Connection problems on higher order linear q-difference equations

Takeshi Morita, Osaka University
Université de Toulouse

19th April 2013

1. Notations

Assumptions: A complex number $q \in \mathbb{C}^{*}$ is $0<|q|<1$.
The q-shifted operator $\sigma_{q}: \sigma_{q} f(x)=f(q x)$.
The basic hypergeometric series with the base q :

$$
\begin{aligned}
& r \varphi_{s}\left(a_{1}, \ldots, a_{r} ; b_{1}, \ldots, b_{s} ; q, x\right) \\
& \qquad:=\sum_{n \geq 0} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{n}(q ; q)_{n}}\left\{(-1)^{n} q^{\frac{n(n-1)}{2}}\right\}^{1+s-r} x^{n} .
\end{aligned}
$$

The q-shifted factorial $(a ; q)_{n}$

$$
(a ; q)_{n}:= \begin{cases}1, & n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n \geq 1\end{cases}
$$

moreover, $(a ; q)_{\infty}:=\lim _{n \rightarrow \infty}(a ; q)_{n}$ and

$$
\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{\infty}:=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \ldots\left(a_{m} ; q\right)_{\infty}
$$

Radius of convergence:

$\infty, 1$ or 0 according to whether $r-s<1, r-s=1$ or $r-s>1$.

$$
\theta_{q}(x):=\sum_{n \in \mathbb{Z}} q^{\frac{n(n-1)}{2}} x^{n}, \quad \forall x \in \mathbb{C}^{*}
$$

Properties of the theta function:

1. Jacobi's triple product identity is

$$
\theta_{q}(x)=\left(q,-x,-\frac{q}{x} ; q\right)_{\infty}
$$

2. The q-difference equation which the theta function satisfies;

$$
\theta_{q}\left(q^{k} x\right)=q^{-\frac{n(n-1)}{2}} x^{-k} \theta_{q}(x), \quad \forall k \in \mathbb{Z}
$$

3. The inversion formula;

$$
\theta_{q}\left(\frac{1}{x}\right)=\frac{1}{x} \theta_{q}(x) .
$$

$[\lambda ; q]$-spiral: For any fixed $\lambda \in \mathbb{C}^{*} \backslash q^{\mathbb{Z}}$, the set $[\lambda ; q]$-spiral is

$$
[\lambda ; q]:=\lambda q^{\mathbb{Z}}=\left\{\lambda q^{k} ; k \in \mathbb{Z}\right\}
$$

Figure 1. $[\lambda ; q]$ - spiral
Relation between the theta function and $[\lambda ; q]$-spiral:
Lemma 1. We have

$$
\theta\left(\lambda q^{k} / x\right)=0 \stackrel{\text { iff }}{\Longleftrightarrow} x \in[-\lambda ; q] .
$$

2. Linear q-difference equation of the Laplace type

The q-difference equation of the Laplace type:

$$
\left\{\left(a_{1} x+b_{1}\right) \sigma_{q}^{2}+\left(a_{2} x+b_{2}\right) \sigma_{q}+\left(a_{3} x+b_{3}\right)\right\} u(x)=0
$$

6 parameters: $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$ and b_{3}.
By the gauge transformations, we obtain 3 parameters equation:

$$
\left[(c-a b q x) \sigma_{q}^{2}-\{(c+q)-(a+b) q x\} \sigma_{q}+q(1-x)\right] u(x)=0 .
$$

A three parameters solution:

$$
u(x)={ }_{2} \varphi_{1}(a, b ; c ; q, x)=\sum_{n \geq 0} \frac{(a, b ; q)_{n}}{(c ; q)_{n}(q ; q)_{n}} x^{n},
$$

which is called Heine's basic hypergeometric series.

The degeneration diagram
The degeneration diagram for ${ }_{2} \varphi_{1}(a, b ; c ; q, x)$ [Y. Ohyama, 2011]:

$$
{ }_{2} \varphi_{1}(a, b ; c ; x) \rightarrow q \text {-confluent } \longrightarrow{ }_{\nu}^{(1)}, J_{\nu}^{(2)}(a ; 0 ; x) \rightarrow \text {-Airy }
$$

