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Abstract

This article is a survey on recent studies on middle convolution for linear
and nonlinear special functions [J. Phys. A: Math. Theor. 43 (2010), 175204;
J. Phys. A: Math. Theor. 42 (2009), 175208; Kumamoto J. Math. 19 (2006),
15–23]. Part of this survey is also based on the joint work with Y. Haraoka [J.
Lond. Math. Soc. 76 (2) (2007), 438–450]. After recalling some basic facts
concerning linear and nonlinear special functions, we give an overview of the
recent results and current studies on middle convolution for special functions.
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The main objective of this paper is to survey recent results on middle con-
volution based on the papers [9, 10, 11, 15] and discuss computational aspects.

The paper is organized as follows. In the first section we overview linear
special functions such as the Gauss hypergeometric functions and the Heun
functions. Next we survey nonlinear special functions, such as the Painlevé
transcendents. Next we explain the notion of middle convolution. Finally, we
show how to use middle convolution to derive transformations for linear and
nonlinear special functions. We also explain the notion of Schlesinger systems
and study how they are changed under middle convolution.

1 Special functions

There is no strict mathematical definition of the notion special functions”.
Wikipedia1 defines special functions as ”particular mathematical functions which
have more or less established names and notations due to their importance in
mathematical analysis, functional analysis, physics, or other applications”. One
can also find a lot of information about special functions at Digital Library of
Mathematical Functions at http://dlmf.nist.gov/, which is a recent update
of Abramovich-Stegun’s book ”Handbook of Mathematical Functions”.

1http://en.wikipedia.org/wiki/Special_functions
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1.1 Linear special functions

By linear special functions we understand functions defined by linear ordinary
differential equations (ODEs) which have many applications in analysis, number
theory, mathematical physics and other fields. One of the most important exam-
ples is the Gauss hyperheometric function. It is a solution of the hypergeometric
equation given by

d2y(z)
dz2

+
(

c

z
+

a + b− c + 1
z − 1

)
dy(z)
dz

+
a b

z (z − 1)
y(z) = 0, (1)

where a, b, c are complex parameters and y(z) is a complex-valued function of
the independent complex variable z. The coefficients of the linear equation are
singular at z = 0, 1, ∞. Hence, singular points of solutions (since equation is
linear) are also z = 0, 1, ∞. One can check that the Gauss hypergeometric series
defined by

2F1(a, b, c)(z) =
∞∑

n=0

(a)n (b)n

(c)n n!
zn,

where (a)n = a(a+1) . . . (a+n−1), n > 0, (a)0 = 1, is a solution of the hyperge-
ometric equation. There exists an integral representation of the solutions of the
hypergeometric equation (see, for instance, [17]) which allows calculating a mon-
odromy group. Later on we shall explain the notion of the monodromy group
as a linear representation of the fundamental group of CP1 − {singular points}
summarizing all analytic continuations of multi-valued solutions of the equation
along closed loops. There is a vast bibliography on the hypergeometric functions
[1].

Another important example of the linear special functions is the Heun func-
tion [25]. It is a solution of the following equation

d2y(x)
dx2

+
(

c

x
+

d

x− 1
+

a + b− c− d + 1
x− t

)
dy(x)
dx

+
abx− q

x(x− 1)(x− t)
y(x) = 0. (2)

The equation has four singularities in the complex plane at x = 0, 1, t, ∞. The
parameter q is called an accessory parameter (in contrast to the hypergeometric
equation, it cannot be determined if the monodromy data are given). There
are many open questions concerning the Heun equation (e.g., the monodromy
group, integral representation of its solutions).

Remark. It is interesting to note that there are transformations between the
Heun and hypergeometric functions. A classification of at least 1 free parame-
ter transformations between the hypergeometric function 2F1(a, b, c)(z) and the
Heun function Hn(t, q; a, b, c, d)(x) is studied in [30]. For instance,

Hn
(

9, q1; 3a, 2a + b, a + b +
1
3
, 2a− 2b + 1

)
(x) =

(1− x)−2a
2F1

(
a, b, a + b +

1
3

)
(z1),
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Hn
(

8
9
, q2; 3a, 2a + b, 2a + 2b− 1

3
, a + b +

1
3

)
(x) =

=
(

1− 9x

8

)−2a

2F1

(
a, b, a + b +

1
3

)
(z2),

where q1 = 18a2 − 9ab + 6a, q2 = 4a2 + 4ab− 2a/3,

z1 = − x(x− 9)2

27(x− 1)2
, z2 =

27x2(x− 1)
(8− 9x)2

.

