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Abstract In this paper, we propose a new method to compute the barycenter
of large weighted graphs endowed with probability measures on their vertex
set. We suppose that the edge weights are distances between the nodes and
that the probability measure on the nodes is related to events observed there.
For instance, a graph can represent a subway network: its edge weights are
the distance between two stations, and the observed events at each node are
the subway users getting in or leaving the subway network at this station. The
probability measure on the vertices does not need to be explicitly known. Our
strategy only uses observed node related events to give more or less emphasis to
the different nodes. Furthermore, the barycenter estimation can be updated in
real time with each new event. We propose a multiscale extension of [8] where
the decribed strategy is valid only for medium-sized graphs due to memory
costs. Our multiscale approach is inspired from the geometrical decomposition
of the barycenter in a Euclidean space: we apply a heuristic divide et impera
strategy based on a preliminary clustering. Our strategy is finally assessed on
road- and social-networks of up to 106 nodes. We show that its results compare
well with [8] in terms of accuracy and stability on small graphs, and that it
can additionally be used on large graphs even on standard laptops.
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1 Introduction

1.1 Context

Why graphs? Graph structures can model complex phenomena of high inter-
est in a wide variety of domains and play an important role in various fields
of data analysis. Although graphs have been used for quite a while in some
fields, e.g. in sociology since the 1930’s [14], the recent explosion of available
data and computational resources boosted the importance of studying and
understanding networks. Among the main application fields, one can count
computer science (Web understanding [17] and representation), biology (neu-
ral or protein networks, genes), social sciences (analysis of citations graphs,
social networks [11]), machine learning [9], statistical or quantum physics [5],
marketing (consumers preference graphs) and computational linguistics [15].

Barycenter: motivation and applications. Singling out the most influential
node or nodes can be seen as a first step to understand the structure of a
network. Different notions of node centrality have been introduced to measure
the influence or the importance of nodes of interest in a network. Centrality
notions are sometimes related to the mean distance from each node to all oth-
ers [1], to the degree of each node [7] or even to the eigenvalues of the graph’s
adjacency matrix [2]. A rather complete survey can be found in [3].
As far as the authours know, these notions of centrality do not take into ac-
count any weight on the nodes (but only on the edges), although there are
numerous applications where this would be rather natural. For example, in
the case of a metro network, when trying to establish a central station, it is
quite reasonable to take into account the number of passengers that use each
station. In the case of a traffic network, the node-weight can model how many
cars pass by a given intersection; in the case of a social network it can model
the number of followers (or likes, or posts, etc.) of each individual.
To take this kind of information into account, throughout this paper, we inter-
est ourselves to the barycenter of a graph with respect to a probability measure
on the node set, as defined in our previous work [8]. As we will see later on, is
a natural extension of the expected value on a Euclidean space. Furthermore,
our algorithm is developed in an online context: it does not need the exact
knowledge of the probability measure (the number of passengers that use each
station), but only observations of this random distribution (we can see when
a passenger uses a station), and can be easily updated at the arrival of a new
observation.

Besides determining a central node, the knowledge of such a barycenter
on a graph can be of multiple use. For example, from a statistical point of
view, for a fixed graph, the computation of the barycenter using two data sets
of observations could be used to determine if the two sets are sampled from
the same probability measure (on the vertex set). Such a mean position can
also be a preliminary step for a more detailed study, like the one provided by
a generalization of a Principal Component Analysis, that could translate the
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main statistical fluctuations among the nodes of the network. The barycenter
can also be useful in graph representation, since setting the barycenter in a
central position can provide an intuitive visualization.

1.2 Online graph barycenter estimation

1.2.1 Graph barycenter definition based on Fréchet means

Since the networks studied in this paper in are finite, the node weights can
be seen as a probability measure on the nodes set. For a probability measure
defined on an Euclidean space, there are two classical notions of centrality: the
median and the Euclidean mean. Defining an average or central position in a
non-euclidean metric space is not straight forward since the natural addition
or averaging operations are not necessarily defined.

Back in 1948, M. Fréchet presented a possible answer to this problem, not
only for the median and the mean of a probability measure, but for moments
of all orders [6]. He introduced a notion of typical position of order p for a
random variable Z defined on a general metric space (E , d) and distributed
according to any probability measure ν. This is now known as the p-Fréchet
mean, or simply the p-mean, and is defined as:

M (p)
ν := arg min

x∈E
EZ∼ν [dp(x, Z)].

This definition might seem counter-inutitive, but one can notice that this
variational formulation also holds for real random variables. For example, if
Z is a random variable distributed according to a distribution ν on Rd, its
expected value, given by mν =

∫
Rd xdν(x) is also the point that minimizes:

x 7−→ EZ∼ν [|x− Z|2].

Now, let G = (N,E) denote a finite weighted graph, E its edges set and ν a
probability measure on its nodes set N . The barycenter of a graph G = (N,E)
is then naturally defined as the 2-Fréchet mean, that we simply denote Fréchet
mean:

Mν = argminx∈N
∑
y∈N

d2(x, y)ν(y).

One should remark that the Frchet mean of a weighed graph is not necessarily
unique.

1.2.2 Online estimation framework

We place ourselves in the online estimation framework, in the sense that we
suppose that the probability measure ν unknown. A sequence (Yn)n≥0 of i.i.d.
random variables distributed according to ν is instead available. For instance,
an observation Yn can be interpreted as the access of a passenger to a given
station for subway networks, the passage of a car on a given crossroad for
traffic networks, or a paper download in a scientific social network.
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2 Barycenter estimation using simulated annealing

In [8], the authors proposed a method to estimate the barycenter of weighted
graphs. This algorithm is based on a simulated annealing algorithm with ho-
mogenization. We also established, in the same paper [8], its convergence from
a theoretical point of view. Since this method is one of the corner stones of
our current work, we briefly explain its principles and its main parameters in
this section. We also give in Alg. 1 a simplified pseudo-code that explains how
it practically works.

