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Plan of the Talk:

• Linear special functions and transformations between them:

– Gauss hypergeometric function

– Heun function

• Nonlinear special functions:

– Painlevé transcendents

– Fuchsian systems of differential equations

– monodromy, rigidity, monodromy preserving deformations

– Schlesinger systems

• Middle convolution

• Results for the hypergeometric and Heun equations

• Results for the Painlevé equations and Schlesinger systems:

– middle convolution is used to derive Okamoto’s birational transformation for (PV I)

– deformation equations are invariant under middle convolution for Schlesinger sys-

tems.
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Linear Special Functions

• Functions defined by linear ordinary differential equations (ODEs) which have many

applications in analysis, number theory, mathematical physics and other fields.

• Example. Hypergeometric equation

d2y(z)

dz2
+

(
c

z
+

a + b− c + 1

z − 1

)
dy(z)

dz
+

a b

z (z − 1)
y(z) = 0,

where a, b, c ∈ C, y(z) : C → C.

Gauss hypergeometric series defined by

2F1(a, b, c)(z) =

∞∑
n=0

(a)n (b)n
(c)n n!

zn,

where (a)n = a(a + 1) . . . (a + n − 1), n > 0, (a)0 = 1, is a solution of the

hypergeometric equation.

Singular points of the equation (and, hence, of the solutions since equation is linear)

are z = 0, 1, ∞.
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There is an integral representation of the solutions of the hypergeometric equation which

allows one to calculate a monodromy group (linear representation of the fundamental

group of CP1 − {singular points} summarizing all analytic continuations of the multi-

valued solutions of the equation along closed loops).

• Example. Heun equation

d2y(x)

dx2
+

(
c

x
+

d

x− 1
+

a + b− c− d + 1

x− t

)
dy(x)

dx
+

abx− q

x(x− 1)(x− t)
y(x) = 0.

Four singularities in the complex plane x = 0, 1, t, ∞. Parameter q is called an acces-

sory parameter (in contrast to the hypergeometric equation, it cannot be determined if

the monodromy data are given).

Many open questions (e.g., monodromy group, integral representation of solutions).

Intriguing applications (e.g., Riemann’s zeta function).
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• Classification of at least 1 free parameter transformations between GHF 2F1(a, b, c)(z)

and Heun function Hn(t, q; a, b, c, d)(x) [R.Vidunas-R.Maier-GF, 2010], e.g.,

Hn

(
9, q1; 3a, 2a + b, a + b +

1

3
, 2a− 2b + 1

)
(x) =

(1− x)−2a
2F1

(
a, b, a + b +

1

3

)
(z1),

Hn

(
8

9
, q2; 3a, 2a + b, 2a + 2b− 1

3
, a + b +

1

3

)
(x) =

=

(
1− 9x

8

)−2a

2F1

(
a, b, a + b +

1

3

)
(z2),

where q1 = 18a2 − 9ab + 6a, q2 = 4a2 + 4ab− 2a/3,

z1 = − x(x− 9)2

27(x− 1)2
, z2 =

27x2(x− 1)

(8− 9x)2
.

In general, there are about 50 such transformations. Functions zj are Belyi functions

(branched over 3 points). 38 transformations are related to invariants of elliptic

surfaces with 4 singular fibers.
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• Integral transformations between Heun functions (e.g., Euler type integral transfor-

mations found by Slavyanov, GF).

Nonlinear Equations

• Riccati equation y′ = a(z)y2 + b(z)y + c(z). Linearizable. Solutions have poles in

C, hence, meromorphic functions.

• Elliptic function ℘(z) is a solution of y′2 = p3(y), where p is a degree 3 polynomial.

First order nonlinear equation; ℘(z) has poles in C.

Roughly, differential equation possesses the Painlevé property if solutions have only

movable poles in C and quasi-Painlevé property if solutions have algebraic branch

points.

Painlevé (1888) proved that for the first order ODEs of the form

G

(
dy

dz
, y, z

)
= 0,

where G is a polynomial in dy/dz and y with analytic in z coefficients, the movable

singularities (depend on initial conditions) of the solutions are poles and/or algebraic

branch points (quasi-Painlevé property).
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Nonlinear Special Functions

• Works of Painlevé, Picard, Fuchs, Gambier, Bureau: Which equations of the type

d2y

dz2
= F

(
dy

dz
, y, z

)
,

where F is a rational function of dy/dz and y and an analytic function of z, have

the Painlevé property: solutions have no movable critical points?

