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Abstract. We establish a convex ordering between stochastic integrals driven
by strictly α-stable processes with index α ∈ (1, 2). Our approach is based
on the forward-backward stochastic calculus for martingales together with a
suitable decomposition of stable stochastic integrals.

1. Introduction

It is by now well-known that theoretical development of stochastic orders pro-
vides elegant and practical tools for comparison of random phenomena, motivated
by various applications in financial mathematics, risk management and stochastic
networks. One of the most relevant stochastic orders is the convex order. Given
X and Y two integrable random variables, we say that X is less than Y in the
convex order, and we write X ≤cx Y , if we have the inequality

E [φ(X)] ≤ E [φ(Y )] ,
for all convex functions φ such that the expectations exist. Such a stochastic order
has some nice properties, among others the stability under mixtures and under
convolution. In particular, if X and Y are two integrable random variables such
that X ≤cx Y , then they have the same mean and moreover,

E[(X −K)+] ≤ E[(Y −K)+], K ∈ R,
where F+ denotes the positive part of a given random variable F . The latter
inequality reveals to be convenient for financial applications (option pricing, hedg-
ing) and is actually equivalent to another stochastic order commonly denoted ≤icx,
the so-called increasing convex order, for which φ is additionally assumed to be
non-decreasing. Another interesting consequence of the convex ordering is to fa-
cilitate the computation of distances between distributions such as the stop-loss
distances (including the famous L1-Wasserstein distance) and the Zolotarev dis-
tances, see for instance [4]. Historically, the notion of convex comparison was first
introduced by Hoeffding in [9, 10] to obtain quantitative tail estimates. We refer
to the monographs [15, 19] for an extensive analysis of many stochastic orders and
their potential applications, with precise credit and references for this large body of
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work. From a dynamical point of view, the convex ordering has been investigated
in the context of Markov processes and semimartingales. See for instance the pa-
per [8] dealing with diffusions, with a special emphasis on the Black-Scholes model,
and also [2, 3] for option pricing involving general semimartingales and Lévy pro-
cesses. In all these papers, the key point is the so-called propagation of convexity
property. Other references such as [17, 18] use techniques based on the comparabil-
ity of the infinitesimal generators of Markov processes together with the stochastic
monotonicity property. Recently, another fruitful method was considered in [13],
namely the so-called forward-backward stochastic calculus for martingales, which
was followed by a series of papers based on this technology, cf. [1, 6, 7, 5, 14]. This
approach reveals to be convenient in the non-Markovian framework, when dealing
with Brownian stochastic integrals or stochastic integrals driven by a compensated
Poisson random measure, and might be extended without any additional effort to
the case of stochastic integrals driven by a Lévy process. However, the underlying
assumptions required to obtain these convex comparison results enforce the driving
Lévy process to have bounded jumps, excluding for instance the important class
of stable processes.

Following these observations, the aim of this note is to establish a convex order-
ing for the stochastic integral

∫ T
0 KtdZt driven by a real strictly α-stable process

(Zt)t∈[0,T ], where T > 0 is a finite time horizon. We restrict our attention to the
case α ∈ (1, 2) since the convex ordering only makes sense for random variables
with finite mean. Although this stable process has sample paths of infinite vari-
ation and unbounded jumps, the forward-backward stochastic calculus combined
with a suitable representation of stable stochastic integrals allow us to show the
convex comparison

∫ T

0
KtdZt ≤cx

∫ T

0
k(t)dZt,

where k is some deterministic function bounding, in a particular sense, the pre-
dictable process (Kt)t∈[0,T ].

