
UPPER BOUNDS ON RUBINSTEIN DISTANCES ONCONFIGURATION SPACES AND APPLICATIONSLAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYAbstrat. In this paper, we provide upper bounds on several Rubinstein-type distanes on the on�guration spae equipped with the Poisson measure.Our inequalities involve the two well-known gradients, in the sense of Malli-avin alulus, whih an be de�ned on this spae. Atually, we show thatdepending on the distane between on�gurations whih is onsidered, it isone gradient or the other whih is the most e�etive. Some appliations todistane estimates between Poisson and other more sophistiated proessesare also provided, and an appliation of our results to tail and isoperimetriestimates ompletes this work.1. IntrodutionLet Λ be a σ-ompat metri spae and ΓΛ be the spae of on�gurations on
Λ equipped with a Poisson measure µ. De�ning and evaluating some distanesbetween probability measures on ΓΛ is an important problem, both theoretialand for appliations, sine it is equivalent to de�ning distanes between pointproesses (see for instane Chapters 2 and 3 of [17℄ for a thorough disussion andreferenes about this topi). Among the large lass of distanes one may onsider,the one we want to study relies on an optimal transportation problem. Letting ρbe a lower semi-ontinuous distane on ΓΛ and two on�gurations ω, η ∈ ΓΛ, weunderstand the quantity ρ(ω, η) as the ost for transporting one unit of mass from
ω to η. Hene the optimal transportation ost between µ and some probabilitymeasure ν on ΓΛ is given by

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

ΓΛ

∫

ΓΛ

ρ(ω, η) dγ(ω, η),where Σ(µ, ν) is the set of probability measures on ΓΛ ×ΓΛ with marginals µ and
ν. Suh a quantity is alled the Rubinstein distane between µ et ν. Being de�nedby a variational formula, its expliit expression is of di�ult aess in general butmight be estimated from above: the onstrution of any oupling between µ and
ν yields a bound on the Rubinstein distane between µ and ν. In partiular, aonvenient upper bound ensures its �niteness, whih is not guaranteed a priori.Reeived 2009-9-10; Communiated by N. Privault.2000 Mathematis Subjet Classi�ation. 60G55,60H07,60E15.Key words and phrases. Con�guration spae, Poisson measure, Rubinstein distane, Malliavinderivative, Rademaher property, tail estimate, isoperimetry.1



2 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYAnother interesting property of Tρ is its rih duality. More preisely, the Kanto-rovih-Rubinstein duality allows us to rewrite the Rubinstein distane as
Tρ(µ, ν) = sup

F∈ρ−Lip1

∫

ΓΛ

F d(µ − ν),where ρ − Lip1 denotes the set of 1-Lipshitz funtions on ΓΛ with respet tothe distane ρ. This means that Tρ depends ruially on the distane on theon�guration spae as it hanges the set of Lipshitz funtions, hene inorporatesa lot of information on the geometry of ΓΛ. Using the dual de�nition of theRubinstein distane instead of the original one an be very relevant in some ases.Given a probability measure ν with density L with respet to the Poisson refe-rene measure µ, our purpose in the present paper is to ontrol from above theRubinstein distane Tρ(µ, ν) in terms of onvenient (and easily omputable) quan-tities involving the density L. Suh inequalities belong to the domain of funtionalinequalities, whih is by now a wide �eld of researh with numerous methods ofproofs. See for instane the very omplete monograph [18℄ and partiularly Chap-ters 21 and 22 for a large panorama on this topi, with preise referenes andredit.To derive our inequalities, the two main ingredients at work are other repre-sentations of the Rubinstein distane and the Rademaher property. On the onehand, suh representations an be obtained either by embedding the two probabi-lity measures into the evolution of a Markov semi-group, or by using the so-alledClark formula. On the other hand, the Rademaher property formally states thatgiven a distane ρ, there exists a notion of gradient suh that its domain ontainsthe set ρ − Lip1 and any funtion in ρ − Lip1 has a gradient whose norm is lessthan 1, i.e., that we an proeed as in �nite dimension.For these two steps, we need a notion of gradient. In the setting of on�gurationspaes, suh a notion does exist within the Malliavin alulus. In fat, we evenhave two notions of gradient: a �di�erential� gradient (see [1, 15℄) and a gradientexpressed as a �nite di�erene operator (see [13℄). We show that depending onthe distane ρ hosen on the on�guration spae, one gradient or the other is moreonvenient, i.e., the Rademaher property holds with one notion of gradient, orthe other.The paper is organized as follows. After the preliminaries of Setion 2, we pro-vide in Setion 3 various upper bounds on the Rubinstein distane Tρ(µ, ν), where
ρ is the total variation distane, the Wasserstein distane or the trivial distaneon the on�guration spae ΓΛ. Based on a semi-group approah, the �rst abstratupper bound involves the gradient assoiated to our given distane ρ in the senseof the Rademaher property. When dealing with the total variation distane onthe one hand, suh an estimate has a simpli�ed expression, ontained in our �rstmain result, Theorem 3.2, whih an be retrieved by using an alternative method,namely the Clark formula. On the other hand, when the on�guration spae isequipped with the Wasserstein distane, the upper bound we give in our seondmain result, Theorem 3.4, relies on a time-hange argument together with the Gir-sanov Theorem. Finally, the last Setion 4 is devoted to numerous appliations ofthese two inequalities: by hoosing the probability measure ν as the distribution



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 3of a given proess, we are able to estimate from above distanes between Poissonproesses, between Poisson and Cox proesses, between Poisson and Gibbs pro-esses, et. We thus hope to give a systemati treatment of the various situationsone may enounter in appliations. We onlude this work by providing anotheronsequene of Theorem 3.2 to tail and isoperimetri estimates. In partiular, weobtain sharp deviation inequalities for the total variation distane and also a newestimate of the lassial isoperimetri onstant, whih is asymptotially sharp asthe total mass of Λ is small. 2. PreliminariesLet X be a Polish spae and ρ a lower semi-ontinuous distane on X×X , whihdoes not neessarily generate the topology on X . Given two probability measures
µ and ν on X , the optimal transportation problem assoiated to ρ onsists inevaluating the distane

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

X

∫

X

ρ(x, y) dγ(x, y), (2.1)where Σ(µ, ν) is the set of probability measures on X ×X with �rst (respetivelyseond) marginal µ (respetively ν). By Theorem 4.1 in [18℄, there exists at leastone probability measure γ for whih the in�mum is attained. Aording to theelebrated Kantorovith-Rubinstein duality theorem, f. Theorem 5.10 in [18℄, thisminimum is equal to
Tρ(µ, ν) = sup

F∈ρ−Lip1

F∈L1(µ+ν)

∫

X

F d(µ − ν), (2.2)where ρ−Lipm is the set of bounded Lipshitz ontinuous funtions F from X to
R with Lipshitz onstant m:

|F (x) − F (y)| ≤ mρ(x, y), x, y ∈ X.In the ontext of optimal transportation, Tρ is onsidered as a Rubinstein distanesine the ost funtion is already a distane (see for instane the bibliographialnotes at the end of Chapter 6 in [18℄).In this paper, we onsider the situation where X = ΓΛ is the on�gurationspae on a σ-ompat metri spae Λ with Borel σ-algebra B(Λ), i.e.,
ΓΛ = {ω ⊂ Λ : ω ∩ K is a �nite set for every ompat K ∈ B(Λ)}.Here the σ-ompatness means that Λ an be partitioned into the union of oun-tably many ompat subspaes. We identify ω ∈ ΓΛ and the positive Radonmeasure ∑

x∈ω εx, where εa is the Dira measure at point a. Throughout thispaper, ΓΛ is endowed with the vague topology, i.e., the weakest topology suhthat for all f ∈ C0(Λ) (ontinuous with ompat support on Λ), the followingmaps
ω 7→