• 50 types of equations solutions of which have only movable poles. 44 equations are

integrable in terms of linear equations and elliptic functions or reducible to other

six equations which are now known as the Painlevé equations:

y′′ = 6y2 + z, (PI)

y′′ = 2y3 + zy + α, α ∈ C (PII)

...

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt
+

+
y(y − 1)(y − t)

t2(t− 1)2

(
α + β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
, (PV I)
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α, β, γ, δ being arbitrary parameters.

• First tedious calculations to find a set of necessary conditions for the absence of

movable critical points.

• Next prove that conditions are sufficient (difficult problem, settled only recently

by Laine, Shimomura, Steinmetz and others, 1990th; also earlier by Hukuhara in

unpublished notes).

• So, it took almost 100 years to rigorously prove that 6 functions (Painlevé tran-

scendents), solutions of the 2nd order nonlinear ODEs, are actually meromorphic

functions, i.e., possess the Painlevé property.

• Open problem with higher order equations (situation becomes even more compli-

cated as there are natural barriers for analytic continuation of solutions, e.g., Chazy

equation).

• The solutions of the six Painlevé equations (Painlevé transcendents (PI)–(PV I)) are

nonlinear special functions. They appear in many areas of modern mathematics

(mathematical physics, random matrices, enumerative algebraic geometry, Frobe-

nius manifolds, reductions of integrable PDEs, etc). They are already included in
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the chapter in the recent update of Abramovich-Stegun’s book Handbook of Math-

ematical Functions in the DLMS project.

• It is interesting to note that there is a relation of linear and nonlinear special func-

tions. E.g., elliptic asymptotics of the Painlevé transcendents, special solutions for

special values of the parameters expressed in terms of linear special functions, nice

determinant representations of solutions, etc. For instance, (PV I) can be regarded

as a nonlinear analogue of the hypergeometric equation.

• Painlevé transcendents (PII)–(PV I) possess Bäcklund transformations (nonlinear re-

currence relations, which map solutions of a given Painlevé equation to the solutions

of the same/other Painlevé equation but with different values of the parameters and

admit an affine Weyl group formulation) [Okamoto, Mazzocco, GF];

• (PI)–(PV I) admit a Hamiltonian formulation, can be written in a bilinear form. They

are irreducible to classical special functions as proved recently by Umemura using

the differential Galois theory.
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• Method of isomonodromy deformations (to study asymptotics and connection for-

mulae): the Painlevé equations (and their multivariable generalizations such as the

Garnier and Schlesinger systems) are expressed as a compatibility condition

∂

∂tj

dY

dx
=

d

dx

∂Y

∂tj
,

of two linear systems of equations

dY

dx
= AY,

∂Y

∂tj
= BY.

Monodromy of the Fuchsian systems

A linear system is called a Fuchsian system if it is of the form

dY

dx
=

p+1∑
i=1

Ci

x− ti
Y, Ck ∈ Cn×n.

t1, t2, . . . , tp+1 ∈ CP1: distinct points (simple poles of the Fuchsian system), ∞ is a

regular point here. It can be a pole if C∞ = −
∑

i Ci 6= 0.
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X = CP1 \ {t1, t2, . . . , tp+1} open, connected set

x0 ∈ X

π1(X, x0): fundamental group. π1(X, x0) = 〈γ1, γ2, . . . , γp+1 | γ1γ2 · · · γp+1 = 1〉.
Analytic continuation along all possible loops in the fundamental group of the (generally

multivalued) fundamental solution Y :

γ∗Y = Y M, M ∈ GL(n, C), γ ∈ π1(X, x0).

Matrix M is called a monodromy matrix.

Linear differential equations defined on X in the complex plane have a monodromy

group, which (more precisely) is a linear representation of the fundamental group of

X , summarizing all the analytic continuations along closed loops within X .

π1(X, x0) → GL(n, C), (M1, M2, . . . ,Mp+1) ∈ (GL(n, C))p+1 : M1M2 · · ·Mp+1 = Idn.

