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Abstract

The purpose of this paper is to extend the investigation of Poisson-type
deviation inequalities started by Joulin (2007) to the empirical mean of posi-
tively curved Markov jump processes. In particular, our main result generalizes
the tail estimates given by Lezaud (1998, 2001). An application to birth-death
processes completes this work.
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1 Introduction

Let (Xt)t≥0 be an ergodic Markov process on a Polish state space X , with station-

ary distribution π. The well-known ergodic theorem asserts that for any integrable

function φ ∈ L1(π), the empirical mean t−1
∫ t

0
φ(Xs)ds converges in probability to

the average π(φ) :=
∫
X φdπ as t goes to infinity. Although large deviations theory

gives the speed of convergence at infinity, such an asymptotic bound is unsatisfactory

when one wants to estimate the minimum time to run the simulation algorithm in

∗ajoulin@insa-toulouse.fr
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order to achieve a prescribed level of accuracy. Actually, the problem of finding non-

asymptotic estimates has been raised and addressed by several authors. Using the

Lumer–Philips theorem for a general Markov process (Xt)t≥0, Wu (2000) derived an

exponential decay on the deviation probability

P
(∣∣∣∣1t

∫ t

0

φ(Xs)ds− π(φ)

∣∣∣∣ ≥ y

)
, y > 0, (1.1)

available for any fixed time t. Although Wu’s estimate is sharp in large time, such an

upper bound is not explicit in the parameter y. More recently, this result has been

extended in the diffusion framework by various authors who obtained qualitative up-

per bounds on (1.1), provided the stationary distribution π satisfies some functional

inequalities such as Poincaré, log-Sobolev or transportation-type inequalities; see, for

instance, the recent articles of Cattiaux and Guillin (2008), Djellout et al. (2004),

Gourcy and Wu (2006) or Guillin et al. (2008). However, the functional inequalities

approach does not seem to be relevant for Markov jump processes because this theory

is not yet well developed for discrete gradients. To the author’s knowledge, the prob-

lem of determining non-asymptotic upper bounds on the deviation probability (1.1)

in this context has been investigated by few authors. For instance, under a spectral

gap assumption and using Kato’s perturbation theory for linear operators, Lezaud

(1998, 2001) established Poisson-type deviation bounds, that is, upper bounds of the

order e−ty log(y) for large y, provided the function φ and the generator of the process

are bounded. On the other hand, in the case of birth-death processes admitting a so-

called Lipschitz spectral gap, Liu and Ma (2008) recently extended such tail estimates

to Lipschitz functions φ by using martingale techniques and convex concentration in-

equalities.

The purpose of this paper is to present a new Poisson-type upper bound for the

deviation probability (1.1) for a general Markov jump process (Xt)t≥0. Our approach

relies on the notion of Wasserstein curvature recently investigated by Joulin (2007),

where several tail estimates were obtained for the random variable φ(Xt). Hence we

extend in this article our previous work to the path-dependent integral t−1
∫ t

0
φ(Xs)ds.

In essence, the Wasserstein curvature characterizes a contraction property of the asso-

ciated semigroup on the space of probability measures on X , endowed with a suitable
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Wasserstein distance. Since the positively curved case is closely related to the speed

of ergodicity of the process, we expect to obtain under this assumption a convenient

upper bound on (1.1) in large time.

The paper is organized as follows: In Section 2, we recall the definition of the

Wasserstein curvature of a Markov jump process (Xt)t≥0. Next, we state the main

contribution of the paper, Theorem 2.6, in which a Poisson-type deviation bound is

established in the positively curved case for the empirical mean t−1
∫ t

0
φ(Xs)ds, where

φ is only Lipschitz. Hence we extend the tail estimates given in the bounded case by

Lezaud (1998, 2001). Section 3 is devoted to the proof of Theorem 2.6, which is rather

technical and divided into several lemmas. The key point of the proof corresponds

to Lemma 3.2, with the tensorization of a Laplace transform. Section 4 is devoted to

the case of birth-death processes. More precisely, we compute the explicit expression

of the Wasserstein curvature with respect to a large class of metrics on N. In partic-

ular, by choosing a convenient metric related to the transition rates of the associated

generator, we are able to apply our deviation inequality to birth-death processes with

non-necessarily bounded generator such as the classical M/M/∞ queueing process.

2 Preliminaries and main result

Throughout the paper, X is a Polish space endowed with a metric d, the space

B(X ) consists of bounded measurable functions on X equipped with the supremum

norm ‖f‖∞ = supx∈X |f(x)| and Lipd(X ) is the space of Lipschitz functions on X
with a Lipschitz seminorm defined by

‖f‖Lipd
:= sup

x 6=y

|f(x)− f(y)|
d(x, y)

< +∞.

On a filtered probability space (Ω, F , (F t)t≥0, P), let {(Xt)t≥0, (Px)x∈X } be an X -

valued cadlag Markov jump process with a generator given for any function f ∈ B(X )

by

Lf(x) =

∫
X

(f(y)− f(x)) Q(x, dy), x ∈ X .

Here the transition kernel Q is assumed to be stable and conservative: For any x ∈ X

3



and any Borel set A,

Q(x,X ) < +∞, lim
t↓0

Pt(x, A)− 1A(x)

t
= Q(x, A)−Q(x,X )1A(x),

where Pt(x, dy) := Px (Xt ∈ dy) denotes the transition probability of the process. Let

(Pt)t≥0 be the associated Markov semigroup acting on the space B(X ) as follows:

Ptf(x) := Ex[f(Xt)] =

∫
X

f(y)Pt(x, dy), x ∈ X .