∫

Λ

f dω =
∑

x∈ω

f(x)are ontinuous. When f is the indiator funtion of a subset B, we will use theshorter notation ω(B) for the integral of 1B with respet to ω. We denote by



4 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVY
B(ΓΛ) the orresponding Borel σ-algebra. Let M(Λ) be the spae of positive anddi�use Radon measures on B(Λ) endowed with the orresponding Borel σ-�eld andequipped with the topology of vague onvergene. Given a measure σ ∈ M(Λ), theprobability spae under onsideration in the remainder of this paper will be thePoisson spae (ΓΛ,B(ΓΛ), µσ), where µσ is the Poisson measure of intensity σ, i.e.,the probability measure on ΓΛ fully haraterized by

Eµσ

[
exp

(∫

Λ

f dω

)]
= exp

{∫

Λ

(ef − 1) dσ

}
,for all f ∈ C0(Λ). Here Eµσ

stands for the expetation under the measure µσ.2.1. Distanes on the on�guration spae ΓΛ. Atually, several distaneonepts are available between elements of the on�guration spae ΓΛ, f. forinstane [17℄ for a thorough disussion about this topi. We introdue only threeof them whih will be useful in the sequel. Let ω and η be two on�gurations in
ΓΛ. Trivial distane: The trivial distane is simply given by

ρ0(ω, η) = 1{ω 6=η}.Total variation distane: The total variation distane is de�ned as
ρ1(ω, η) =

∑

x∈Λ

|ω({x}) − η({x})|

= ω∆η(Λ) + η∆ω(Λ),where ω∆η = ω\(ω ∩ η).Wasserstein distane: If Λ = R
k and κ is the Eulidean distane, theWasserstein distane is given by

ρ2(ω, η) = inf
β∈Σ(ω,η)

√∫

Λ

∫

Λ

κ(x, y)2 dβ(x, y),where Σ(ω, η) denotes the set of on�gurations β ∈ ΓΛ×Λ having marginals
ω and η, see [6, 15℄.Let us omment on these notions of distane on the on�guration spae ΓΛ.First, the total variation distane ρ1 is nothing but the number of di�erent atomsbetween two on�gurations. In partiular, we allow them to be in�nite so thatthe total variation distane might take in�nite values. Note that our de�nition isa straightforward generalization of the lassial notion of total variation distanebetween probability measures, sine it oinides with the usual de�nition when theon�gurations are normalized by their total masses.As the total variation distane ρ1, the Wasserstein distane ρ2 also shares theproperty that it might takes in�nite values. Indeed, if the total masses of two on-�gurations ω and η are �nite but di�er, then there exists no oupling on�guration

β in Σ(ω, η), hene the distane should be in�nite. If ω(Λ) = η(Λ) < +∞ with
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ω =

∑ω(Λ)
j=1 δxj

and η =
∑η(Λ)

j=1 δyj
, we an also write

ρ2(ω, η)2 = inf
τ∈Sω(Λ)

ω(Λ)∑

j=1

κ(xj , yτ(j))
2,where Sω(Λ) denotes the symmetri group on the �nite set {1, 2, . . . , ω(Λ)}. Assuh ρ2 appears as the dimension-free generalization of the Eulidean distane.In order to use the Kantorovih-Rubinstein duality Theorem, the lower semi-ontinuity of the distanes ρi, i ∈ {0, 1, 2}, is required. This is the objet of thenext lemma.Lemma 2.1. For any i ∈ {0, 1, 2}, the distane ρi is lower semi-ontinuous onthe produt spae ΓΛ × ΓΛ equipped with the produt topology.Proof. It is immediate for the trivial distane ρ0 and it is proved in Lemma 4.1 in[15℄ for the Wasserstein distane ρ2. To verify this property for the total variationdistane ρ1, let α be a real number and onsider Jα de�ned by

Jα = {(ω, η) ∈ ΓΛ × ΓΛ : ρ1(ω, η) ≤ α}.Let ((ωn, ηn), n ≥ 1) onverge vaguely to (ω, η) and suh that for any n, (ωn, ηn)belongs to Jα. By the triangular inequality, we have for any ompat set K andany n:
ρ1(πKω, πKη) ≤ ρ1(πKω, πKωn) + α + ρ1(πKηn, πKη),where πK denotes the restrition to K of a on�guration. Hene using the vagueonvergene, we obtain that (πKω, πKη) ∈ Jα. Finally, sine the metri spae Λis σ-ompat, the monotone onvergene theorem for an exhaustive sequene ofompats (Kp)p∈N entails that

ρ1(ω, η) = lim
p→+∞

ρ1(πKp
ω, πKp

η) ≤ α,hene the set Jα is vaguely losed. �Let us mention that Lemma 2.1 entails the lower semi-ontinuity of the Rubin-stein distane Tρi
, i ∈ {0, 1, 2}, with respet to the weak topology on the spae ofprobability measures on ΓΛ, f. for instane Remark 6.12 in [18℄. In partiular,sine the spae M(Λ) is equipped with the vague topology, then the appliation

σ 7→ µσ is ontinuous so that the mapping σ 7→ Tρi
(µσ, ν), i ∈ {0, 1, 2}, is lowersemi-ontinuous for any given probability measure ν on ΓΛ. However for i ∈ {1, 2},the Rubinstein distanes Tρi

is not ontinuous and might be in�nite sine the dis-tane ρi is very often in�nite itself, as in the Wiener spae situation of [9℄.Atually, we mention that our de�nitions do not oinide with some of theusual de�nitions of (bounded) distanes between point proesses, see for instane[2, 3, 17℄. As mentioned above, it is ustomary to use the lassial notion of totalvariation by onsidering normalized on�gurations, i.e.,
ρ̃1(ω, η) = ρ1

(
ω

ω(Λ)
,

η

η(Λ)

)
,provided both on�gurations have �nite total masses. It should be noted that sine

ρ̃1 is not lower semi-ontinuous, the Kantorovih-Rubinstein duality Theorem is



6 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYno longer satis�ed, so that we annot use the identity (2.2) in our framework. Forinstane, let Λ = R, ω = ε0 and η = ε1. Choose ωn = ε0 + εn and ηn = ε1 + εn.As n goes to in�nity, ωn and ηn tend vaguely to ω and η respetively. However,we have ρ̃1(ω, η) = 2 whereas ρ̃1(ωn, ηn) = 1, for any integer n ≥ 2.It is also ustomary to replae ρ2 by ρ̃2 de�ned by
ρ̃2(ω, η) =

{
1

ω(Λ) ρ2(ω, η) if ω(Λ) = η(Λ) 6= 0,

|ω(Λ) − η(Λ)| otherwise.The normalization by the inverse of ω(Λ) shrinks the ρ2 distane by a fatorroughly equal to the expetation of ω(Λ)−1, see [6℄. More importantly, the term
|ω(Λ)− η(Λ)| has no dimension (in the sense of dimensional analysis) whereas theterm involving ρ2 has the dimension of a length. Furthermore, the distane ρ2has interesting geometri properties of the spae ΓΛ like the Rademaher property(see Lemma 2.5 below), not shared by ρ̃2.2.2. Malliavin derivatives and the Rademaher property. Before intro-duing the so-alled Rademaher property on the on�guration spae ΓΛ, we needsome additional struture.Hypothesis 2.2. Assume now that we have:

• A kernel Q on ΓΛ × Λ, i.e. Q(·, A) is measurable as a funtion on ΓΛ forany A ∈ B(Λ) and Q(ω, ·) is a positive Radon measure on B(Λ) for any
ω ∈ ΓΛ. We set dα(ω, x) = Q(ω, dx) dµσ(ω).