Direct monodromy problem is to determine the monodromy group of the Fuchsian

system. The inverse problem of constructing the equation with given regular singularities

and with a given monodromy representation, is called the Riemann-Hilbert problem.
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Rigidity

A monodromy representation (M1, M2, . . . ,Mp+1) with M1M2 · · ·Mp+1 = Idn is said

to be rigid, if, for any tuple (N1, N2, . . . , Np+1) of matrices in GL(n, C) satisfying

N1N2 · · ·Np+1 = Idn and Nj = DjMjD
−1
j (1 ≤ j ≤ p+1), there exists D ∈ GL(n, C)

such that simultaneously Nj = DMjD
−1 for 1 ≤ j ≤ p + 1.

Example. For system(
xI2 −

(
0 0

0 1

))
dY

dx
=

(
λ 1

−(λ− ρ1)(λ− ρ2) ρ1 + ρ2 − λ

)
Y

the monodromy group is generated by

M1 =

(
e(λ) q

0 1

)
,

M2 =

(
1 0

−(e(λ)− e(ρ1))(e(λ)− e(ρ2))e(λ)−1q−1 e(ρ1 + ρ2 − λ)

)
,

where q = e(λ)− e(ρ1) = e(−γ)− e(−α).

If ρ1 = −α, ρ2 = −β and λ = 1− γ, and we simultaneously conjugate the matrices by

some matrix from GL(2, C), then we have a standard monodromy of the hypergeometric
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equation:

M1 =

(
e(−γ) e(−γ)− e(−α)

0 1

)
, M2 =

(
1 0

e(γ − β)− 1 e(γ − α− β)

)
.

Why is this tuple rigid?

M3 is defined from relation M1M2M3 = Id2.

From definition, if N1, N2 and N3 be any matrices from GL(2, C) with eigenvalues as

in M1, M2 and M3 respectively and N1N2N3 = Id2, then we can find explicitly matrix

D ∈ GL(2, C), such that

D−1N1D = M1, D−1N2D = M2.

Indeed, calculating in Mathematica gives

D =

(
− p1e(2(2α+β))(−1+e(2γ))p2

(e(2α)−e(2γ))(−e(2(α+β))+e(2γ)) −
p1e(2(α+β))p2

e(2(α+β))−e(2γ)
p1e(2α)(−e(2β)+e(2γ))
−e(2(α+β)+e(2γ)) p1

)
,

where p1 and p2 are arbitrary parameters.

There are several definitions of rigidity (e.g., no accessory parameters in a differential

equation). However, the quickest way to check the rigidity for a given tuple of matrices

is to calculate the index of rigidity and see whether it is equal to 2 or not.
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The index of rigidity

ι = (2− (p + 1))n2 +

p+1∑
j=1

dim Z(Mj),

where Z(Mj) denotes the centralizer of Mj.

The centralizer of an element z of a group G is the set of elements of G which commute

with z.

• ι is even; ι ≤ 2 for any irreducible tuple; ι = 2 means rigid (Katz’ result).

Example continued. For monodromy of the hypergeometric equation (rank 2 Fuchsian

system with 3 singularities x = 0, 1,∞ and A∞ = −(A1 + A2) nonzero) we have

n = 2, p = 2, p + 1 = 3, Z(Mj) = 2, ι = (2− 3)22 + 3 ∗ 2 = −4 + 6 = 2.

So, it is a rigid tuple.

• The number 2− ι can be regarded as the dimension of the moduli space of Fuchsian

systems with prescribed local monodromies, i.e., number of accessory parameters.

Monodromy determines the residue matrices in Fuchsian systems and vice versa, up

to simultaneous conjugation by a matrix from GL(n, C).
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Reducibility in Fuchsian systems means that the matrices can be written in the form(
∗ ∗
0 ∗

)
and so, there are invariant subspaces.

Schlesinger systems

Let
d

dλ
Ψ = A(λ)Ψ, A(λ) =

N∑
k=1

Ak

λ− tk
, A(λ) ∈ sl(n, C). (1)

The isomonodromy (or, equivalently, monodromy preserving) condition means that the

matrices Mk do not depend on the positions of the poles, i.e.,

d

dti
Mk = 0.

