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1. Notations 1/21
Assumptions: A complex number ¢ € C*is 0 < |¢q| < 1.
The g¢-shifted operator o,: o,f(z) = f(qz).

The basic hypergeometric series with the base ¢:

r%ps(ala--'aar;bla--- bs?Q; )
(a1, ..y ar;Q)n { TCEI R R
— —1)"q > } G
Z bla" bS;Q) ( ) ( )

The ¢-shifted factorial (a;q),

L, =0,
(a;q)n = .
(1-a)(l—aq)...(1—aq"), n>1,
moreover, (a;q)s = lim, ,(a;q), and
(a1, a2, m; Qoo = (15 9)00(A2; @)oo - - - (A3 @) oo-

Radius of convergence:
o0, 1 or 0 according to whether r —s < 1l,r—s=1orr—s > 1.



The theta function of Jacobi: 2/21

0,(x) := Z qn(n;)x", Ve e C.

nel

Properties of the theta function:

1. Jacobi’s triple product identity is
q
0,(x :(,—x,——; ) .
a(x) = (g 54

2. The g-difference equation which the theta function satisfies;

_n(n=1)

0,(d"r) =q = x7"0,(x), VkcZ

3. The inversion formula;



[\; ¢]-spiral: For any fixed A € C*\ ¢Z, the set [); ¢]-spiral is
X q) == A" = {\g"; k € Z}.

qA

Figure 1. [\; ¢] — spiral
Relation between the theta function and [)\; ¢|-spiral:

Lemma 1. We have
000" /2) =0 <L 3 e [=Xiq].
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2. Linear ¢-difference equation of the Laplace type
The ¢-difference equation of the Laplace type:

{(alx + 61)03 + (agx + by)o, + (asx + bg)} u(x) =0

6 parameters: aq, as, as, b1, by and bs.

By the gauge transformations, we obtain 3 parameters equation:

[(c — abgz)oz — {(c+q) — (a + b)gz} oy + q(1 — z)] u(z) = 0.

A three parameters solution:

a,b@n  ,
U(I’) = 2@1(&, b7 G Q7aj) — Z ( Q) T,

= (G O)nl(G @)n

which is called Heine’s basic hypergeometric series.
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The degeneration diagram 5/21
The degeneration diagram for 51 (a, b; c; ¢, x)[Y. Ohyama, 2011]:

J,S?’) __. q-Airy

/ FAC)

201 (a, b; c; :C)»q-conﬂuent — v~
Ramanujan

1p1(a; 05 )~

o Jy@(l{ = 1,2,3) are g-Bessel functions.

e The ¢-Airy function and the Ramanujan function A (x) are ¢-
analogues of the Airy function (Kajiwara, et al., 2004; Ismail, 2005).

(4:9)n
¢-Hermite function. The ¢-Hermite function 1p1(a;0; g, z) satisfies:

e The function 1p1(a;0;q,7) = > 5, (i) {(—l)nqn(n;l) } x" is called the

[—agzol — (¢ — qz)og + q] u(z) = 0.



Three different g-analogues of the Bessel function:

v+1. 2
q 74 ) oo T\Y v X
J(z;q) = % (5) 201 (O,O;C] g, _Z> , |z <2,
T S y—1,.2
Jlg2)('r7Q) = % (5) 0¥P1 <_;ql/—|—1; q, _q A ) ) S Ca
v+1.
IO (z;q) = mx”m (0;¢"*'5q,q2%), =z €C,

(¢:9)

provided that v & Z.
g-difference equations:

2
W5 utag) = @+ e + (14 ) ua) =0,

2

IO ulag) - {2+ - 212} u(wg?) + u(w) = 0.
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7/21
This diagram is a g-analogue of the degeneration diagram for Gauss’ hyper-

geometric series oF7:

Weber
/ \
\

Bessel

Gauss Kummer

Airy

Remark. There exist three different types of ¢-Bessel functions
J,Sj),j = 1,2,3 and two ¢g-analogues of the Airy function.