In general, there are about 50 such transformations. Functions zj are Belyi
functions (branched over 3 points). Among those transformations, 38 transfor-
mations are related to the invariants of elliptic surfaces with 4 singular fibers.
Transformations between hypergeometric functions were classified in [29].

1.2 Nonlinear special functions

One of the simplest nonlinear differential equations is the Riccati equation given
by y′ = a(z)y2 + b(z)y + c(z). By a simple transformation it can be linearized.
Hence, solutions are meromorphic functions (have poles in C). The elliptic
function ℘(z) is the solution of the first order second degree nonlinear equation
y′2 = 4y3 − g2y − g3. The function ℘(z) also has poles in C. Note that the
equation is non-linearizable. Moreover, there are a lot of applications of the
function ℘(z) in modern mathematics, and, hence, it can be called special.

More generally, Painlevé (1888) proved that for the first order ODEs of the
form

P

(
dy

dz
, y, z

)
= 0,

where P is a polynomial in dy/dz and y with analytic in z coefficients, the
movable singularities (which depend on initial conditions) of the solutions are
poles and/or algebraic branch points. It is nowadays customary to use the
notions of the Painlevé and quasi-Painlevé property. Roughly, a differential
equation possesses the Painlevé property if its solutions have only movable poles
in C and quasi-Painlevé property if they have algebraic branch points.

In general, second and higher order nonlinear equations have more compli-
cated movable singularities. Therefore, in order to find some more nonlinear
special functions with a ”good” singularity structure, one needs to understand
which equations of the type

d2y

dz2
= R

(
dy

dz
, y, z

)
,

where R is a rational function of dy/dz and y and an analytic function of
z, have the Painlevé property, or in other words, solutions have no movable
critical points. A lot of papers by Painlevé, Picard, Fuchs, Gambier, Bureau
were dedicated to the solution of the problem stated above. There exists a
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classification of such equations. There are 50 types of equations, solutions of
which have only movable poles. Among them, 44 equations are integrable in
terms of linear equations and elliptic functions or reducible to other six equations
which are now known as the Painlevé equations:

y′′ = 6y2 + z, (PI)

y′′ = 2y3 + zy + α, α ∈ C (PII)

...

d2y

dt2
=

1
2

(
1
y

+
1

y − 1
+

1
y − t

)(
dy

dt

)2

−
(

1
t

+
1

t− 1
+

1
y − t

)
dy

dt
+

+
y(y − 1)(y − t)

t2(t− 1)2

(
α + β

t

y2
+ γ

t− 1
(y − 1)2

+ δ
t(t− 1)
(y − t)2

)
, (PV I)

α, β, γ, δ being arbitrary parameters. For the general background of the
Painlevé equations, we refer the reader to survey papers and books [3, 12, 22, 28].

In order to find the Painlevé equations, one first needs to do tedious cal-
culations to find a set of necessary conditions of the absence of movable criti-
cal points in solutions of a given class of equations. Next one needs to prove
that those conditions are sufficient. This is a difficult problem, settled only
recently by Laine, Shimomura, Steinmetz and others in the 1990th (also earlier
by Hukuhara in unpublished notes). So, it took almost 100 years to rigorously
prove that the solutions of the second order nonlinear ODEs (PI)–(PV I) are ac-
tually meromorphic functions, i.e., possess the Painlevé property. The analysis
of higher order equations becomes even more complicated as there are natural
barriers for the analytic continuation of the solutions (e.g., the Chazy equation),
and, so, there are many open problems.