Under certain non-resonance assumptions on the eigenvalues θk of the matrices Ak and

A∞ := −
∑N

j=1 Aj one can show that the function Ψ satisfies the following system

∂

∂ti
Ψ = − Ai

λ− ti
Ψ, i = 1, . . . , N, (2)

in the case of the monodromy preserving deformations. The compatibility conditions of
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(1) and (2) are known as the Schlesinger equations, or deformation equations,

∂Ak

∂ti
=

[Ai, Ak]

ti − tk
, k 6= i,

∂Ai

∂ti
= −

N∑
k=1, k 6=i

[Ai, Ak]

ti − tk
, k = i.

Middle Convolution

• By Katz’s theorem one can obtain any irreducible rigid local system on the punctured

affine line from a local system of rank one by applying a suitable sequence of middle

convolutions and scalar multiplications.

• Katz’ middle convolution functor MCµ preserves important properties of local sys-

tems such as a number of singularities, the index of rigidity and irreducibility but in

general changes the rank and the monodromy group.

• Dettweiler and Reiter’s algebraic construction of Katz’ middle convolution functor

and a relation to the integral transformation for Fuchsian systems).

• The additive version of middle convolution for Fuchsian systems depends on a scalar
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µ ∈ C and is denoted by mcµ. It is a transformation on tuples of matrices

(A1, . . . , Ar) ∈
(
Cn×n)

)r → mcµ(A1, . . . , Ar) = (B̃1, . . . , B̃r) ∈
(
Cm×m)

)r
.

A construction of mcµ is as follows.

Let A = (A1, . . . , Ar), Ak ∈ Cn×n. Let us also fix points t = tk ∈ C, k = 1, . . . , r

and consider a Fuchsian system of rank n given by

dY

dt
=

r∑
k=1

Ak

t− tk
Y. (3)

First, the operation of addition is simply a change of the eigenvalues of the residue

matrix: Ak → Ak + aIn, where a ∈ C, In is the identity matrix.

For µ ∈ C one defines convolution matrices B = cµ(A) = (B1, . . . , Br) by

Bk =


0 . . . 0 0 0 . . . 0
... ... ... ... ...

A1 . . . Ak−1 Ak + µ Ak+1 . . . Ar

... ... ... ... ...

0 . . . 0 0 0 . . . 0

 ∈ Cnr×nr (4)

such that Bk is zero outside the k-th block row.
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The convolution matrices define a new Fuchsian system of rank nr with the same number

of singularities as in the original Fuchsian system:

dY1

dt
=

r∑
k=1

Bk

t− tk
Y1. (5)

This system may be reducible. In general, there are the following invariant subspaces

of the column vector space Cnr:

Lk =



0
...

0

Ker(Ak)

0
...

0


(k−th entry), k = 1, . . . , r, (6)

and

K =

r⋂
k=1

Ker(Bk) = Ker(B1 + . . . + Br). (7)

Let us denote L = ⊕r
k=1Lk and fix an isomorphism between Cnr/(K + L) and Cm for

18



some m. The matrices B̃ = mcµ(A) := (B̃1, . . . , B̃r) ∈ Cm×m, where B̃k is induced by

the action of Bk on Cm ' Cnr/(K + L) are called the additive version of the middle

convolution of A with parameter µ. Thus, the resulting irreducible Fuchsian system

of rank m is given by
dY2

dt
=

r∑
k=1

B̃k

t− tk
Y2. (8)

The relation between the convolution operation cµ and integral transformations:

Let g := (gi,j) be a matrix with entries gi,j such that they are (multi-valued) holomorphic

functions on X := C \ T, T := {t1, . . . , tr} ⊂ C, ti 6= tj for i 6= j. Assume that the

path αr+1 encircles an open neighborhood U of y0 and the path αi encircles the point

ti. Then the matrix-valued function

Iµ
[αr+1,αi]

(g)(y) :=

∫
[αr+1,αi]

g(x)(y − x)µ−1dx, y ∈ U,

is called the Euler transform of g with respect to the Pochhamer contour [αr+1, αi] :=

α−1
r+1α

−1
i αr+1αi and the parameter µ ∈ C.

Let A := (A1, . . . , Ar), Ai ∈ Cn×n be the residue matrices of the Fuchsian system (3)
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and F (t) be its fundamental solution. Denote

G(t) :=

 F (t)(t− t1)
−1

...

F (t)(t− tr)
−1


and introduce the period matrix

Iµ(y) := (Iµ
[αr+1,α1]

(G)(y), . . . , Iµ
[αr+1,αr]

(G)(y)).