Algorithm 1: Graph barycenter estimation algorithm of [8]

Require: Continuous version of G = (N,E), i.e. ΓG.
Require: Observations sequence Y = (Yk)k≥1 on the nodes set N .
Require: Increasing inverse temperature (βt)t≥0 and intensity (αt)t≥0.
1: Pick X0 ∈ ΓG and set K = len(Y )− 1.1

2: T0 = 0.
3: for k = 0 : K do
4: Generate Tk according to αk.
5: Generate εk ∼ N (0,

√
Tk − Tk−1).

6: Randomly move Xk (Brownian motion): Xk = Xk +
−→
hkεk, where

−→
hk is a direction

uniformly chosen among the directions departing from Xk, and εk is a step size.

7: Deterministically move Xk towards Yk+1: Xk+1 = Xk + βTk
α−1
Tk

−−−−−→
XkYk+1, where

−−−−−→
XkYk+1 represents the shortest (geodesic) path from Xk to Yk+1 in ΓG.

8: end for
9: return Graph location XK estimated as the barycenter of ΓG. We consider the

nearest node to XK in G as its barycenter.
1 Here len(Y ) represents the length of the sequence (Yk)k≥1.

Simulated annealing is an optimization technique based on a gradient de-
scent dynamic to which we add a random perturbation in order to help it
escape local traps. The importance of this random perturbation is then de-
creased progressively in order to cool down the system and let the algorithm
converge (or stabilize). This effect is parametrized by a continuous function
(βt)t≥0, that represents the inverse of the so-called temperature schedule: when
βt is small, the system is hot and the random noise is quite important with re-
spect to the gradient descent term. Then, when βt goes to infinity, the random
perturbation is negligible.

The convergence of the simulated annealing, to the set of global minimums,
is guaranteed from a theoretical point of view for logarithmic evolutions of the
temperature, i.e. βt = β log t . Large values of β increase the convergence rate
of the algorithm. However, if its value is too large (above a certain threshold
that in our case depends on the graph’s structure), the algorithm might con-
verge to a local minimum instead of a global one (see for example [10]). In
practice, a linear growth (βt = βt) is more commonly used, so we have tested
both versions.
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Fig. 1 (left) Example of discrete graph G, and (right) corresponding continuous version
ΓG. Xt represents the current position of the algorithm in ΓG. In this example its closest
node in G is the node B.

Another important parameter comes from the on-line aspect of the algo-
rithm. In our model, we simulate the arrival times Tn of the observations Yn by
an inhomogeneous Poisson process (Nα

t )t≥0
2, where (αt)t≥0 is a continuous

and increasing function that describes the rate at which we use the sequence
of observations (Yn)n≥0. We refer to (αt)t≥0 as the intensity of the process.
On one hand, and from a theoretical point of view, using more observations
improves the algorithm’s accuracy and convergence rate, so it may seem natu-
ral to use large values for αt. On the other hand, in practice, observations can
be costly and limited, so one would like to limit their use as much as possible.

We also emphasize that Alg1 runs on ΓG, a continuous version of the
discrete graph G, where each edge e = (u, v) of length Le is seen as an interval
[0, Le] such that an extremity of this segment corresponds to one of the nodes of
the edge (see illustration Fig. 2). The process Xt that represents the barycenter
estimation at increasing times t, therefore lives on the graph edges and not just
its vertices. Nevertheless, a current estimation of a central node can naturally
be defined as the closest vertex to the position of Xt.

Note that Alg. 1 is described for K observations. In an on-line context, the
algorithm can then be used in three different ways:

1. If more than K + 1 observations are known: those used in the algorithm
can be randomly picked-up.

2. If less than K + 1 observations are known and we will not have access to
additional observations:
Iteratively perform

(a) randomly shuffle the observations
(b) use the shuffled observations

until Alg. 1 ends. This strategy will be used in our tests.
3. If less than K + 1 observations are known and we will have access to

additional observations:
(a) Use Alg. 1 on currently known observations to have a first guess of

the graph barycenter.
(b) Wait for new observations to make the barycenter estimation more

accurate with additional iterations of Alg. 1.

2 Tn is the n-th jumping time of the Poisson process Nα
t , Tn := inf{t : Nα

t = n}
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The key issue with this strategy on large graphs, which motivates the
present paper, is that the deterministic move (line 7 of Alg. 1) requires to
compute the shortest path from Xk to Yk+1. To achieve this, we use of a
standard Dijkstra’s algorithm which is particularly demanding in terms of
computational times, especially when computed K + 1 times. The solution
of [8] is then to pre-compute once for all the shortest distances between all
node pairs and then to use this information for a quick algorithm execution.
Computing these distances is #N times slower than computing the shortest
path between two nodes, where #N is the number of nodes inG = (N,E). This
solution then makes sense when K+1 is larger than #N , or when multiple runs
of the algorithm will be performed on the same graph, e.g. in order to evaluate
the barycenters related to different observation sets Y . The major drawback
of this strategy is however that it requires to store a #N × #N matrix in
memory, which is unrealistic when #N is large. Moreover, the algorithmic
cost of a Dijkstra’s algorithm on our weighted graphs is anyway O(#N2) and
therefore does not scale at all to large graphs. We then propose to use the
multiscale solution described in the following section.

3 Multiscale barycenter estimation

3.1 General framework

Our method is motivated by a property of geometrical decomposition of the
barycenter in Euclidean spaces. We will describe this property Section 3.2
and how we heuristically extend it to graph structures. In practice, an anal-
ysed graph G = (N,E) will be clusterized into a collection of sub-graphs
Gi = (Ci, Ei) and its barycenter will then be estimated using the Divide and
Conquer strategy given Alg. 2. The key idea behind this multiscale algorithm
is that a first coarse barycenter of G, denoted b̃, is computed on G̃ which is
a subsampled representation of G. This computation can be performed with
reasonable ressources if G̃ is sufficiently small. This coarse barycenter estimate
is then made more accurate by using Ĝ, a multiscale representation of G where
all nodes of G are used in the sub-graph of b̃, and only the nodes of G̃ are used
in the rest of the domain. One can then finely estimate the barycenter of G in
a region where it is likely to belong, again by using a compact representation
of G.