• A gradient/Malliavin derivative ∇, de�ned on a dense subset Dom∇ of
L2(µσ), suh that for any F ∈ Dom∇,

∫

ΓΛ

∫

Λ

|∇xF (ω)|2 dα(ω, x) < +∞,i.e., the domain of the gradient is Dom∇ = {F ∈ L2(µσ) : ∇F ∈ L2(α)}.We say that a proess u = u(ω, x) belongs to Dom δ whenever there exists aonstant c suh that for any F ∈ Dom∇,
∣∣∣∣
∫

ΓΛ

∫

Λ

∇xF (ω)u(ω, x) dα(ω, x)

∣∣∣∣ ≤ c‖F‖L2(µσ).For suh a proess, we de�ne the operator δ by duality:
∫

ΓΛ

∫

Λ

∇xF (ω)u(ω, x) dα(ω, x) =

∫

ΓΛ

F (ω) δu(ω) dµσ(ω). (2.3)Denote the self-adjoint operator L = δ∇ ating on its domain DomL ⊂ Dom∇and let (Pt)t≥0 be the assoiated Ornstein-Uhlenbek semi-group, i.e. the semi-group whose in�nitesimal generator is −L.One the stohasti gradient has been introdued, let us relate it to the geometryof the on�guration spae ΓΛ.De�nition 2.3. Given a distane ρ and a gradient ∇ on ΓΛ, we say that theouple (∇, ρ) has the Rademaher property whenever
ρ − Lip1 ⊂ Dom∇ and |∇xF (ω)| ≤ 1, α-a.e. (2.4)



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 7To investigate the Rubinstein distane assoiated to a distane on ΓΛ, it willbe of ruial importane to �nd the onvenient notion of gradient for whih theRademaher property holds.Disrete gradient on on�guration spae. Given a funtional F ∈ L2(µσ),the disrete gradient of F , denoted by ∇♯F , is de�ned by
∇♯

xF (ω) = F (ω + εx) − F (ω), (ω, x) ∈ ΓΛ × Λ.In partiular, Dom∇♯ is the subspae of L2(µσ) random variables suh that
Eµσ

[∫

Λ

|∇♯
xF |2 dσ(x)

]
< +∞.We set Q♯(ω, dx) = dσ(x) so that α♯ = µσ ⊗ σ. The n-th multiple stohastiintegral of a real-valued square-integrable symmetri funtion fn ∈ L2(σ⊗n) isde�ned as

Jn(fn) =

∫

∆n

fn(x1, . . . , xn) d(ω − σ)(x1) . . . d(ω − σ)(xn),where ∆n = {(x1, . . . , xn) ∈ Λn, xi 6= xj , i 6= j}. As a onvention, we identify
L2(σ⊗0) to R and let J0(f0) = f0, f0 ∈ L2(σ⊗0) ≃ R. We have the isometryformula

Eµσ
[Jn(fn)Jm(fm)] = n!1{n=m}

∫

Λn

fn fm dσ⊗n. (2.5)Aording to [16, 13℄, the Chaoti Representation Property holds on the on�gu-ration spae, i.e., every funtional F ∈ L2(µσ) an be written as
F = Eµσ

[F ] +

+∞∑

n=1

Jn(fn).Moreover, if F ∈ Dom∇♯, then the disrete gradient ats on multiple stohastiintegrals as
∇♯

xF =
+∞∑

n=1

nJn−1(fn(·, x)), α♯-a.e.Denote δ♯ the adjoint operator of ∇♯ in the sense of (2.3). Then the self-adjointnumber operator L♯ = δ♯∇♯ has the following expression in terms of haos:
L♯F =

+∞∑

n=1

nJn(fn),whenever F ∈ DomL♯, and the assoiated Ornstein-Uhlenbek semi-group (P ♯
t )t≥0is given by

P ♯
t F = Eµσ

[F ] +

+∞∑

n=1

e−ntJn(fn).Hene the invariane property of the Poisson measure µσ with respet to thesemi-group reads as Eµσ
[P ♯

t F ] = Eµσ
[F ]. Moreover, we have the ommutation



8 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYproperty between gradient and semi-group, whih will be useful in the sequel: if
F ∈ Dom∇♯,

∇♯
xP ♯

t F = e−tP ♯
t ∇♯

xF, x ∈ Λ, t ≥ 0. (2.6)By the isometry formula (2.5), the semi-group is exponentially ergodi in L2(µσ)with respet to the Poisson measure µσ, i.e., for any t ≥ 0,
‖PtF − Eµσ

[F ] ‖2
L2(µσ) =

∑

n≥1

e−2nt
Eµσ

[
Jn(fn)2

]

≤ e−2t ‖F − Eµσ
[F ] ‖2

L2(µσ).Using the disrete gradient, the distanes of interest on ΓΛ are the trivial dis-tane ρ0 and the total variation distane ρ1, as illustrated by the following Lemma.Lemma 2.4. Assume that the intensity measure σ is �nite on Λ. Then the ouples
(∇♯, ρ0) and (∇♯, ρ1) satisfy the Rademaher property (2.4).Proof. Letting F ∈ ρi − Lip1, i ∈ {0, 1}, we have by the very de�nition of thedisrete gradient:

|∇♯
xF (ω)| = |F (ω + εx) − F (ω)| ≤ ρi(ω + εx, ω) ≤ 1.Sine σ is �nite, it follows that

∫

Λ

|∇♯
xF (ω)|2 dσ(x) ≤ σ(Λ),hene that F belongs to Dom∇♯. The proof is ahieved. �Note that the onverse diretion holds for the total variation distane ρ1. In-deed, onsider two on�gurations ω and η. If ρ1(ω, η) = +∞, there is nothing toprove. If ρ1(ω, η) is �nite, then sine |∇♯

xF (ω)| ≤ 1, α♯-a.e., we get
|F (η) − F (ω)| ≤ |F (η ∩ ω ∪ η∆ω) − F (η ∩ ω)| + |F (η ∩ ω ∪ ω∆η) − F (η ∩ ω)|

≤ (η∆ω)(Λ) + (ω∆η)(Λ)

= ρ1(η, ω).Di�erential gradient on on�guration spae. Let us introdue anotherstohasti gradient on the on�guration spae ΓΛ whih is a derivation, see [1, 15℄.Given the Eulidean spae Λ = R
k, let V (Λ) be the spae of C∞ vetor �elds on

Λ and V0(Λ) ⊂ V (Λ), the subspae onsisting of all vetor �elds with ompatsupport. For v ∈ V0(Λ), for any x ∈ Λ, the urve
t 7→ Vv

t (x) ∈ Λis de�ned as the solution of the following Cauhy problem
{ ddtVv

t (x) = v(Vv
t (x)),

Vv
0 (x) = x.