Denote by Pd(X ) the space of probability measures µ on X such that
∫
X d(x, y)µ(dy) <

+∞ for some (or equivalently for all) x ∈ X . If the Markov kernel Pt(x, ·) ∈ Pd(X )

for any t > 0 and any x ∈ X , then the semigroup is well defined on the space Lipd(X )

and we introduce in this case the function

σ̄d(t) := − sup
{
log ‖Ptf‖Lipd

: ‖f‖Lipd
= 1
}

, t ≥ 0,

with σ̄d(0) = 0. By the Markov property, the function σ̄d is super-additive so that the

following limit is well defined:

σd := lim
t↓0

σ̄d(t)

t
= inf

t>0

σ̄d(t)

t
. (2.1)

In particular, the number σd is the best (maximal) constant α in the contraction

inequality

‖Ptf‖Lipd
≤ e−αt‖f‖Lipd

, f ∈ Lipd(X ), t > 0. (2.2)

Let us recall the definition of Wasserstein curvature of the Markov jump process

(Xt)t≥0 given by Joulin (2007), up to a slight modification.

Definition 2.1. Assume Pt(x, ·) ∈ Pd(X ) for any t > 0 and any x ∈ X . The number

σd given by (2.1) is called the Wasserstein curvature of the process (Xt)t≥0 with respect

to the metric d.

Remark 2.2. In the remainder of this paper, we will remove the metric symbol d

in the definition of the Wasserstein curvature σd when there is no risk of confusion.

Moreover, we will assume implicitly that the Markov kernel Pt(x, ·) belongs to the

space Pd(X ) for any t > 0 and any x ∈ X .
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We define the Wasserstein distance Wd(µ, ν) between two probability measures

µ, ν ∈ Pd(X ) as

Wd(µ, ν) := inf
γ

∫
X ×X

d(x, y)γ(dx, dy),

where the infimum is taken over all γ ∈ Pd(X × X ) with marginals µ and ν. The

Kantorovich–Rubinstein duality theorem allows us to rewrite the Wasserstein distance

as

Wd(µ, ν) = sup

{∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ : ‖f‖Lipd
≤ 1

}
,

see, for instance, Chen (2004, Theorem 5.10). Hence the Wasserstein curvature σ is

also the best (maximal) constant α in the inequality

Wd(Pt(x, ·), Pt(y, ·)) ≤ e−αtd(x, y), x, y ∈ X , t > 0. (2.3)

Remark 2.3. As noted by Joulin (2007), our definition of Wasserstein curvature of

Markov processes is inspired by the continuous setting of Brownian motion on Rieman-

nian manifolds studied by Sturm and Von Renesse (2005), where it is stated that the

contraction inequality (2.3) characterizes uniform lower bounds on the Ricci curvature

of the manifold. However, after our paper Joulin (2007) was published, we learned

that a similar notion of curvature for Markov processes relying on such an inequality

had been previously introduced in the PhD thesis of Sammer (2005) under the name

“Ricci–Wasserstein curvature”, and later independently by Ollivier (2007a,b) as the

“Ricci curvature” of Markov chains on metric spaces. Actually, without the link to

geometry, the inequality (2.3) appeared first in the work of Dobrushin (1970) with

his study on random fields, and is known in statistical mechanics as the “Dobrushin

uniqueness condition”. Moreover, such a contraction inequality is fundamental to

estimate the spectral gap λ1 (say) of reversible Markov processes, or equivalently to

establish a Poincaré inequality for the stationary distribution, since we have λ1 ≥ σ.

See, for instance, Chen (2004, Chapter 9) for a summary of and precise references for

this topic.

Actually, the Wasserstein curvature is closely related to the ergodicity of the

process, as illustrated by the following result. See, for instance, the very general
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result of Dobrushin (1970, Theorem 3) for a proof in the discrete-time case or Chen

(2004, Theorem 5.23) in the continuous-time setting.

Theorem 2.4. Assume σ > 0. Then the process (Xt)t≥0 admits a unique stationary

distribution π ∈ Pd(X ) and is ergodic in the following sense: For any initial point

x ∈ X ,

Wd(Pt(x, ·), π) ≤ e−σt

∫
X

d(x, y)π(dy) −→
t→+∞

0. (2.4)

Remark 2.5. When d is the trivial metric on X defined by d(x, y) = 1{x 6=y}, the

Wasserstein distance is nothing but half of the total variation norm. Therefore, the

convergence in Wasserstein distance generalizes the classical convergence in total vari-

ation used in the context of general Markov processes.