This algorithm is directly related to Alg. 1 and the graph partition proper-
ties introduced Section 3.2. Computation of the sub-graphs Gi from a partition
on large graphs is also discussed Section 3.3. Importantly, items 2 and 4 (of
Alg. 2) are however not as obvious as they may appear for two main reasons:
(1) They should be scalable on large datasets, and (2) pertinent heuristics have
to be used to define G̃ and Ĝ, the simplified versions of G, so that they lead to
accurate barycenter estimates of G. These two items are presented Section 3.4
and Section 3.5, and are the main contribution of this paper in the context of
online graph barycenter estimation.
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Algorithm 2: Multiscale barycenter estimation

Require: Graph G = (N,E).
1: Partition G = (N,E) is partitioned into I sub-graphs Gi = (Ci, Ei).
2: Undersample G = (N,E) in G̃ = (Ñ, Ẽ), where each node of G̃ represents a compact

description of sub-graph Gi.
3: Estimate the barycenter b̃ of G̃ using Alg. 1.
4: Compute a multiscale graph Ĝ = (Ĉ, Ê) with the nodes of G in the subgraph of b̃ and

the nodes of G̃ elsewhere.
5: Estimate the barycenter b̄ of Ĝ using Alg. 1.
6: return Node b̄ estimated as the barycenter of G

3.2 Graph partition

It is well known that for n points, denoted (Ai)i=1,··· ,n, of an affine space and
an associated sequence of scalars (ai)i=1,··· ,n of non-null sum, the barycenter
is defined as the only point G = bar ((Ai, ai))i=1,··· ,n such that:

n∑
i=1

ai
−−→
GAi =

−→
0 .

Suppose now that the points are partitioned into two sets I and J and that the
corresponding (ai) have a non-null sums. We then denoteGI = bar ((Ai, ai))i∈I
andGJ = bar ((Ai, ai))i∈J . The decomposition property states that the barycen-
ter of the n points is the barycenter of the two sub-barycenters, meaning:

bar ((Ai, ai))i=1...n = bar

(
(GI ,

∑
i∈I

ai), (GJ ,
∑
i∈J

ai)

)
. (1)

This property can be iterated multiple times and still holds for k partitions of
this type, k ≤ n.

Our multiscale graph barycenter estimation strategy is directly inspired by
this aggregation property. In order to use a similar method on graphs, we use
partitions (or clusters) (Ci)i=1...k of the nodes set N in G. We also define a
sub-graph as:

Definition 1 For Ci ⊂ N , a subset of the nodes set, we call associated sub-
graph Gi a graph Gi = (Ci, Ei) formed by all edges of the initial graph G,
connecting two points of Ci. In other words, the edges set of Gi is:

Ei = {e = (e−, e+) ∈ E |e−, e+ ∈ Ci}. (2)

A partition P = (Ci)i=1...k is called valid and can be used to compute graph
barycenters, if it satisfies the following properties:

1. The subsets Ci are disjoint and their union contains all the nodes, i.e.

N =
k
t
i=1

Ci;

2. The weight associated to each subset is non-null: ∀ 0 ≤ i ≤ k, ν(Ci) 6= 0;
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3. For each subset Ci, the associated sub-graph Gi is connected.

Note that property (2) is implicit in our framework since ν charges each node,
ν(y) > 0, ∀y ∈ N . Property (3) is very important since the notion of barycen-
ter in Alg. 2 is only defined for connected graphs. Interestingly, a wide variety
of established clustering algorithms efficiently define valid partitions of the
nodes, even on large graphs. For instance, [13] is a strategy that computes
optimal graph partitions with respect to an energy, the modularity [16], using
a greedy approach that scales to large graphs. We will therefore not develop
this discussion in our paper and focus instead on the definition of G̃ and Ĝ.
First we define neighboring clusters w.r.t. G.

Definition 2 Two disjoint subsets Ci, Cj ⊂ N of the graph G = (N,E) are
neighboring clusters, denoted Ci ∼ Cj , if there exists a pair of nodes vi ∈ Ci
and vj ∈ Cj that are neighbors in G:

Ci ∼ Cj ⇐⇒ ∃ vi ∈ Ci, vj ∈ Cj such that (vi, vj) ∈ E. (3)

In what follows, the information contained in the sub-graphs Gi = (Ci, Ei)
described above will be summarized in the graphs G̃ and Ĝ (the upscale and
multi-scale versions of G). We can remark that the union of the edges in all
clusters Ci does not contain all the edges of the initial graph. The remaining
edges will however be used to define the edges of G̃ and Ĝ.

3.3 Computing the sub-graphs Gi = (Ci, Ei)

The collection of sub-graphs (Gi = (Ci, Ei))1≤i≤k will be the key to subsample

G in G̃ and Ĝ. Here, we consider as known the partition (Ci)i=1···k of the node
set N . We then use Alg. 3 to realistically compute the associated sub-graphs
Gi = (Ci, Ei).

At a first sight, the algorithmic cost of Alg. 3 appears to be O(#E). Check-
ing the cluster of e− and e+ (line 5) can however have an algorithmic cost
O(#N) if improperly coded. In our program, the node clusters are coded in
Python dictionaries, making this task O(1) in average [12]. Using lower level
programming languages, such as C++, the node identifiers could be first re-
placed by integers between 0 and #N − 1 and then their clusters would be
stored in a vector of size #N , the cluster of node i being stored at the ith entry
of this vector. To be efficient this pre-treatment requires to sort the node la-
bels; which has typically a cost O(#N log (#N)). This is for instance the case
by using the standard C++ function std::sort. Once the node labels sorted,
checking a node label is finally O(1), so this strategy also scales well to large
graphs.