The solutions of the six Painlevé equations (PI)–(PV I) are called the Painlevé
transcendents and can be regarded as nonlinear special functions (see [2, 17] and
the references therein). They appear in many areas of modern mathematics
such as mathematical physics, random matrices, enumerative algebraic geom-
etry, Frobenius manifolds, in reductions of integrable PDEs, and others. It is
interesting to note that the linear special functions and elliptic functions appear
in the study of the Painlevé transcendents. For example, special solutions of
the Painlevé equations for special values of the parameters can be expressed in
terms of the linear special functions such as (confluent) hypergeometric func-
tions, Bessel and Airy functions. Since equation (PV I) has special solutions
expressed in terms of the hypergeometric functions, it can be regarded as a
nonlinear analogue of the hypergeometric equation. There exist nice determi-
nant representations of solutions of the Painlevé equations. The asymptotics of
the Painlevé equations can be expressed with the help of elliptic functions [13].

Painlevé transcendents (PII)–(PV I) possess Bäcklund transformations which
are nonlinear recurrence relations mapping solutions of a given Painlevé equation
to the solutions of the same Painlevé equation but with different values of the
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parameters. Such transformations of a given equation form a group which is
isomorphic to a certain affine Weyl group as shown by Okamoto [23]. Moreover,
(PI)–(PV I) admit a Hamiltonian formulation and can be written in a bilinear
form. Using the differential Galois theory, Umemura recently showed that the
Painlevé transcendents are irreducible to classical special functions.

The Painlevé equations (and their multivariable generalizations such as the
Garnier and Schlesinger systems described below) can be expressed as the com-
patibility condition Yx tj

= Ytj x, where the subscript denotes the partial deriva-
tive, of two linear systems of equations

Yx = AY, Ytj
= BY.

One can find the method of isomonodromy deformations and its applications
to asymptotics and the derivation of connection formulae in more details in
[13, 17].

2 Middle convolution for Fuchsian systems

2.1 Monodromy of the Fuchsian systems

A linear system is called a Fuchsian system if it is of the form

dY

dx
=

p+1∑
i=1

Ai

x− ti
Y, Ak ∈ Cn×n.

Here we denote a n × n complex matrix by Cn×n. The poles t1, t2, . . . , tp+1

of the Fuchsian system are distinct points in CP1 (we can regard the point at
infinity as a regular point here). In general, if the matrix A∞ = −

∑
i Ai is

non-zero, the point at infinity is a singularity as well.
Reducibility in Fuchsian systems means that the matrices can be written in

a ”block-triangular” form (
∗ ∗
0 ∗

)
and so, there are invariant subspaces.

The set X = CP1 \ {t1, t2, . . . , tp+1} is open and connected. Let us fix a
point x0 ∈ X. The fundamental group π1(X, x0) is generated by the loops
π1(X, x0) = 〈γ1, γ2, . . . , γp+1 | γ1γ2 · · · γp+1 = 1〉. The analytic continuation
along all possible loops in the fundamental group of the (generally multivalued)
fundamental solution Y of the linear system is given by

γ∗Y = Y M, M ∈ GL(n, C), γ ∈ π1(X, x0).

The matrix M is called a monodromy matrix.
Linear differential equations defined on X in the complex plane have a mon-

odromy group, which, more precisely, is a linear representation of the funda-
mental group of X, summarizing all analytic continuations along closed loops

5



within X:
π1(X, x0) → GL(n, C),

(M1,M2, . . . ,Mp+1) ∈ (GL(n, C))p+1 : M1M2 · · ·Mp+1 = In.

Here In denotes the n× n identity matrix.
There exists a direct monodromy problem (to determine a monodromy group

of a Fuchsian system) and the inverse problem (to construct a system with
given regular singularities and with a given monodromy representation), which
is called the Riemann-Hilbert problem [13, 17].

2.2 Monodromy preserving deformations and Schlesinger
systems

Let
dY

dx
=

 p∑
j=1

Aj

x− tj

Y. (3)

The matrices Ak ∈ GL(n, C) and A∞ := −(A1+A2+· · ·+Ap) generally depend
on ti.

The isomonodromy (or, equivalently, monodromy preserving) condition means
that the monodromy matrices Mk do not depend on the positions of the poles,
i.e.,

dMk

dti
= 0.