Under the ergodic property of the process, the celebrated ergodic theorem states

that for any φ ∈ L1(π), the empirical mean t−1
∫ t

0
φ(Xs)ds converges in probability

as t goes to infinity to the equilibrium π(φ) :=
∫
X φdπ, where π denotes the unique

stationary distribution given by Theorem 2.4. It is well known that the determination

of qualitative non-asymptotic deviation inequalities is of fundamental importance for

simulation algorithms. However, the theory of large deviations provides a bound

for this convergence that is only asymptotic in time on the one hand, and whose

behaviour in terms of the deviation level is not explicit on the other hand. Hence

one may wonder if Wasserstein curvature plays a crucial role in the determination of

such tail estimates relating the speed of ergodicity of the process. We give now an

affirmative answer to this question by stating the main result of the paper, the proof

of which is given in the next section. In the remainder of the paper, we denote the

function

g(u) := (1 + u) log(1 + u)− u, u > 0. (2.5)

Theorem 2.6. Assume σ > 0 and that there exist two positive constants b and V

such that

sup
t>0

d(Xt−, Xt) ≤ b and

∥∥∥∥∫
X

d(·, y)2Q(·, dy)

∥∥∥∥
∞
≤ V 2. (2.6)
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Letting φ ∈ Lipd(X ), for any initial state x ∈ X , any t > 0 and any y > 0 we have

the Poisson-type deviation inequality:

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds− π(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ 2e

−V 2t
b2

g

„
byσ

V 2(1−e−σt)‖φ‖Lipd

«
, (2.7)

where π denotes the unique stationary distribution given in Theorem 2.4 and

Mx
t :=

(1− e−σt)‖φ‖Lipd

σt

∫
X

d(x, z)π(dz) −→
t→+∞

0.

Let us give some comments on this result.

Remark 2.7. According to a classical large deviation result, the estimate (2.7) is

optimal in large time since the order of magnitude is e−ct, and is also sharp in small

time. Moreover, the function u 7→ g(u) is equivalent to u2/2 as u is close to 0 and

to u log(u) as u tends to infinity. Hence, for sufficiently large t the inequality (2.7)

exhibits a Gaussian regime for small values of the deviation level y, in accordance

with the central limit theorem for Markov processes and a Poisson regime for its large

values.

Remark 2.8. Assume that the process is reversible. As noted in Remark 2.3, the

positivity of the Wasserstein curvature ensures the existence of a spectral gap λ1 of the

underlying generator, that is, λ1 ≥ σ > 0. Therefore, using the Poincaré inequality,

the asymptotic variance of the empirical mean is bounded by V 2‖φ‖2
Lipd

/λ2
1 and one

deduces that the right-hand side of (2.7) is sharp in σ in the Gaussian regime since it

behaves as e
−tσ2y2/(2V 2‖φ‖2Lipd

)
for large time.

Remark 2.9. Up to constant factors, we extend the Chernoff inequalities established

by Lezaud (1998, 2001), because boundedness assumptions are required neither on

the function φ nor on the generator. Note, however, that if the metric d is such that

infx6=y d(x, y) > 0, then the finiteness of V implies that the generator is bounded. In

particular, when d is the trivial metric, we recover Lezaud’s results since we have in

this case Lipd(X ) = B(X ) and V 2 = ‖Q(·,X )‖∞. Nevertheless, the price to pay in

Theorem 2.6 is to assume σ > 0, which is a stronger assumption in the reversible case

than the existence of a spectral gap required by Lezaud.
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Remark 2.10. Consider for instance the Langevin-type diffusion process solution of

the following stochastic differential equation dXt =
√

2dBt−∇U(Xt)dt, where (Bt)t≥0

is a standard Brownian motion on the Euclidean space (Rn, d) and U is a regular

potential such that
∫

e−U(x)dx = 1. Denote by π(dx) = e−U(x)dx the stationary

distribution of the process (Xt)t≥0. Since the Wasserstein curvature can be defined in

the diffusion framework, a step-by-step adaptation of the proof of Theorem 2.6 below

– especially the proof of Lemma 3.1 – entails for any Lipschitz function φ on (Rn, d)

a Gaussian deviation inequality of the form

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds− π(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ 2e

− ty2σ2

2(1−e−σt)2‖φ‖2
Lipd ,

provided the Wasserstein curvature of the process (Xt)t≥0 is positive. A sufficient

condition ensuring this positivity is given by the Bakry–Émery curvature criterion, see

Bakry and Émery (1985), under which the authors established a logarithmic Sobolev

inequality for the stationary distribution π. On the other hand, it is classical that

such a functional inequality entails a similar Gaussian decay to that given above; see,

for instance, Wu (2000) or the recent article of Guillin et al. (2008). Hence we give

under comparable assumptions another proof of this Gaussian tail estimate.

Remark 2.11. As illustrated for birth-death processes in Section 4, it is sufficient

to carry the analysis in the one-dimensional case since the Wasserstein curvature ten-

sorizes on product spaces equipped with the `1-metric. Indeed, for each i = 1, . . . , N ,

consider the Markov process (X i
t)t≥0 with kernel transition Qi, stationary distribution

πi and Wasserstein curvature σi, all valued in the same Polish space (Y, ρ) to simplify.

We construct the multidimensional Markov process (Xt)t≥0 valued in (X , d), where

X := YN and d is the `1-metric defined with respect to ρ, as follows: Choose first a

coordinate uniformly at random and then let the univariate dynamics run according

to this direction. Then the stationary distribution π is given by π = ⊗N
i=1π

i. Now

let µ and ν be two product probability measures on X . Then the classical tensoriza-

tion property of the Wasserstein distance is given by Wd(µ, ν) =
∑N

i=1 Wρ(µ
i, νi),

see for instance Sammer (2005, Lemma 2.2.6), for a proof. Hence, the Wasserstein

curvature σ with respect to the metric d of the Markov process (Xt)t≥0 is computed
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as σ = mini=1,...,N σi/N . Moreover, if we denote by bi and Vi the numbers in (2.6)

related to the coordinate process (X i
t)t≥0, then Theorem 2.6 applies for the multidi-

mensional Markov process (Xt)t≥0 with σ and π as above and with b := maxi=1,...,N bi

and V 2 :=
∑N

i=1 V 2
i /N .

