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Abstract

These notes are prepared for a mini-course on isomonodromic deformations (see
http://perso.math.univ-toulouse.fr/jisom/) given by the author at the University of
Paul Sabatier in Toulouse in June 2012. The main ideas of the theory of isomon-
odromy deformations and a few references for further study are given. This is a
survey paper which is mainly based on [28, 18, 20, 21, 22].

1 Introduction

The discovery of six Painlevé equations by P. Painlevé and B. Gambier was one of the

greatest achievements in the theory of analytical functions in XIX–XX centuries.

Although the Painlevé equations were discovered from purely mathematical consider-

ations, they started to play a key role at the end of the XXth century. The theory of the

Painlevé equations was elaborated by many scientists (e.g., K. Okamoto [30], Sh. Shimo-

mura, K. Iwasaki, H. Kimura, M. Yoshida [18] and many others).

A new development in the theory of the Painlevé equations was closely related to

the theory of isomonodromic deformations of linear systems proposed in papers of the

Japanese mathematicians M. Sato, M. Jimbo, T. Miwa, K. Ueno. The development of

this theory, which went back to the original papers by L. Schlesinger, R. Fuchs, R. Garnier,

was also stimulated by the theory of holonomic quantum fields. Another breakthrough in

the theory of the isomonodromic deformations of linear systems was due to A.V. Kitaev,

A.R. Its, V.Yu. Novokshonov [17] and many others who studied asymptotic properties

of the solutions of the nonlinear ordinary differential equations and, in particular, the

Painlevé equations.
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2 Painlevé equations

As it has been mentioned above, the discovery of the new six Painlevé equations the

solutions of which have no movable critical points is indispensable for the theory of an-

alytic functions in XX century. Such equations are usually called equations of P− type.

P. Painleve [31] — [34] and B. Gambier [11, 12] classified the second order ordinary

differential equations of P− type of the form

w′′ = R(z, w, w′), (1)

where R is a rational function of w, w′ with analytic in z ∈ D coefficients.

In the result of the investigation by the modified small parameter method known as

α -method, P. Painleve and B. Gambier proved that there are fifty canonical equations

of the form (1) with the Painlevé property. Applying linear-fractional transformations of

the dependent variable along with the analytical change of the independent variable for

each equation, they obtained 50 canonical equations. It appeared after integration that

the general solution of 44 equations is expressed either in elementary functions or elliptic

functions or in terms of the functions which are the solutions of some linear equations or

in terms of the solutions of the Fuchsian equations P(z, w, w′) = 0 or, finally, in terms

of the solutions of the other 6 equations which are called the Painlevé equations and

denoted by (P1) — (P6). A lot of useful information about the Painlevé equations and

further references are collected at the DLMF project1. For instance, the third and the

fifth Painlevé equation are respectively given by

w′′ =
w′2

w
− w′

z
+

1

z

(
αw2 + β

)
+ γw3 +

δ

w
, (2)

w′′ =
3w − 1

2w(w − 1)
w′2 − w′

z
+

(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)

w − 1
, (3)

where α, β, γ, δ are arbitrary complex parameters.

The movable singular points of the solutions (P1) — (P6) are poles of the first and

second order. The fixed singular points ( z = 0, 1,∞ ) are critical.

The Painlevé equations may be regarded as the nonlinear counterparts of the equations

for the classical special functions. Their solutions are transcendental in a sense that they

cannot generally be expressed in terms of the solutions of either the first order Fuchsian

equations or each other. However, there exist integrable cases with certain values of

the parameters. In addition, the Painlevé equations have both algebraic solutions and

one-parameter families of solutions solvable in terms of special functions. The Painlevé

1http://dlmf.nist.gov/32
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equations also possess the so-called Bäcklund transformations. Informally, the Bäcklund

transformations relate a given solution to another solution either of the same equation

possibly with different parameter values or of another equation [16, 4, 30, 8].