Under certain non-resonance assumptions on the eigenvalues θk of the matrices
Ak and A∞ one can show that the function Y satisfies the following system

∂Y

∂ti
= − Ai

x− ti
Y, i = 1, . . . , p, (4)

in the case of the monodromy preserving deformations. The compatibility con-
ditions of (3) and (4) are known as the Schlesinger system, or deformation
equations, 

∂Ai

∂ti
= −

∑
k 6=i

[Ai, Ak]
ti − tk

,

∂Aj

∂ti
=

[Ai, Aj ]
ti − tj

, (i 6= j) .

(5)

When the Fuchsian system (3) has p = 4, n = 2 and singularities (0, 1, t,∞),
then the Schlesinger system gives the sixth Painlevé equation (PV I). When
n = 2 but p > 4, we have the Garnier systems and when p > 4 and n > 2, we
have the Schlesinger systems. Solutions of the Garnier and Schlesinger systems
can be considered as multivariable nonlinear special functions. More information
can be found in [17].
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2.3 Rigidity

A monodromy representation (M1,M2, . . . ,Mp+1) with M1M2 · · ·Mp+1 = In is
said to be rigid, if, for any tuple (N1, N2, . . . , Np+1) of matrices in GL(n, C)
satisfying N1N2 · · ·Np+1 = In and Nj = DjMjD

−1
j (1 ≤ j ≤ p+1), there exists

D ∈ GL(n, C) such that simultaneously Nj = DMjD
−1 for 1 ≤ j ≤ p + 1. In

case ∞ is a singularity of a Fuchsian system we take Mp+1 = M∞.
Example. For a Fuchsian system studied in [32] given by(

xI2 −
(

0 0
0 1

))
dY

dx
=
(

λ 1
−(λ− ρ1)(λ− ρ2) ρ1 + ρ2 − λ

)
Y

the monodromy group is generated by

M1 =
(

e(λ) ν
0 1

)
,

M2 =
(

1 0
−(e(λ)− e(ρ1))(e(λ)− e(ρ2))e(λ)−1ν−1 e(ρ1 + ρ2 − λ)

)
,

where ν = e(λ)− e(ρ1) and e(ϕ) = exp(2π
√
−1ϕ).

If ρ1 = −a, ρ2 = −b and λ = 1 − c, and we simultaneously conjugate the
matrices by a matrix from GL(2, C), then we have a standard monodromy of
the hypergeometric equation:

M1 =
(

e(−c) e(−c)− e(−a)
0 1

)
, M2 =

(
1 0

e(c− b)− 1 e(c− a− b)

)
.

Next we show that this tuple is rigid. Clearly, the matrix M3 = M∞ is defined
from the relation M1M2M3 = I2. From the definition, if N1, N2 and N3 are
any matrices from GL(2, C) with eigenvalues as in M1, M2 and M3 respectively
and N1N2N3 = I2, then we can calculate explicitly the matrix D ∈ GL(2, C),
such that

D−1N1D = M1, D−1N2D = M2.

Indeed, calculating in Mathematica2 gives

D =

(
− p1e(2(2a+b))(e(2c)−1)p2

(e(2a)−e(2c))(e(2c)−e(2(a+b))) − p1e(2(a+b))p2
e(2(a+b))−e(2c)

p1e(2a)(e(2c)−e(2b))
e(2c)−e(2(a+b)) p1

)
,

where p1 and p2 are arbitrary parameters.
There are several definitions of rigidity (e.g., no accessory parameters in a

differential equation). However, the quickest way to check the rigidity for a
given tuple of matrices is to calculate the index of rigidity and see whether it is
equal to 2 or not. The index of rigidity is given by

ι = (2− (p + 1))n2 +
p+1∑
j=1

dim Z(Mj),

2http://www.wolfram.com/
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where Z(Mj) denotes the centralizer of Mj . Recall that the centralizer of an
element z of a group G is the set of elements of G which commute with z.

It is known [18] that ι is even; ι ≤ 2 for any irreducible tuple and ι = 2
means rigid.

In the example above it is straightforward to see that the monodromy of
the hypergeometric equation (or rank 2 Fuchsian system with 3 singularities
x = 0, 1,∞) is rigid. Indeed, we have

n = 2, p = 2, Z(Mj) = 2, ι = 2.