Finally, note that our algorithm not only computes the sub-graphs Gi but
also a compact information of their boundaries Bi. More specifically, each ele-
ment j of Bi stores pertinent information related to a node at the boundary of
Gi and directly connected to a node in another sub-graph of G. This boundary
information will help us define a scalable strategy to generate the edges of G̃
and Ĝ.
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Algorithm 3: Sub-graphs Gi(Ci, Ei), i ∈ {1, · · · , k} computation.

Require: Graph G = (N,E).
Require: Nodes partition (Ci)i=1···k.
1: for i = 1 : k do
2: Create a void edge list Ei
3: Create a void list Bi of nodes information at the boundary of Gi
4: end for
5: for all e = (e−, e+) ∈ E do
6: if e− and e+ are in the same cluster Ci then
7: Add e to Ei
8: else
9: We consider e− in cluster i and e+ in cluster j.

10: Add [e−, e+, weight(e−, e+), j] to Bi.
11: Add [e+, e−, weight(e+, e−), i] to Bj .
12: end if
13: end for
14: return The sub-graphs Gi(Ci, Ei), i ∈ {1, · · · , k}.
15: return Sub-graphs boundary information Bi, i ∈ {1, · · · , k}.

3.4 Computing the subsampled graph G̃

We now present how to compute the subsampled graph G̃ = (Ñ , Ẽ) based on
the collection of sub-graphs Gi = (Ci, Ei) and the boundary information Bi,
i ∈ {1, · · · , k}. In our strategy, each node ṽi of Ñ depends on the properties
of Gi and each edge of Ẽ depends on the Bi. Every cluster Ci is represented
in Ñ by a single node vi. The edge set of the new graph is defined by:

Ẽ = {(vi, vj) with vi, vj ∈ Ñ , vi ∈ Ci, vj ∈ Ci and Ci ∼ Cj}. (4)

There exists an edge between two nodes if and only if their respective clusters
are neighboring clusters and the length of each new edge is defined as the dis-
tance between its extremities in the subgraph Gij = (Ci ∪Cj , Eij), associated
to Ci ∪ Cj (an example is illustrated in Fig. 2).

From a mathematical point of view, the probability associated to each node
is the total probability of the cluster that contains it:

∀v ∈ Ñ , νG̃(v) = ν(Ci), where Ci is such that v ∈ Ci. (5)

The definition of the associated probability measure for the upscale graph in
(5) is the analog of summing the scalars in the affine case in (1). Accessing in-
dependent random variables (Yn)n≥0 distributed according to ν, we can easily

define another sequence (Ỹn)n≥0 of i.i.d. random variable of law νG̃:

Ỹn = ci ∈ Ñ ∩ Ci if and only if Yn ∈ Ci. (6)

From the simulation point of view, when we have access to (Yn)n≥0, (6) means
that every time a node in a cluster Ci is given by the sequence, we see it as the
unique node ci that represents the cluster in the upscale graph. An example of
this procedure is illustrated on a simple graph in Figure 2 and further details
are presented in the following subsections.
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Fig. 2 On the left hand side we have an initial graph G partitioned in 4 communities (the
nodes of each community are represented by different symbols and colors). We consider ν
as the uniform probability on its nodes set and all edges have length 1. We take a subset Ñ
formed of nodes represented in a larger size. The upscale graph G̃, is represented on the right
hand side, along with the length of the new edges and the new probability corresponding to
each node. We have chosen to represent the distribution νG̃, instead of a sequence (Ỹn)n≥0,
because it is easier to visualize.

3.4.1 Computing the subsampled nodes Ñ

A natural strategy to compute each subsampled node ṽi is to define it as a
barycenter of Gi(Ci, Ei) using Alg. 1 (we remind the reader that the barycenter
is not necessarily unique). This however requires to have a sufficient number
of observations Y in Ci. We then instead randomly draw a node Ci to define
ṽi, which has also the advantage of having a negligible computational cost.

3.4.2 Computing the distance between ṽi and the boundaries of Gi

Defining the distances between the nodes Ñ in G̃ is the trickiest step of our
strategy. Consider two neighbor sub-graphs Gi and Gj . We will then define
in next subsection the distance between ṽi and ṽj as equal to the shortest
distance between ṽi and ṽj in the union of the sub-graphs of Gi and Gj , plus
the edges of G linking these subgraphs that are saved in Bi and Bj .

We now explain how we compute, for each region i, the distance between
ṽi and all boundary nodes of sub-graph Gi, i.e. the Bi[j][1], j ∈ {1, · · · ,#Bi}
(see lines 9 to 11 of Alg. 3). This could be done by running a Dijkstra’s
algorithm as discussed in the end of Section 2 for the whole graph, but it
would be too costly. A fundamental remark here is that although this strategy
is far too computationally consuming for the whole graph (algorithmic cost is
O(#N2)), it becomes realistic on much smaller sub-graphs Gi(Ci, Ei). It can
also be straightforwardly parallelized on different sub-graphs. After having
computed the distances, we add them to the corresponding sub-lists of Bi. To
sum up, each element j of the list Bi is finally a sub-list where:

– Bi[j][1] is the node of Gi at the cluster boundary;
– Bi[j][2] is the node outside of Gi linked to Bi[j][1];
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– Bi[j][3] is the distance between Bi[j][1] and Bi[j][2] in G;
– Bi[j][4] is the cluster of Bi[j][2];
– Bi[j][5] is the distance between Bi[j][1] and ṽi.

3.4.3 Computing the subsampled edges Ẽ

The definition of the edges Ẽ only depends on the boundary information
Bi, i ∈ {1, · · · , k}, as explained in Alg. 4.

Algorithm 4: Subsampled graph edges Ẽ computation.