In [10] R. Fuchs showed that equation (P6 ) described isomonodromy deformations of

a linear differential equation of the second order with four regular points. In [13, 37] the

other Painlevé equations (P1) — (P5) were obtained from (P6 ) by a confluence proce-

dure. It was also shown that they described isomonodromy deformations of certain linear

differential equations of the second order with both regular and irregular singularities.

The isomonodromy deformations technique was developed in [9, 17, 29] and in this sense

the Painlevé equations are integrable. Research conducted by R. Fuchs, L. Schlesinger

and R. Garnier was continued by M. Jimbo, T. Miwa, K. Ueno and M. Sato [19] — [22]

due to the development of the theory of holonomic quantum fields [36]. They proved

the Painlevé property of the deformation equations of linear systems. In the framework

of their theory they also found new applications of the Painlevé equations to physical

problems. There exist connections between the isomonodromic deformations method,

differential geometry [6] and the theory of integrable systems [1].

Although the Painlevé equations were obtained from purely mathematical consider-

ations they also appeared in many physical models as reductions of partial differential

equations, the so-called soliton equations solvable by the inverse scattering transform [1].

The first study of asymptotic properties of solutions of the Painlevé equations on the

complex plane was undertaken by P. Boutroux [3]. In particular he studied the distribution

of poles in the neighborhood of infinity, found asymptotic formulas for adjacent poles and

curves on the complex plane along which the Painlevé functions were periodic.

N.Yu. Novokshonov used the isomonodromy deformations method for the first time

to find asymptotic connection formulas of the solutions of the Painlevé equations. Then

his idea was developed in papers by A.R. Its, A.A. Kapaev, A.V. Kitaev [23, 26, 17],

B.I. Suleimanov, H. Kimura [25], K. Takano, A.I. Yablonsky and many others.

Starting from the 1950s, and especially in the 1990th, there appeared a number of

papers studying different properties of the Painlevé equations including their discrete

counterparts. Informally, the continuous Painlevé equations are obtained from their dis-

crete counterparts, i.e., nonlinear difference equations, by a suitable limiting process.

The discrete Painlevé equations are extensively applied to many physical problems. An

overview of the latest results and open problems in the theory of the discrete Painlevé

equations may be found in [5, 15, 35] with a rich bibliography.

3



3 The method of the isomonodromic deformations in

the theory of linear systems

The general solution of a linear ordinary differential equation with rational coefficients is

generally multivalued. This property is described by a representation of the fundamental

homotopy group of the complex plane deprived of the singular points, the monodromy

representation.

The deformation of a linear ordinary differential equation (ODE) while preserving

its associated monodromy representation leads to systems of linear partial differential

equations, the integrability (compatibility) conditions of which are nonlinear differential

equations of P — type [28]. The method of isomonodromic deformations is a powerful

tool to associate linear with integrable nonlinear equations and to solve difficult problems

such as connection problems of nonlinear differential equations, asymptotic properties of

the Painlevé equations and others. It is well-known [29] (see also [18, p. 119] and the

references therein) that the Garnier systems in the form of the Hamiltonian systems with

a polynomial Hamiltonian appear as a deformation of a second-order Fuchsian equation

with n + 3 singularities. When n = 1 the Garnier system is equivalent to the sixth

Painlevé equation. The isomonodromic deformations method is developed in the papers

by H. Flaschka, A.C. Newell [9], M. Jimbo, T. Miwa, K. Ueno [19] — [22], T. Kimura

[24, 25], A. Its, V.Yu. Novokshonov [17], M.V. Fedoryuk [7], A.V. Kitaev [27], etc.

Next we introduce the concept of isomonodromic deformations following [28]. Let

d

dx
y(x) = A(x)y(x) (4)

be a homogeneous linear system of order N with an N × N matrix A(x) rational in

x . Let Y (x) be a fundamental N ×N matrix solution of system (4) which satisfies the

matrix equation

d

dx
Y (x) = A(x)Y (x). (5)

Let the poles of matrix A(x) be localized at the points aν , ν ∈ {1, ..., n}, a∞ =∞.