The paper is organized as follows. In Section 2, we recall some basic material
on stable processes and stable stochastic integrals. Then we state our main contri-
bution of the present work, Theorem 2.1, in which we derive the convex ordering
mentioned above. Our result is a special instance of Theorem 2.2, which is more
general but less tractable for practical issues since it compares in the convex or-
der forward and backward stable stochastic integrals. Our last part, Section 3, is
devoted to the proofs of these two results, on the basis of the forward-backward
stochastic calculus introduced in [13] together with the representation of stable
stochastic integrals developed by Kallenberg in [12].
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2. Preliminaries and main results

Consider on a probability space (Ω,A,P) a strictly α-stable process Z := (Zt)t∈[0,T ]
where T is a finite time horizon and α ∈ (1, 2). Here, strict-stability means the
following self-similarity property

(Zkt)t∈[0,T ]
d= (k1/α Zt)t∈[0,T ],

where k > 0 and the equality d= is understood in the sense of finite dimensional
distributions. The characteristic function is of the form

ϕZt(u) = exp
(
t
∫ +∞

−∞
(eiuy − 1− iuy)ν(dy)

)
, t ∈ [0, T ],

where ν stands for the Lévy measure defined on R \ {0} by

ν(dx) := dx

|x|α+1

(
c+ 1{x>0} + c− 1{x<0}

)
.

The parameters c+, c− above are non-negative with furthermore c+ + c− > 0. In
the case c+ = c− > 0, the process is said to be symmetric. The centered process Z
has sample paths of infinite variation and unbounded jumps, and it is a pure-jump
martingale with respect to its natural filtration FZt := σ(Zs : s ∈ [0, t]), t ∈ [0, T ].
Denoting FZ this filtration, we assume that it satisfies the usual hypothesis, that
is, completeness and right-continuity. The Lévy-Itô decomposition is given by

Zt = bR t+
∫ t

0

∫
|x|≤R

x (µ− σ)(ds, dx) +
∫ t

0

∫
|x|>R

xµ(ds, dx), t ∈ [0, T ],

where R is some arbitrary positive truncation level (classically chosen to be 1)
and µ is a Poisson random measure on R+×R with intensity measure σ(dt, dx) =
dt⊗ ν(dx). Here bR is the drift parameter given by

bR := −
∫
|x|>R

x ν(dx) = −(c+ − c−)R1−α

α− 1 .

Denote respectively by ZR− and ZR+ the two independent Lévy processes defined
by the integrals above. The first one has a compactly supported Lévy measure
and is a square-integrable martingale with infinitely many jumps bounded by R
on each compact time interval, whereas the second one is an integrable compound
Poisson process with jumps larger than R. Let K be a FZ-predictable process
belonging to L2(Ω× [0, T ]), i.e.,∫ T

0
E[K2

t ] dt < +∞.

Then the stable integral XT :=
∫ T

0 Ks dZs is well-defined as a stochastic integral
with respect to the Lévy-Itô decomposition of Z, that is XT = ART +XR−

T +XR+
T

with

ART := bR

∫ T

0
Kt dt, XR−

T :=
∫ T

0
Kt dZ

R−
t and XR+

T :=
∫ T

0
Kt dZ

R+
t ,
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the second aforementioned process being a square-integrable martingale whereas
the two other integrals are constructed in the Lebesgue-Stieltjes sense. In partic-
ular XT is integrable and therefore the process X given by

Xt := E[XT |FZt ] =
∫ t

0
Ks dZs, t ∈ [0, T ],

is a FZ-martingale.
Let us turn to the question we are interested in, namely to establish a convex

ordering between stable stochastic integrals. When dealing with a symmetric sta-
ble process Z and deterministic integrands, we can proceed directly as follows. Let
k, k̃ ∈ L2([0, T ]) be two functions such that |k(t)| ≤ |k̃(t)| for any t ∈ [0, T ]. Then
the stable integrals

XT :=
∫ T

0
k(t)dZt and X̃T :=

∫ T

0
k̃(t)dZt,

have the same distribution as the random variables Z ′σT
and Z ′σ̃T

respectively,
where Z ′ is a copy of the process Z and the quantities σT and σ̃T are defined by

σT :=
∫ T

0
|k(t)|αdt and σ̃T :=

∫ T

0
|k̃(t)|αdt.