- $J_{\nu}^{(k)}(k=1,2,3)$ are q-Bessel functions.
- The q-Airy function and the Ramanujan function $A_{q}(x)$ are q analogues of the Airy function (Kajiwara, et al., 2004; Ismail, 2005).
- The function ${ }_{1} \varphi_{1}(a ; 0 ; q, x)=\sum_{n \geq 0} \frac{(a ; q)_{n}}{(q ; q)_{n}}\left\{(-1)^{n} q^{\frac{n(n-1)}{2}}\right\} x^{n}$ is called the q-Hermite function. The q-Hermite function ${ }_{1} \varphi_{1}(a ; 0 ; q, x)$ satisfies:

$$
\left[-a q x \sigma_{q}^{2}-(q-q x) \sigma_{q}+q\right] u(x)=0
$$

Three different q-analogues of the Bessel function:

$$
\begin{aligned}
J_{\nu}^{(1)}(x ; q) & :=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(\frac{x}{2}\right)^{\nu}{ }_{2} \varphi_{1}\left(0,0 ; q^{\nu+1} ; q,-\frac{x^{2}}{4}\right), \quad|x|<2, \\
J_{\nu}^{(2)}(x ; q) & :=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(\frac{x}{2}\right)^{\nu}{ }_{0} \varphi_{1}\left(-; q^{\nu+1} ; q,-\frac{q^{\nu-1} x^{2}}{4}\right), \quad x \in \mathbb{C}, \\
J_{\nu}^{(3)}(x ; q) & :=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} x^{\nu}{ }_{1} \varphi_{1}\left(0 ; q^{\nu+1} ; q, q x^{2}\right), \quad x \in \mathbb{C},
\end{aligned}
$$

provided that $\nu \notin \mathbb{Z}$.
q-difference equations:

$$
\begin{array}{ll}
J_{\nu}^{(1)}: & u(x q)-\left(q^{\nu / 2}+q^{-\nu / 2}\right) u\left(x q^{1 / 2}\right)+\left(1+\frac{x^{2}}{4}\right) u(x)=0, \\
J_{\nu}^{(2)}: & \left(1+\frac{q x^{2}}{4}\right) u(x q)-\left(q^{\nu / 2}+q^{-\nu / 2}\right) u\left(x q^{1 / 2}\right)+u(x)=0, \\
J_{\nu}^{(3)}: & u(x q)-\left\{\left(q^{\nu / 2}+q^{-\nu / 2}\right)-q^{-\nu / 2+1} x^{2}\right\} u\left(x q^{1 / 2}\right)+u(x)=0 .
\end{array}
$$

This diagram is a q-analogue of the degeneration diagram for Gauss' hypergeometric series ${ }_{2} F_{1}$:

Remark. There exist three different types of q-Bessel functions $J_{\nu}^{(j)}, j=1,2,3$ and two q-analogues of the Airy function.

Remark. $A_{q}(x)$ is found by Ramanujan in "the Lost notebook"
3.Connection problems on second order linear q-difference equations
G. D. Birkhoff (1914) Connection formulae of second order linear q-difference equations are linear relations in a matrix form:

$$
\binom{u_{1}(x)}{u_{2}(x)}=\left(\begin{array}{ll}
C_{11}(x) & C_{12}(x) \\
C_{21}(x) & C_{22}(x)
\end{array}\right)\binom{v_{1}(x)}{v_{2}(x)} .
$$

$u_{1}(x)$ and $u_{2}(x)$:solutions around the origin $v_{1}(x)$ and $v_{2}(x)$:solutions around the infinity
Functions $C_{i j}(1 \leq i, j \leq 2)$ are elliptic functions:

$$
\sigma_{q} C_{i j}(x)=C_{i j}(x), \quad C_{i j}\left(e^{2 \pi i} x\right)=C_{i j}(x)
$$

Connection matrix for Heine's ${ }_{2} \varphi_{1}(a, b ; c ; q, x)$: Watson's formula Heine's equation

$$
\left[(c-a b q x) \sigma_{q}^{2}-\{(c+q)-(a+b) q x\} \sigma_{q}+q(1-x)\right] u(x)=0
$$

Local solutions around the origin

$$
u_{1}(x)={ }_{2} \varphi_{1}(a, b ; c ; q, x), \quad u_{2}(x)=\frac{\theta(c x)}{\theta(q x)^{2}} \varphi_{1}\left(\frac{a q}{c} \frac{b q}{c} ; \frac{q^{2}}{c} ; q, x\right) .
$$