Definition 1 . System (4) is called Fuchsian at the point a (and a is a Fuchsian singu-

larity of the system) if A(x) has a simple pole at a. System (4) is called Fuchsian when

all its singularities aν , a∞ are Fuchsian.

If system (4) is Fuchsian at points aν , ν ∈ {1, ..., n}, a∞ = ∞, then A(x) =∑n
ν=1Aν/(x− aν). If (4) has no singularity at x =∞, then

∑n
ν=1Aν = 0.

4



The matrix A(x) has singular points at which solution Y (x) is generally multivalued.

To describe the multivaluedness of Y (x) one considers a monodromy representation of

system (5), i.e., a subgroup GL(N,C) related to system (4) [18, p. 75].

We define the projective plane deprived of the singular points by P 1
a and its universal

covering by P 1
a . Let π : P 1

a → P 1
a be a covering map. Then Y (x) is single-valued on

P 1
a .

Let γ be a path in P 1
a starting at the point x and ending at xγ such that π(xγ) =

π(x) (i.e., π(γ) is a closed path in P 1
a ). Matrix Y (xγ) satisfies (5) and, hence, there

exists a nonsingular constant matrix Mγ ∈ GL(N,C) such that Y (xγ) = Y (x)Mγ, where

Mγ is a function of the homotopy class [γ] of the path γ.

Definition 2 . The mapping [γ] → Mγ defines a representation of the fundamental ho-

motopy group of P 1
a or monodromy representation associated with the differential system

(5).

It is known that any representation of the fundamental homotopy group of P 1
a is the

monodromy representation of a Fuchsian system. The Riemann-Hilbert problem is to

prove the existence of the Fuchsian system (4) the monodromy representation of which

coincides with a given representation of the fundamental homotopy group. A.A. Boli-

bruch [2, p. 98], showed that the Riemann-Hilbert problem cannot be solved positively in

general case and explicitly constructed linear systems with double poles the monodromy

representation of which is not isomorphic to the monodromy of a differential system with

simple poles.

Another problem occurring during the study of linear systems is the problem of isomon-

odromic deformations of a system (5).

Definition 3 [7]. Let

dy(x)/dx = A(x, t)y(x) (6)

be a system of N equations, where x ∈ C, t ∈ m . System (6) is called a deformation of

a system where t = t0 is fixed.

Let us choose for each singular point aν a path γν with endpoints x and xν which

encircles aν counterclockwise. The monodromy matrices Mν defined by Y (xν) =

Y (x)Mν , ν ∈ {1, ..., n,∞} generate the monodromy group. Since it is always possi-

ble to choose paths γν in such a way that their product [18] γ1...γnγ∞ is homotopic to

a point, the following monodromy constraint holds M1...MnM∞ = 1.

Definition 4 . A deformation is isomonodromic if and only if it leaves all Mν invariant.

At the beginning of the previous century L. Schlesinger [37] showed that the defor-

mation of the Fuchsian system is isomonodromic if Y (x) as a function of the deformation
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parameters satisfies a system of linear partial differential equations or A(x) as the function

of the same deformation parameters satisfies a completely integrable nonlinear differential

system. Later in [9, 20] L. Schlesinger’s results were generalized for non-Fuchsian systems.

Thus, the isomonodromic deformation establishes a deep connection between linear and

nonlinear completely integrable differential equations.

The method of the isomonodromic deformations of linear systems is given in details

in [28, 22, 20, 18]. Below we mention only basic facts.

3.1 Isomonodromic deformations of linear systems with Fuch-

sian singularities

Let A(x) =
∑n

ν=1Aν/(x−aν), where matrices Aν are of order N×N, A∞ = −
∑n

ν=1Aν .

Assumption 1 . All matrices Aν are diagonalizable A
(ν)
0 = G−1

ν AνGν , ν ∈ {1, ..., n,∞}
and without loss of generality G∞ = 1, where 1 is an identity matrix, i.e., matrix A∞
is diagonal.

