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Abstract. In this paper, we provide explicit lower bounds with respect to some
quantities of interest (parameters of the underlying distribution, dimension, geomet-
rical characteristics of the domain, position of the origin, etc.) on the spectral gap
of log-concave probability measures on convex bodies. Our results are illustrated by
some classical and less classical examples.

1. Introduction

On a (connected) compact set Ω ⊂ Rd (d ≥ 2) with smooth boundary ∂Ω and outer
unit-normal η, we consider a probability measure µ whose Lebesgue density is propor-
tional to e−V , where V : Ω → R is some smooth potential on Ω. One can associate a
canonical weighted Laplacian operator L = ∆−〈∇V,∇〉 endowed with Neumann condi-
tions at the boundary. Under some reasonable assumptions on V , it is well-known that
the underlying Markov process reflected at the boundary converges in distribution to the
invariant and reversible probability measure µ and the speed of convergence in L2(µ)
is governed by the so-called spectral gap λ1(Ω, µ) of the operator −L, that is, its first
positive eigenvalue. In theory it is quite hard to find explicitly the spectral gap beyond
product spaces, a situation for which the problem is reduced to the one-dimensional
case. Even in this 1D setting, only few examples of explicit constants are known, cf. [24]
by means of the Sturm-Liouville theory. To our knowledge, for instance for the uniform
distribution in higher dimension, the spectral gap is known explicitly only on Euclidean
balls [28] or on some specific triangles [22]. Hence, providing (lower) bounds on the
spectral gap that depend conveniently on the dimension is a challenging question that
attracted a lot of attention in the last decades, culminating in the famous KLS conjec-
ture. Introduced initially in an isoperimetric context by Kannan, Lovász and Simonovits
[14], it states equivalently that the spectral gap of the operator −L associated to a con-
vex potential V is of order the inverse of the operator norm of the covariance matrix of
µ, cf. for instance [1] for a nice introduction to the topic. Actually, the conjecture is
almost solved in the sense that, after a series of improvements by several authors using
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Eldan’s localization method, the best and last result is Klartag’s one [16] which confirms
the conjecture up to some logarithmic prefactor of the dimension.

In spirit, the present work differs a bit from this research around the KLS conjecture.
Indeed our main motivation is to offer fully explicit theoretical guarantees on the spectral
gap which may be useful for practitioners, that is, involving explicit bounds with res-
pect to some parameters of interest (parameters of the laws, dimension, geometrical
characteristics of Ω, position of the origin, etc.) and not only estimates available up to
universal constants. This may be used for example in the Global Sensitivity Analysis
of numerical model outputs, a topic which is by now very popular in Statistics and
engineering. In these models the most important input variables, which follow some
standard distributions but truncated on compact domains, may be determined through
some L2 sensitivity indices relating the variance and the energy of the costly computer
code function, emphasizing the role of Poincaré type inequalities − and thus the spectral
gap − in the analysis. We refer to [24] for this approach with one-dimensional input
independent variables, together with historical references and credit.

In order to give an idea of the results we are able to obtain, let us already state one
of our main contribution of the paper. Below L stands for the diagonal matrix operator
acting on smooth vector fields F as LF = (LFi)i=1,...,d, J stands for the Jacobian matrix
and ρ(A) denotes the smallest eigenvalue of a given symmetric matrix A. We refer to
the next sections for other missing definitions.

Theorem 1.1. On a (connected) compact set Ω ⊂ Rd (d ≥ 2) with smooth boundary ∂Ω
and outer unit-normal η, we consider a probability measure µ whose Lebesgue density
is proportional to e−V , where V : Ω → R is some sufficiently smooth potential on Ω.
Let W be some smooth invertible diagonal matrix mapping satisfying the two following
assumptions:

(A1) The symmetric matrix mapping ∇2V − LW W−1 is positive definite on Ω.
(A2) At the boundary ∂Ω the symmetric matrix mapping Jη −W 〈∇W−1, η〉 (acting

as a quadratic form on the tangent space) is non-negative.
Then the generalized Brascamp-Lieb inequality holds: for all g ∈ C∞(Ω),

Varµ(g) ≤
∫

Ω

〈
∇g, (∇2V − LW W−1)−1∇g

〉
dµ.

In particular the spectral gap λ1(Ω, µ) satisfies

λ1(Ω, µ) ≥ inf
x∈Ω

ρ
(
∇2V (x)− LW (x)W−1(x)

)
.