Local solutions around the infinity

$$
y_{\infty}^{(a, b)}(x)=\frac{\theta(-a x)}{\theta(-x)} 2 \varphi_{1}\left(a, \frac{a q}{c} ; \frac{a q}{b} ; q, \frac{c q}{a b x}\right)
$$

and

$$
y_{\infty}^{(b, a)}(x)=\frac{\theta(-b x)}{\theta(-x)}{ }^{2} \varphi_{1}\left(b, \frac{b q}{c} ; \frac{b q}{a} ; q, \frac{c q}{a b x}\right) .
$$

$$
\binom{u_{1}(x)}{u_{2}(x)}=\left(\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}(x)
\end{array}\right)\binom{y_{\infty}^{(a, b)}(x)}{y_{\infty}^{(b, a)}(x)}
$$

provided that

$$
\begin{gathered}
C_{11}=\frac{(b, c / a ; q)_{\infty}}{(c, b / a ; q)_{\infty}}, \quad C_{12}=\frac{(a, c / b ; q)_{\infty}}{(c, a / b ; q)_{\infty}} \\
C_{21}=\frac{(b q / c, q / a ; q)_{\infty}}{\left(q^{2} / c, b / a ; q\right)_{\infty}}
\end{gathered}
$$

and

$$
C_{22}(x)=\frac{(a q / c, q / b ; q)_{\infty}}{\left(q^{2} / c, a / b ; q\right)_{\infty}} \frac{\theta(-a x)}{\theta\left(-\frac{a q}{c} x\right)} \frac{\theta\left(-\frac{b q}{c} x\right)}{\theta(-b x)}
$$

Remark. C_{11}, C_{12} and C_{21} are constant and $C_{22}(x)$ is a q-elliptic function. Remark. The first formula has given by G. N. Watson (1910).

But another connection formula have not known for a long time.

We need some suitable resummation methods to obtain new connection formulae:

We assume that $f(x)=\sum_{n \geq 0} a_{n} x^{n}, a_{0}=1$.
5.1. The q-Borel-Laplace transformations of the first kind

1. The q-Borel transformation of the first kind is

$$
\left(\mathcal{B}_{q}^{+} f\right)(\xi):=\sum_{n \geq 0} a_{n} q^{\frac{n(n-1)}{2}} \xi^{n}(=: \varphi(\xi)) .
$$

2. The q-Laplace transformation of the first kind is

$$
\left(\mathcal{L}_{q, \lambda}^{+} \varphi\right)(x):=\frac{1}{1-q} \int_{0}^{\lambda \infty} \frac{\varphi(\xi)}{\theta_{q}\left(\frac{\xi}{x}\right)} \frac{d_{q} \xi}{\xi}=\sum_{n \in \mathbb{Z}} \frac{\varphi\left(\lambda q^{n}\right)}{\theta_{q}\left(\frac{\lambda q^{n}}{x}\right)},
$$

here, this transformation is given by Jackson's q-integral.
5.2. The q-Borel-Laplace transformations of the second kind

1. The q-Borel transformation of the second kind is

$$
\left(\mathcal{B}_{q}^{-} f\right)(\xi):=\sum_{n \geq 0} a_{n} q^{-\frac{n(n-1)}{2}} \xi^{n}(=: g(\xi))
$$

2. The q-Laplace transformation of the second kind is

$$
\left(\mathcal{L}_{q}^{-} g\right)(x):=\frac{1}{2 \pi i} \int_{|\xi|=r} g(\xi) \theta_{q}\left(\frac{x}{\xi}\right) \frac{d \xi}{\xi},
$$

where $r>0$ is enough small number.

Remark.These resummation methods are introduced by J. Sauloy and studied by C. Zhang.

Remark. The q-Borel transformation is the formal inverse of the q-Laplace transformation:

The q-Borel transformation \mathcal{B}_{q}^{+}is formal inverse of the q-Laplace transformation $\mathcal{L}_{q, \lambda}^{+}$:

Lemma 2. For any entire function $f(x)$, we have

$$
\mathcal{L}_{q, \lambda}^{+} \circ \mathcal{B}_{q}^{+} f=f
$$

The q-Borel transformation \mathcal{B}_{q}^{-}also can be considered as a formal inverse of the q-Laplace transformation \mathcal{L}_{q}^{-}.

Lemma 3. We assume that the function f can be q-Borel transformed to the analytic function $g(\xi)$ around $\xi=0$. Then, we have

$$
\mathcal{L}_{q}^{-} \circ \mathcal{B}_{q}^{-} f=f
$$

6. The q-Stokes phenomenon

In the differential case, the resummation of divergent series are convergent on Sectors and the Stokes coefficient changes its value on each sector discretely.