The number 2 − ι can be regarded as a dimension of the moduli space of
Fuchsian systems with prescribed local monodromies, i.e., a number of accessory
parameters. The monodromy data determine the residue matrices in Fuchsian
systems and vice versa, up to a simultaneous conjugation by a matrix from
GL(n, C).

2.4 Middle convolution

By Katz’ theory [18] one can obtain any irreducible rigid local system on the
punctured affine line from a local system of rank one by applying a suitable
sequence of middle convolutions and scalar multiplications. Katz’ middle con-
volution functor MCµ preserves important properties of local systems such as
a number of singularities, the index of rigidity and irreducibility but in gen-
eral changes the rank and the monodromy group. If one works with Fuchsian
systems, then one needs certain additive versions of such operations on residue
matrices. A trivial operation of addition is a change of the eigenvalues of the
residue matrix: Ak → Ak + aIn, where a ∈ C. Dettweiler and Reiter found an
algebraic construction of Katz’ middle convolution functor for Fuchsian systems
and showed a relation to the Euler integral transformation [5, 6, 7, 8].

The additive version of middle convolution for Fuchsian systems depends
on a scalar µ ∈ C and is denoted by mcµ. It is a transformation on tuples of
matrices

(A1, . . . , Ap) ∈
(
Cn×n)

)p → mcµ(A1, . . . , Ap) = (Ã1, . . . , Ãp) ∈
(
Cm×m)

)p
.

In short, the Dettweiler-Reiter construction can be summarized as follows.
(1) One starts from the original Fuchsian system

dY

dx
=

p∑
i=1

Ai

x− ti
Y, Ai ∈ Cn×n. (6)

(2) Next one performs a convolution to get the Okubo-type system

dY1

dx
=

p∑
i=1

Âi

x− ti
Y1, Âi ∈ Cpn×pn. (7)
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(3) Finally, taking an irreducible part of the above system, one gets a new
system

dY2

dx
=

p∑
i=1

Ãi

x− ti
Y2, Ãi ∈ Cm×m, (8)

where m depends on n, p, and the parameter µ ∈ C. So, number of singularities
of the Fuchsian system stay the same whereas matrix dimensions change.

A detailed construction of mcµ is as follows. Let A = (A1, . . . , Ap), Ai ∈
Cn×n. Let us also fix points t = tk ∈ C, k = 1, . . . , p, and consider a Fuchsian
system of rank n given by (6). For µ ∈ C one defines the convolution matrices
Â = cµ(A) = (Â1, . . . , Âp) by

Âk =



0 . . . 0 0 0 . . . 0
...

...
...

...
...

A1 . . . Ak−1 Ak + µIn Ak+1 . . . Ap

...
...

...
...

...
0 . . . 0 0 0 . . . 0

 ∈ Cnp×np

such that Âk is zero outside the k-th block row. The convolution matrices define
a new Fuchsian system of rank np with the same number of singularities as in
the original Fuchsian system (7). This system may be reducible. In general,
there are the following invariant subspaces of the column vector space Cnp:

Lk =



0
...
0

Ker (Ak)
0
...
0


(k−th entry), k = 1, . . . , p,

and

K =
p⋂

k=1

Ker (Âk) = Ker (Â1 + . . . + Âp).

Let us denote L = ⊕p
k=1Lk and fix an isomorphism between Cnp/(K + L) and

Cm for some m. The matrices Ã = mcµ(A) := (Ã1, . . . , Ãp) ∈ Cm×m, where
Ãk is induced by the action of Âk on Cm ' Cnp/(K + L), are called the additive
version of the middle convolution of A with the parameter µ. Thus, the resulting
irreducible Fuchsian system of rank m is given by (8).

A relation between the convolution operation cµ and the Euler integral trans-
formation is as follows. Let g := (gi,j) be a matrix with entries gi,j such that they
are (multi-valued) holomorphic functions on X := C \ T, T := {t1, . . . , tp} ⊂

9



C, ti 6= tj for i 6= j. Assume that the path αp+1 encircles an open neighborhood
U of y0 and the path αi encircles the point ti. Then the matrix-valued function

Iµ
[αp+1,αi]

(g)(y) :=
∫

[αp+1,αi]

g(x)(y − x)µ−1dx, y ∈ U,

is called the Euler transform of g with respect to the Pochhamer contour
[αp+1, αi] := α−1

p+1α
−1
i αp+1αi and the parameter µ ∈ C.