To illustrate our argument, consider the symmetric continuous-time random walk

(Xt)t≥0 on the discrete cube {0, 1}N , equipped with the Hamming metric d(x, y) =∑N
i=1 1{xi 6=yi}. The associated semigroup kernel is given by

Pt(x, y) =
1

2N

N∏
i=1

(
1 + (−1)|xi−yi|e−t/N

)
, x, y ∈ {0, 1}N ,

and the stationary distribution is the uniform probability measure on {0, 1}N , say

π⊗N . Since in the one-dimensional case a simple calculation shows that the Wasser-

stein curvature with respect to the trivial metric equals 1, the Wasserstein curvature

on the product space with respect to the Hamming metric is σ = 1/N . Moreover, we

have b = 1 and V 2 = 1/2 so that by Theorem 2.6 the following deviation inequality

holds for any Lipschitz function φ with respect to the Hamming metric on {0, 1}N :

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds− π⊗N(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ 2e

− t
2
g

 
2y

N(1−e−t/N )‖φ‖Lipd

!
.

3 Proof of Theorem 2.6

This section is devoted to the proof of Theorem 2.6, which is rather technical

and divided into several lemmas. First, we give a convenient upper bound in large

time on a univariate Laplace transform, see Lemma 3.1 below. Using the method of

tensorization, the extension to the multidimensional case is considered in Lemma 3.2.

Finally, with the help of the previous lemmas and by a suitable approximation of the

empirical mean, we finish the proof of Theorem 2.6.

Let us establish first an upper bound on the Laplace transform of a Lipschitz

function of the process (Xt)t≥0. The proof, which is a straightforward adaptation of

Joulin (2007, Theorem 3.1), is given for completeness.
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Lemma 3.1. Under the assumptions of Theorem 2.6, for any f ∈ Lipd(X ), any

x ∈ X , any t > 0 and any τ > 0, we have

Ex

[
eτ(f(Xt)−E x[f(Xt)])

]
≤ exp

{
h
(
τ, t, b‖f‖Lipd

)}
, (3.1)

where h is the function defined on (R+)3 by

h(τ, t, z) :=
V 2 (1− e−2σt)

2b2σ
(eτz − τz − 1) . (3.2)

Proof. Assume first that the Lipschitz function f is bounded. Then the process(
Zf

s

)
0≤s≤t

given by Zf
s := Pt−sf(Xs) − Ptf(X0) is a real-valued Px-martingale with

respect to the filtration (F s)0≤s≤t. Using (2.2) and (2.6), we have

sup
0<s≤t

∣∣∣Zf
s − Zf

s−

∣∣∣ = sup
0<s≤t

|Pt−sf(Xs)− Pt−sf(Xs−)| ,

≤ b‖f‖Lipd

and also

〈Zf , Zf〉s =

∫ s

0

∫
X

(Pt−τf(y)− Pt−τf(Xτ−))2 Q(Xτ−, dy)dτ

≤
(1− e−2σt)V 2‖f‖2

Lipd

2σ
.

By Kallenberg (1997, Lemma 23.19), the process given for any τ > 0 by(
exp {τZf

s − b−2‖f‖−2
Lipd

(eτb‖f‖Lipd − τb‖f‖Lipd
− 1) 〈Zf , Zf〉s}

)
0≤s≤t

is a Px-supermartingale with respect to (F s)0≤s≤t. Thus, using the two previous

estimates, we get for any τ > 0:

Ex

[
eτ(f(Xt)−Ex[f(Xt)])

]
= Ex

[
eτZf

t

]
≤ exp

{
(1− e−2σt)V 2

2σb2

(
eτb‖f‖Lipd − τb‖f‖Lipd

− 1
)}

.

To remove the boundedness assumption on f , consider the sequence of bounded func-

tions fn := max {−n, min{f, n}} converging pointwise to f . Then it is routine to show

that (fn)n∈N is uniformly integrable with respect to the probability measure Pt(x, ·),
which implies the L1-convergence. Finally, since the functions fn are Lipschitz with

a constant of at most ‖f‖Lipd
and h is non-decreasing in its last variable, the use of

Fatou’s lemma achieves the proof.

10



Our present purpose is to extend to the multidimensional case the Laplace trans-

form estimate (3.1) by using the method of tensorization.

Given n ∈ N \ {0}, define Lipdn
(X n) as the space of real Lipschitz functions f on

the product space X n, endowed with the seminorm

‖f‖Lipdn
:= sup

x6=y

|f(x)− f(y)|
dn(x, y)

< +∞,

where dn is the `1-distance on X n with respect to the metric d, that is, dn(x, y) :=∑n
i=1 d(xi, yi), x, y ∈ X n.

Lemma 3.2. We assume that the hypothesis of Theorem 2.6 is fulfilled. Define the

sample Xn of the process (Xt)t≥0 by Xn = (Xt1 , . . . , Xtn), 0 =: t0 < t1 < · · · < tn,

and let f ∈ Lipdn
(X n). Then for any initial state x ∈ X and any τ > 0, we have the

multidimensional Laplace transform estimate:

Ex

[
eτ(f(Xn)−E x[f(Xn)])

]
≤ exp

{
n∑

k=1

h
(
τ, tk − tk−1, skb‖f‖Lipdn

)}
, (3.3)

where the function h is defined in Lemma 3.1 and sk :=
∑n

l=k e−σ(tl−tk).