Require: Clusters boundary information Bi, i ∈ {1, · · · , k}.
1: for i = 1 : k do
2: for j = 1 : #Bi do
3: if i < Bi[j][4] then
4: ī = Bi[j][4]
5: Identify j̄ so that Bi[j][1] == Bī[j̄][2] and Bi[j][2] == Bī[j̄][1].
6: Compute TmpDist = Bi[j][3] +Bi[j][5] +Bī[j̄][5].
7: if Ẽ does not contain the edge (ṽi,ṽī) or its length is > TmpDist then
8: Add or update edge (ṽi,ṽī) to Ẽ with distance TmpDist.
9: end if

10: end if
11: end for
12: end for
13: return Subsampled graph edges Ẽ.

Remark that the test line 3, of Alg. 4 prevents from avoid having multiple
edges linking the same nodes as the graphs are undirected. This algorithm is
again computationally reasonable as the main double for loop first depends
the number of clusters and the number of nodes at the clusters boundaries.
The instructions in this double loop are also reasonable as they are linearly
related to limited number of edges and nodes.

3.4.4 Projecting the observations Y from the nodes of G to those of G̃

We recall that efficient techniques were described in Subsection 3.3 to find
the sub-graph Gi associated to each node of N . We use the same method to
project the obervations Y on N to each node ṽi of G̃. The node ṽi indeed
represents all the nodes Ci of Gi.

3.5 Multiscale graph

3.5.1 Motivation

A straightforward extension of the decomposition of the barycenter in the Eu-
clidean case, to the context of graphs, can be described as follows: take a valid
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partition, compute the barycenter of each cluster, create a new subgraph (as
explained in Subsection 3.4) and finally compute its barycenter. This proce-
dure induces thus a notion of centrality on the set of clusters.

Therefore, by choosing each subsampled node ṽi as a Fréchet mean of Ci (in
Subsection 3.4.1), creating the corresponding subsampled graph G̃ as described
above, and then estimating its barycenter, we obtain a central cluster. If the
chosen partition has a specific meaning, this procedure can have an interest
on its own, allowing us to study some larger scale properties of the graph. For
example if each cluster Ci represents a community, this is a natural way of
defining a central community.

Independently of the method used to define the starting points Ñ (ran-
domly chosen representatives of each subset Ci or estimated barycenter), since
the graph does not have the same properties as the euclidean space, a barycen-
ter b̃ of the subsampled graph G̃ is not necessarily a barycenter of the initial
graph. However, for reasonable partitions, one might expected the Fréchet
mean of the initial graph not to be far from the central community that con-
tains b̃. This assumption motivates the next step in our approach: building the
multiscale graph as detailed in Subsection 3.5.2

To sum up, if we are interested in a rough notion of centrality, finding
a central cluster might be enough. To gain precision, we decided to add an
extra-step to our method by reinserting a central cluster in the subsampled
graph (line 4 of Alg 2). Finally, we consider as barycenter of the initial graph,
the estimated barycenter of this new multiscale version (line 5 of Alg 2).

3.5.2 Definition of a multiscale graph

For a valid partition of the nodes set P = (Ci)i≤k, let (Gi, νi)i≤k denote the as-
sociate sub-graphs with their respective probabilities measures, defined in Sub-
section 3.3. With the notations introduced in Subsection 3.4, let G̃ = (Ñ , Ẽ)
be an up-scale version of G corresponding to the partition P. In what follows
we define Ĝ = (N̂ , Ê) the multi-scale version of G with respect to (G̃, C),
where C is an element of P, and ν̂ the corresponding probability measure. An
example is illustrated in Fig.3.

The definition of the nodes set and the associated probability are straight-
forward. N̂ contains the nodes of G̃ and C:

N̂ = Ñ ∪ C, (7)

and ν̂ redistributes the mass of C over its nodes, while leaving the others
values of νG̃ unchanged:

ν̂(v) =

{
ν(v) if v ∈ C
νG̃(v) if v ∈ Ñ

(8)

The edge set Ê contains the edges of G̃, except those that were added to c,
the node that represents the cluster C in the up-scale graph, and all internal
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edges of C. On top of that we add new edges going from boundary of C to the
nodes corresponding to its neighboring clusters:

BorderEdges(C,P) = {(v, ci)| v ∈ C, ∃vi ∈ Ci with (v, ci) ∈ E} (9)

The length of such an edge is defined as the initial distance between its ex-
tremities in the subgraph corresponding to C∪Ci. Now the set of edges Ê can
be written as:

Ê = EC ∪
(
Ẽ \ {e|e ∼ c}

)
∪ BorderEdges(C,P), (10)

where e ∼ c means that c is a node of e.

Fig. 3 Ĝ is the multiscale version of G with respect to the up-scale graph G̃ (shown in
Fig. 2) and the cluster C (illustrated by diamond shaped violet nodes).

3.5.3 Computing the multiscale graph Ĝ

As explained Alg. 2, the multiscale graph Ĝ = (Ĉ, Ê) has the nodes of G in
the subgraph of b̃ and the nodes of G̃ elsewhere, where b̃ is the estimated the
barycenter of G̃ using Alg. 1.

We denote ĩ the label of the sub-graph containing b̃. The construction of
Ĝ is then the same as the one of G̃, except in the sub-graph Gĩ, where the
original nodes and edges are preserved. At the boundary between Gĩ and the
subsampled domain the distance given to the edge is slightly different to line 6
of Alg. 4. The distance between a sub-graph representative and the sub-graph
boundary (i.e. Bi[j][5] or Bī[j̄][5]) in Gĩ is obviously not considered.

A fine representation of G is then constructed in Gĩ, the central cluster,
and a coarse representation of G is constructed elsewhere. The goal of this
multiscale graph is to make it possible to finely estimate the barycenter of G
with reasonable computational resources.
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Of course, from a simulation point of view, constructing a sequence of ran-
dom variables distributed according to ν̂, the probability distribution defined
in (8) is straightforward once we have access to (Yn)n≥0 of law ν. We simply
set:

Ŷn =

{
Yn, if Yn ∈ C
vi, if Yn ∈ Ci.

