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1/211. Notations
Assumptions: A complex number q ∈ C∗ is 0 < |q| < 1.
The q-shifted operator σq: σqf(x) = f(qx).

The basic hypergeometric series with the base q:

rφs(a1, . . . , ar; b1, . . . , bs; q, x)

:=
∑
n≥0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}1+s−r

xn.

The q-shifted factorial (a; q)n

(a; q)n :=

{
1, n = 0,

(1− a)(1− aq) . . . (1− aqn−1), n ≥ 1,

moreover, (a; q)∞ := limn→∞(a; q)n and

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ . . . (am; q)∞.

Radius of convergence:
∞, 1 or 0 according to whether r − s < 1, r − s = 1 or r − s > 1.
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2/21The theta function of Jacobi:

θq(x) :=
∑
n∈Z

q
n(n−1)

2 xn, ∀x ∈ C∗.

Properties of the theta function:

1. Jacobi’s triple product identity is

θq(x) =
(
q,−x,−q

x
; q
)
∞
.

2. The q-difference equation which the theta function satisfies;

θq(q
kx) = q−

n(n−1)
2 x−kθq(x), ∀k ∈ Z.

3. The inversion formula;

θq

(
1

x

)
=

1

x
θq(x).
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3/21[λ; q]-spiral: For any fixed λ ∈ C∗ \ qZ, the set [λ; q]-spiral is

[λ; q] := λqZ = {λqk; k ∈ Z}.

O

λ

qλ

q2λ

q−1λ

Figure 1. [λ; q]− spiral

Relation between the theta function and [λ; q]-spiral:

Lemma 1. We have

θ(λqk/x) = 0
iff⇐⇒ x ∈ [−λ; q].
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4/212. Linear q-difference equation of the Laplace type

The q-difference equation of the Laplace type:{
(a1x + b1)σ

2
q + (a2x + b2)σq + (a3x + b3)

}
u(x) = 0

6 parameters: a1, a2, a3, b1, b2 and b3.

By the gauge transformations, we obtain 3 parameters equation:[
(c− abqx)σ2

q − {(c+ q)− (a+ b)qx}σq + q(1− x)
]
u(x) = 0.

A three parameters solution:

u(x) = 2φ1(a, b; c; q, x) =
∑
n≥0

(a, b; q)n
(c; q)n(q; q)n

xn,

which is called Heine’s basic hypergeometric series.
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5/21The degeneration diagram
The degeneration diagram for 2φ1(a, b; c; q, x)[Y. Ohyama, 2011]:

2φ1(a, b; c;x) q-confluent

1φ1(a; 0; x)

J
(3)
ν

J
(1)
ν , J

(2)
ν

q-Airy

Ramanujan
- �

��3

-

-

Q
QQs ��*

PPPq

• J
(k)
ν (k = 1, 2, 3) are q-Bessel functions.

• The q-Airy function and the Ramanujan function Aq(x) are q-
analogues of the Airy function (Kajiwara, et al., 2004; Ismail, 2005).

• The function 1φ1(a; 0; q, x) =
∑

n≥0
(a;q)n
(q;q)n

{
(−1)nq

n(n−1)
2

}
xn is called the

q-Hermite function. The q-Hermite function 1φ1(a; 0; q, x) satisfies:[
−aqxσ2

q − (q − qx)σq + q
]
u(x) = 0.
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6/21Three different q-analogues of the Bessel function:

J (1)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

(x
2

)ν
2φ1

(
0, 0; qν+1; q,−x2

4

)
, |x| < 2,

J (2)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

(x
2

)ν
0φ1

(
−; qν+1; q,−qν−1x2

4

)
, x ∈ C,

J (3)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

xν1φ1

(
0; qν+1; q, qx2

)
, x ∈ C,

provided that ν ̸∈ Z.
q-difference equations:

J (1)
ν : u(xq)− (qν/2 + q−ν/2)u(xq1/2) +

(
1 +

x2

4

)
u(x) = 0,

J (2)
ν :

(
1 +

qx2

4

)
u(xq)− (qν/2 + q−ν/2)u(xq1/2) + u(x) = 0,

J (3)
ν : u(xq)−

{
(qν/2 + q−ν/2)− q−ν/2+1x2

}
u(xq1/2) + u(x) = 0.
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7/21
This diagram is a q-analogue of the degeneration diagram for Gauss’ hyper-
geometric series 2F1:

Gauss Kummer

Bessel

Weber

Airy- ����*

HHHHj ����*

HHHHj

Remark. There exist three different types of q-Bessel functions
J
(j)
ν , j = 1, 2, 3 and two q-analogues of the Airy function.