Denoting FZ′ the natural filtration of Z ′, Jensen’s inequality entails
E [φ (XT )] = E[φ(Z ′σT

)]
= E[φ(E[Z ′σ̃T

| FZ′σT
])]

≤ E[E[φ(Z ′σ̃T
) | FZ′σT

]]
= E[φ(Z ′σ̃T

)]
= E[φ(X̃T )],

where φ is a convex function such that the expectations exist. In other words we
obtain the convex ordering XT ≤cx X̃T . For instance, such a result might be used
to obtain a convex ordering between stable driven Ornstein-Uhlenbeck processes.
Indeed consider the following random variables

XT := e−θTX0 +
∫ T

0
e−θ(T−t)dZt and YT := e−κTX0 +

∫ T

0
e−κ(T−t)dZt,

where Z is a symmetric α-stable process independent of the centered initial value
X0, and θ, κ ∈ R are two parameters such that θ ≥ κ. If we denote

k(t) := e−θ(T−t) and k̃(t) := e−κ(T−t), t ∈ [0, T ],

then we have k(t) ≤ k̃(t) for any t ∈ [0, T ] so that the previous convex ordering
yields ∫ T

0
e−θ(T−t)dZt ≤cx

∫ T

0
e−κ(T−t)dZt.
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Applying now the following classical property on the increasing convex order ≤icx,
cf. [15]:

if 0 ≤ a ≤ b and E[X0] = 0 then aX0 ≤icx bX0,

then with the choices of a := e−θT and b := e−κT , we obtain the increasing convex
ordering XT ≤icx YT (after a slight modification of the argument emphasized to
derive the stability by convolution of the order≤icx). Finally, since E[XT ] = E[YT ],
the order XT ≤icx YT thus implies the convex order XT ≤cx YT .

In the case of non-deterministic integrands, the story is more delicate, as it is
already the case for Brownian stochastic integrals, cf. [8] and also the recent papers
[5, 14] in which the authors overcome this difficulty by using the forward-backward
stochastic calculus combined with the Malliavin calculus. In the stable setting we
focus on in this note, we adapt the forward-backward stochastic calculus initially
developed in [13] and use a convenient representation of stable stochastic integrals
emphasized by Kallenberg in [12] to obtain the main result of this note. Since it
is a particular case of the more abstract Theorem 2.2 which will be stated in a
moment, we postpone the proof to Section 3. Recall that the notation F+ and F−
stand respectively for the positive and negative parts of a given random variable
or deterministic function F .

Theorem 2.1. Let Z be a strictly stable process with index α ∈ (1, 2). Let K ∈
L2(Ω × [0, T ]) be a predictable process with respect to the natural filtration of Z
and let k ∈ L2([0, T ]). Denote for any t ∈ [0, T ] the rates

γt := c
1/α
+ K+

t + c
1/α
− K−t and γ̃t := c

1/α
+ k+(t) + c

1/α
− k−(t),

λt := c
1/α
+ K−t + c

1/α
− K+

t and λ̃t := c
1/α
+ k−(t) + c

1/α
− k+(t),

and assume that they satisfy the a.s. conditions:

γt ≤ γ̃t and λt ≤ λ̃t, t ∈ [0, T ].

Then the following convex ordering between stable stochastic integrals holds:∫ T

0
KtdZt ≤cx

∫ T

0
k(t)dZt.

Certainly, if the two inequalities in the assumptions are reversed, then the convex
ordering is also reversed, as expected. Moreover, note that our result might be
applied, among others, in the following two classical situations:

◦ the process Z is symmetric and a.s. |Kt| ≤ |k(t)| for any t ∈ [0, T ];
◦ both K and k are of the same constant sign and satisfy a.s. Kt ≤ k(t) for

any t ∈ [0, T ].
For practical issues, we mention that the convex comparison result above is

available for all convex functions φ whose growth at infinity is at most polynomial
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of degree p, with 1 ≤ p < α. For instance, letting the convex function φ(x) := |x|p
where 1 ≤ p < α, we need to verify that

E
[∣∣∣∣∣
∫ T

0
KtdZt

∣∣∣∣∣
p]
< +∞,

so that we will obtain, under the assumptions of Theorem 2.1, the following in-
equality:

E
[∣∣∣∣∣
∫ T

0
KtdZt

∣∣∣∣∣
p]
≤ E

[∣∣∣∣∣
∫ T

0
k(t)dZt

∣∣∣∣∣
p]
.

