞] (Y3)
3×3

σ∗h = σ∗0 + E (S∗h) + o(h), where S∗ ∈ R3×3.
(3.17)

Note that S = s I3 when σ0 is isotropic. Moreover, expanding the equalities σh ρh = σ∗h ρ
∗
h = I3

and using the algebraic identity

P T E (ξ)P = E
(
Cof(P )T ξ

)
, ∀ (ξ, P ) ∈ R3 × R3×3, (3.18)

we get the extension of (3.12) to dimension 3,

S = − rCof (σ0) and S∗ = −Cof (σ∗0)R∗. (3.19)

Contrary to the two-dimensional case the bounds of the Hall coefficients are not necessarily
preserved by the homogenization process:

Theorem 3.2 (Milton, B. [8]). There exist a Y3-periodic conductivity σ0(y), and a Hall coeffi-
cient r(y) > 0, such that the effective Hall matrix R∗ is isotropic and satisfies

R∗ = r∗ I3 with r∗ < 0. (3.20)
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Figure 8: The period Q of the cubic chainmail with four half links crossing a central one

Proof. The proof is based on the same type of periodic chainmail Q] as in Section 1.2.2, but
arranged in a cubic way as a Middle-Age armor (see figure 8). For κ > 0, let σκ0 be the
unperturbed conductivity defined by (1.9), and let Uκ

0 be the associated vector-valued potential
solution of (3.6). Also consider the Y3-periodic isotropic matrix S = s I3 associated with σh by
(3.17), and defined in R3 by:

• s = 1 in the cubic lattice of balls B](δ) of radius δ > 0, centered on points between two
interlocking rings as shown in figure 9;

• s = γ > 0 elsewhere.

Thanks to the cubic symmetry the composite inherits of the isotropy of σh, so that the con-
ductivity σ∗h and the effective matrices R∗, S∗ are isotropic. This combined with relation (3.19)
implies that we are led to simply prove the change of sign for S∗.

On the one hand, starting from the expansion of the conductivity

σh = σκ0 + sE (h) + o(h), (3.21)

then expanding the perturbed energy (3.10) and using the formula (3.18) with P := DUκ
0 and

ξ := s h, combined with the expansion (3.17) of σ∗h, we have

σ∗h = σ∗0 +
〈
(DUκ

0 )TE (Sh)DUκ
0

〉
+ o(h)

= σ∗0 +
〈
E
(
Cof(DUκ

0 )TSh
)〉

+ o(h)

= σ∗0 + E (S∗h) + o(h).

(3.22)
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Figure 9: Two sections of the cubic chainmail period

Hence, the matrix S∗ satisfies
S∗ =

〈
Cof (DUκ

0 )TS
〉
. (3.23)

Since S∗ = s∗ I3, we get that

s∗ =
1

3

〈
s tr
(
Cof(DUκ

0 )
)〉
. (3.24)

Now, follow the arguments of the proof of Theorem 1.2. By virtue of the cubic symmetry
the integral over the balls on which s = 1, is reduced to the integral over one ball of radius δ,
centered on a point (0, 0, τ) such that, according to (1.14) and (1.15),

τ ∈ (1/2− ρ, ρ) and DU(0, 0, τ) =


∂u1
∂y1

> 0 0 0

0 ∂u2
∂y2

> 0 0

0 0 ∂u3
∂y3

= 1
1−4ρ < 0

 , (3.25)

where U = (u1, u2, u3) is the limit of Uκ
0 as κ → ∞ satisfying (1.12), and ρ > 1/4 is the inner

radius of the rings. Comparing ui to the function y 7→ ui(y)− (1/2−R)−1yi, we can also show
that

0 <
∂ui
∂xi

(0, 0, τ) ≤ 1

1/2−R
, for i = 1, 2. (3.26)

Hence, it follows that

tr
(
DU(0, 0, τ)

)
< 0 as ρ ≈ 1

4
. (3.27)

Finally, from (3.24) and the strong convergence of DUκ
0 to DU in L2(Y3)