Let A := (A1, . . . , Ap), Ai ∈ Cn×n be the residue matrices of the Fuchsian
system (6) and F (x) be its fundamental solution. Denote

G(x) :=

 F (x)(x− t1)−1

...
F (x)(x− tp)−1


and introduce the period matrix

Iµ(y) := (Iµ
[αp+1,α1]

(G)(y), . . . , Iµ
[αp+1,αp](G)(y)).

Then Dettweiler and Reiter showed that the columns of the period matrix Iµ(y)
are solutions of the Fuchsian system (7) obtained by the convolution with pa-
rameter µ−1, i.e., cµ−1(A), where y is contained in a small open neighborhood
U of y0 (which is encircled by αp+1).

Katz and Dettweiler-Reiter prove that if one applies additions and middle
convolutions in any order and any finite number of times to a rank one system,
one gets all rigid systems with a given number of singularities.

Example. Next we show how to get the hypergeometric system from a rank
one system. Let us start with

dy

dx
=
(

1 + a− c

x
+

c− b− 1
x− 1

)
y. (9)

It is solved by y(x) = x1+a−c(x− 1)c−b−1 up to an arbitrary parameter. If the
parameter µ in middle convolution is given by µ = −a, we get

d

dx

(
y1

y2

)
=

(
Â1

x
+

Â2

x− 1

)(
y1

y2

)
,

where

Â1 =
(

1− c c− b− 1
0 0

)
, Â2 =

(
0 0

1 + a− c c− a− b− 1

)
.

Next, conjugating the system with

S =
(

c− b− 1 0
0 1

)
,

10



i.e., applying a simple transformation Y → SY , we get a new system (8) with

Ã1 =
(

1− c 1
0 0

)
, Ã2 =

(
0 0

(1 + b− c)(c− a− 1) c− a− b− 1

)
,

which gives a hypergeometric equation for the first (or second) element of the
vector (y1, y2)tr. This system is irreducible. This means that there are no
nontrivial invariant subspaces and so it is a middle convolution of the original
rank 1 system (9).

3 Recent results

In this section we study several linear and nonlinear special functions and the
corresponding Fuchsian systems. It appears that after applying middle convo-
lution for Fuchsian systems one can get non-trivial transformations for these
special functions.

3.1 The hypergeometric equation

The Gauss hypergeometric function is a linear special function of the isomon-
odromy type [20]. Indeed, the Schlesinger system (5) of the Fuchsian system

dY

dx
=
(

A0

x
+

A1

x− 1
+

At

x− t

)
Y, (10)

with triangular matrices

Ak =
(

0 0
uk(t) 0

)
+ θkσ3

give the following system for the functions u0, u1, ut:

du0

dt
=

2θ0ut − 2θtu0

t
,

du1

dt
=

2θ1ut − 2θtu1

t− 1
.

Assuming additionally u0 + u1 + ut = 0, we get the Euler differential equation
(or, the hypergeometric equation (1)) for u0 with

a = 2θt, b = 2θ0 + 2θ1 + 2θt, c = 2θ0 + 2θt + 1.

One can study the effect of the application of the addition (change of the
eigenvalues of the residue matrices) and middle convolution. For instance, shift-
ing the eigenvalues of the residue matrices in (10) by addition Y = x−θ0(x −
1)−θ1(x− t)θtY1, we start with the system (6) with

A1 =
(

2θ0 0
u0(t) 0

)
, A2 =

(
2θ1 0

u1(t) 0

)
, A3 =

(
0 0

ut(t) −2θt

)
.

The following statement holds true [9].
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Theorem. Let u0(t), u1(t) and ut(t) with u0(t) + u1(t) + ut(t) = 0 satisfy
the hypergeometric equations with

a0 = 2θt, b0 = 2(θ0 + θ1 + θt), c0 = 2(θ0 + θt) + 1;
a1 = 2θt, b1 = 2(θ0 + θ1 + θt), c1 = 2(θ0 + θt);

at = 2θt + 1, bt = 2(θ0 + θ1 + θt), ct = 2(θ0 + θt) + 1.