(2.7)The assoiated �ow (Vv
t , t ∈ R) indues a urve (Vv

t )∗ω = ω ◦ (Vv
t )−1, t ∈ R, on

ΓΛ: if ω =
∑

x∈ω εx then (Vv
t )∗ω =

∑
x∈ω εVv

t (x). We are then in position to de�nea notion of di�erentiability on ΓΛ. We take Qc(ω, dx) = dω(x) =
∑

y∈ω dεy(x)



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 9and dαc(ω, x) = dω(x) dµσ(ω). A measurable funtion F : ΓΛ → R is said to bedi�erentiable if for any v ∈ V0(Λ), the following limit exists:
lim
t→0

F (Vv
t (ω)) − F (ω)

t
.We denote ∇c

vF (ω) the preeding quantity. The domain of ∇c is then the set ofintegrable and di�erentiable funtions suh that there exists a proess (ω, x) 7→
∇c

xF (ω) whih belongs to L2(αc) and satis�es
∇c

vF (ω) =

∫

Λ

∇c
xF (ω)v(x) dω(x).We denote by δc the adjoint operator of ∇c in the sense of (2.3). Note that theintegration in the left-hand-side of the duality formula (2.3) is made with respetto a on�guration ω, whereas the intensity measure σ is involved in the ase ofthe disrete gradient. Given the self-adjoint operator Lc = δc∇c, the assoiatedOrnstein-Uhlenbek semi-group (P c

t )t≥0 is ergodi in L2(µσ) with respet to thePoisson measure µσ, f. Theorem 4.3 in [1℄. However, in ontrast to the ase ofthe disrete gradient, there is no known ommutation relationship between thegradient ∇c and the semi-group P c
t .The distane we fous on in this part is the Wasserstein distane ρ2. We havethe following lemma.Lemma 2.5. The ouple (∇c, ρ2) satis�es the Rademaher property (2.4).Proof. The proof is straightforward. Indeed, letting F ∈ ρ2 −Lip1, we know fromTheorem 1.3 in [15℄ that F ∈ Dom∇c and that

∑

x∈ω

|∇c
xF (ω)|2 =

∫

Λ

|∇c
xF (ω)|2 dω(x) ≤ 1, µσ-a.s.Hene we obtain |∇c

xF (ω)| ≤ 1, αc-a.e., in other words the Rademaher property
(2.4) is satis�ed. �3. Upper Bounds on Rubinstein Distanes3.1. An abstrat upper bound on Rubinstein distanes. Let us establish�rst an abstrat upper bound on the Rubinstein distane by using a semi-groupmethod, provided the assoiated ouple gradient/distane satis�es the Rademaherproperty (2.4). Denote ρ a lower semi-ontinuous distane on the on�gurationspae ΓΛ and assume that Hypothesis 2.2 is ful�lled.Proposition 3.1. Assume that the ouple (∇, ρ) satis�es the Rademaher property(2.4). Let L be the density of an absolutely ontinuous probability measure ν withrespet to µσ. Then provided the inequality makes sense, the following upper boundon the Rubinstein distane holds:

Tρ(µσ, ν) ≤
∫

ΓΛ

∫

Λ

∣∣∣∣
∫ +∞

0

∇xPtL(ω) dt∣∣∣∣ dα(ω, x). (3.1)



10 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYProof. The proof follows the approah emphasized by Houdré and Privault in[11℄ to derive ovariane identities and then onentration inequalities. Letting
F ∈ ρ − Lip1, we have by reversibility and using Fubini's Theorem:

∫

ΓΛ

F d(µσ − ν) =

∫

ΓΛ

(∫

ΓΛ

F dµσ − F

)
L dµσ

=

∫

ΓΛ

(∫ +∞

0

ddt
PtF dt

)
L dµσ

= −
∫

ΓΛ

∫ +∞

0

PtLF L dt dµσ

= −
∫

ΓΛ

∫ +∞

0

δ∇F PtL dt dµσ

= −
∫

ΓΛ

∫

Λ

∇xF

∫ +∞

0

∇xPtL dt dα(·, x).Using then the Rademaher property (2.4), the result holds by taking the supre-mum over all funtions F ∈ ρ − Lip1. �Note that the upper bound in the inequality (3.1) is interesting in its own right,but seems to be somewhat di�ult to ompute in full generality. Hene we turnin the sequel to more onrete situations, i.e., when the gradient of interest is thedisrete gradient ∇♯ or the di�erential one ∇c and is assoiated to the onvenientdistane ρi, i ∈ {0, 1, 2}, in the sense of the Rademaher property (2.4).3.2. A qualitative upper bound on Tρ1 . One the abstrat estimate (3.1) hasbeen obtained, one noties that it might be simpli�ed whenever a ommutationrelation between gradient and semi-group holds. To the knowledge of the authors,suh a property is only veri�ed in the ase of the disrete gradient, so that wefous in this part on the ouple (∇♯, ρ1). Here is one of the two main results ofthe paper.Theorem 3.2. Let L be the density of an absolutely ontinuous probability measure
ν with respet to µσ, and assume that L ∈ Dom∇♯ and ∇♯L ∈ L1(µσ ⊗ σ). Thenwe get the following estimate:

Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
. (3.2)The same inequality also holds under the distane ρ0.Proof. Sine the ase of a general intensity measure σ ∈ M(Λ) might be establishedby a simple limiting proedure (use the σ-ompatness of the metri spae Λ andthe lower semi-ontinuity of the appliation σ 7→ Tρ1(µσ, ν)), let us assume that σis �nite, so that the Rademaher property stated in Lemma 2.4 is satis�ed by theouple (∇♯, ρ1). Hene Proposition 3.1 above entails the inequality

Tρ1 (µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0

∇♯
xP ♯

t L dt

∣∣∣∣ dσ(x)

]
.



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 11Using now the ommutation relation (2.6), we have:
Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0

e−tP ♯
t ∇♯

xL dt

∣∣∣∣ dσ(x)

] (3.3)
≤ Eµσ

[∫

Λ

∫ +∞

0

e−tP ♯
t |∇♯

xL| dt dσ(x)

]

= Eµσ

[∫

Λ

∫ +∞

0

e−t|∇♯
xL| dt dσ(x)

]

= Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
,where we have used Jensen's inequality and the invariane property of the Poissonmeasure µσ with respet to the semi-group P ♯

t . The desired inequality (3.2) is thusestablished.Finally, the ase of the trivial distane ρ0 is similar sine the ouple (∇♯, ρ0)also satis�es the Rademaher property, f. Lemma 2.4. The proof is ahieved infull generality. �Atually, the well-known relationship between semi-group and generator statesthat for any G ∈ L2(µσ),
∫ +∞

0

e−tP ♯
t G dt = (Id +L♯)−1G.Applying then suh an identity in the inequality (3.3) above gives the followingbound:

Tρ1 (µσ, ν) ≤ Eµσ

[∫

Λ

|(Id +L♯)−1∇♯
xL| dσ(x)

]
. (3.4)It seems theoretially slightly better than the upper bound of Theorem 3.2 butoften yields to intratable omputations, exept when the haos representation of