In the neighborhood of singular points aν we have

Y (ν)(x) = Gν

(
1 +

∞∑
j=1

Y
(ν)
j (xν)

j

)
(xν)

A
(ν)
0 , (7)

where (xν) = (x− aν), ν ∈ {1, ..., n}, and (x∞) = 1/x.

Assumption 2 . All eigenvalues of matrices Aν , ν ∈ {1, ..., n,∞}, are distinct modulo

the nonzero integers.

Assumption 2 is necessary for the existence of the series in the right-hand side of (7).

If assumption 2 is not satisfied, then, generally, the series in the right-hand side of (7)

must be supplemented with logarithm. Series in (7) converges inside some circle with the

nearest singular point on its boundary. The right-hand side of (7) is multivalued inside

the circle of convergence.

Any solution of (5) can be written in the form Y (ν)(x)Cν , where Cν ∈ GL(N,C). Let

us choose the following fundamental matrix solution Y (∞)(x) and define the connection

matrices by Y (∞)(x) = Y (ν)(x)Cν , ν ∈ {1, ...n}.
According to the expansion (7) after encircling the singular point aν along the path

γν we get Y (ν)(xν) = Y (ν)(x)e2πiA
(ν)
0 . This implies that Y (xν) = Y (x)Mν , where the

monodromy matrices Mν are given by the following formula: Mν = C−1
ν e2πiA

(ν)
0 Cν .

Let us denote the singularity data of the system by SD = {aν , A(ν)
0 , Gν , ν ∈

{1, ..., n}} , where
∑

ν=1,...,nGνA
(ν)
0 G−1

ν is a diagonal matrix. Let us also denote the mon-

odromy data which characterize the monodromy properties of the fundamental matrix

solution Y (x) by MD = {aν , A(ν)
0 , Cν , ν ∈ {1, ..., n,∞}}, where a∞ =∞, C∞ = 1.
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We shall say that Y (x) has the monodromy properties MD if Y (x) is holomorphic

and invertible in P 1
a and Y (x)C−1

ν (xν)
−A(ν)

0 is holomorphic at x = aν for any ν. Note

that the matrices in the definition of MD and SD are defined up to some invertible matrix

Dν , i.e., Gν → GνDν and Cν → D−1
ν Cν . It is obvious that MD are determined by SD.

The converse statement holds as well.

Lemma 1 [28]. If there exists a matrix Y (x), which has the monodromy properties MD,

then it is unique. Moreover, Y (x) satisfies a differential system of the form (5) with a

rational matrix A(x) with simple poles.

Hence, SD are uniquely defined by MD.

Under the isomonodromic deformations of the Fuchsian differential system (5) the

matrix A(x) is continuously deformed while the monodromy matrices Mν are not mod-

ified. In other words, SD are continuously deformed while the partial monodromy data

PMD = {A(ν)
0 , Cν , ν ∈ {1, ..., n,∞}, C∞ = 1} are preserved.

It follows from lemma 1 that we can deform aν continuously and independently.

Thus, Y (x) = Y (x, a), Gν = Gν(a). The coefficients of matrices Aν also depend on

a = {aν , ν ∈ {1, ..., n}}.

Theorem 1 [37]. The deformations of the system of linear differential equations

∂

∂x
Y (x, a) =

n∑
ν=1

Aν(a)

x− aν
Y (x, a) (8)

are isomonodromic if and only if either Y (x, a) satisfies the following set of linear partial

differential equations

∂

∂aν
Y (x, a) = − Aν(a)

x− aν
Y (x, a), ν ∈ {1, ..., n}, (9)

or matrices Aν(a) satisfy the integrability conditions of (8), (9), i.e., the completely

integrable set of nonlinear partial differential equations

∂

∂aµ
Aν =

[Aµ, Aν ]

aµ − aν
, (µ 6= ν),

∂

∂aν
Aν = −

n∑
µ 6=ν, µ=1

[Aµ, Aν ]

aµ − aν
. (10)

A proof can also be found in [18, Lm. 5.2, p. 197].