(11)

3.6 Illustration on the Parisian subway

We now illustrate what can be G, G̃ and Ĝ on the Parisian subway network,
which we already used in [8]. Fig. 4 represents the complete Parisian subway
network. The graph was downloaded at http://perso.esiee.fr/~coustyj/
EnglishMorphoGraph/PS3.html, has 296 nodes and 353 edges. The nodes
obviously represent the metro stations. Each edge is a connection between two
stations and its length is the time needed to go from one station to the other.

Fig. 4 Complete graph of Parisian Metro G. The coloured nodes are the estimated barycen-
ters of the precomputed sub-graphs Gi and are be the nodes Ñ of G̃ (see Fig. 5).

In Fig. 5(top) we represent the subsampled graph G̃. One can see that
the actual barycenter of the initial graph G (Chatelet) is not included in G̃,
and thus can’t be estimated as its center. It can however be estimated in the
multiscale graph Ĝ that is show Fig. 5(bottom). This example was designed
to illustrate our strategy on a small graph. We explore more thoroughly its
behavior on graphs of various sizes (from 103 to > 106 nodes) in section 4.

http://perso.esiee.fr/~coustyj/EnglishMorphoGraph/PS3.html
http://perso.esiee.fr/~coustyj/EnglishMorphoGraph/PS3.html
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Fig. 5 (top) Subsampled Parisian Metro graph G̃, and (bottom) multiscale Parisian

Metro graph Ĝ. The width of the edges is inversely proportional to the time needed to go
from one station to the other.

4 Results

4.1 Results on small graphs

In order to validate our strategy, we tested it on three small graphs for which
we have access to the ground-truth barycenter. The first one is the Parisian
metro network descriebed in 3.6. The other two subgraphs of Facebook from
the Stanford Large Network Dataset Collection3: (FB2000) has 2000 nodes
and 37645 edges and (FB4000) has 4039 nodes and 88234 edges and fully
contains (FB2000).

We performed three type of tests with default parameters:

1 Single scale estimation using Alg.1.
2 Multi-scale estimation; in the upscale graph each cluster is represented by

its barycenters (estimated using Alg.1).

3 https://snap.stanford.edu/data/

https://snap.stanford.edu/data/
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1 Single scale 2 Multi-scale 3 Multi-scale random
Paris Network 100% 97 % 97 %

FB2000 100% 100% 100%
FB4000 100% 80% 73 %

Table 1 Succes ratio obtained with each strategy on 100 Monte Carlo runs for the Parisian
metro network and the Facebook sub-graphs FB2000 and FB4000.

3 Multi-scale random; in the upscale graph each cluster is represented by a
node sampled at random (uniformly) among its nodes.

We ran 100 Monte Carlo simulations for each strategy. A run is considered
successful if the returned node is the true barycenter of the graph. We sum up
the results in Table 1.

As one can see in Table 1, on the first two graphs, Parisian metro network
and the FB2000, the performance of the algorithm does not seem influenced by
the way we choose the nodes that represent each cluster in the upscale graph.
On the third one, FB4000, even though the success ratio decreases slightly,
the algorithm still performs rather well when the representative nodes in the
preliminary phase are chosen at random. This is what motivated us to apply
this strategy on larger graphs in order to reduce the computational cost and
the number of used observations. We do not claim however that choosing the
representative nodes at random is efficient in any framework. Indeed, depend-
ing on the graph’s structure and the initial partition, there exist cases where
this first approximation is important and the choice of the representative node
of a cluster could have a more significant impact on the quality of the results.
In such cases it could be preferable to consider as representative, at least for
clusters on which we have access to an important number of observations, their
estimated barycenter.

4.2 New York urban area

After measuring the stability and accuracy of our method on small graphs,
where the ground-truth barycenter is known, we have chosen to test it on a
graph formed by the the crossroads in a rather large New York urban area. We
referred to it as such by convenience, but the area is not limited to the state
of New York, see Figure 6. The graph has 264.346 nodes and 733.846 edges
and can be found on the website of the Center for Discrete Mathematics and
Theoretical Computer Science 4. On the website it is mentioned that some gaps
might exist and thus the graph does not necessarily contain all crossroads. The
nodes are the GPS coordinates of crossroads and the edges represent the streets
between them. The distance considered between two nodes is the physical one,
and not the transit time. However, the unit of measurement is not specified
on the website. The graph’s diameter, in terms of euclidean distance between
the GPS coordinates, is of 138.28 km. The intra-graph distance between the

4 http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.dis.uniroma1.it/challenge9/download.shtml
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corresponding nodes is 1 515 657. The average length of an edge in the graph
is of 1296. From now on, all graph distances will be dived by 103.

Furthermore, the graph is undirected, namely we consider that each street
allows travel in both directions (even though in reality this not necessarily the
case).

Fig. 6 New York urban area. Image obtained using Cytoscape and c©Google Maps. Purple
points represent estimated centers of the GP700 partition. Nodes were located according
to their GPS coordinates using the CoordinatesLayout plugin of Cytoscape (http://apps.
cytoscape.org/apps/coordinateslayout).

We have performed two types of preliminary clustering. One, based on a
bottom up approach, meant to provide clusters of homogeneous size, and an-
other, based on a Markov Clustering algorithm developed by Stijn van Dongen
[4]. The graph partition obtained with the first method has 700 clusters (from
now on it will be referred to as GP700) and the second one has 1776 (we will
referred to it as MCL12). Applying our method on these partitions enables us
to estimate the barycenter on much smaller graphs. The correspoding subsam-
pled graphs, as defined in Section 3.4, have 700 nodes (representing 0.2% of
#N) and 1682 edges, respectively 1776 (0.6% of #N) nodes and 3916 edges.

http://apps.cytoscape.org/apps/coordinateslayout
http://apps.cytoscape.org/apps/coordinateslayout
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In our tests, the multiscale versions, as defined in Section 3.5, for the GP700
partition have generally less than 1200 nodes (0.4% of #N) and less than 2400
edges (0.3% of #E). As for the MCL12 partition, the multiscale graphs have
less than 2500 nodes (0.9% of #N) and less then 5200 edges (0.7% of #E).