Proof. Let fn := f and define for any k = 1, . . . , n− 1, the function fk on X k by

fk(x1, . . . , xk) :=

∫
X n−k

f(x1, . . . , xn)Ptn−tn−1(xn−1, dxn) · · ·Ptk+1−tk(xk, dxk+1)

=

∫
X

fk+1(x1, . . . , xk, xk+1)Ptk+1−tk(xk, dxk+1).

We divide the proof of Lemma 3.2 into two parts.

• Step 1: By a downward recursive argument on k, let us show first that the

univariate function xk 7→ fk(∗, xk) is Lipschitz with respect to the metric d, with

furthermore the inequality

sup
x1,...,xk−1∈X

‖fk(x1, . . . , xk−1, ·)‖Lipd
≤ sk‖f‖Lipdn

. (3.4)

Since sn = 1, the property (3.4) is trivially true for k = n.

Assume now that (3.4) is satisfied for some k ∈ {2, . . . , n}. First, letting x1, . . . , xk−2, y, z, xk ∈
X , we have:

|fk(x1, . . . , xk−2, y, xk)− fk(x1, . . . , xk−2, z, xk)|
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=

∣∣∣∣∫
X n−k

f(x1, . . . , xk−2, y, xk, xk+1, . . . , xn)Ptn−tn−1(xn−1, dxn) · · ·Ptk+1−tk(xk, dxk+1)

−
∫
X n−k

f(x1, . . . , xk−2, z, xk, xk+1, . . . , xn)Ptn−tn−1(xn−1, dxn) · · ·Ptk+1−tk(xk, dxk+1)

∣∣∣∣
≤ ‖f‖Lipdn

d(y, z)

∫
X n−k

Ptn−tn−1(xn−1, dxn) · · ·Ptk+1−tk(xk, dxk+1)

= ‖f‖Lipdn
d(y, z),

from which follows the inequality

sup
x1,...,xk−2,xk∈X

‖fk(x1, . . . , xk−2, ·, xk)‖Lipd
≤ ‖f‖Lipdn

. (3.5)

Now, let us show that the property (3.4) is satisfied at the step k− 1 with the help of

(3.5). Let x1, . . . , xk−2, y, z ∈ X . Using the contraction property (2.2) in the second

inequality below,

|fk−1(x1, . . . , xk−2, y)− fk−1(x1, . . . , xk−2, z)|

≤
∣∣∣∣∫
X

fk(x1, . . . , xk−2, y, xk)(Ptk−tk−1
(y, dxk)− Ptk−tk−1

(z, dxk))

∣∣∣∣
+

∫
X
|fk(x1, . . . , xk−2, y, xk)− fk(x1, . . . , xk−2, z, xk)|Ptk−tk−1

(z, dxk)

≤ e−σ(tk−tk−1)‖fk(x1, . . . , xk−2, y, ·)‖Lipd
d(y, z)

+

∫
X
‖fk(x1, . . . , xk−2, ·, xk)‖Lipd

d(y, z)Ptk−tk−1
(z, dxk)

≤
(
ske

−σ(tk−tk−1) + 1
)
‖f‖Lipdn

d(y, z)

= sk−1‖f‖Lipdn
d(y, z),

where in the last inequality we used Assumption (3.4) at the step k together with

(3.5). Therefore, we obtain the inequality

‖fk−1(x1, . . . , xk−2, ·)‖Lipd
≤ sk−1‖f‖Lipdn

,

and the parameters x1, . . . , xk−2 being arbitrary, the property (3.4) is established at

the step k − 1, hence in full generality.

• Step 2: Proof of the Laplace transform estimate (3.3).

As before, let us show by a downward recursive argument on k ∈ {2, . . . , n} the

12



following inequality:

Ex

[
eτf(Xn)

]
≤ exp

{
n∑

i=k

h
(
τ, ti − ti−1, bsi‖f‖Lipdn

)}
(3.6)

×
∫
X k−1

eτfk−1(x1,...,xk−1)Ptk−1−tk−2
(xk−2, dxk−1) · · ·Pt1(x, dx1).

First let k = n. By the Markov property, we have

Ex

[
eτf(Xn)

]
=

∫
X n

eτfn(x1,...,xn)Ptn−tn−1(xn−1, dxn) · · ·Pt1(x, dx1)

≤ exp
{
h(τ, tn − tn−1, b‖f‖Lipdn

)
}

×
∫
X n−1

eτfn−1(x1,...,xn−1)Ptn−1−tn−2(xn−2, dxn−1) · · ·Pt1(x, dx1),

where we used Lemma 3.1 with the univariate Lipschitz function xn 7→ fn(∗, xn)

together with the inequality (3.4) since the function h is non-decreasing in its last

variable. Hence (3.6) is established in the case k = n.