Observe that by a simple transformation we can always fix three singular points.

Hence, when n < 3 we get trivial cases. We can also fix either the trace of matrices Aν
or one of its eigenvalues.

Let N = 2, n = 3. We fix singular points x = 0; 1; t; ∞. In this case the only

deformation parameter is t. Systems (8) and (10) are written in the following way:
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∂

∂x
Y (x, t) =

(
A0(t)

x
+
A1(t)

x− 1
+
At(t)

x− t

)
Y (x, t),

∂

∂t
Y (x, t) = −At(t)

x− t
Y (x, t); (11)

where A0 + A1 + At + A∞ = 0. Assume that ±θ0/2, ±θ1/2, ±θt/2 and ±θ∞/2 are

eigenvalues of matrices A0, A1, At, A∞ and

Aν =
1

2

(
zν uν(θν − zν)

(θν + zν)/uν −zν

)
, ν = 0; 1; t, A∞ =

(
θ∞/2 0

0 −θ∞/2

)
,

where z0, z1, zt, u0, u1, ut are the functions of the parameter t. Denote A(x, t)12 =

k(x−y)/(2x(x−1)(x− t)), where k = tu0(z0−θ0)− (1− t)u1(z1−θ1), ky = tu0(z0−θ0).

Next we introduce the following notation: ξ = z0 + z1, ζ = t(1− y)z0 + (1− t)yz1. Then

we get the following system:

z′0 = −Z
2t
, z′1 = − Z

2(1− t)
, y′ =

(1− θ∞)y(1− y)− ζ
t(1− t)

,
k′

k
=

(1− θ∞)(y − t)
t(1− t)

,

where

Z = −
[

1

t(1− y)
+

1

(1− t)y

]
ζ2

y − t
+

2ζξ

y − t
− t(1− y)

(1− t)y
θ2
0 +

(1− t)yθ2
1

t(1− y)
.

Calculating directly, we get that the function y(t) satisfies the sixth Painlevé equation

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt
+

+
y(y − 1)(y − t)
t2(t− 1)2

(
α + β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
(12)

with parameters α = (1 − θ∞)2/2, β = −θ2
0/2, γ = θ2

1/2, δ = (1 − θ2
t )/2. Note that

equations (11) are called the Lax pair.

It is well-known [14, 28] that the other Painlevé equations can be constructed from the

sixth Painlevé equation by successive confluences of singularities. By means of these con-

fluences one can also construct the Lax pairs for the other Painlevé equations. However,

in the equations obtained in such a way some poles of matrix A(x) are not simple.
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3.2 Isomonodromic deformations of linear systems with irregu-

lar singularities

Assume that the rational N ×N matrix A(x) has the following form:

A(x) =
n∑
ν=1

rν∑
k=0

Aν, k
(x− aν)k+1

+
r∞∑
k=1

A∞, kx
k−1.

The nonnegative integer rν is the Poncaré rank at the singular point x = aν , ν ∈
{1, ..., n,∞}.

Assumption 3 . All matrices Aν, rν are diagonalizable Aν, rν = GνA
(ν)
−rνG

−1
ν , ν ∈

{1, ..., n,∞}. Without loss of generality we assume that A∞, r∞ is diagonal and G∞ = 1.

If rν > 0 and assumption 3 is fulfilled, then the singularity is called irregular. Next

we introduce the following notation ξν = x− aν , ν ∈ {1, ..., n}, ξ∞ = 1/x.

The formal expansion of solutions around the irregular singular point is of the following

form:

Ỹ (ν)(x) = Gν

(
1 +

∞∑
j=1

Y
(ν)
j ξjν

)
exp

( −1∑
j=−rν

1

j
T

(ν)
j ξjν + T

(ν)
0 log(ξν)

)
, (13)

where matrices T
(ν)
j are diagonal. Solution Ỹ (ν)(x) is a formal solution of (5), i.e., series

is asymptotic and generally divergent. This implies that Ỹ (ν)(x) does not define a solution

of (5), as in the Fuchsian case. The coefficients of expansion (13) can be determined if

the following assumption holds.