The proof, delayed in Section 2.3, is based on the intertwining approach we introduced
and studied in [2] to obtain Brascamp-Lieb type inequalities on the whole Euclidean
space, in the spirit of the famous Brascamp-Lieb inequality established in [10]. As such,
the present study generalizes these results to measures restricted to domains, for which
boundary terms have to be considered. Theoretically, our result covers many different
settings as soon as we are able to find some W satisfying the announced assumptions.
In particular we will see that our approach is relevant when dealing with log-concave
probability measures µ on a convex body Ω. On the one hand, it includes the uniform
distribution on Ω for which our estimates improve two completely explicit results under
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some convenient assumptions: Payne-Weinberger’s one [23] involving the diameter of
Ω and also Klartag’s result [15] for unconditional convex bodies relying on a kind of
monotonicity property. On the other hand, in the presence of a convex potential V ,
we reinforce the Brascamp-Lieb inequality and improve the usual bound on the spectral
gap provided by the Bakry-Emery criterion when V is uniformly convex on Ω. Such an
analysis will be illustrated in the case of the Subbotin distribution, which is a radial log-
concave probability measure whose potential is not uniformly convex. As a final remark,
we mention that the applications of Theorem 1.1 only address the convex setting (convex
domains and convex potentials) but we are fully convinced that the method developed
here may be applied to some specific non convex situations. This will be the matter of
a future work.

Let us briefly describe the content of the paper. In Section 2 we recall some basic
material and establish preliminary results about Brascamp-Lieb type inequalities and
spectral estimates, contained in Lemmas 2.1 and 2.2, which are at the basis of the proof
of Theorem 1.1 given thereafter. Section 3 is then devoted to apply Theorem 1.1 when
Ω is a convex body, covering various interesting situations for log-concave distributions
(uniform, radial, etc.). It leads to Corollary 3.1 (and its consequences) and to Corollary
3.6 in the case of generalized Orlicz balls. Finally in the Appendix, we provide some
additional elements on the spectral gap of the uniform distribution on Euclidean balls
and discuss in this context a possible optimality of Theorem 1.1.

2. Preliminary results and proof of Theorem 1.1

2.1. Basic material and notation. In this paper, we consider on the Euclidean space
(Rd, | · |) of dimension d ≥ 2 a (connected) compact set Ω with sufficiently smooth
boundary (say C2) ∂Ω and outer unit-normal η. Let C∞(Ω) be the space of infinitely
differentiable real-valued functions on Ω. We introduce a probability measure µ on Ω
whose Lebesgue density is proportional to e−V , where V : Ω → R is some sufficiently
smooth potential on Ω, and consider on C∞(Ω) the associated second-order differential
operator

Lf = ∆f − 〈∇V,∇f〉,
endowed with Neumann boundary conditions, i.e.,

〈∇f, η〉 = 0 on ∂Ω.

In the sequel we denote C∞N (Ω) (N for Neumann) such a subspace of C∞(Ω). Above ∆
and ∇ stand respectively for the Euclidean Laplacian and gradient and 〈·, ·〉 is the scalar
product. By integration by parts, we have for all f, g ∈ C∞(Ω),∫

Ω
Lf g dµ =

∫
∂Ω
g 〈∇f, η〉 dµ−

∫
Ω
〈∇f,∇g〉 dµ

=
∫
∂Ω

(g 〈∇f, η〉 − f 〈∇g, η〉) dµ+
∫

Ω
f Lg dµ,

where by abuse of notation we still denote µ the measure on the boundary with density
proportional to e−V with respect to the volume measure on ∂Ω. Hence L is symmetric
and non-positive on C∞N (Ω) and by completeness it admits a unique self-adjoint extension
(still denoted L). In particular the (Neumann) spectrum σ(−L) of the non-negative
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operator −L is included in [0,∞), the zero eigenvalue corresponding to the constant
eigenfunctions, and the first positive eigenvalue λ1(Ω, µ) (denoted as such to emphasize
the roles of the domain Ω and the probability measure µ), called the spectral gap, is
nothing but the optimal constant in the famous Poincaré inequality, that is, for all
g ∈ C∞(Ω),

λ1(Ω, µ) Varµ(g) ≤
∫

Ω
|∇g|2 dµ,

where Varµ(g) is the variance of function g under µ,

Varµ(g) =
∫

Ω

(
g −

∫
Ω
g dµ

)2
dµ.

Note that the Neumann boundary conditions do not appear directly in the Poincaré
inequality.

Before turning to our first results, let us introduce some notation and definitions. By a
matrix mapping (resp. an invertible matrix mapping, resp. a symmetric positive-definite
matrix mapping) we mean a map defined on Ω and valued inMd(R), the space of d× d
matrices with real entries (resp. in the subset of invertible matrices, resp. in the subset of
symmetric positive-definite matrices). Given a smooth matrix mapping M and a smooth
vector field F defined on Ω, let ∇M and ∇F be respectively the matrix of gradients
(∇Mi,j)i,j=1,...,d and the column vector of gradients (∇Fi)i=1,...,d. If v ∈ Rd then we
define 〈∇M,v〉 and 〈∇F, v〉 to be respectively the matrix (〈∇Mi,j , v〉)i,j=1,...,d and the
vector (〈∇Fi, v〉)i=1,...,d. Moreover we define the vector field ∇M ∇F by contraction as

(∇M ∇F )i =
d∑
j=1
〈∇Mi,j ,∇Fj〉.