Now assume that (3.6) is satisfied for some k ∈ {2, . . . , n}. Using the same

reasoning as above with the Lipschitz function xk−1 7→ fk−1(∗, xk−1) , we obtain

Ex

[
eτf(Xn)

]
≤ exp

{
n∑

i=k

h(τ, ti − ti−1, bsi‖f‖Lipdn
)

}

×
∫
X k−1

eτfk−1(x1,...,xk−1)Ptk−1−tk−2
(xk−2, dxk−1) · · ·Pt1(x, dx1)

≤ exp

{
n∑

i=k−1

h(τ, ti − ti−1, bsi‖f‖Lipdn
)

}

×
∫
X k−2

eτfk−2(x1,...,xk−2)Ptk−2−tk−3
(xk−3, dxk−2) · · ·Pt1(x, dx1)

so that the inequality (3.6) is satisfied at step k − 1, hence in full generality. Finally,

we obtain from (3.6) with k = 2 the inequality

Ex

[
eτf(Xn)

]
≤ exp

{
n∑

i=2

h(τ, ti − ti−1, bsi‖f‖Lipdn
)

}∫
X

eτf1(x1)Pt1(x, dx1)

and, using once again the same reasoning as before for the Lipschitz function, f1

entails the desired estimate (3.3). The proof of Lemma 3.2 is complete.

13



Now we are able to prove Theorem 2.6, with the help of Lemma 3.2.

Proof of Theorem 2.6. Define the sample Xn = (Xt1 , . . . , Xtn) where the sequence

tk = kt/n, k = 0, . . . , n, is a regular subdivision of the time interval [0, t]. Since φ ∈
Lipd(X ), the function f given by f(z1, . . . , zn) := n−1

∑n
k=1 φ(zk), (z1, . . . , zn) ∈ X n,

is Lipschitz on the product space X n with respect to the `1-metric dn and its Lipschitz

seminorm satisfies ‖f‖Lipdn
≤ n−1‖φ‖Lipd

. Note that the function h defined by (3.2)

is non-decreasing in its last variable. Hence, since we have

sup
k=1,...,n

sk =
1− e−σt

1− e−σt/n
,

the multidimensional Laplace transform estimate (3.3) of Lemma 3.2 implies the fol-

lowing upper bound:

Ex

[
eτ(f(Xn)−Ex[f(Xn)])

]
≤ exp

{
nh

(
τ,

t

n
,
b(1− e−σt)‖φ‖Lipd

n(1− e−σt/n)

)}
, τ > 0.

Therefore, by Chebyshev’s inequality, we get for any y > 0:

Px (f(Xn)− Ex[f(Xn)] ≥ y) ≤ inf
τ>0

e−τy Ex

[
eτ(f(Xn)−Ex[f(Xn)])

]
≤ e

− nV 2

2b2σ
(1−e−2σt/n)g

 
2byσ(1−e−σt/n)

V 2(1−e−2σt/n)(1−e−σt)‖φ‖Lipd

!
.

Applying also the same reasoning to the function −f yields

Px (|f(Xn)− Ex[f(Xn)]| ≥ y) ≤ 2e
− nV 2

2b2σ
(1−e−2σt/n)g

 
2byσ(1−e−σt/n)

V 2(1−e−2σt/n)(1−e−σt)‖φ‖Lipd

!
. (3.7)

Now, using the invariance property of the stationary distribution π and the contraction

property (2.2),

|Ex [f(Xn)]− π(φ)| =

∣∣∣∣∣ 1n
n∑

k=1

∫
X

(
Pkt/nφ(x)− Pkt/nφ(y)

)
π(dy)

∣∣∣∣∣
≤ 1

n

n∑
k=1

e−σkt/n‖φ‖Lipd

∫
X

d(x, y)π(dy)

≤
(1− e−σt)‖φ‖Lipd

tσ

∫
X

d(x, y)π(dy)

= Mx
t .

14



Hence the inequality (3.7) entails for any y > 0,

Px

(∣∣∣∣∣ 1n
n∑

k=1

φ(Xkt/n)− π(φ)

∣∣∣∣∣ ≥ y + Mx
t

)
≤ 2e−An , (3.8)

where

An :=
nV 2

2b2σ
(1− e−2σt/n)g

(
2byσ(1− e−σt/n)

V 2(1− e−2σt/n)(1− e−σt)‖φ‖Lipd

)
.

To finish the proof, note that since the process (Xt)t≥0 is cadlag and the func-

tion φ is Lipschitz, the process (φ(Xt))t≥0 itself is cadlag so that the Riemann sum

n−1
∑n

k=1 φ(Xkt/n) converges Px-a.s. to the empirical mean t−1
∫ t

0
φ(Xs)ds. Therefore,

using Fatou’s lemma and the estimate (3.8), we obtain

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds− π(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ lim inf

n→+∞
Px

(∣∣∣∣∣ 1n
n∑

k=1

φ(Xkt/n)− π(φ)

∣∣∣∣∣ ≥ y + Mx
t

)
≤ lim inf

n→+∞
2e−An

= 2e
−V 2t

b2
g

„
byσ

V 2(1−e−σt)‖φ‖Lipd

«
.

The proof of Theorem 2.6 is established.

4 Application to birth-death processes

The purpose of this final part is to apply Theorem 2.6 to birth-death processes.

To do so, we compute the associated Wasserstein curvature with respect to a large

class of metrics on N. In particular, choosing suitably the metric with respect to the

transition rates of the generator allows us to consider processes with non-necessarily

bounded generators such as the classical M/M/∞ queueing process.