3×3 as κ → ∞, we
deduce that

s∗ =
γ

3

ˆ
{s=γ}∩Y3

tr
(
Cof(DUκ

0 )
)
dy +

1

3

ˆ
{s=1}∩Y3

tr
(
Cof(DUκ

0 )
)
dy

= O(γ) +
1

3

ˆ
{s=1}∩Y3

tr
(
Cof(DU0)

)
dy + oκ(1)

= O(γ) + c δ3
[
tr
(
DU(0, 0, τ)

)
+ oδ(1)

]
+ oκ(1),

(3.28)
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where c > 0 is a fixed constant. Therefore, choosing successively

ρ ≈ 1

4
, δ � 1, γ � δ3, κ� 1, (3.29)

we obtain that s∗ has the same sign as tr
(
DU(0, 0, τ)

)
which is negative by (3.27).

3.3 An effective Hall field parallel to the magnetic field

By the expansion (3.5) the Hall field is given by Eh = r j × h in dimension 3, so that Eh is
both orthogonal to the magnetic field h and the current field j. Then, taking the average of
the perturbed electric field (3.5) and using the expansion (3.16) of the effective resistivity, it
follows that the effective Hall field E∗h satisfies

〈eh〉 = ρ∗0 〈 j〉+ E∗h + o(h)

= ρ∗h 〈j〉 = ρ∗0 〈 j〉+ E (R∗h) 〈 j〉+ o(h)

= ρ∗0 〈 j〉+ 〈 j〉 × (R∗h) + o(h),

(3.30)

which implies that
E∗h = 〈 j〉 × (R∗h). (3.31)

Moreover, by (3.19) and (3.23) the effective Hall matrix is given by

R∗ =
σ∗0

det (σ∗0)

〈
rCof (σ0DU0)

T 〉, (3.32)

which is the natural extension to dimension 3 of the formula (3.7) in dimension 2.
Since the effective R∗ is not necessarily isotropic, E∗h may be not orthogonal to h. Actually,

we have the following result:

Theorem 3.3 (Milton, B. [8]). There exists a periodic composite such that the effective Hall
field E∗h is asymptotically parallel to the magnetic field h. It is derived from an effective Hall
matrix R∗ which is asymptotically antisymmetric.

Proof. The proof is based on the Y3-periodic structure the cross section of which is represented
in figure 10. For κ > 0, the unperturbed conductivity σκ0 of the composite is defined by

σκ0 (y) :=

{
diag (κ, κ, 1) if y ∈ Qs = Q1 ∪Q2 ∪Q3 ∪Q4

I3 if y ∈ Y3 \Qs,
(3.33)

Note that the anisotropic conductivity σκ can be reduced to an isotropic one first using a
suitable lamination in the direction y3. The Hall coefficient r is defined by

r(y) := rκ 1K1(y), for y ∈ Y, (3.34)

where the constant rκ > 0 will be chosen later and 1K1 is the characteristic function of the
central square K1 of side ` < 1

3
in figure 10. The regions Q1, Q2, Q3, Q4 are highly conducting

in the plane y1-y2, and only the central square K1 has a non-zero Hall coefficient.
Now, consider the potential Uκ

0 = (uκ1 , u
κ
2 , u

κ
3) solution of the equation (3.6) with σκ0 . Due to

the columnar structure in the direction y3 we have ∇uκ3 = e3, while uκ1 and uκ2 do not depend
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Qs

Y3 \ Qs

y1

y2

Q1

Q2Q3

Q4

K1

Figure 10: The cross section of the columnar period cell.

on the y3 variable. This combined with the invariance by a rotation of 90◦ of figure 10 and the
definition (3.33) of σκ0 , implies that the homogenized conductivity σ∗0 reads as

σ∗0 =

aκ 0 0
0 aκ 0
0 0 1

 , where aκ > 0. (3.35)

By analogy with a two-phase (1, κ) checkerboard (see, e.g., [15], Section 3.3) we can also prove
that the effective coefficient aκ satisfies

aκ ≈
√
κ. (3.36)