Let us proceed as in [11] by using a convenient truncation level R in the Lévy-Itô
decomposition. Using the notation introduced previously with XT :=

∫ T
0 KtdZt,

we have for any fixed x > 0,

P (|XT | > x) ≤ P
(
|AR−T | > x/2

)
+ P

(
|XR−

T | > x/2
)

+ P
(
XR+
T 6= 0

)
.

Denote TR1 the first jump time of the Poisson process (µ ({y ∈ R : |y| > R} × [0, t]))t∈[0,T ]
on the set {y ∈ R : |y| > R}. Since TR1 is exponentially distributed with parameter
ν ({y ∈ R : |y| > R}), we have

P(XR+
T 6= 0) ≤ P(TR1 ≤ T )

≤ T ν ({y ∈ R : |y| > R})

= (c+ + c−)T
αRα

.

Now Chebyshev’s inequality and the isometry formula for Poisson stochastic inte-
grals entail

P
(
|XR−

T | > x/2
)
≤ 4

x2 E

∣∣∣∣∣
∫ T

0

∫
|y|≤R

Kt y (µ− σ)(dt, dy)
∣∣∣∣∣
2


= 4
x2

∫
|y|≤R

y2 ν(dy)
∫ T

0
E[K2

t ] dt

= 4 (c+ + c−)R2−α

(2− α)x2

∫ T

0
E[K2

t ] dt,

whereas by Markov’s inequality,

P
(
|ART | > x/2

)
≤ 2 |bR|

x

∫ T

0
E[|Kt|] dt

= 2 |c+ − c−|R1−α

(α− 1)x

∫ T

0
E[|Kt|] dt.
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Therefore choosing the truncation level R = x and rearranging the terms above
entail the existence of some positive constant, say M , depending on all the param-
eters except x, such that P (|XT | > x) ≤Mx−α. Finally, we obtain by integrating

E [|XT |p] =
∫ +∞

0
p xp−1 P (|XT | > x) dx

≤ 1 +M
∫ +∞

1

dx

xα−p+1 ,

which is finite since p < α.
In order to state our second main contribution of the present note, let us recall

the notion of backward processes. A backward strictly α-stable process Z̃ is a
strictly α-stable process running backwards in time. It shares the same properties
as the (forward) process Z and in particular it is a backward martingale with
respect to its own filtration. Indeed if F Z̃ denotes the complete and left-continuous
filtration F Z̃t := σ(Z̃s : t ≤ s ≤ T ), then the backward martingale property is
satisfied, that is

E[Z̃s|F Z̃t ] = Z̃t, 0 ≤ s ≤ t ≤ T.

For instance the process Z̃ defined by

Z̃t := ZT−t, with F Z̃t := FZT−t, t ∈ [0, T ],
is a backward strictly α-stable process. For the sake of briefness, the (forward)
processes considered in the sequel are assumed to be right-continuous with left
limits, whereas the backward processes are naturally supposed to be left-continuous
with right limits. Now let K̃ be a F Z̃-predictable process belonging to L2(Ω ×
[0, T ]). Then the backward stable integral X̃0 :=

∫ T
0 K̃s d̃Z̃s is defined similarly

to the forward case, the backward Itô differential d̃ meaning that the limit in
probability is taken over sums of the type

pn∑
i=1

H̃tni
(Z̃tni−1

− Z̃tni ),

for refining subdivisions (tni ) of [0, T ]. The random variable X̃0 is integrable and
thus the backward process X̃ given by

X̃t := E[X̃0|F Z̃t ] =
∫ T

t
K̃s d̃Z̃s, t ∈ [0, T ],

is a F Z̃-martingale.
Now we are in position to state our second result on which Theorem 2.1 is based.

In order to relieve the presentation, the proof is also postponed to Section 3.

Theorem 2.2. Let Z, Z̃ be two independent forward and backward strictly stable
processes, respectively, both with the same index α ∈ (1, 2). Denote c+, c− and
c̃+, c̃− the rates of the respective Lévy measures ν and ν̃. Let K, K̃ ∈ L2(Ω× [0, T ])
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be two predictable processes with respect to the natural filtrations of Z and Z̃,
respectively. Denote for any t ∈ [0, T ] the rates

γt := c
1/α
+ K+

t + c
1/α
− K−t and γ̃t := c̃

1/α
+ K̃+

t + c̃
1/α
− K̃−t ,

λt := c
1/α
+ K−t + c

1/α
− K+

t and λ̃t := c̃
1/α
+ K̃−t + c̃

1/α
− K̃+

t ,

and assume that they satisfy the a.s. conditions:
γt ≤ γ̃t and λt ≤ λ̃t, t ∈ [0, T ].

