Connection problems on higher order linear q-difference equations

Takeshi MORITA*

In this talk, we consider connection problems on higher (r-th) order linear q-difference equations between around the origin and around the infinity. For the sake of simplicity, we deal with the connection problems on the third order (namely, $r=3$) linear q-difference equations.

We study the following "degenerated" third order q-difference equation:

$$
\begin{align*}
& {\left[\left(a_{1} a_{2} a_{3} x-b_{1} / q^{2}\right) \sigma_{q}^{3}-\left\{\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}\right) x-\left(b_{1} / q^{2}+1 / q\right)\right\} \sigma_{q}^{2}\right.} \\
& \left.+\left\{\left(a_{1}+a_{2}+a_{3}\right) x-1 / q\right\} \sigma_{q}-x\right] u(x)=0 \tag{1}
\end{align*}
$$

The equation (1) has the formal solution around the origin as follows:

$$
u_{1}(x)={ }_{3} \varphi_{1}\left(a_{1}, a_{2}, a_{3} ; b_{1} ; q, x\right)=\sum_{n \geq 0} \frac{\left(a_{1}, a_{2}, a_{3} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n}(q ; q)_{n}}\left\{(-1) q^{\frac{n(n-1)}{2}}\right\}^{-1} x^{n}
$$

Here, σ_{q} is the q-shifted operator $\sigma_{q} f(x)=f(q x)$, the q-shifted factorial $(a ; q)_{n}$ is

$$
(a ; q)_{n}:= \begin{cases}1, & n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n \geq 1\end{cases}
$$

moreover, $(a ; q)_{\infty}:=\lim _{n \rightarrow \infty}(a ; q)_{n}$ and

$$
\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{\infty}:=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \ldots\left(a_{m} ; q\right)_{\infty}
$$

The notation ${ }_{r} \varphi_{s}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s} ; q, x\right)$ is the basic hypergeometric series [2]. The equation (1) also has the fundamental system of solutions around the infinity as follow:

$$
\begin{aligned}
& v_{1}(x)=x^{-\alpha_{1}}{ }_{3} \varphi_{2}\left(a_{1}, a_{1} q / b_{1}, 0 ; a_{1} q / a_{2}, a_{1} q / a_{3} ; q, q b_{1} / a_{1} a_{2} a_{3} x\right), \\
& v_{2}(x)=x^{-\alpha_{2}}{ }_{3} \varphi_{2}\left(a_{2}, a_{2} q / b_{1}, 0 ; a_{2} q / a_{1}, a_{2} q / a_{3} ; q, q b_{1} / a_{1} a_{2} a_{3} x\right), \\
& v_{3}(x)=x^{-\alpha_{3}}{ }_{3} \varphi_{2}\left(a_{3}, a_{3} q / b_{1}, 0 ; a_{3} q / a_{2}, a_{3} q / a_{1} ; q, q b_{1} / a_{1} a_{2} a_{3} x\right),
\end{aligned}
$$

[^0]where $a_{j}=q^{\alpha_{j}}, j=1,2,3$. The relation between the solution around the origin u_{1} and solutions around the infinity v_{1}, v_{2} and $v_{3}(x)$ is not so clear. In this talk, we give the relation with the using of the suitable resummation method.

We study connection problems on linear q-difference equations with irregular singular points. Connection problems on second order linear q-difference equations between the origin and the infinity are studied by G. D. Birkhoff [1]. The first example of connection formula was given by G. N. Watson (This formula is known as "Watson's formula for the basic hypergeometric series $\left.{ }_{2} \varphi_{1}(a, b ; c ; q, x) "\right)[7]$ as follows:

$$
\begin{aligned}
{ }_{2} \varphi_{1}(a, b ; c ; q ; x) & =\frac{(b, c / a ; q)_{\infty}(a x, q / a x ; q)_{\infty}}{(c, b / a ; q)_{\infty}(x, q / x ; q)_{\infty}} 2 \varphi_{1}(a, a q / c ; a q / b ; q, c q / a b x) \\
& +\frac{(a, c / b ; q)_{\infty}(b x, q / b x ; q)_{\infty}}{(c, a / b ; q)_{\infty}(x, q / x ; q)_{\infty}} 2 \varphi_{1}(b, b q / c ; b q / a ; q, c q / a b x)
\end{aligned}
$$

However, other connection formulae have not known for a long time. At the beginning of 21 st century, C. Zhang has shown some connection formulae of solutions of q-difference equations with irregular singular points $[8,9,10]$ by the q-Borel-Laplace methods. In connection problems on q difference equations, two different types of "the q-Borel-Laprace resummation methods" are powerful tools. We review these transformations.