Then Dettweiler and Reiter showed that the columns of the period matrix Iµ(y) are

solutions of the Fuchsian system (5) obtained by the convolution with parameter µ− 1,

i.e., cµ−1(A), where y is contained in a small open neighborhood U of y0 (which is

encircled by αr+1).
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Middle Convolution: Summary

(1) Original Fuchsian system

dY (t)

dt
=

p∑
i=1

Ai

t− ti
Y (t), Ak ∈ Cn×n

(2) Convolution (Okubo-type system)

dY1(t)

dt
=

p∑
i=1

Bi

t− ti
Y1(t), Bk ∈ Cpn×pn

(3) Middle convolution (irreducible part of the above system)

dY2(t)

dt
=

p∑
i=1

B̃i

t− ti
Y2(t), B̃k ∈ Cm×m

m depends on n, p, and a parameter µ ∈ C.

So, number of singularities stay the same whereas matrix dimensions change.
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Katz and Dettweiler-Reiter say that if you apply additions and middle convolutions in

any order and any finite number of times to a rank one system, one gets all rigid systems

with a given number of singularities.

Example. How to get the hypergeometric system from rank one system?

Start with
dy

dx
=

(
1 + α− γ

x
+
−1− β + γ

x− 1

)
y.

It is solved by y(x) = x1+α−γ(x − 1)−1−β+γc. The parameter µ in middle convolution

is given by µ = −α. Get

d

dx

(
y1

y2

)
=

(
G1

x
+

G2

x− 1

)(
y1

y2

)
,

where

G1 =

(
1− γ −1− β + γ

0 0

)
, G2 =

(
0 0

1 + α− γ −1− α− β + γ

)
.

Next, conjugate the system with

S =

(
−1− β + γ 0

0 1

)
,

22



i.e., simple transformation Y → SY and we get

Ĝ1 =

(
1− γ 1

0 0

)
, Ĝ2 =

(
0 0

(1 + β − γ)(−1− α + γ) −1− α− β + γ

)
which gives a hypergeometric equation for the first (or second) element of the vector

Y . This system is irreducible, there are no nontrivial invariant subspaces and so it is a

middle convolution of the original rank 1 system.
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Results: Hypergepmetric Equation

The Gauss hypergeometric function is a linear special function of the isomonodromy

type (Kitaev):
d

dλ
Ψ =

(
A0

λ
+

A1

λ− 1
+

At

λ− t

)
Ψ, (9)

with triangular matrices

Ak =

(
0 0

uk(t) 0

)
+ θkσ3.

Assume u0 + u1 + ut = 0. The Schlesinger equations give the following system for the

functions u0, u1, ut:

du0

dt
=

2θ0ut − 2θtu0

t
,

du1

dt
=

2θ1ut − 2θtu1

t− 1
(10)

which is equivalent to the Euler differential equation (hypergeometric equation) for u0

with

a = 2θt, b = 2θ0 + 2θ1 + 2θt, c = 2θ0 + 2θt + 1.
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One can study the effect of the application of the addition (change of the eigenvalues of

the residue matrices) and middle convolution.

Shifting the eigenvalues of the residue matrices in (9) by addition Ψ = λ−θ0(λ−1)−θ1(λ−
t)θtΨ1 we start with the system (3) with

A1 =

(
2θ0 0

u0(t) 0

)
, A2 =

(
2θ1 0

u1(t) 0

)
, A3 =

(
0 0

ut(t) −2θt

)
.

Theorem. Let u0(t), u1(t) and ut(t) with u0(t) + u1(t) + ut(t) = 0 satisfy the

hypergeometric equations with

a0 = 2θt, b0 = 2(θ0 + θ1 + θt), c0 = 2(θ0 + θt) + 1;

a1 = 2θt, b1 = 2(θ0 + θ1 + θt), c1 = 2(θ0 + θt);

at = 2θt + 1, bt = 2(θ0 + θ1 + θt), ct = 2(θ0 + θt) + 1.