Then we have the following convex ordering between forward and backward stable
stochastic integrals: ∫ T

0
KtdZt ≤cx

∫ T

0
K̃td̃Z̃t.

Our result remains in the spirit of the following well-known fact: if Z ′ is an
independent copy of Z and Z̃ is the backward process Z̃t = Z ′T−t, t ∈ [0, T ], then
the distribution of the random variable Zt + Z̃t does not depend on time t ∈ [0, T ]
and thus has the same distribution as ZT and Z̃0.

Before turning to the proofs, let us mention that Theorem 2.2 might be poten-
tially extended. Indeed, up to some slight changes in the proof below, we are able
to consider stable stochastic integrals for which a drift term is added, at the price
of weakening the convex order ≤cx by the increasing convex order ≤icx. Under
the assumptions and notation of Theorem 2.2, consider the drifted integrals∫ T

0
KtdZt +

∫ T

0
Ltdt and

∫ T

0
K̃td̃Z̃t +

∫ T

0
L̃tdt,

where the processes L, L̃ are respectively FZ- and F Z̃-adapted and satisfy the
a.s. inequality Lt ≤ L̃t for any t ∈ [0, T ]. Then one needs in the forthcoming
proof of Theorem 2.2 to assume that the convex functions of interest are also non-
decreasing to preserve the order of the drift parts, so that we obtain the increasing
convex ordering ∫ T

0
KtdZt +

∫ T

0
Ltdt ≤icx

∫ T

0
K̃td̃Z̃t +

∫ T

0
L̃tdt.

In particular under appropriate assumptions, the strict stability of the processes
Z, Z̃ might be relaxed since any integrable stable process can be transformed into
a strictly stable process by removing its expectation (thus corresponding to a drift
term).

3. Proofs

The core of the present part is devoted to the proof of Theorem 2.2 (the proof
of Theorem 2.1 will follow immediately). Before entering into the details, let us
concentrate first our attention on two important tools that will be used in the re-
mainder of the paper, namely the forward-backward stochastic calculus developed
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in [13] and the decomposition of stable stochastic integrals due to Kallenberg [12].
In the sequel we work under the assumptions and notation of Theorem 2.2.

Define the enlarged forward and backward filtrations F := (Ft)t∈[0,T ] and F̃ :=
(F̃t)t∈[0,T ] as

Ft := FZt ∨ F Z̃0 and F̃t := FZT ∨ F Z̃t , t ∈ [0, T ],

where we recall that FZ and F Z̃ are the natural filtrations generated by the pro-
cesses Z and Z̃, respectively. Then Z is still a F -martingale which is F̃ -adapted
whereas Z̃ is a F̃ -martingale which is F -adapted. In particular the processes X
and X̃ defined by

Xt :=
∫ t

0
KsdZs and X̃t :=

∫ T

t
K̃sd̃Z̃s, t ∈ [0, T ],

inherit the properties of Z and Z̃, respectively. Let ∆Xu := Xu − Xu− be the
jump of X at time u ∈ (0, T ] and define similarly the backward jump of X̃ at time
u ∈ [0, T ) by ∆̃X̃u := X̃u−X̃u+. Following [13], we recall Itô’s formula for forward-
backward martingales, applied in our context to the pure-jump stable stochastic
integrals X, X̃: for any real-valued function f ∈ C 1(R2) and any 0 ≤ s ≤ t ≤ T ,

f(Xt, X̃t) = f(Xs, X̃s) +
∫ t

s+

∂f

∂x1
(Xu−, X̃u) dXu −

∫ t−

s

∂f

∂x2
(Xu, X̃u+) d̃X̃u

+
∑
s<u≤t

(
f(Xu− + ∆Xu, X̃u)− f(Xu−, X̃u)−∆Xu

∂f

∂x1
(Xu−, X̃u)

)

−
∑
s≤u<t

(
f(Xu, X̃u+ + ∆̃X̃u)− f(Xu, X̃u+)− ∆̃X̃u

∂f

∂x2
(Xu, X̃u+)

)
,

where ∂f
∂xi

is the partial derivative of the function f with respect to the ith coordi-
nate, i ∈ {1, 2}.