Remark. A, (x) is found by Ramanujan in “the Lost notebook”
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3.Connection problems on second order linear ¢-difference

equations

G. D. Birkhoff (1914) Connection formulae of second order linear g-difference
equations are linear relations in a matrix form:

() = (G o)) ()

uy(z) and uy(z):solutions around the origin
vi(x) and vy(z):solutions around the infinity

Functions Cj; (1 <4, j < 2) are elliptic functions:

0,Cij(z) = Cij(x), Cyj(e*™z) = Cyy().



4.The first example of the connection matrix 9/21

Connection matrix for Heine’s 591 (a, b; ¢; ¢, x): Watson’s formula
Heine’s equation

[(c — abgz)o; — {(c+ q) — (a + b)gz} oy + q(1 — z)] u(z) = 0.

Local solutions around the origin

0(cx agbq ¢*
ul(aj) — 2@01(@,@ C;Q7:U)7 UQ(QT) — 0%(]%’;2@1 (?q?qa %aQrZ‘) .

Local solutions around the infinity

0(—ax) aq aq  cq
(@,b) () — el
Yo ('CE.) 0(—517) 21 (ay . ) b 3 45 a,bx)

and

a 0(—bx bg bq cq
o) (z) = 00 (b,—;—'q—)-

0(—z) > ¢’ a’’ abx



Connection matrix for Heine’s equation 10/21

()= (G ) (50)

provided that

and

Cyp(x) = (ag/c,q/b; @) O(—ax) 0 (—;x)
22 (q2/c,a/b;q)009(_%x) 9(—1).%’) .

Remark. C11,C1s and Cy are constant and Coy(z) is a g-elliptic function.

Remark. The first formula has given by G. N. Watson (1910).
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But another connection formula have not known for a
long time.

We need some suitable resummation methods to obtain
new connection formulae:



5. The g-Borel-Laplace transformations
We assume that f(z) =) -;a.2", ap = 1.

5.1. The ¢-Borel-Laplace transformations of the first kind

1. The ¢-Borel transformation of the first kind is

(BE) (€)= aud™ T € (=: 9(€)).

n>0

2. The g-Laplace transformation of the first kind is

(LIASD) (z) 1:%_q q() qf -y @( )

neZ 0

here, this transformation is given by Jackson’s g-integral.
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13/21
5.2. The ¢-Borel-Laplace transformations of the second kind

1. The ¢-Borel transformation of the second kind is

(B )(€) =) ang”

n>0

n(n—1)

z ¢ (=1 9()) -

2. The g-Laplace transformation of the second kind is

(€0 @)= [ st (3)F

where r > 0 is enough small number.

Remark.These resummation methods are introduced by J. Sauloy and stud-
ied by C. Zhang.
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Remark. The ¢-Borel transformation is the formal inverse of the ¢g-Laplace

transformation:

The ¢-Borel transformation B; is formal inverse of the ¢-Laplace transforma-
tion L‘;)\:

Lemma 2. For any entire function f(x), we have
£; ) © B; f=1r
The ¢-Borel transformation B, also can be considered as a formal inverse of

the g-Laplace transformation £ .

Lemma 3. We assume that the function f can be q-Borel transformed to the
analytic function g(&) around & = 0. Then, we have

L oB, f=F.



6. The ¢g-Stokes phenomenon 15/21

In the differential case, the resummation of divergent series are convergent on
Sectors and the Stokes coefficient changes its value on each sector discretely.

In g-difference case, the resummation converges on the set C*\ [—X; ¢|. Since
C*/q® = T, the g-Stokes coefficient changes its value continuously.

figure: Stokes sectors and ¢-Stokes regions



7. Examples of connection formulae 16/21
7.1. Connection matrix for the g-confluent hypergeometric series
g-confluent hypergeometric equation

(1 — abgr)u(zqg®) — {1 — (a + b)gr} u(zq) — qru(z) = 0.