Then the operations of addition and middle convolution with parameter µ =
−2(θ0 + θ1) applied to system (10) give new solutions of the hypergeometric
equations

ũ0(t) = − 2θ1u0(t)
f(t)u1(t)

, ũ1(t) =
2θ0

f(t)
, ũt(t) =

2θ1u0(t)− 2θ0u1(t)
f(t)u1(t)

with

f ′(t) = 2f(t)
θ1u0(t) + (θ1 + θt)u1(t)

u1(t)(t− 1)
,

and the parameters

ã0 = 2(θ0 + θ1 + θt), b̃0 = 2θt, c̃0 = 2(θ0 + θt) + 1;

ã1 = 2(θ0 + θ1 + θt), b̃1 = 2θt, c̃1 = 2(θ0 + θt);

ãt = 2(θ0 + θ1 + θt) + 1, b̃t = 2θt, c̃t = 2(θ0 + θt) + 1.

More information on other cases including a connection to the Heun and
Jordan-Pocchammer equations can be found in [9].

3.2 The Heun equation

It is convenient to differentiate the Heun equation (2) once and write down the
hypergeometric system of the Heun equation x 0 0

0 x− 1 0
0 0 x− t

 y′1
y′2
y′3

 =

 1− c 1 0
α21 −d 1
α31 α32 −ε− 1

 y1

y2

y3

 , (11)

where

ε = a + b− c− d + 1, abg = q,

α21 = (c− 1)d− g0,

α31 = ab(c− 2) + (1− c)(d + c− 2)ε + (ε− c + 2)g0,

α32 = ε(d + c− 2)− ab + g0, g0 =
1
t
{ε(1− c) + abg}.

Applying middle convolution one can get the following theorem [10].
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Theorem. The hypergeometric system of the Heun equation (11) is related
via middle convolution with parameter µ and a gauge transformation to another
hypergeometric system (11) with new values of the parameters given by either

µ = a− 1, (2− a− a1)(1− a + b− a1) = 0,

a1b1 = (a− 2)(a− b− 1),
c1 = c− a + 1, d1 = d− a + 1, ε1 = ε− a + 1,

g1 =
1 + b− d + a(d− 1 + b(g − 1)) + (a− 1)(a− c− d)t

(a− 2)(a− b− 1)

or

µ = b− 1, (2− b− a1)(1 + a− b− a1) = 0,

a1b1 = −(b− 2)(a− b + 1),
b1 = c− b + 1, d1 = d− b + 1, ε1 = ε− b + 1,

g1 = −a(1 + (g − 1)b) + (b− 1)(d− 1 + (b− c− d)t)
(b− 2)(a− b + 1)

.

It has been discussed earlier that middle convolution is related to the Euler
integral transformation. Earlier studies on the Heun equation and the Euler
transformation include [19]. However, the method of middle convolution gives
a nice algebraic construction.

3.3 The sixth Painlevé equation

Although the algorithm of Dettweiler and Reiter was introduced for rigid sys-
tems, we are interested to understand what happens to general Fuchsian sys-
tems. In the case of the sixth Painlevé equation, which describes monodromy
preserving deformations of rank 2 Fuchsian system with four singularities on
the projective line, the algorithm yields the Okamoto birational transformation
[11]. In general, as it is shown in the next section, there is an invariance of the
deformation equations (or, Schlesinger system (5)) under middle convolution
[15].

Let us first start with the Fuchsian system of rank 2 with 4 singularities
(n = 2, p = 3), deformation of which leads to (PV I):

dY

dx
=
(

A0

x
+

A1

x− 1
+

At

x− t

)
Y

with Ai ∈ GL(n, C). In contrast to system (10) the residue matrices here are
not triangular. Recall that here t is a deformation parameter and we may allow
it to vary by making the coefficients of the residue matrices of the system depend
on t. The monodromy matrices do not depend on t iff y(t), which is a function
of the coefficients of the residue matrices, satisfies (PV I). So, the sixth Painlevé
equation govern monodromy preserving deformations of such Fuchsian systems.
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Applying middle convolution with a parameter equal to one of the eigenvalues
of the matrix at infinity, we get a new system of rank 2 (m = 2). Finally, we
are able to calculate [11] explicitly Okamoto’s birational transformation for the
solutions of (PV I):

y1(t) = y − (θ0 + θ1 − θ∞ + θt)(t− y)(y − 1)y
(θ0 + θt − 1 + t(θ0 + θ1))y − (θ0 + θ1 + θt − 1)y2 − t(θ0 + (t− 1)y′)

,

where y = y(t) is a solution of (PV I) with

α =
(θ∞ − 1)2

2
, β = −θ2

0

2
, γ =

θ2
1

2
, δ =

1− θ2
t

2
.