Let (Xt)t≥0 be a birth-death process on the state space X = N. This is a Markov

process with a generator given for any function f : N → R by

Lf(x) = λx (f(x + 1)− f(x)) + νx (f(x− 1)− f(x)) , x ∈ N,

where the transition rates λ and ν are positive with ν0 = 0, conditions ensuring the

irreducibility of the process. Letting

µ(0) := 1, µ(x) :=
λ0λ1 · · ·λx−1

ν1ν2 · · · νx

, x ≥ 1,
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we assume in the sequel that the process is ergodic, that is, it satisfies the following

properties: ∑
x≥0

µ(x)
∑
y≥x

1

µ(y)λy

= +∞, C :=
∑
x≥0

µ(x) < +∞.

Then the stationary distribution of the process is π(x) = µ(x)/C, x ∈ N.

A fundamental example is the M/M/∞ queue, also known as the birth-death

process with immigration, which is an ergodic birth-death process (Xt)t≥0 with an

unbounded generator given by

Lf(x) = λ(f(x + 1)− f(x)) + νx(f(x− 1)− f(x)), x ∈ N,

where the parameters λ and ν are positive. The associated stationary distribution is

the Poisson measure Pξ on N with parameter ξ := λ/ν. Denote by Bn,p the binomial

distribution with parameters n ∈ N and p ∈ (0, 1). Using the Mehler-type convolution

formula given by Chafäı (2006):

L(Xt|X0 = x) = Bx,e−νt ∗Pξ(1−e−νt), t > 0,

we obtain by Chebyshev’s inequality and, after short computations on the Laplace

transform, the following estimate is available for any y > 0:

Px (Xt − Ex[Xt] ≥ y) ≤ inf
τ>0

e−τy Ex

[
eτ(Xt−Ex[Xt])

]
≤ inf

τ>0
e−τy+Ex[Xt] (eτ−τ−1)

= exp

{
y − (Ex[Xt] + y) log

(
1 +

y

Ex[Xt]

)}
,

where in the second inequality we used log(1 + u) ≤ u, u > 0. Note that the latter

Poisson-type deviation inequality is convenient for large time since we recover as t

tends to infinity the classical tail estimate for a centered Poisson random variable X

with intensity ξ:

P (X − E[X] ≥ y) ≤ exp

{
y − (ξ + y) log

(
1 +

y

ξ

)}
.

On the one hand, the M/M/∞ queueing process is a discrete approximation of the

Ornstein–Uhlenbeck process, whose stationary distribution is Gaussian. On the other
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hand, Remark 2.10 states that under the Bakry–Émery curvature criterion, the em-

pirical mean of a Langevin-type process, which generalizes the Ornstein–Uhlenbeck

process, satisfies a Gaussian deviation inequality. Hence it is natural, by comparison

with the diffusion framework, to investigate Poisson-type tail estimates for the empir-

ical mean of positively curved birth-death processes, since they generalize similarly

the M/M/∞ queueing process. However, if we consider the classical metric on N, we

are not able to apply Theorem 2.6 to processes with unbounded generators because,

in this case, V is infinite. Since the Wasserstein curvature strongly depends on the

metric, the idea to overcome this difficulty is to carry the analysis with a Wasserstein

curvature related to another metric on N that we choose suitably.

Definition 4.1. Given a positive function u on N, define the metric δ : N × N →
[0, +∞) as

δ(x, y) :=

∣∣∣∣∣
x−1∑
k=0

uk −
y−1∑
k=0

uk

∣∣∣∣∣ , u−1 := 1.

Let us compute the Wasserstein curvature associated to this metric. To do so, we

use the notion of coupling operators initiated by Chen (1986).

Definition 4.2. An operator L̃ acting on the space of real-valued functions on N2 is

said to be a coupling of the generator L if it satisfies the two following properties:

(i) Marginality:

{
L̃f1(x, y) = Lf1(x);

L̃f2(x, y) = Lf2(y);

(ii) Normality: L̃h(x, x) = Lg(x).

Here the two real-valued functions f1 and f2 on N are regarded as bivariate functions

on N2, and g is the univariate function g(x) = h(x, x).

Denote by I the identity operator I(f) = f . According to Chen (1986), we

introduce the classical coupling L̃ by

L̃f(x, y) = (L⊗ I + I ⊗ L) f(x, y)1{x 6=y} + Lf(·, ·)(x)1{x=y}, x, y ∈ N.

Using the metric δ, we have

L̃δ(x, y) =

{
λyuy − νyuy−1 − λxux + νxux−1 if x ≤ y;

−λyuy + νyuy−1 + λxux − νxux−1 otherwise.
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Theorem 4.3. The Wasserstein curvature σδ with respect to the metric δ of the

birth-death process (Xt)t≥0 is given by the formula

σδ = inf
x∈N

{
νx+1 + λx − νx

ux−1

ux

− λx+1
ux+1

ux

}
. (4.1)

Proof. Denote α := inf
x∈N

{
νx+1 + λx − νx

ux−1

ux
− λx+1

ux+1

ux

}
and assume first that σδ

and α are not −∞.

Consider on N the increasing Lipschitz function f(x) =
∑x−1

k=0 uk with Lipschitz

seminorm ‖f‖Lipδ
= 1. We have for any integers x ≤ y and any t > 0:

Ptf(y)− f(y)

t
− Ptf(x)− f(x)

t
=

Ptf(y)− Ptf(x)− δ(x, y)

t

≤ e−σδt − 1

t
δ(x, y),

so that we obtain at the limit t → 0:

λyuy − νyuy−1 − λxux + νxux−1 = Lf(y)− Lf(x) ≤ −σδδ(x, y).