L is given, as notied in Setion 4.1 below. Note that the very analog of (3.4) onWiener spae was proved by a di�erent though related way in Theorem 3.2 of [9℄.Let us provide another method leading to Theorem 3.2 whih is based on theso-alled Clark formula. Instead of onsidering on�gurations in ΓΛ, the idea isto use multivariate Poisson proesses, i.e., point proesses on [0, 1] with marks inthe σ-ompat metri spae Λ. Borrowing an idea of [19℄, we �rst explain how toembed a Poisson proess into a multivariate Poisson proess.Let µ̂ be the Poisson measure of intensity λ⊗ σ on the new on�guration spae
ΓbΛ, where the enlarged state spae is Λ̂ = [0, 1] × Λ, and λ denotes the Lebesguemeasure on [0, 1]. Any generi element ω̂ ∈ ΓbΛ has the form ω̂ =

∑
(t,x)∈bω εt,x.The anonial �ltration is de�ned for any t ∈ [0, 1] as

Ft = σ {ω̂([0, s] × B), 0 ≤ s ≤ t, B ∈ B(Λ)} .Let us reall the Clark formula, f. for instane [7℄ or Lemma 1.3 in [19℄, whihstates that every funtional G : ΓbΛ → R belonging to Dom∇♯ might be written as
G = Ebµ [G] +

∫ 1

0

∫

Λ

Ebµ

[
∇♯

t,xG |Ft−

] d(ω̂ − λ ⊗ σ)(t, x), (3.5)



12 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYwhere ∇♯
t,x denotes the disrete gradient on the enlarged on�guration spae ΓbΛ.For an element ω̂ ∈ ΓbΛ, we de�ne by πω̂ its projetion on ΓΛ, i.e.,

πω̂(B) = ω̂([0, 1] × B), B ∈ B(Λ),and given F : ΓΛ → R, we de�ne the funtional F̂ as
F̂ : ΓbΛ −→ R

ω̂ 7−→ F (πω̂).In partiular, we have learly ∇♯
t,xF̂ (ω̂) = ∇♯

xF (πω̂) for any (t, x) ∈ Λ̂. Moreover,we have Ebµ[F̂ ] = Eµσ
[F ] sine the image measure of µ̂ by π is µσ.The total variation distane on ΓbΛ is de�ned as
ρ̂1(ω̂, η̂) =

∑

(t,x)∈bΛ

|ω̂({t, x}) − η̂({t, x})|.The key point is the following lemma.Lemma 3.3. For any F ∈ ρ1 − Lip1, the funtional F̂ belongs to ρ̂1 − Lip1.Proof. Given F ∈ ρ1 − Lip1, we have for any ω̂, η̂ ∈ ΓbΛ:
|F̂ (ω̂) − F̂ (η̂)| = |F (πω̂) − F (πη̂)|

≤ ρ1(πω̂, πη̂)

=
∑

x∈Λ

|πω̂({x}) − πη̂({x})|

=
∑

x∈Λ

∣∣∣∣∣∣

∑

t∈[0,1]

ω̂({t, x}) − η̂({t, x})

∣∣∣∣∣∣

≤
∑

(t,x)∈bΛ

|ω̂({t, x}) − η̂({t, x})|

= ρ̂1(ω̂, η̂).The proof is omplete. �Now we are able to give a seond proof of Theorem 3.2 by means of the Clarkformula (3.5) and Lemma 3.3.Proof. Letting ν̂ be the measure with density L̂ with respet to µ̂, we obtain:
Tρ1(µσ, ν) = sup

F∈ρ1−Lip1

Eµσ
[F (L − 1)]

= sup
F∈ρ1−Lip1

Ebµ[F̂ (L̂ − 1)]

= sup
F∈ρ1−Lip1

Ebν [F̂ ] − Ebµ[F̂ ].



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 13Now using the Clark formula (3.5) and taking expetation with respet to ν̂,
Ebν [F̂ ] = Ebµ[F̂ ] + Ebν

[∫ 1

0

∫

Λ

Ebµ

[
∇♯

t,xF̂ |Ft−

] d(ω̂ − λ ⊗ σ)(t, x)

]

= Ebµ[F̂ ] + Ebµ

[
L̂

∫ 1

0

∫

Λ

Ebµ

[
∇♯

t,xF̂ |Ft−

] d(ω̂ − λ ⊗ σ)(t, x)

]

= Ebµ[F̂ ] + Ebµ

[∫ 1

0

∫

Λ

Ebµ

[
∇♯

t,xF̂ |Ft−

]
∇♯

t,xL̂ dt dσ(x)

]
,where in the seond line we also used the Clark formula (3.5) applied to thefuntional L̂. By Lemma 2.4, the ouple (∇♯, ρ̂1) satis�es the Rademaher property(2.4) on ΓbΛ. Hene Lemma 3.3 implies that for F ∈ ρ1 − Lip1, the quantity∣∣∣Ebµ

[
∇♯

t,xF̂ |Ft−

]∣∣∣ is bounded by 1, µ̂ ⊗ λ ⊗ σ-a.e., so that we obtain �nally
Tρ1(µσ, ν) ≤ Ebµ

[∫ 1

0

∫

Λ

|∇♯
t,xL̂| dt dσ(x)

]

= Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
.The seond proof of Theorem 3.2 is thus omplete. �3.3. A qualitative upper bound on Tρ2 by time-hange. Reall that byLemma 2.5, the ouple (∇c, ρ2) satis�es the Rademaher property (2.4). HeneProposition 3.1 entails an upper bound on the Tρ2 Rubinstein distane as follows:if L denotes the density of an absolutely ontinuous probability measure ν withrespet to µσ, then we have

Tρ2(µσ, ν) ≤
∫

ΓΛ

∫

Λ

∣∣∣∣
∫ +∞

0

∇c
xP c

t L(ω) dt

∣∣∣∣ dω(x) dµσ(ω),provided the inequality makes sense. However, despite its theoretial interest, suhan inequality is not really tratable in pratise, sine no ommutation relation hasbeen established yet between the di�erential gradient ∇c and the semi-group P c
t .Hene the purpose of this setion is to provide another estimate on Tρ2 through adi�erent approah relying on a time-hange argument together with the GirsanovTheorem.We onsider the notation of Setion 3.2 above, with the di�erene that the statespae is now Λ̂ := [0,∞)×Λ, where Λ is the spae R

k equipped with the Eulideandistane κ. In this part, the distane of interest on the enlarged on�guration spae
ΓbΛ is the Wasserstein distane:

ρ̂2(ω̂, η̂)2 = inf
β∈Σ(bω,bη)

∫

bΛ

∫

bΛ

(κ(x, y)2 + |t − s|2) dβ((s, x), (t, y)).The following theorem is our seond main result.Theorem 3.4. Let L be the (positive) density of an absolutely ontinuous proba-bility measure ν̂ with respet to µ̂. Then provided the inequality makes sense, we



14 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYget the following upper bound on the Rubinstein distane Tcρ2
(µ̂, ν̂):

Tcρ2
(µ̂, ν̂)2 ≤ Ebµ

[
L

∫

Λ

∫ +∞

0

∣∣∣∣
∫ t

0

u(s, z) ds∣∣∣∣2 (1 + u(t, z)) dt dσ(z)

]

= Ebµ

[
L

∫

Λ

∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr dσ(z)

]
,

(3.6)where u(t, z) > −1 is the following preditable proess:
u(t, z) =

E

[
∇♯

t,zL|Ft−

]