In q-difference case, the resummation converges on the set $\mathbb{C}^{*} \backslash[-\lambda ; q]$. Since $\mathbb{C}^{*} / q^{\mathbb{Z}} \cong \mathbb{T}$, the q-Stokes coefficient changes its value continuously.

figure: Stokes sectors and q-Stokes regions
7.1. Connection matrix for the q-confluent hypergeometric series q-confluent hypergeometric equation

$$
(1-a b q x) u\left(x q^{2}\right)-\{1-(a+b) q x\} u(x q)-q x u(x)=0 .
$$

Local solutions around the origin

$$
\begin{aligned}
& u_{1}(x)={ }_{2} \varphi_{0}(a, b ;-; q, x) \\
& u_{2}(x)=\frac{(a b x ; q)_{\infty}}{\theta(-q x)} 2 \varphi_{1}\left(\frac{q}{a}, \frac{q}{b} ; 0 ; q, a b x\right)
\end{aligned}
$$

Local solutions around the infinity

$$
\begin{aligned}
& S_{\mu}(a, b ; q, x)=\frac{\theta(a \mu x)}{\theta(\mu x)} 2 \varphi_{1}\left(a, 0 ; \frac{a q}{b} ; q, \frac{q}{a b x}\right), \\
& S_{\mu}(b, a ; q, x)=\frac{\theta(b \mu x)}{\theta(\mu x)}{ }^{2} \varphi_{1}\left(b, 0 ; \frac{b q}{a} ; q, \frac{q}{a b x}\right),
\end{aligned}
$$

Connection matrix for q-confluent equation
Theorem. For any $\lambda, \mu \in \mathbb{C}^{*}, x \in \mathbb{C}^{*} \backslash[1 ; q] \cup[-\mu / a ; q] \cup[-\lambda ; q]$, we have

$$
\binom{{ }_{2} f_{0}(a, b ; \lambda, q, x)}{2 f_{1}(a, b ; q, x)}=\left(\begin{array}{cc}
C_{\mu}^{\lambda}(a, b ; q, x) & C_{\mu}^{\lambda}(b, a ; q, x) \\
C_{\mu}(a, b ; q, x) & C_{\mu}(b, a ; q, x)
\end{array}\right)\binom{S_{\mu}(a, b ; q, x)}{S_{\mu}(b, a ; q, x)}
$$

- The set $[\lambda ; q]$ is the q-spiral.
- ${ }_{2} f_{0}(a, b ; \lambda, q, x)$ is the q-Borel-Laplace transform (of the first kind) of ${ }_{2} \varphi_{0}(a, b ;-; q, x)$ (given by C. Zhang).
- ${ }_{2} f_{1}(a, b ; q, x)$ is the q-Borel-Laplace transform (of the second kind) of ${ }_{2} \varphi_{1}(a, b ; 0 ; q, x)$ (Morita).
- $S_{\mu}(a, b ; q, x)$ is the solution of around the infinity.
- $C_{\mu}^{\lambda}(a, b ; q, x)$ and $C_{\mu}(a, b ; q, x)$ are elliptic functions.
7.2. Connection matrix of the q-Bessel function $J_{\nu}^{(1)}(x ; q)$ The first q-Bessel equation

$$
u(q x)-\left(q^{\nu / 2}+q^{-\nu / 2}\right) u\left(q^{1 / 2} x\right)+\left(1+\frac{x^{2}}{4}\right) u(x)=0
$$

Local solutions around the origin

$$
\begin{aligned}
& u_{1}(x)=J_{\nu}^{(1)}(x ; q):=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}}\left(\frac{x}{2}\right)^{\nu}{ }_{2} \varphi_{1}\left(0,0 ; q^{\nu+1} ; q,-\frac{x^{2}}{4}\right), \\
& u_{2}(x)=J_{-\nu}^{(1)}\left(q^{\nu} x ; q\right)
\end{aligned}
$$

where $|x|<2$.
Local solutions around the infinity

$$
\begin{aligned}
& v_{1}(x ; \nu)=\frac{\left(\frac{\alpha}{\sqrt{p} x} ; p\right)_{\infty}}{\theta_{p}\left(-\frac{\alpha}{x}\right)} 2 \varphi_{1}\left(p^{\nu+\frac{1}{2}}, p^{-\nu+\frac{1}{2}} ;-p ; p, \frac{\alpha}{\sqrt{p} x}\right) \\
& v_{2}(x ; \nu)=v_{1}\left(q^{\nu} x ;-\nu\right)
\end{aligned}
$$