Assumption 4 . If rν > 0, then all eigenvalues of Aν, rν are distinct, if rν = 0, then

they are distinct modulo the nonzero integers.

The logarithm in the argument of the exponential is responsible for the multivaluedness

of Ỹ (ν)(x). The coefficient T
(ν)
0 which determines the branching of Ỹ (ν)(x) is called

the exponent of formal monodromy. The polynomial in 1/ξν in the argument of the

exponential is responsible for the exponential growth of Ỹ (ν)(x) in the neighborhood of

the singular point and for the Stokes phenomenon [38, p. 50], considered below.

The case N = 2 is considered in details in [28]. By analogy in case N 6= 2 we construct

a set of Stokes sectors Sν, l on P 1
a around each singularity x = aν , ν ∈ {1, ..., n,∞} with

the following properties: the intersection Sν, l
⋂
Sν, l′ is nonempty if and only if |l−l′| = 1;

π(Sν, l) = π(Sν, l+2rν ); π(
⋃
l∈{1,...,2rν} Sν, l) is a punched neighborhood of the singular point

x = aν .
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Lemma 2 [28]. There exists a unique holomorphic and invertible in P 1
a solution Y (ν,l)(x)

of equation (5) such that Y (ν,l)(x) ∼ Ỹ (ν)(x) in Sν,l, where ν ∈ {1, ..., n,∞}, l is an

integer.

The Stokes multipliers Sν,l are defined by Y (ν,l+1) = Y (ν,l)Sν,l. By permuting the

Stokes lines we can obtain that all Sν,l are triangular with all diagonal elements equal to

1. Hence, det(Sν,l) = 1 and Y (ν,1)(xν) = Y (ν,1)(x)e2πiT
(ν)
0 S−1

2rν ...S
−1
1 .

To define the connection matrices we have to distinguish one particular solution

Y (ν,l)(x) for every ν . Let us choose Y (∞,1)(x) as our fundamental matrix solution and

write Y (∞,1)(x) = Y (ν,l)(x)Cν , ν ∈ {1, ..., n}. Thus, Mν = C−1
ν e2πiT

(ν)
0 S−1

2rν ...S
−1
1 Cν . Note

that det(Mν) = e2πitrT
(ν)
0 and det(M1...MnM∞) = 1.

The singularity data of the system in this case are SD = {aν , A(ν)
−kν

, Gν , ν ∈
{1, ..., n,∞}, kν ∈ {0, 1, ..., rν}, a∞ = ∞, G∞ = 1}, where matrices A

(ν)
−rν are diag-

onal and the following relation holds: A
(∞)
0 = −

∑n
ν=1GνA

(ν)
0 G−1

ν . The monodromy data

MD, which characterize the monodromy properties of the fundamental matrix solution

Y (x), are given by MD = {aν , T (ν)
−kν

, Sν,lν , Cν , ν ∈ {1, ..., n,∞}, kν ∈ {0, 1, ..., rν}, lν ∈
{1, ..., 2rν}, a∞ = ∞, C∞ = 1}, where matrices T

(ν)
−kν

are diagonal, matrices Sν,lν are

triangular with diagonal elements equal to 1.

We shall say that Y (x) has the monodromy properties MD, if Y (x) is holomorphic

and invertible in P 1
a and there exist invertible matrices Gν , ν ∈ {1, ..., n}, and sectors

Sν,l such that

Y (x)C−1
ν Sν,1...Sν,l−1 ∼ Gν(1 +O(ξ)) exp

( −1∑
j=−rν

1

j
T

(ν)
j ξjν + T

(ν)
0 log(ξν)

)

in Sν,l for ν ∈ {1, ..., n,∞}, lν ∈ {1, ..., 2rν + 1}, G∞ = 1. As in the Fuchsian case

matrices Gν , Cν and Sν,l are defined up to some invertible matrix Dν . Moreover, if

assumptions 3 and 4 hold, then the sets SD and MD are homeomorphic.