Then the operations of addition and middle convolution with parameter µ = −2(θ0+θ1)

applied to system (9) give new solutions of the hypergeometric equations given by

ũ0(t) = − 2θ1u0(t)

f (t)u1(t)
, ũ1(t) =

2θ0

f (t)
, ũt(t) =

2θ1u0(t)− 2θ0u1(t)

f (t)u1(t)
,

25



where

f ′(t) = 2f (t)
θ1u0(t) + (θ1 + θt)u1(t)

u1(t)(t− 1)
,

and the parameters are given by

ã0 = 2(θ0 + θ1 + θt), b̃0 = 2θt, c̃0 = 2(θ0 + θt) + 1;

ã1 = 2(θ0 + θ1 + θt), b̃1 = 2θt, c̃1 = 2(θ0 + θt);

ãt = 2(θ0 + θ1 + θt) + 1, b̃t = 2θt, c̃t = 2(θ0 + θt) + 1.

Other cases: connection to Heun equation, Jordan-Pocchammer equation [GF, J. Phys.

A (2010)].
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Results: Heun Equation

The Heun equation is given by

t(t− 1)(t− λ)y′′ + {γ(t− 1)(t− λ) + δt(t− λ) + εt(t− 1)}y′ + αβ(t− a)y = 0,

where the Fuchs relation

α + β − γ − δ − ε + 1 = 0 (11)

holds.

The hypergeometric system of the Heun equation is given by t 0 0

0 t− 1 0

0 0 t− λ


 y′1

y′2
y′3

 =

 1− γ 1 0

α21 −δ 1

α31 α32 −ε− 1


 y1

y2

y3

 , (12)

where

α21 = (γ − 1)δ − g0,

α31 = αβ(γ − 2) + (1− γ)ε(δ + γ − 2) + (ε− γ + 2)g0,

α32 = ε(δ + γ − 2)− αβ + g0, g0 =
1

λ
{ε(1− γ) + αβa}.
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Theorem. The hypergeometric system of the Heun equation (12) is related via middle

convolution with parameter µ and a gauge transformation to another hypergeometric

system (12) with new values of the parameters given by either

µ = α− 1, (2− α− α1)(1− α + β − α1) = 0,

α1β1 = (α− 2)(α− β − 1),

γ1 = γ − α + 1, δ1 = δ − α + 1, ε1 = ε− α + 1,

a1 =
1 + β − δ + α(δ − 1 + β(a− 1)) + (α− 1)(α− γ − δ)λ

(α− 2)(α− β − 1)
or

µ = β − 1, (2− β − α1)(1 + α− β − α1) = 0,

α1β1 = −(β − 2)(α− β + 1),

γ1 = γ − β + 1, δ1 = δ − β + 1, ε1 = ε− β + 1,

a1 = −α(1 + (a− 1)β) + (β − 1)(δ − 1 + (β − γ − δ)λ)

(β − 2)(α− β + 1)
.
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Results: the Painlevé VI Equation and the Schlesinger Sys-
tems

The algorithm of Dettweiler and Reiter was introduced for rigid systems, so what hap-

pens to general Fuchsian systems?

In the case of the sixth Painlevé equation which describes monodromy preserving de-

formations of rank 2 Fuchsian system with four singularities on the projective line, the

algorithm yields the Okamoto birational transformation.

In general, there is an invariance of the deformation equations (Schlesinger system)

under middle convolution.

Monodromy preserving deformations

dY

dx
=

 p∑
j=1

Aj

x− tj

Y,

Ap+1 = −(A1 + A2 + · · · + Ap).

Matrices Aj ∈ GL(n, C) generally depend on tj. Monodromy preserving deformations

is when we keep the monodromy of system above constant in tj.
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Under certain assumptions on eigenvalues of Aj, the Schlesinger system govern mon-

odromy preserving deformations of the Fuchsian system above:
∂Ai

∂ti
= −

∑
k 6=i

[Ai, Ak]

ti − tk
, (Schlesinger system)

∂Aj

∂ti
=

[Ai, Aj]

ti − tj
(j 6= i) .

When we have p = 4 singularities (0, 1, t,∞) and n = 2, then the system gives the

sixth Painlevé equation:

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt
+

+
y(y − 1)(y − t)

t2(t− 1)2

(
α + β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
,

α, β, γ, δ being arbitrary parameters and y(t) : C → C.

When n = 2 but p > 4, we have so-called Garnier systems and when p > 4 and n > 2,

we have so-called Schlesinger systems.