Theorem 1. (C. Zhang) For any $\lambda \in \mathbb{C}^{*}, x \in \mathbb{C}^{*}(0<|x|<2)$, we have

$$
\binom{j_{\nu, \alpha}^{(1)}(t ; q)}{j_{\nu,-\alpha}^{(1)}(t ; q)}=\left(\begin{array}{cc}
C_{\nu, \alpha}(\lambda, t ; q) & C_{-\nu, \alpha}(\lambda, t ; q) \tag{1}\\
C_{\nu,-\alpha}(\lambda, t ; q) & C_{-\nu,-\alpha}(\lambda, t ; q)
\end{array}\right)\binom{J_{\nu, \lambda}^{(1)}(x ; q)}{J_{-\nu, \lambda}^{(1)}(x ; q)},
$$

where $x t=1$.
Remark. $j_{\nu, \alpha}^{(1)}(x ; q)$ is the solution of the q-Bessel equation around the infinity.

Remark. Connection formula of the Hahn-Exton q-Bessel function has given in SIGMA, 7 (2011), 115 (Morita).
7.3 Connection matrix for the Ramanujan equation

The Ramanujan equation:

$$
\left(q x \sigma_{q}^{2}-\sigma_{q}+1\right) u(x)=0
$$

A fundamental system of solutions around the origin:

$$
\begin{gathered}
u_{1}(x)=\mathrm{A}_{q}(x):=\sum_{n \geq 0} \frac{q^{n^{2}}}{(q ; q)_{n}}(-x)^{n} \\
u_{2}(x)=\theta(x)_{2} \varphi_{0}(0,0 ;-; q,-x / q)
\end{gathered}
$$

A fundamental system of solutions around the infinity:

$$
\begin{gathered}
v_{1}(x)=\frac{\theta_{q}(x)}{\theta_{q^{2}}(x)} 1 \varphi_{1}\left(0 ; q ; q^{2}, q^{2} / x\right) \\
v_{2}(x)=\frac{-q}{1-q} \frac{\theta_{q}(x / q)}{\theta_{q^{2}}(x / q)} \frac{1}{x}{ }_{1} \varphi_{1}\left(0 ; q^{3} ; q^{2}, q^{3} / x\right)
\end{gathered}
$$

Remark. $u_{2}(x)$ is divergent. $u_{1}(x), v_{1}(x)$ nd $v_{2}(x)$ are convergent. We should define a resummation of $u_{2}(x)$.

The connection formula of the Ramanujan q-difference equation is given by as follows.
For any $x \in \mathbb{C}^{*}$, we have (Ismail-Zhang, 2007)

$$
u_{1}(x)=\frac{\theta_{q^{2}}(q x) \theta_{q^{2}}(x)}{\left(q, q^{2} ; q^{2}\right)_{\infty} \theta_{q}(x)} v_{1}(x)+\frac{\theta_{q^{2}}(x) \theta_{q^{2}}\left(\frac{x}{q}\right)}{\left(q, q^{2} ; q^{2}\right)_{\infty} \theta_{q}\left(\frac{x}{q}\right)} v_{2}(x)
$$

For any $x \in \mathbb{C}^{*} \backslash[-\lambda ; q]$, we have (Morita, arXiv:1203.3404)

$$
\tilde{u}_{2}(x, \lambda)=\frac{(q ; q)_{\infty} \theta_{q^{2}}\left(-\frac{q x}{\lambda^{2}}\right)}{\theta_{q}\left(-\frac{q}{\lambda}\right) \theta_{q}\left(\frac{x}{\lambda}\right)} \frac{\theta_{q^{2}}(x)}{\theta_{q}(x)} v_{1}(x)+\frac{(q ; q)_{\infty} \theta_{q^{2}}\left(-\frac{x}{\lambda^{2}}\right)}{\theta_{q}\left(-\frac{1}{\lambda}\right) \theta_{q}\left(\frac{x}{\lambda}\right)} \frac{\theta_{q^{2}}\left(\frac{x}{q}\right)}{\theta_{q}\left(\frac{x}{q}\right)} v_{2}(x)
$$

Remark. The connection formula of u_{1} is known as an asymptotic formula of the Ramanujan function.