Remark. Aq(x) is found by Ramanujan in “the Lost notebook”
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8/21
3.Connection problems on second order linear q-difference
equations

G. D. Birkhoff (1914) Connection formulae of second order linear q-difference
equations are linear relations in a matrix form:(

u1(x)
u2(x)

)
=

(
C11(x) C12(x)
C21(x) C22(x)

)(
v1(x)
v2(x)

)
.

u1(x) and u2(x):solutions around the origin
v1(x) and v2(x):solutions around the infinity

Functions Cij (1 ≤ i, j ≤ 2) are elliptic functions:

σqCij(x) = Cij(x), Cij(e
2πix) = Cij(x).
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9/214.The first example of the connection matrix

Connection matrix for Heine’s 2φ1(a, b; c; q, x): Watson’s formula
Heine’s equation[

(c− abqx)σ2
q − {(c+ q)− (a+ b)qx}σq + q(1− x)

]
u(x) = 0.

Local solutions around the origin

u1(x) = 2φ1(a, b; c; q, x), u2(x) =
θ(cx)

θ(qx)
2φ1

(
aq

c

bq

c
;
q2

c
; q, x

)
.

Local solutions around the infinity

y(a,b)∞ (x) =
θ(−ax)

θ(−x)
2φ1

(
a,

aq

c
;
aq

b
; q,

cq

abx

)
and

y(b,a)∞ (x) =
θ(−bx)

θ(−x)
2φ1

(
b,
bq

c
;
bq

a
; q,

cq

abx

)
.
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10/21Connection matrix for Heine’s equation(
u1(x)
u2(x)

)
=

(
C11 C12

C21 C22(x)

)(
y
(a,b)
∞ (x)

y
(b,a)
∞ (x)

)
,

provided that

C11 =
(b, c/a; q)∞
(c, b/a; q)∞

, C12 =
(a, c/b; q)∞
(c, a/b; q)∞

,

C21 =
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

and

C22(x) =
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

θ(−ax)

θ
(
−aq

c x
) θ
(
−bq

c x
)

θ(−bx)
.

Remark. C11, C12 and C21 are constant and C22(x) is a q-elliptic function.

Remark. The first formula has given by G. N. Watson (1910).
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11/21

But another connection formula have not known for a
long time.

We need some suitable resummation methods to obtain
new connection formulae:
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12/215. The q-Borel-Laplace transformations

We assume that f(x) =
∑

n≥0 anx
n, a0 = 1.

5.1. The q-Borel-Laplace transformations of the first kind

1. The q-Borel transformation of the first kind is(
B+
q f
)
(ξ) :=

∑
n≥0

anq
n(n−1)

2 ξn (=: φ(ξ)) .

2. The q-Laplace transformation of the first kind is(
L+
q,λφ

)
(x) :=

1

1− q

∫ λ∞

0

φ(ξ)

θq

(
ξ
x

) dqξ
ξ

=
∑
n∈Z

φ(λqn)

θq

(
λqn

x

) ,
here, this transformation is given by Jackson’s q-integral.
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13/21

5.2. The q-Borel-Laplace transformations of the second kind

1. The q-Borel transformation of the second kind is

(B−
q f)(ξ) :=

∑
n≥0

anq
−n(n−1)

2 ξn (=: g(ξ)) .

2. The q-Laplace transformation of the second kind is(
L−
q g
)
(x) :=

1

2πi

∫
|ξ|=r

g(ξ)θq

(
x

ξ

)
dξ

ξ
,

where r > 0 is enough small number.

Remark.These resummation methods are introduced by J. Sauloy and stud-
ied by C. Zhang.
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14/21
Remark. The q-Borel transformation is the formal inverse of the q-Laplace
transformation:

The q-Borel transformation B+
q is formal inverse of the q-Laplace transforma-

tion L+
q,λ:

Lemma 2. For any entire function f(x), we have

L+
q,λ ◦ B

+
q f = f.

The q-Borel transformation B−
q also can be considered as a formal inverse of

the q-Laplace transformation L−
q .

Lemma 3. We assume that the function f can be q-Borel transformed to the
analytic function g(ξ) around ξ = 0. Then, we have

L−
q ◦ B−

q f = f.
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15/216. The q-Stokes phenomenon

In the differential case, the resummation of divergent series are convergent on
Sectors and the Stokes coefficient changes its value on each sector discretely.

In q-difference case, the resummation converges on the set C∗\ [−λ; q]. Since
C∗/qZ ∼= T, the q-Stokes coefficient changes its value continuously.

figure: Stokes sectors and q-Stokes regions
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16/217. Examples of connection formulae
7.1. Connection matrix for the q-confluent hypergeometric series
q-confluent hypergeometric equation

(1− abqx)u(xq2)− {1− (a+ b)qx}u(xq)− qxu(x) = 0.