• start with the Fuchsian system of rank 2 with 4 singularities (n = 2, p = 3),

deformation of which leads to (PV I)
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dY

dx
=

(
G0

x
+

G1

x− 1
+

G2

x− t

)
Y

with Gi ∈ GL(n, C). Here t is a deformation parameter and if we allow it to vary,

the coefficients of the residue matrices of the systems become the functions of t and

monodromy matrices do not depend on t iff y(t), which is a function of the coefficients

of the residue matrices, satisfies (PV I)

• apply middle convolution with parameter equal to one of the eigenvalues of the matrix

at infinity

• get a new system of rank 2 (m = 2)

• nontrivial result: find explicitly Okamoto transformation for the solutions of (PV I):

y1(t) = mck1(y(t)) =

y − (θ0 + θ1 − θ∞ + θt)(t− y)(y − 1)y

(θ0 + θt − 1 + t(θ0 + θ1))y − (θ0 + θ1 + θt − 1)y2 − t(θ0 + (t− 1)y′)
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and parameters

α1 =
1

8
(θ0 + θ1 + θ∞ + θt − 2)2, β1 = −1

8
(θ0 − θ1 + θ∞ − θt)

2,

γ1 =
1

8
(−θ0 + θ1 + θ∞ − θt)

2, δ1 =
1

2
(1− (θ0 + θ1 − θ∞ − θt)

2/4),

which coincides with Okamoto’s birational transformation.

(..., K.Okamoto (’87),

R. Conte (’01): singular manifold method,

M. Mazzocco: Laplace transform to irregular system and easy gauge transformation,

M. Noumi, Y. Yamada (’03): symmetric form,

K. Iwasaki (’03): Riemann-Hilbert correspondence,

...

It is known that the group of birational transformations forms an affine Weyl group

of D
(1)
4 type and it is generated by 5 transformations. The meaning of 4 of them in

the context of linear system is that they are obtained by simple gauge transformations.

And, surprisingly, the last one is connected with the integral transformation which stems

from all this theory of rigid systems.
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• we know that the integral transformation of certain type applied to the solution of the

Fuchsian system (middle convolution) leads to the transformation of the nonlinear

deformation equation (PV I):

(A0, A1, A2) ∈ (GL(2, C))3
mcκ1−→ (Ā0, Ā1, Ā2) ∈ (GL(2, C))3xy xy

y(t)
BTr−→ ȳ(t)

(Here the deformation equation is the equation which should be satisfied when we

require that the monodromy of the Fuchsian system is independent of the deformation

parameters. It is a compatibility condition of 2 linear systems.)

• if we do not impose condition on the parameter of middle convolution, we get certain

rank 3 system which was studied by Harnad, Mazzocco and Boalch and which proved

useful in searching for new algebraic solutions of (PV I)

• we also know (can construct explicitly) any rank Fuchsian systems deformation of

which leads to the sixth Painlevé equation. Does it hold in general?
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Isomonodromic family
∂Ai

∂ti
= −

∑
k 6=i

[Ai, Ak]

ti − tk
, (Schlesinger system)

∂Aj

∂ti
=

[Ai, Aj]

ti − tj
(j 6= i) .

is invariant under middle convolution for system

dY

dx
=

 p∑
j=1

Aj

x− tj

Y, Ap+1 = −(A1 + A2 + · · · + Ap).

Theorem. If for j = 1, 2, . . . , p + 1, there is no integral difference between any

two distinct eigenvalues of Aj and the Jordan canonical form of Aj is independent of

t1, t2, . . . , tp, then the systems
∂

∂ti
tr(AiAj) = −

∑
k 6=i,j

tr([Ai, Ak]Aj)

ti − tk
,

∂

∂ti
tr(AjAk) =

tr([Ai, Aj]Ak)

ti − tj
+

tr(Aj[Ai, Ak])

ti − tk
.

(∗)

for the Fuchsian systems obtained by addition and middle convolution with parameters

independent of t1, t2, . . . , tp coincide with the system (∗) for the initial Fuchsian system.
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Summary

• Linear special functions, defined by linear ODEs, appear in many areas of mathe-

matics. They may have nontrivial transformations.

• Solutions of nonlinear ODEs have complicated singularities. Solutions of the Painlevé

equations (the 2nd order equations) have only movable poles and appear in many

areas of mathematics, so they are nonlinear special functions. There are very few

results on higher-order equations or multivariable generalizations.

• Recent results on integral transformations of the Fuchsian systems: using middle

convolution one can get nontrivial relations for linear and nonlinear special functions.

Thank you very much for your attention!
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