Technical details In terms of memory cost, this kind of graph can definitely
not be handled with the method proposed in [8]. A rough estimation suggests
that the associated matrix distance would need around 360 GB of memory,
whereas this new method employs far less resources, being of the order of
15GB (or less). The computational time is a bit long, but reasonable. Using
the default parameters it takes, in average, 3 h 30 min for the GP700 and 7 h
30 min for the MCL12. This can be easily improved by paralelizing the compu-
tation of the subsampled graph G̃, namely the computation of its sub-sampled
nodes (see sub-section 3.4.1) and the informations related to the borders (see
subsection 3.4.2), needed for the computation of its edges (in Alg.4). Indeed,
the computational times were mostly dedicated to the definition of the sub-
sampled nodes ṽi and their distance to the sub-graphs boundaries Bi. For
instance, for GP700, computing the barycenter of the subsampled and mul-
tiscale graphs required about 20 and 50 seconds, respectively. This is almost
negligible with respect to the total time of 3 h 30 min. Computational times
are much lower if the ṽi and the Bi are pre-computed and stored once for all.
In a general manner, it is not surprising that the barycenter’s estimation on
GP700 is faster, because its clusters have a more homogeneous size and are
thus easier to handle.

Since the graph is too dense to visualize, we have chosen to use the GP700
partition in order to facilitate Figure 6. To be more precise, we have used the
upper scale approximation procedure described in Section 3.4 to form a new
graph from the estimated centers of each cluster. A visualization using the GPS
coordinates of the nodes was created with the help of the Cytoscape software.
This illustration was afterwards overlaid on a map of the area provided by
c©Google Maps. The result is shown in Figure 6. The purpose of this figure is
to give an idea of the area covered by the complete graph and not to show the
exact position of each node in the upper scale graph.

4.2.1 Results on two different partitions

We illustrate the results obtained in 5 Monte Carlo runs on the partitions
GP700 and MCL12 in Figure 7. Since we have the GPS coordinates of each
node, we used them to represent the estimated barycenters with c©Google
Maps.

To measure the variability of the results, we computed the mean distance
between each set of barycenters directly on the graph and the mean euclidean
distance, using the GPS coordinates. For both partitions, the mean graph
distance represents less than 3% of the graphs diameter and the mean euclidean
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Partition Mean distance on graph Euclidean mean distance
GP700 35 2.44 km
MCL12 44 2.96 km

Table 2 Mean distance between the final centers obtained in 5 runs for each partition.

Fig. 7 On the left hand side we have a general view over the complete New York graph
represented in Figure 6. On the right hand side, we have the Region Of Interest (ROI).
The black round points are the barycenters obtained on the GP700 partition and the red
diamond-shaped points are the barycenters obtained on MCL12. The right hand-side image
was obtained using c©Geogebra and c©Google Maps.

distance represents approximately 2% of the euclidean diameter. The results
are summarized in Table 2.

4.2.2 Parameters influence

In this section we illustrate the influence of the parameters on the results
obtained on GP700. As explained in Section 2, the main parameters are: the
temperature schedule β, the rate at which the observations are used α and the
stopping time T . We consider as default parameters, and denote β∗, α∗ and
T ∗max, the parameters introduced in [8].
The influence of these parameters is tested on two different strategies:

Random Center Linear This is the strategy considered by default in this
paper: for each cluster, a representative node is chosen uniformly at random
among its vertex set and a linear growth of the temperature schedule is
used in the estimation of the barycenters.
Estimated Centers Log The representative of each cluster is an esti-
mation of its barycenter obtained with the method described in Alg. 1 and
using a logarithmic temperature schedule.
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Parameter Estimated Center Log Random Center Linear
default 55 35
0.25β∗ 92 32
0.5β∗ 88 21
2β∗ 44 45
4β∗ 44 56

Table 3 Mean distance between the final centers obtained in 5 runs for each temperature
schedule.

Parameter Estimated Center Log Random Center Linear
default 55 35

0.25T ∗
max 68 33

0.5T ∗
max 70 35

2T ∗
max 33 60

4T ∗
max 54 104

Table 4 Mean distance between the final centers obtained in 5 runs for each set of param-
eters.

Influence of the temperature schedule. The temperature schedule βt is a very
important parameter linked to simulated annealing. As explained in Section
2, the convergence of the simulated annealing is guaranteed from a theoretical
point of view for logarithmic evolutions of the temperature (βt = β log t). This
is why this type of growth was used in [8] and therefore was also used to
established the value of the constant β∗.

To test the influence of the variation of the constant β for both strategies
(linear and logarithmic), We ran our algorithm 5 times for each set of pa-
rameters and computed the mean distance between the estimated barycenters
in order to measure the stability. As one can see on Table 3, for a logarith-
mic schedule, increasing the constant β, reduces the variations of the results
(because the algorithm converges faster). However for a linear evolution, in-
creasing the value of the constant β makes the algorithm unstable (probably
because the algorithm tends to converge to local minimums).

Influence of α and the stopping time. In our tests, the rate at which we use
the observations is calibrated with respect to a stopping time. The stopping
time, for a barycenter estimation using Algorithm 1, is chosen as a function
of the number of nodes in the graph:

T ∗max = 0.1#V + 100.

The use of current observations is then distributed at a rate αt that insures
that between T ∗max and T ?max we use approximately S∗ = 1000 observations. In
theory, a balance between the intensity αt and the temperature βt is manda-
tory for the convergence of the simulated annealing. So increasing the stop-
ping time, without increasing accordingly S∗, reduces the intensity rate α. As
shown in Table 4 this can be problematic, especially when we use a linear
growth temperature.
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Parameter Estimated Center Log Random Center Linear
default 55 35
0.01O∗ 13 62
0.1O∗ 58 81
10O∗ 88 58
100O∗ 82 44

Table 5 Mean distance between the final centers obtained in 5 runs for each set of param-
eters.