Local solutions around the origin

u1(x) = 2φ0(a, b;−; q, x),

u2(x) =
(abx; q)∞
θ(−qx)

2φ1

(q
a
,
q

b
; 0; q, abx

)
Local solutions around the infinity

Sµ(a, b; q, x) =
θ(aµx)

θ(µx)
2φ1

(
a, 0;

aq

b
; q,

q

abx

)
,

Sµ(b, a; q, x) =
θ(bµx)

θ(µx)
2φ1

(
b, 0;

bq

a
; q,

q

abx

)
,
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17/21Connection matrix for q-confluent equation
Theorem. For any λ, µ ∈ C∗, x ∈ C∗ \ [1; q] ∪ [−µ/a; q] ∪ [−λ; q], we have(

2f0(a, b;λ, q, x)

2f1(a, b; q, x)

)
=

(
Cλ

µ(a, b; q, x) Cλ
µ(b, a; q, x)

Cµ(a, b; q, x) Cµ(b, a; q, x)

)(
Sµ(a, b; q, x)
Sµ(b, a; q, x)

)
.

• The set [λ; q] is the q-spiral.

• 2f0(a, b;λ, q, x) is the q-Borel-Laplace transform (of the first kind)

of 2φ0(a, b;−; q, x) (given by C. Zhang).

• 2f1(a, b; q, x) is the q-Borel-Laplace transform (of the second kind)

of 2φ1(a, b; 0; q, x) (Morita).

• Sµ(a, b; q, x) is the solution of around the infinity.

• Cλ
µ(a, b; q, x) and Cµ(a, b; q, x) are elliptic functions.
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18/217.2. Connection matrix of the q-Bessel function J
(1)
ν (x; q)

The first q-Bessel equation

u(qx)−
(
qν/2 + q−ν/2

)
u(q1/2x) +

(
1 +

x2

4

)
u(x) = 0.

Local solutions around the origin

u1(x) = J (1)
ν (x; q) :=

(qν+1; q)∞
(q; q)∞

(x
2

)ν
2φ1

(
0, 0; qν+1; q,−x2

4

)
,

u2(x) = J
(1)
−ν (q

νx; q)

where |x| < 2.
Local solutions around the infinity

v1(x; ν) =

(
α√
px ; p

)
∞

θp
(
−α

x

) 2φ1

(
pν+

1
2 , p−ν+ 1

2 ;−p; p,
α

√
px

)
v2(x; ν) = v1(q

νx;−ν)
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19/21Connection matrix of the q-Bessel function

Theorem 1. (C. Zhang) For any λ ∈ C∗, x ∈ C∗(0 < |x| < 2), we have(
j
(1)
ν,α(t; q)

j
(1)
ν,−α(t; q)

)
=

(
Cν,α(λ, t; q) C−ν,α(λ, t; q)
Cν,−α(λ, t; q) C−ν,−α(λ, t; q)

)(
J
(1)
ν,λ(x; q)

J
(1)
−ν,λ(x; q)

)
, (1)

where xt = 1.

Remark. j
(1)
ν,α(x; q) is the solution of the q-Bessel equation around the infinity.

Remark. Connection formula of the Hahn-Exton q-Bessel function
has given in SIGMA,7 (2011), 115 (Morita).
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20/217.3 Connection matrix for the Ramanujan equation

The Ramanujan equation:(
qxσ2

q − σq + 1
)
u(x) = 0.

A fundamental system of solutions around the origin:

u1(x) = Aq(x) :=
∑
n≥0

qn
2

(q; q)n
(−x)n,

u2(x) = θ(x)2φ0(0, 0;−; q,−x/q).

A fundamental system of solutions around the infinity:

v1(x) =
θq(x)

θq2(x)
1φ1(0; q; q

2, q2/x),

v2(x) =
−q

1− q

θq(x/q)

θq2(x/q)

1

x
1φ1(0; q

3; q2, q3/x).

Remark. u2(x) is divergent. u1(x), v1(x) nd v2(x) are convergent.
We should define a resummation of u2(x).
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21/21Connection matrix for the Ramanujan equation

The connection formula of the Ramanujan q-difference equation is
given by as follows.
For any x ∈ C∗, we have (Ismail-Zhang, 2007)

u1(x) =
θq2(qx)θq2(x)

(q, q2; q2)∞θq(x)
v1(x) +

θq2(x)θq2
(
x
q

)
(q, q2; q2)∞θq

(
x
q

)v2(x).
For any x ∈ C∗ \ [−λ; q], we have (Morita, arXiv:1203.3404)

ũ2(x, λ) =
(q; q)∞θq2

(
−qx

λ2

)
θq
(
− q

λ

)
θq
(
x
λ

) θq2(x)

θq(x)
v1(x) +

(q; q)∞θq2
(
− x

λ2

)
θq
(
− 1

λ

)
θq
(
x
λ

) θq2
(
x
q

)
θq

(
x
q

) v2(x).

Remark. The connection formula of u1 is known as an asymptotic formula of
the Ramanujan function.
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