Therefore, taking y = x + 1 and dividing by ux entail the inequality σδ ≤ α.

On the other hand, we aim at proving that the Wasserstein curvature σδ is bounded

below by α. To do so, we use the coupling argument derived from the proof of Chen

(1996, Theorem 1.1). Note that α rewrites as

α = inf
x∈N

−L̃δ(x, x + 1)

δ(x, x + 1)
,

where L̃ is the classical coupling operator defined above, so that we have

L̃δ(x, x + 1) ≤ −αδ(x, x + 1), x ∈ N.

As the following identities hold for any x, y ∈ N such that x < y:
L̃δ(x, y) =

y−1∑
k=x

L̃δ(k, k + 1);

δ(x, y) =
y−1∑
k=x

δ(k, k + 1);

we get from the latter inequality and using the symmetry between x and y the in-

equality

L̃δ(x, y) ≤ −αδ(x, y), x, y ∈ N, (4.2)
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which ensures the contraction property (2.3), and so the desired estimate σδ ≥ α.

The proof is achieved in the finite case.

Finally, if at least σδ or α is −∞, we are able to adapt the previous argument to show

that both are actually infinite.

Remark 4.4. Van Doorn (1985, 1987) proved that the spectral gap λ1, which equals

the so-called decay parameter in his papers, is actually the supremum of the Wasser-

stein curvatures given in Theorem 4.3 over the possible metrics δ defined in Defini-

tion 4.1. Later, such a result has been rediscovered by Chen (1996) with the coupling

method emphasized in the proof above.

Once the metric δ has been introduced in full generality, let us introduce an

assumption relating the weight u and the transition rates of the generator of the

birth-death process (Xt)t≥0. We denote in the sequel a ∧ b := min{a, b}.

Assumption A: There exist two constants K > 0 and C > 0 such that(
inf
x≥0

λx

)
∧
(

inf
x≥1

νx

)
≥ K and ux ≤ C

(
1

√
νx+1

∧ 1√
λx

)
, x ∈ N.

Under Assumption A, we have a control on the metric δ as follows. The proofs are

straightforward.

Lemma 4.5. Under Assumption A, the two inequalities below hold:

(1) δ(x, y) ≤ C√
K
|x− y|, x, y ∈ N;

(2) sup
x∈N

λxδ(x, x + 1)2 + νxδ(x, x− 1)2 ≤ 2C2.

Remark 4.6. If at least one of the transition rates of the generator is unbounded,

then the function u vanishes at infinity so that the two metrics in Lemma 4.5(1)

are not bi-Lipschitz equivalent. In particular, the identity function f(x) = x is not

Lipschitz on N with respect to the metric δ.

Now we are able to state the following tail estimate for the empirical mean of the

birth-death process (Xt)t≥0.
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Corollary 4.7. Assume that the Wasserstein curvature σδ given by (4.1) is positive

and that Assumption A is satisfied. Letting φ ∈ Lipδ(N), for any initial state x ∈ N,

any t > 0 and any y > 0, we have the following Poisson-type deviation inequality:

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds− π(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ 2e

−2Ktg

 
yσδ

2
√

KC(1−e−σδt)‖φ‖Lipδ

!
, (4.3)

where Mx
t := σ−1

δ t−1(1− e−σδt)‖φ‖Lipδ

∑
z∈N δ(x, z)π(z) and g is the function given in

(2.5).

Proof. Using Lemma 4.5, we get the result by applying Theorem 2.6 with b = C/
√

K

and V 2 = 2C2.

Remark 4.8. The Poisson-type deviation inequality (4.3) is comparable to that ob-

tained recently by Liu and Ma (2008) by using martingale techniques together with

the so-called Lipschitz spectral gap. We mention, however, that there is a one-to-one

correspondence between this object and the Wasserstein curvature according to the

variational formulas given by Chen (1996, Theorem 1.1).

To finish this work, let us return to the case of the M/M/∞ queueing process.

For the sake of simplicity, we assume in the sequel that the intensity ξ of the process

equals 1. Choosing ux := (x + 1)−1/2, x ∈ N, in the definition of the metric δ, a

brief computation shows that the Wasserstein curvature σδ equals ν/2, which is half

of the exact curvature ν given by Chafäı (2006). Moreover, the transition rates of the

generator satisfy Assumption A with C =
√

K =
√

ν. Hence, Corollary 4.7 entails for

any Lipschitz function φ ∈ Lipδ(N), any t > 0, any initial state x ∈ N and any y > 0,

Px

(∣∣∣∣1t
∫ t

0

φ(Xs)ds−P1(φ)

∣∣∣∣ ≥ y + Mx
t

)
≤ 2e

−2νtg

 
y

4(1−e−νt/2)‖φ‖Lipδ

!
.

Remark 4.9. An inequality such as the one above allows us to consider unbounded

functions φ as, for instance, the square root function, which is Lipschitz with respect

to the metric δ. However, as noted in Remark 4.6, the price to pay is to require

φ ∈ Lipδ(N), which unfortunately excludes the identity function since the generator is

unbounded. Hence we conjecture that in the case of the M/M/∞ queueing process,
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the deviation of the empirical mean of Lipschitz functions with respect to the classical

metric is of the Poisson type. See also the recent work of Guillin et al. (2008) for an

approach to this problem through transportation-information inequalities.
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