On the other hand, According to the variational principle (1.7) we also have

aκ =

ˆ
Y

σκ0∇uκ1 · ∇uκ1 dy ≥ κ

ˆ
Qs

|∇uκ1 |2 dy, (3.37)

which combined with estimate (3.36) implies that ∇uκ1 strongly converges to zero in L2(Qs).
That is expected because the electric field should be close to zero in the highly conducting
phase, except near the corner contact points. Then, the Poincaré-Wirtinger inequality in the
regular connected open set Qi, for i = 1, . . . , 4, yields 

∂K1∩∂Qi
uκ1 dy −

 
∂Y2∩∂Qi

uκ1 dy = o(1), as κ→∞. (3.38)

In other words, the average electric potential along the boundary ∂K1 ∩ ∂Qi should be close to
that along the boundary ∂Y2 ∩ ∂Qi, as expected because the region Qi is highly conducting in
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the plane. Moreover, since y1 7→ uκ1(y)− y1 is Y -periodic, we have (see figure 1)
ˆ
∂Y2∩∂Q1

uκ1 dy =

ˆ
∂Y2∩∂Q3

uκ1 dy and

ˆ
∂Y2∩∂Q2

uκ1 dy =

ˆ
∂Y2∩∂Q4

uκ1 dy + `. (3.39)

Hence, it follows from (3.38) and (3.39) that
ˆ
K1

∂uκ1
∂y1

dy =

ˆ
∂K1∩∂Q1

uκ1 dy −
ˆ
∂K1∩∂Q3

uκ1 dy = o(1)

ˆ
K1

∂uκ1
∂y2

dy =

ˆ
∂K1∩∂Q4

uκ1 dy −
ˆ
∂K1∩∂Q2

uκ1 dy = − `+ o(1),

as κ→∞. (3.40)

Similarly, with a change of sign we get for the function uκ2
ˆ
K1

∂uκ2
∂y1

dy =

ˆ
∂K1∩∂Q1

uκ2 dy −
ˆ
∂K1∩∂Q3

uκ2 dy = `+ o(1)

ˆ
K1

∂uκ2
∂y2

dy =

ˆ
∂K1∩∂Q4

uκ2 dy −
ˆ
∂K1∩∂Q2

uκ2 dy = o(1).

as κ→∞. (3.41)

Now, putting the Cofactors matrix of DUκ
0

Cof
(
DUκ

0

)T
=


∂uκ2
∂y2

−∂uκ2
∂y1

0

−∂uκ1
∂y2

∂uκ1
∂y1

0

0 0
∂uκ1
∂y1

∂uκ2
∂y2
− ∂uκ1

∂y2

∂uκ2
∂y1

 (3.42)

in (3.32), we deduce from (3.35), (3.40), (3.41) that the effective Hall matrix R∗κ satisfies

R∗κ =
rκ
a2κ

aκ 0 0
0 aκ 0
0 0 1

  o(1) − `+ o(1) 0
`+ o(1) o(1) 0

0 0 cκ

 , (3.43)

where

cκ :=

ˆ
K1

(
∂uκ1
∂y1

∂uκ2
∂y2
− ∂uκ1
∂y2

∂uκ2
∂y1

)
dy =

ˆ
K1

det (∇uκ1 ,∇uκ2) dy. (3.44)

Moreover, by the positivity result (1.8) we have det (∇uκ1 ,∇uκ2) > 0 a.e. in Y2. This combined
with the quasi-affinity of the determinant (see [13], Section 4.1.2) yields

0 < cκ ≤
〈

det (∇uκ1 ,∇uκ2)
〉

= det
(
〈∇uκ1 ,∇uκ2〉

)
= 1. (3.45)

Then, choosing rκ := aκ/`, the estimates (3.36) and (3.45) give

lim
κ→∞

rκ cκ
a2κ

= lim
κ→∞

cκ
` aκ

= 0, (3.46)

which finally implies that

lim
κ→∞

R∗κ =

0 −1 0
1 0 0
0 0 0

 . (3.47)

Therefore, taking a periodic current field j with 〈j〉 ‖ e3 and h ⊥ e3, we obtain that the
effective Hall field Eh = 〈 j〉 × (R∗h) is asymptotically parallel to h, which concludes the proof
of Theorem 3.3.
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