E [L|Ft− ]
, v(t, z) := t +

∫ t

0

u(s, z) ds, z ∈ Λ,and v−1(·, z) is the inverse of the inreasing mapping t 7→ v(t, z).Remark 3.5. Note that for z ∈ Λ �xed, the term ∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr an beinterpreted as a generalized Wassertein distane between the in�nite measures drand (1 + u(r, z)) dr, see [18℄. Then, the Tcρ2

distane is bounded from above bythe expetation under ν̂ of this generalized distane integrated over Λ aordingto the marks distribution.Proof. By the Girsanov Theorem, there exists a preditable proess u suh thatfor any ompat set K ∈ B(Λ), the proess
t 7→ ω̂([0, t] × K) −

∫ t

0

∫

K

(1 + u(s, z)) ds dσ(z),is a ν̂-martingale. Moreover, the onditional expetation Lt := E [L|Ft] might beidenti�ed as follows:
Lt = exp

{∫ t

0

∫

Λ

ln(1 + u(s, z)) dω̂(s, z) −
∫ t

0

∫

Λ

u(s, z) ds dσ(z)

}

= E
(∫ t

0

∫

Λ

u(s, z) d(ω̂ − λ ⊗ σ)(s, z)

)

= 1 +

∫ t

0

∫

Λ

Ls−u(s, z) d(ω̂ − λ ⊗ σ)(s, z),where E denotes the lassial Doléans-Dade exponential. On the other hand, theClark formula (3.5) extended to the set (0, +∞) indues that
Lt = 1 +

∫ t

0

∫

Λ

E
[
∇♯

s,zLt|Fs−

] d(ω̂ − λ ⊗ σ)(s, z).By identi�ation, we obtain:
u(s, z) =

E
[
∇♯

s,zLt|Fs−

]

Ls−

=
E

[
∇♯

s,zL|Fs−

]

Ls−

,sine for any s ∈ (0, t) a ommutation relation holds between the disrete gradient
∇♯

s,z and the onditional expetation knowing Ft, f. for instane Lemma 3.2 in[13℄. De�ne on ΓbΛ the time-hange on�guration τω̂ by
τω̂ =

∑

(ti,zi)∈bω

εv(ti,zi),zi
,



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 15where v(t, z) is given above. By Theorem 3 in [5℄, the distribution of τω̂ under ν̂ isnothing but the law of the on�guration ω̂ under µ̂. Hene using Cauhy-Shwarz'inequality in the seond line below, we obtain:
Tcρ2

(µ̂, ν̂) ≤ Ebν [ρ̂2(ω̂, τ ω̂)]

≤ Ebν

[∫

Λ

∫ +∞

0

|t − v(t, z)|2 dω̂(t, z)

]1/2

= Ebν

[∫

Λ

∫ +∞

0

|t − v(t, z)|2 dvdt
(t, z) dt dσ(z)

]1/2

,where we used the lassial ompensation formula for stohasti integrals withrespet to Poisson random measures. Finally, the hange of variable r = v(t, z)for z ∈ Λ being �xed allows us to obtain the desired inequality (3.6). �4. Appliations4.1. Distane estimates between proesses. The purpose of the present partis to apply our main results Theorems 3.2 and 3.4 to provide distane estimatesbetween a Poisson proess and several other more sophistiated proesses, suh asCox or Gibbs proesses. See for instane the pioneer monograph [3℄ or also [2, 17℄for similar results with respet to another (bounded) distanes on the on�gurationspae ΓΛ. The three �rst examples below rely on the total variation distane ρ1,whereas in the last one the Wasserstein distane ρ2 is onsidered.Poisson proesses. Here the probability measure ν is supposed to be anotherPoisson measure on ΓΛ, where Λ is a σ-ompat metri spae.Proposition 4.1. Let µτ be a Poisson measure on ΓΛ of intensity τ . We assumethat τ admits a density p with respet to σ suh that p− 1 ∈ L1(σ). Then we have
Tρ1(µσ, µτ ) ≤

∫

Λ

|p(x) − 1| dσ(x). (4.1)Proof. Sine µτ is a Poisson measure on ΓΛ of intensity τ , it is well known that itis absolutely ontinuous with respet to µσ and the density L is given by
L(ω) = exp

{∫

Λ

log p(x) dω(x) +

∫

Λ

(1 − p(x)) dσ(x)

}
.It is then straightforward that ∇♯

xL = L(p(x) − 1), hene by Theorem 3.2,
Tρ1(µσ, µτ ) ≤ Eµσ

[
L

∫

Λ

|p(x) − 1| dσ(x)

]
=

∫

Λ

|p(x) − 1| dσ(x).The proof is ahieved. �Note that in this very simple situation, the inequality (3.4) yields the samebound. Indeed, sine p is deterministi, the density L has the following haosrepresentation
L = 1 +

∞∑

n=1

1

n!
Jn

(
(p − 1)⊗n

)
,



16 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYf. identity (7) in [16℄, so that we have
((Id +L♯)−1∇♯

xL = (p(x) − 1)
∞∑

n=1

1

(n − 1)!
Jn−1

(
(p − 1)⊗n−1

)
= (p(x) − 1)L.Atually, one might obtain the inequality (4.1) by using another very intuitiveapproah. Indeed, let ω0, ω1 and ω2 be three independent on�gurations in ΓΛwith respetive intensitiesdσ0 := (p ∧ 1) dσ, σ1 := σ − σ0, σ2 := τ − σ0.Then ω0 + ω1 and ω0 + ω2 have respetive distribution µσ and µτ . Hene we have

Tρ1(µσ, µτ ) = inf {E [ρ1(ω, ω̄)] : ω ∼ µσ, ω̄ ∼ µτ}
≤ E [ρ1(ω0 + ω1, ω0 + ω2)]

= E [(ω1 + ω2)(Λ)]

=

∫

Λ

|p(x) − 1| dσ(x).Cox proesses. A Cox proess is a Poisson proess with a random intensity.To onstrut a Cox proess, we need to enlarge our probability spae. Reallthat M(Λ) is the spae of positive and di�use Radon measures on Λ endowedwith the vague topology and the orresponding Borel σ-�eld. Given an arbitraryprobability measure PM on M(Λ), we denote by M the anonial random variableon (M(Λ),PM ), i.e. M given by M(m) = m has distribution PM . On the spae
ΓΛ × M(Λ), we onsider the probability measuresdµ′

M (ω, m) := dµm(ω) dPM (m) and dµ′
σ(ω, m) := dµσ(ω) dPM (m).Note that the seond one is the distribution of the independent ouple (N, M),where N is the anonial random variable on ΓΛ with distribution µσ.As notied in Setion 2.1, the appliation m 7→ Tρ1 (µm, µσ) is lower semi-onti-nuous, hene measurable. The distribution µ′

M on ΓΛ is said to be Cox wheneverfor any funtion f ∈ C0(Λ),
Eµ′

M

[
exp

(∫

Λ

f dω

) ∣∣∣∣M
]

= exp

{∫

Λ

(ef − 1) dM

}
.In the de�nition of the distane between µ′

M and µ′
σ, we do not inlude anyinformation on M , so that the distane ρ1 remains the same and we have:

Tρ1(µ
′
σ, µ′

M ) = sup
F∈ρ1−Lip1

∫

ΓΛ×M(Λ)

F (ω) dµ′
σ(ω, m) −

∫

ΓΛ×M(Λ)

F (ω) dµ′
M (ω, m)