The parameters of the new solution y1 are given by

α1 =
1
8
(θ0 + θ1 + θ∞ + θt − 2)2, β1 = −1

8
(θ0 − θ1 + θ∞ − θt)2,

γ1 =
1
8
(−θ0 + θ1 + θ∞ − θt)2, δ1 =

1
2
(1− (θ0 + θ1 − θ∞ − θt)2/4),

where θi are eigenvalues of the matrices Ai. It is known [22, 23] that the group
of birational transformations forms an affine Weyl group of D

(1)
4 type and it is

generated by 5 transformations. The meaning of 4 of them in the context of the
Fuchsian system is that they are obtained by simple gauge transformations [14].
The fifth generator of the group is connected to the integral transformation,
or middle convolution. Earlier studies on Okamoto’s transformation by other
methods include a singular manifold method [4], the Laplace transform for a
system with irregular singularities [21], and others.

3.4 Schlesinger systems

As we have already seen in the previous subsection, the Euler integral transfor-
mation or middle convolution applied to a Fuchsian system with 4 singularities
leads to the Bäcklund (or birational) transformation of the deformation equation
(PV I):

(A0, A1, At) ∈ (GL(2, C))3
mcκ1−→ (Ã0, Ã1, Ãt) ∈ (GL(2, C))3xy xy

y(t) BTr−→ y1(t)

Recall that the deformation equation is the equation which should be satisfied
when we require that the monodromy of the Fuchsian system is independent of
the deformation parameters. It is a compatibility condition of 2 linear systems.

If we do not impose conditions on the parameter of middle convolution,
we get a rank 3 system which was studied by Harnad, Mazzocco and Boalch
and which proved useful in searching for new algebraic solutions of (PV I). We
can also construct explicitly any rank Fuchsian systems deformation of which
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leads to the sixth Painlevé equation. Solutions of the Schlesinger systems can
be considered as multivariable generalizations of the Painlevé equations and,
hence, as new nonlinear special functions. Next we study what happens to
them under middle convolution.

For a Fuchsian system (3) with Ap+1 = A∞ = −(A1 +A2 + · · ·+Ap) one can
show [15] that the isomonodromic family (solutions of the Schlesinger systems)
is invariant under middle convolution.

Theorem. If for j = 1, 2, . . . , p + 1, there is no integral difference between
any two distinct eigenvalues of Aj and the Jordan canonical form of Aj is in-
dependent of t1, t2, . . . , tp, then the systems

∂

∂ti
tr(AiAj) = −

∑
k 6=i,j

tr([Ai, Ak]Aj)
ti − tk

,

∂

∂ti
tr(AjAk) =

tr([Ai, Aj ]Ak)
ti − tj

+
tr(Aj [Ai, Ak])

ti − tk
.

(12)

for the Fuchsian systems obtained by addition and middle convolution with pa-
rameters independent of t1, t2, . . . , tp coincide with the system (12) for the initial
Fuchsian system.

4 Discussion

In this paper we have discussed middle convolution for Fuchsian systems. This
operation proved to be useful to study non-trivial relations between special
functions ([9, 10, 11, 15, 26]). In addition, other operations on Fuchsian sys-
tems, e.g., Yokoyama’s extension [32], can be described in terms of Katz’ middle
convolution [24].

Recently, middle convolution for systems of linear differential equations with
irregular singular points was introduced in [27] (see also [16, 31]). There are
many problems for such systems: to understand the index of rigidity, to study
the most interesting examples of special functions (e.g., confluent Heun and
hypergeometric functions, Painlevé equations (PI)–(PV )) and to show the ana-
logue of the theorem in [15] that deformation equations are invariant under this
generalized middle convolution.
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