Now let us introduce the decomposition of stable stochastic integrals emphasized
by Kallenberg in [12]. Since the following argument can be easily generalized to
the backward case, we will only focus our attention on the forward situation. First,
note that the Lévy measure ν of the strictly α-stable process Z is of the form

ν = c+ ν+ + c− ν−,

where ν+ and ν− are the measures on R+ and R−, respectively, with Lebesgue den-
sity |x|−α−1. Hence the self-similarity entails trivially the following representation

Z = c
1/α
+ Z ′ − c1/α

− Z ′′,

where Z ′, Z ′′ are two independent strictly α-stable processes with Lévy measure
ν+. In other words, this decomposition is obtained by separating the positive and
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negative jumps of Z. Therefore the process X can be rewritten as

Xt =
∫ t

0
c

1/α
+ Ks dZ

′
s −

∫ t

0
c

1/α
− Ks dZ

′′
s

=
∫ t

0
c

1/α
+ K+

s dZ
′
s +

∫ t

0
c

1/α
− K−s dZ

′′
s −

∫ t

0
c

1/α
+ K−s dZ

′
s −

∫ t

0
c

1/α
− K+

s dZ
′′
s .

Then Kallenberg’s decomposition for the stable stochastic integral X stands as
follows:

Xt =
∫ t

0
γs dẐ

′
s −

∫ t

0
λs dẐ

′′
s ,

where the processes Ẑ ′, Ẑ ′′ given by the stable stochastic integrals

Ẑ ′t =
∫ t

0
1{Ks≥0} dZ

′
s+
∫ t

0
1{Ks<0} dZ

′′
s and Ẑ ′′t =

∫ t

0
1{Ks<0} dZ

′
s+
∫ t

0
1{Ks≥0} dZ

′′
s ,

are independent and have the same distribution as Z ′, Z ′′.
As announced above, we are now in position to prove Theorem 2.2.

Proof of Theorem 2.2. Our aim is to establish the inequality

E
[
φ

(∫ T

0
KtdZt

)]
≤ E

[
φ

(∫ T

0
K̃td̃Z̃t

)]
,

for any convex function φ such that the expectations exist. Since this inequality
rewrites as

E
[
φ(XT + X̃T )

]
≤ E

[
φ(X0 + X̃0)

]
,

the proof will be achieved once we have established that the function t ∈ [0, T ] 7→
E[φ(Xt + X̃t)] is non-increasing. At the price of an unessential regularizing proce-
dure, we can assume without loss of generality that the convex function φ is also
C 1 and Lipschitz. Using then the Itô formula above with f(x, y) = φ(x + y), we
have

φ(Xt + X̃t) = φ(Xs + X̃s) +
∫ t

s+
φ′(Xu− + X̃u) dXu −

∫ t−

s
φ′(Xu + X̃u+) d̃X̃u

+JXs,t − J X̃s,t,

where JXs,t and J X̃s,t are defined by

JXs,t := ∑
s<u≤t

(
φ(Xu− + ∆Xu + X̃u)− φ(Xu− + X̃u)−∆Xu φ

′(Xu− + X̃u)
)
,

J X̃s,t := ∑
s≤u<t

(
φ(Xu + X̃u+ + ∆̃X̃u)− φ(Xu + X̃u+)− ∆̃X̃u φ

′(Xu + X̃u+)
)
.
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By Kallenberg’s decomposition of the stable stochastic integral X, we can rewrite
JXs,t in the following way:

JXs,t =
∑
s<u≤t

(
φ(Xu− + γu∆Ẑ ′u − λu∆Ẑ ′′u + X̃u)− φ(Xu− + X̃u))

−(γu∆Ẑ ′u − λu∆Ẑ ′′u)φ′(Xu− + X̃u)
)
.