= sup
F∈ρ1−Lip1

∫

M(Λ)

(∫

ΓΛ

F (ω) d(µσ − µm)(ω)

)
dPM (m).Proposition 4.2. Assume that µ′

σ-a.s., the measure M is absolutely ontinuouswith respet to σ and that there exists a measurable version of dM/ dσ and suhthat dM/ dσ − 1 ∈ L1(µ′
σ ⊗ σ). Then we have

Tρ1(µ
′
σ, µ′

M ) ≤ Eµ′

σ

[∫

Λ

∣∣∣∣
dMdσ (x) − 1

∣∣∣∣ dσ(x)

]
.
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Tρ1(µ

′
σ, µ′

M ) ≤
∫

M(Λ)

sup
F∈ρ1−Lip1

(∫

ΓΛ

F (ω) d(µσ − µm)(ω)

) dPM (m)

=

∫

M(Λ)

Tρ1(µσ, µm) dPM (m)

≤
∫

M(Λ)

∫

Λ

∣∣∣∣
dmdσ

(x) − 1

∣∣∣∣ dσ(x) dPM (m),where the last inequality follows from Proposition 4.1. �Gibbs proesses. Let Λ = R
k and assume that the measure ν is a Gibbsmeasure on ΓΛ with respet to the referene measure µσ, i.e. the density of ν withrespet to µσ is of the form L = e−V , where

V (ω) :=

∫

Λ

∫

Λ

φ(x − y) dω(x) dω(y) < +∞, µσ − a.s.,and where the potential φ : Λ → (0, +∞) is suh that φ(x) = φ(−x) and
∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y) < +∞.We have the following result.Proposition 4.3. The Rubinstein distane Tρ1 between the Poisson measure µσand the Gibbs measure ν is bounded as follows:
Tρ1(µσ, ν) ≤ 2

∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y).Proof. Sine V is µσ-a.s. �nite, so does ∫
Λ

φ(x − y) dω(y) for any x. We have:
∇♯

xL(ω) = −L(ω)

(
1 − exp

{
−2

∫

Λ

φ(x − y) dω(y)

})
, x ∈ Λ.Sine 0 ≤ L ≤ 1, Theorem 3.2 together with the inequality 1 − e−u ≤ u imply:

Tρ1 (µσ, ν) ≤ Eµσ

[
L

∫

Λ

(
1 − exp

{
−2

∫

Λ

φ(x − y) dω(y)

}) dσ(x)

]

≤ Eµσ

[
L

∫

Λ

2

∫

Λ

φ(x − y) dω(y) dσ(x)

]

≤ 2 Eµσ

[∫

Λ

∫

Λ

φ(x − y) dω(y) dσ(x)

]

= 2

∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y).The proof is omplete. �Poisson proesses on the half-line. In this example, we give a bound on theRubinstein distane between Poisson proesses, with respet to the Wassersteindistane ρ2. Consider to simplify Poisson proesses on R+ (the generalizationto multivariate Poisson proesses is straightforward). Letting U : R+ → R bea ontinuously di�erentiable funtion vanishing at in�nity and with U(0) = 0,



18 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYwe also assume that U ∈ L2(λ), where λ is the Lebesgue measure, and that itsderivative U ′ is valued in (−1, +∞). A typial example of suh a funtion is
U(t) = t/(1 + t3), t ≥ 0. Then we obtain by Theorem 3.4 the following result.Proposition 4.4. Let µλ be the Poisson measure of Lebesgue intensity λ on theon�guration spae ΓR+ , and onsider the Poisson measure ν of intensity (1 +
U ′) dλ. Then we have the upper bound on Tρ2(µλ, ν):

Tρ2 (µλ, ν) ≤ ‖U‖L2(λ) .4.2. Tail and isoperimetri estimates. The aim of this �nal part is to de-rive several onsequenes of Theorem 3.2 above in terms of tail estimates andisoperimetri inequalities.Tail estimates. Our main result Theorem 3.2 allows us to obtain a �rsttail estimate as follows. Let F ∈ ρ1 − Lip1 be entered and let λ > 0. Denote
Zλ = Eµσ

[
eλF

] and onsider νλ the absolutely ontinuous probability measurewith density eλF /Zλ with respet to µσ. Using a somewhat similar argument asin [11℄, we have: ddλ
log Zλ =

∫

ΓΛ

F dνλ

≤ Tρ1(µσ, νλ)

≤ Eµσ

[∫

Λ

|∇♯
xeλF | dσ(x)

]

≤ (eλ − 1) ‖∇♯F‖1,∞,where in the last inequality we used the fat that the funtion x 7→ (ex − 1)/x isnon-dereasing on (0, +∞). Here the notation ‖∇♯F‖1,∞ stands for
‖∇♯F‖1,∞ := µσ − esssup

∫

Λ

|∇♯
xF | dσ(x).Hene we obtain the following bound on the Laplae transform:

Eµσ

[
eλF

]
= Zλ ≤ exp

{
‖∇♯F‖1,∞ (eλ − λ − 1)

}
, λ > 0.Finally using Chebyhev's inequality, we get the deviation inequality available forany r ≥ 0:

µσ (F ≥ r) ≤ exp

{
r − (r + ‖∇♯F‖1,∞) log

(
1 +

r

‖∇♯F‖1,∞

)}
. (4.2)Note that suh a tail estimate is somewhat similar to that established for in-stane by Wu and Houdré-Privault in [19, 11℄. However, in ontrast to their results,we do not exhibit at the denominator the sharp variane term

‖∇♯F‖2
2,∞ := µσ − esssup

∫

Λ

|∇♯
xF |2 dσ(x),sine our method relies on the L1-inequality (3.2). In partiular, if we apply (4.2)for instane to the entered funtion F ∈ ρ1 − Lip1 given by F (ω) = (ω − σ)(K),where K is some ompat subset of Λ, we obtain the inequality

µσ (ω(K) ≥ σ(K) + r) ≤ er−(r+σ(K)) log(1+ r
σ(K) ).



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 19Unfortunately, neither (4.2) nor the results emphasized in [19, 11℄ are sharp interms of the deviation level r sine the following asymptoti estimate holds, f. forinstane p.1225 of Houdré [10℄:
µσ (ω(K) ≥ σ(K) + r) = µσ (ω(K) ≥ [σ(K) + r])

∼
r→+∞

e[σ(K)+r]−σ(K)−[σ(K)+r] log( [σ(K)+r]
σ(K) )

√
2π[σ(K) + r]

,where [R] := inf{N ∈ N∗ : N ≥ R} denotes the upper integer part of any positivereal number R. Hene the purpose of this part is to reover this multipliativepolynomial fator by means of a simple use of Theorem 3.2. We proeed as follows.Let ν be the absolutely ontinuous probability measure with density with respetto µσ:
L :=

1

µσ (ω(K) ≥ [σ(K) + r])
1{ω(K)≥[σ(K)+r]}, r > 0.Using Theorem 3.2, we ompute as follows:

µσ (ω(K) ≥ σ(K) + r)

= µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(∫

ΓΛ

ω(K)L(ω) dµσ(ω)

)
µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(
Tρ1(µσ, ν) + σ(K)

)
µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(
Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
+ σ(K)

)
µσ (ω(K) ≥ [σ(K) + r])

=
σ(K)

[σ(K) + r]

(
µσ (ω(K) = [σ(K) + r] − 1) + µσ (ω(K) ≥ [σ(K) + r])

)
,so that we obtain

µσ (ω(K) ≥ σ(K) + r) ≤ [σ(K) + r]

[σ(K) + r] − σ(K)
e−σ(K) σ(K)[σ(K)+r]

[σ(K) + r]!