Let us define the partial monodromy data, which are preserved in isomonodromic

deformations, by PMD = {T (ν)
0 , Sν,lν , Cν , ν ∈ {1, ..., n,∞}, lν ∈ {1, ..., 2rν}, C∞ = 1}.

The set of deformation parameters is given by DP = {aν , T (ν)
−kν

, ν ∈ {1, ..., n,∞}, kν ∈
{1, ..., rν}, a∞ =∞}.

Considering SD as independent variables and MD as dependent variables, the isomon-

odromy problem is formulated as follows: Can we continuously deform SD while preserving

PMD? Equivalently, let us consider MD as independent variables and SD as dependent

variables. Then the formulation of the problem becomes: what are the deformations of

SD under any continuous variation of DP, the PMD being kept fixed?

M. Jimbo et al [22] showed that under assumptions 3 and 4 the deformations of the

linear differential system with multiple poles are isomonodromic if the coefficients of the
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matrix satisfy the nonlinear completely integrable differential system of P — type. Thus,

there exists a deep connection between the Painlevé equations and linear systems.

For instance, the fifth Painlevé equation (3) can be obtained as the compatibility

condition of the linear system

Yx = A(x)Y, Yt = B(x)Y, (14)

where

A(x) =
t

2

(
1 0

0 −1

)
+

(
v + θ0/2 −u(v + θ0)

v/u −(v + θ0/2)

)
1

x
+

+

(
−w yu(w − θ1/2)

−(w + θ1/2)/(yu) w

)
1

x− 1
,

B(x) =
1

2

(
1 0

0 −1

)
x+

1

t

(
0 −u(v + θ0 − y(w − θ1/2))

(v − (w + θ1/2)/y)/u 0

)

and w = v + (θ0 + θ∞)/2. The compatibility condition Yxt = Ytx of system (14) implies

tdy/dt = ty − 2v(y − 1)2 − (y − 1)((θ0 − θ1 + θ∞)y − (3θ0 + θ1 + θ∞))/2,

tdv/dt = yv(w − θ1/2)− (v + θ0)(w + θ1/2)/y, (15)

tdu/dt = u(−2v − θ0 + y(w − θ1/2) + (w + θ1/2)/y),

from which we get that the function y(t) satisfies (3) with parameters α = (θ0 − θ1 +

θ∞)2/8, β = −(θ0 − θ1 − θ∞)2/8, γ = 1− θ0 − θ1, δ = −1/2.

In summary, we have seen that the theory of isomonodromy deformations is a powerful

tool to study nonlinear differential equations. There are much more aspects of this theory

and there are many recent books and research papers discussing them. The present paper

is intended to give a starting point for further study rather than a complete survey of the

subject and all modern bibliographical references.
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Mathematics. — 1995. — Vol. 5, no. 3. — P. 1 — 71.

[5] Clarkson P.A., Mansfield E.L., Webster H.N. On the relationship between the dis-
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générale a ses points critiques fixes // Ann. Sci. de l’École Normale Supérieure. —
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Ann. Mat. Pura Appl. — 1987. — Vol. 146, no. 4. — P. 337 — 381.
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Stockholm, delivered in 1895. — Paris: Hermann, 1897. — 589 p.
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[37] Schlesinger L. Über eine Klasse von Differentialsystemen beliebiger Ordnung mit

festen kritischen Punkten // J. für R. und Angew. Math. — 1912. — Vol. 141. —

P. 96 — 145.

[38] Wasow V. Asymptotic expansions of solutions of ordinary differential equations. —

Moscow: Mir, 1968. — 464 p.

14



Galina Filipuk

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

Banacha 2 02-097 Warsaw

Poland

filipuk@mimuw.edu.pl

15


	Introduction
	Painlevé equations
	The method of the isomonodromic deformations in the theory of linear systems
	Isomonodromic deformations of linear systems with Fuchsian singularities
	Isomonodromic deformations of linear systems with irregular singularities