Local solutions around the origin

ul(x) = 2%00(6% b7 -, Q7'r)7

abr; q) q q
us () = ﬁ%ﬁ (a, b 0;q,aba:>

Local solutions around the infinity

SM(CL, b7 q7 .T) -

0(bux b
Sﬁb(ba a, Q7x) — MQ(pl <b7 07 _q7 q, i) ’
Ji5 a



Connection matrix for g-confluent equation 17/21
Theorem. For any \,u € C*, x € C*\ [1;q] U [—p/a; q] U [—X; q], we have

<2fo(a,b;k7q,x)) _ (Cﬁ(a,b; g,x) Cp(b,a; qﬂf)) (Su(a,b;q,:v))
2f1(a'7b;QJx) Cu(aab;Q7x) Cu(baa;Q7x) S}L(baa’;Q7x) '

e The set [\;q] is the ¢-spiral.

e 5 fo(a,b; \, q,z) is the ¢g-Borel-Laplace transform (of the first kind)
of 9¢p(a, b; —; q,x) (given by C. Zhang).

e »,f1(a,b;q,x) is the ¢g-Borel-Laplace transform (of the second kind)
of 9¢1(a,b;0; ¢, x) (Morita).

e S,(a,b;q,x) is the solution of around the infinity.

o C’;L\(a, b;q,x) and C,(a,b;q, x) are elliptic functions.



7.2. Connection matrix of the g-Bessel function Jy(l)(x; q) 18/21
The first ¢-Bessel equation

2
u(qr) — (q”/2 + q”ﬂ) u(q*z) + (1 + xz) u(z) = 0.
Local solutions around the origin

v+1.
(W) (e ) (@ @) (V¥ w1, X7
ul(x> ‘]1/ ($7Q) o (q,CI)oo <2> 201 (O 0; 4 , q, 4> )

us(z) = JE(¢*z; q)

where |z| < 2.
Local solutions around the infinity

(%710)00 ( v+l 4l o )
7 oy 291 |\ P %D 2 TPip, —(—
ep (_%) \/ﬁx

vo(x;v) = v1(q¢"z; —v)

vi(z;v) =



Connection matrix of the ¢-Bessel function 19/21
Theorem 1. (C. Zhang) For any A € C*, x € C*(0 < |z| < 2), we have
G CralMtiq)  Copa(Mt; T8 (w3 )
]V,Oé( Jq) — ( 1/,0é< I 7q) —U,Oé( 9 7Q)) 1/’/\ x?Q (1)
it q) Cr-a\1:0) CopmaNt50)) \ I (239) )
where xt = 1.

Remark. jﬁlg)é(x, q) is the solution of the ¢g-Bessel equation around the infinity.

Remark. Connection formula of the Hahn-Exton ¢-Bessel function
has given in SIGMA,7 (2011), 115 (Morita).



7.3 Connection matrix for the Ramanujan equation

The Ramanujan equation:
(qzo, — o4+ 1) u(z) = 0.

A fundamental system of solutions around the origin:

n2

ur(z) = Ay(z) = Z 1

= (6:9)n

uz(z) = 0(2)200(0,0; —; ¢, —x/q).

A fundamental system of solutions around the infinity:

(=2)",

101(0;¢; %, ¢*/2),

—q 0, (x 1
d 9‘1( /a) ;1901(0;q3;q2,q3/5€)-

Remark. uy(z) is divergent. uy(z), v1(x) nd v(x) are convergent.

We should define a resummation of us(z).
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Connection matrix for the Ramanujan equation 21/21

The connection formula of the Ramanujan ¢-difference equation is
given by as follows.
For any = € C*, we have (Ismail-Zhang, 2007)

0 (42)6(2) b ()0 (3)

(@ 5 P)ocby(@) o (@ 4% ¢%)ocbg (%

For any x € C*\ [—)]; ¢q|, we have (Morita, arXiv:1203.3404)

uy(z) =

vo ().
)

%
/—\
>/|'—‘
N
—~
>R >/
~

/_\
v
@
/\
8
N~—

Remark. The connection formula of u; is known as an asymptotic formula of
the Ramanujan function.