≤ [σ(K) + r]

r
e−σ(K) σ(K)[σ(K)+r]

[σ(K) + r]!
.Hene using the lower bound below on the fatorial funtion of any positive integer

N , f. for instane [8℄:
√

2π NN+ 1
2 e−N ≤ N ! ≤

√
2π NN+ 1

2 e−N+ 1
12N , (4.3)we obtain the following result.Proposition 4.5. Given any ompat set K ⊂ Λ and any r > 0, we have the tailestimate:

µσ (ω(K) ≥ σ(K) + r) ≤ [σ(K) + r]

r

e[σ(K)+r]−σ(K)−[σ(K)+r] log( [σ(K)+r]
σ(K) )

√
2π[σ(K) + r]

.



20 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYTo the knowledge of the authors, although the latter non-asymptoti tail es-timate is straightforward to establish via Theorem 3.2 as we have seen above, itseems to be new and reovers exatly the asymptoti regime emphasized above.Note that Paulauskas obtained a somewhat similar deviation inequality in Propo-sition 3 in [14℄, but with a onstant whih is however not sharp, in ontrast toours.Now we aim at extending this tail estimate to a more general ontext. Givena �xed on�guration η ∈ ΓΛ, we provide in the sequel a deviation inequality fromits mean of the total variation distane ρ1 between η and random on�gurations.Assume that σ is a �nite measure. Denoting the funtion ρη := ρ1(·, η) whihlearly belongs to the set ρ1 − Lip1 and using the same argument as above, wehave
µσ (ρη ≥ Eµσ

[ρη] + r)

= µσ (ρη ≥ [Eµσ
[ρη] + r])

≤ 1

[Eµσ
[ρη] + r]

Eµσ

[
ρη 1{ρη≥[Eµσ [ρη ]+r]}

]

≤ 1

[Eµσ
[ρη] + r]

(
Eµσ

[∫

Λ

|∇♯
x1{ρη≥[Eµσ [ρη ]+r]}| dσ(x)

]

+Eµσ
[ρη] µσ (ρη ≥ [Eµσ

[ρη] + r])

)

≤ [σ(Λ) + r] − r

[Eµσ
[ρη] + r]

(
µσ (ρη ≥ [Eµσ

[ρη] + r − 1]) − µσ (ρη ≥ [Eµσ
[ρη] + r])

)

+
1

[Eµσ
[ρη] + r]

Eµσ
[ρη] µσ (ρη ≥ [Eµσ

[ρη] + r]) ,sine the intensity measure σ is di�use. Hene we obtain for any r > 0:
µσ (ρη ≥ [Eµσ

[ρη] + r]) ≤ [σ(Λ) + r] − r

[σ(Λ) + r]
µσ (ρη ≥ [Eµσ

[ρη] + r − 1]) ,and iterating the proedure entails the inequality
µσ (ρη ≥ [Eµσ

[ρη] + r]) ≤ ([σ(Λ) + r] − r)
r
[σ(Λ)]!

[σ(Λ) + r]!
.Finally using the estimates (4.3) yield the following result.Proposition 4.6. Given any �xed on�guration η ∈ ΓΛ and provided the intensitymeasure σ is �nite, we have for any r > 0:

µσ (ρη ≥ Eµσ
[ρη] + r)

≤
√

2π[σ(Λ)][σ(Λ)][σ(Λ)]e
1

12[σ(Λ)]

σ(Λ)σ(Λ)

e[σ(Λ)+r]−[σ(Λ)]−[σ(Λ)+r] log( [σ(Λ)+r]
[σ(Λ)+r]−r )

√
2π[σ(Λ) + r]

,where ρη denotes the total variation distane ρ1(·, η).



RUBINSTEIN DISTANCES ON CONFIGURATION SPACES 21Hene one dedues that the tail behavior of the total variation distane is om-parable to the previous ones, up to onstant multipliative fators depending onthe total mass σ(Λ).Isoperimetri inequality. Here the distane of interest is the trivial distane
ρ0. In the sequel, we assume that the intensity measure σ is �nite, so that thedomain Dom∇♯ ontains the indiator funtions 1A, A ∈ B(ΓΛ).Given a Borel set A ∈ B(ΓΛ), we de�ne its surfae measure as

µσ(∂A) := Eµσ

[∫

Λ

|∇♯
x1A| dσ(x)

]
.Denote hµσ

the lassial isoperimetri onstant that we aim at estimating:
hµσ

= 2 inf
0<µσ(A)<1

µσ(∂A)

µσ(A)(1 − µσ(A))
.By the following o-area formula, available for any F ∈ Dom∇♯:

Eµσ

[∫

Λ

|∇♯
xF | dσ(x)

]
= Eµσ

[∫

Λ

∫ +∞

−∞

|∇♯
x1{F>t}| dt dσ(x)

]
,whih might be dedued from the identity |a− b| =

∫ +∞

−∞ |1{a>t} − 1{b>t}| dt, theonstant hµσ
is also the best onstant h in the L1-type funtional inequality

h Eµσ
[|F − Eµσ

[F ]|] ≤ 2 Eµσ

[∫

Λ

|∇♯
xF | dσ(x)

]
, F ∈ Dom∇♯. (4.4)We have the following result, whih is onvenient for small total mass σ(Λ).Proposition 4.7. Assume that the measure σ is �nite. Then we have

1 ≤ hµσ
≤ σ(Λ)

1 − e−σ(Λ)
. (4.5)In partiular, we have the asymptoti for small total mass:

lim
σ(Λ)→0

hµσ
= 1.Remark 4.8. Note that Houdré and Privault established �rst the inequality hµσ

≥
1 by using Poinaré inequality, f. Proposition 6.4 in [12℄. Hene we reover theirresult via another approah. On the other hand, our estimate in the right-hand-side of (4.5) is sharp for small values of σ(Λ), but is worse than their estimate forlarge σ(Λ) sine their upper bound is 8 + 8

√
σ(Λ).Proof. In order to show hµσ

≥ 1, let us establish the inequality (4.4) with h = 1.By homogeneity, it is su�ient to prove the result for funtionals F ∈ Dom∇♯suh that Eµσ
[F ] = 1. Denote by ν the absolutely ontinuous probability measurewith density F with respet to the Poisson measure µσ. Using duality,
Tρ0 (µσ, ν) = sup

G∈ρ0−Lip1

Eµσ
[G(F − 1)]

=
1

2
sup

µσ −esssup |G|≤1

Eµσ
[G(F − 1)]

=
1

2
Eµσ

[|F − 1|] .



22 LAURENT DECREUSEFOND, ALDÉRIC JOULIN, AND NICOLAS SAVYHene using Theorem 3.2 with the trivial distane ρ0, we get the inequality (4.4)with h = 1, thus obtaining the desired inequality hµσ
≥ 1. On the other hand, toprovide the upper bound in (4.5), note that we have by the very de�nition of hµσ

:
hµσ

≤ 2 µσ(∂{ω(Λ) = 0})
µσ(ω(Λ) = 0) (1 − µσ(ω(Λ) = 0))

=
σ(Λ)

1 − e−σ(Λ)
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