Taking then expectation, we obtain

E
[
JXs,t

]
= E

[∫ t

s

∫ +∞

−∞

∫ +∞

−∞

(
φ(Xu + X̃u + γu x− λu y)− φ(Xu + X̃u)

−(γu x− λu y)φ′(Xu + X̃u)
)
σẐ′,Ẑ′′(du, dx, dy)

]
,

where σẐ′,Ẑ′′ is the F -dual predictable projection of the bivariate process (Ẑ ′, Ẑ ′′).
Since its coordinates are independent and have the same distribution as Z ′, Z ′′,
the measure σẐ′,Ẑ′′ is the tensor product of the Lebesgue measure on R+ and the
two-dimensional Lévy measure concentrated on the axis and with two marginals
ν+. Therefore we get from the above computations,

E
[
JXs,t

]
= E

[∫ t

s

∫ +∞

0

(
φ(Xu + X̃u + γu x)− φ(Xu + X̃u)− γu xφ′(Xu + X̃u)

)
du ν+(dx)

]
+E

[∫ t

s

∫ +∞

0

(
φ(Xu + X̃u − λu y)− φ(Xu + X̃u) + λu y φ

′(Xu + X̃u)
)
du ν+(dy)

]
= E

[∫ t

s

∫ +∞

0

(
φ(Xu + X̃u + a)− φ(Xu + X̃u)− a φ′(Xu + X̃u)

)
γαu du

da

|a|α+1

]

+E
[∫ t

s

∫ 0

−∞

(
φ(Xu + X̃u + b)− φ(Xu + X̃u)− b φ′(Xu + X̃u)

)
λαu du

db

|b|α+1

]
,

where in the last line we used two obvious changes of variables. Hence we obtain

E
[
JXs,t

]
= E

[∫ t

s

∫ +∞

−∞

(
φ(Xu + X̃u + x)− φ(Xu + X̃u)− xφ′(Xu + X̃u)

)
×(γαu 1{x>0} + λαu 1{x<0}) du

dx

|x|α+1

]
.

Certainly, a similar method applied in the backward case allows us to get

E
[
J X̃s,t

]
= E

[∫ t

s

∫ +∞

−∞

(
φ(X̃u +Xu + x)− φ(X̃u +Xu)− xφ′(X̃u +Xu)

)
×(γ̃αu1{x>0} + λ̃αu1{x<0}) du

dx

|x|α+1

]
.
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Finally taking expectation in the Itô formula above and plugging the previous
calculations, we have

E
[
φ(Xt + X̃t)

]
− E

[
φ(Xs + X̃s)

]
= E

[∫ t

s

∫ +∞

0

(
φ(Xu + X̃u + x)− φ(Xu + X̃u)− xφ′(Xu + X̃u)

)
(γαu − γ̃αu ) du dx

|x|α+1

]

+E
[∫ t

s

∫ 0

−∞

(
φ(Xu + X̃u + x)− φ(Xu + X̃u)− xφ′(Xu + X̃u)

)
(λαu − λ̃αu) du dx

|x|α+1

]
,

which is non-positive by the convexity of φ and our assumptions. The proof of
Theorem 2.2 is now complete.

To achieve this short note, it remains to prove our main result Theorem 2.1 on
the basis of Theorem 2.2.
Proof of Theorem 2.1. The proof is a straightforward consequence of Theorem 2.2
since under the conditions c̃+ = c+ and c̃− = c− and when the process K̃ is actu-
ally deterministic (equal to the given function k), the backward stable stochastic
integral

∫ T
0 K̃td̃Z̃t has the same distribution as the forward integral

∫ T
0 K̃tdZt.
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[2] J. Bergenthum and L. Rüschendorf. Comparison of option prices in semimartingale models.

Finance Stoch., 10:222-249, 2006.
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versité de Toulouse, France

E-mail address: mailto:Manou.Mawaki(at)math.univ-toulouse.fr

mailto:ajoulin(at)insa-toulouse.fr
mailto:Manou.Mawaki(at)math.univ-toulouse.fr

	1. Introduction
	2. Preliminaries and main results
	3. Proofs
	Acknowledgments

	References