Influence of the observations number. As explained in Section 2, when we have
access to a limited number of observations, there are multiple strategies avail-
able. For the current tests, we used strategy 2, namely we supposed that less
than the necessary number of observations are available, and thus once the list
is exhausted, we shuffle it and reuse it. This is equivalent to accurately esti-
mating the barycenter of the multiscale graph, endowed with the probability
measure ν̂, corresponding to the known observations.

For our tests, we generated a list of O∗ = 10000 observations by choosing
nodes uniformly at random among the vertex set. We then created other lists
with more or less observations to measure the influence of this number on our
method. The results are summarised in Table 5. For the linear temperature
schedule, the variance seems to be quite stable with respect to the number of
observations. The fact that for a logarithmic evolution, the variance increases
with the number of observations is not surprising since, less observations imply
a more concentrated probability measure ν̂, and thus its barycenter might
be easier to estimate. However, the stability of the algorithm should not be
regarded as the ultimate guarantee of the quality of its results. The more
observations we use, the more we get closer to estimating the barycenter that
corresponds to the uniform probability measure on the entire graph. And even
though this bias is not very important for a uniform measure, we expected it
to be more prominent on heterogeneous probability measures.

4.3 Social network

In order to test our strategy on a large graph representing a social network,
we also applied our strategy on the com-Youtube graph of the Standard Large
Network Dataset Collection5. This graph has 1, 134, 890 nodes and 2, 987, 624
edges. Each node represents a user and the edges represent user-to-user links.
Of course, the data is anonymized. Each edge is of length 1 and the observa-
tions are uniformly sampled from the vertex set. We used the same bottom-up
approach as for the New-York road network to clusterize the graph, and com-
puted 5000 clusters. The subsampled network G̃ has then 5000 nodes (0.9%
of #N) and about 410000 edges (14% of #E) and the multiscale network Ĝ
has about 25000 nodes (2.2% of #N) and about 460000 edges (16% of #E).

5 https://snap.stanford.edu/data/com-Youtube.html

https://snap.stanford.edu/data/com-Youtube.html


22 Gavra I. and Risser L.

It is interesting to remark that due to the structure of this graph, the gains in
term of edges is lower than for the New York road network. The clusters in a
social network are indeed much more related than in a road network.

Results Using the default parameters, we ran the algorithm 4 times and we
obtained three times the node 1072 as its barycenter and one time the node
663931. Remark that the subsampled graph G̃ had 5000 nodes the multi-
scale graph Ĝ typically had These nodes are not directly connected and the
distance between them is equal to 2. We could say that this distance represents
an average closeness, since it is slightly lower than the mean distance between
each of them and all other nodes of the graph, which is approximately 2.95
for 1072 and 3.51 for 663931. These results then appear as stable and thus
promising. Computational time for one run of the algorithm was around 64
hours, but most of this was dedicated to the pre-computation of subsampled
nodes ṽi and their distance to the sub-graphs boundaries Bi. It took indeed
about 58 hours to compute the ṽi and Bi and about 1:10 and 7:05 hours to
estimate the barycenters of G̃ and Ĝ, respectively. Computational times are
then reasonable if the first step is performed once for all. More importantly, it
is also doable on a small server with 64GB, which was our initial motivation.

4.4 Conclusion

Memory cost. From a computational point of view, the multiscale approach
drastically reduces the memory costs and thus can be used on larger graphs.
We indeed reduced the nodes number in the two large graphs we presented
Sections 4.2 and 4.3 by factors of about 100 and 50, respectively. As shown
in Section 4.2 on the New York road network, the variability of the graph
barycenter estimate obtained on different runs is approximately equal to 2%
of the graph diameter. This is a particularly satisfactory result with regards to
the fact that these estimates were run on a compact representation of the graph
that is about 100 times smaller than the original one. It therefore appears that
the subsampling heuristics we used made sense, a least on a road-type network.
On a social network graph, the results were also promissing.

Computational time. Currently, the computational time is rather long, but as
mentioned before, it can be reduced by parallelizing some of the intermediate
procedures. Moreover, the most costly part of the algorithm is the conception
of the subsampled graph and this step does not need to be done at the arrival
of a new observation in the online context.

Online update of the barycenter. As mentioned before, the most time costly
operation is the creation of the upscale graph. However, the actualization of
the barycenter on the multiscale graph at the arrival of a new observation
is instantaneous. If the informations regarding the upscale graph are stored,
we could even reset the algorithm from this stage and update the barycenter
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estimation on the subsampled graph. Assuming that the estimated central
cluster would change with this new observation, creating a new multiscale
graph and estimating a new barycenter on it (using the default parameters
and the corresponding number of observations) would take less than 1 minute
for the New York graph (with the partitions we used for our tests) and around
7 hours for the Youtube graph. The time needed for this operation depends a
lot on the size of the clusters and not only on the size of the initial graph. For
example, in our tests for the Youtube graph, computing the distances on the
multiscale graph takes around 6 hours and estimating its barycenter only one.

A Package description

The LGC estim package contains the strategy described in this paper. It is entirely written
in Python and was tested using Python 2.7 and 3.4. Outside of Python modules that can be
considered as standard (Numpy, sys, os, · · · ), the only specific dependence of our package
is NetworkX. This module is widely used for graphs management and analysis in Python6.
Note that all our tests were made using the version 1.11 of NetworkX.

There are two ways to use the LGC estim package: It was primarly designed to be used
as a script but it can be alternatively used as a Python module. A README file at the pack-
age root directory explains how to use it in both cases through simple examples. Data files
representing the Parisian subway network of section 3.6 are included in the data directory
to run the examples. Note that by simply executing the command line python LargeGraph-
CenterEstimator.py, as for any Python script, a help message will give intructions to follow
to properly estimate graph barycenters. Note finally that using the LGC estim package as
a Python module requires to understand the key classes and functions we used in our code,
but is doable as shown in the README file.
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