The q-Borel and the q-Laplace transformations of the first kind:
Definition 1. For any $f(x)=\sum_{n \geq 0} a_{n} x^{n}$, the q-Borel transformation \mathcal{B}_{q}^{+} is

$$
\left(\mathcal{B}_{q}^{+} f\right)(\xi)=\varphi(\xi):=\sum_{n \geq 0} a_{n} q^{\frac{n(n-1)}{2}} \xi^{n}
$$

the q-Laplace transformation $\mathcal{L}_{q, \lambda}^{+}$is

$$
\left(\mathcal{L}_{q, \lambda}^{+} \varphi\right)(x):=\sum_{n \in \mathbb{Z}} \frac{\varphi\left(q^{n} \lambda\right)}{\theta\left(\frac{q^{n} \lambda}{x}\right)}
$$

The q-Borel and the q-Laplace transformations of the second kind:
Definition 2. For $f(x)=\sum_{n \geq 0} a_{n} x^{n}$, the q-Borel transformation is defined by

$$
g(\xi)=\left(\mathcal{B}_{q}^{-} f\right)(\xi):=\sum_{n \geq 0} a_{n} q^{-\frac{n(n-1)}{2}} \xi^{n}
$$

and the q-Laplace transformation is given by

$$
\left(\mathcal{L}_{q}^{-} g\right)(x):=\frac{1}{2 \pi i} \int_{|\xi|=r} g(\xi) \theta_{q}\left(\frac{x}{\xi}\right) \frac{d \xi}{\xi} .
$$

Here, $r>0$ is an enough small number.
These transformations has introduced by J. Sauloy [6]. Recently, I gave connection formulae of the Hahn-Exton q-Bessel function, the q-confluent hypergeometric series, q-Airy function and the divergent series which is related to the Ramanujan function $[4,5,3]$ by the using of the q-Borel-Laplace methods. These functions are solutions of second order q-difference equations with special parameters.

But connection formulae of higher order q-difference equations are not clear. In this talk, we give the following theorem with using the q-BorelLaplace resummation method:

Theorem.For any $x \in \mathbb{C}^{*} \backslash[-\lambda ; q]$, we have

$$
\begin{aligned}
& 3 \tilde{\varphi}_{1}\left(a_{1}, a_{2}, a_{3} ; b_{1} ; q, \lambda, x\right)=\mathcal{L}_{q, \lambda}^{+} \circ \mathcal{B}_{q}^{+}{ }_{3} \varphi_{1}\left(a_{1}, a_{2}, a_{3} ; b_{1} ; q, x\right) \\
& =\frac{\left(a_{2}, a_{3}, b_{1} / a_{1} ; q\right)_{\infty}}{\left(b_{1}, a_{2} / a_{1}, a_{3} / a_{1} ; q\right)_{\infty}} \frac{\theta\left(a_{1} \lambda\right)}{\theta(\lambda)} \frac{\theta\left(a_{1} q x / \lambda\right) \theta(x)}{\theta(q x / \lambda) \theta\left(a_{1} x\right)} v_{1}(x) \\
& +\frac{\left(a_{1}, a_{3}, b_{1} / a_{2} ; q\right)_{\infty}}{\left(b_{1}, a_{1} / a_{2}, a_{3} / a_{2} ; q\right)_{\infty}} \frac{\theta\left(a_{2} \lambda\right)}{\theta(\lambda)} \frac{\theta\left(a_{2} q x / \lambda\right) \theta(x)}{\theta(q x / \lambda) \theta\left(a_{2} x\right)} v_{2}(x) \\
& +\frac{\left(a_{2}, a_{1}, b_{1} / a_{3} ; q\right)_{\infty}}{\left(b_{1}, a_{2} / a_{3}, a_{1} / a_{3} ; q\right)_{\infty}} \frac{\theta\left(a_{3} \lambda\right)}{\theta(\lambda)} \frac{\theta\left(a_{3} q x / \lambda\right) \theta(x)}{\theta(q x / \lambda) \theta\left(a_{3} x\right)} v_{3}(x) .
\end{aligned}
$$

Here, the notation ${ }_{3} \tilde{\varphi}_{1}\left(a_{1}, a_{2}, a_{3} ; b_{1} ; q, \lambda, x\right)$ is the q-Borel-Laplace transform of the divergent solution $u_{1}(x)$. The new parameter λ appears in the connection coefficients. We also give the connection matrix for the equation (1). We remark that these coefficients are also new examples of the q-Stokes coefficients.

References

[1] G. D. Birkhoff, The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Am. Acad. Arts and Sciences, 49 (1914), 521 - 568.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed, Cambridge, 2004.
[3] T. Morita, A connection formula between the Ramanujan function and the q-Airy function, arXiv:1104.0755.
[4] T. Morita, A connection formula of the Hahn-Exton q-Bessel Function, SIGMA, 7 (2011), 115, 11pp.
[5] T. Morita, A connection formula of the q-confluent hypergeometric function, arXiv:1105.5770.
[6] J. Sauloy, Algebraic construction of the Stokes sheaf for irregular linear q-difference equations, arXiv:math/0409393
[7] G. N. Watson, The continuation of functions defined by generalized hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910), 281-299.
[8] C. Zhang, Remarks on some basic hypergeometric series, in "Theory and Applications of Special Functions", Springer (2005), 479-491.
[9] C. Zhang, Sur les fonctions q-Bessel de Jackson, J. Approx. Theory, 122 (2003), 208-223.
[10] C. Zhang, Une sommation discrè pour des équations aux q-différences linéaires et à coefficients, analytiques: théorie générale et exemples, in "Differential Equations and Stokes Phenomenon", World Scientific (2002), 309-329.

[^0]: *Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan.