For two column vectors of gradients ∇F and ∇G and a symmetric matrix M ∈Md(R),
we define

[∇F ]T M ∇G =
d∑

i,j=1
〈∇Fi,Mi,j∇Gj〉.

Above the superscript T stands for the transpose of a vector or a matrix. Finally we
denote ρ(A) the smallest eigenvalue of a given symmetric matrix A and say that A is
bounded from below by some constant κ ∈ R if ρ(A) ≥ κ. If κ = 0 we say that A is
non-negative.

2.2. Brascamp-Lieb type inequalities and general spectral gap estimates. We
start our analysis by stating an important lemma, which is more or less classical at least
on the whole Euclidean space Rd, and which might be seen as a dualized Brascamp-Lieb
type inequality. Let us give the proof for completeness.

Lemma 2.1. Let Ω ⊂ Rd be a (connected) compact set with smooth boundary ∂Ω and
outer unit-normal η. Assume that there exists some symmetric positive-definite matrix
mapping K such that for every f ∈ C∞N (Ω),∫

Ω
(−Lf)2 dµ ≥

∫
Ω
〈∇f,K∇f〉 dµ.
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Then for every g ∈ C∞(Ω), we have the Brascamp-Lieb type inequality

Varµ(g) ≤
∫

Ω

〈
∇g,K−1∇g

〉
dµ.

In particular if the mapping K is bounded from below (uniformly with respect to the space
variable) by some κ > 0 then the spectral gap of the operator −L is lower bounded as
follows:

λ1(Ω, µ) ≥ κ.

Proof. Letting g ∈ C∞(Ω) be centered, standard results for Neumann type Laplacians
ensure the existence of a unique solution f ∈ C∞N (Ω) to the Poisson equation −Lf = g.
Then the trick is to write the variance as follows:

Varµ(g) = 2
∫

Ω
g2 dµ−

∫
Ω
g2 dµ

= 2
∫

Ω
g (−Lf) dµ−

∫
Ω

(−Lf)2 dµ

= 2
∫

Ω
〈∇g,∇f〉 dµ−

∫
Ω

(−Lf)2 dµ

≤ 2
∫

Ω
〈K−

1
2∇g,K

1
2∇f〉 dµ−

∫
Ω
〈∇f,K∇f〉 dµ

=
∫

Ω
〈∇g,K−1∇g〉 dµ−

∫
Ω
|K

1
2∇f −K−

1
2∇g|2 dµ

≤
∫

Ω
〈∇g,K−1∇g〉 dµ.

The proof of the spectral gap estimate is then straightforward. �

This approach, known to specialists as the L2 method, is reminiscent of Hörmander’s
work [13] in the middle of the 60’s for solving the Poisson equation associated to the
operator ∂̄ in complex analysis, and has been used then by several authors to establish
Poincaré type inequalities. For instance we have in mind the famous (integrated version
of the) Γ2 curvature dimension criterion of Bakry and Emery [3] and also the work of
Helffer [12] for models arising in statistical mechanics. Moreover Klartag [15] used this
method to prove, among other things, the variance conjecture in the case of log-concave
unconditional distributions, that is, having log-concave density which is invariant under
coordinate hyperplane reflections. Recently, he refined the method to prove the KLS
conjecture up top some logarithmic factor of the dimension, cf. [16]. The presence
of a weight in the inequalities above through the matrix mapping K, which is just a
refinement of this approach, already appeared for instance in [4, 18] and in our previous
papers [2, 8], both works aiming at estimating conveniently the spectral gap or higher
eigenvalues in various situations of interest.

Actually, considering matrix weights takes roots in the pioneer work [10] through
the so-called Brascamp-Lieb inequality for strictly convex potentials V . In view of
Lemma 2.1, it corresponds to the mapping K being ∇2V , the Hessian matrix of V . Since
we work on the domain Ω, some extra boundary terms involving the second fundamental
form appear when integrating the famous Bochner formula adapted to the measure µ,
cf. for instance [15]. As we will see later, the boundary term is related to the geometry
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of the domain Ω in the sense that it reveals to be non-negative when Ω is convex. As
such, the formula is the following (we omit the proof since it is included in the one of
Lemma 2.2 below): for all f ∈ C∞N (Ω),∫

Ω
(−Lf)2 dµ =

∫
Ω
‖∇2f‖2HS dµ+

∫
Ω
〈∇f,∇2V∇f〉 dµ

+
∫
∂Ω
〈∇f, Jη∇f〉 dµ, (2.1)

where ‖A‖HS =
√∑

i,j=1,...,dA
2
i,j stands for the Hilbert-Schmidt norm of a given matrix

A ∈ Md(R) and Jη = (∂jηi)i,j=1,...,d denotes the Jacobian matrix of η. The strict
convexity of V (i.e., ∇2V is a symmetric positive-definite matrix mapping) entails by
Lemma 2.1 the famous Brascamp-Lieb inequality on convex domains: for every g ∈
C∞(Ω),

Varµ(g) ≤
∫

Ω
〈∇g,∇2V −1∇g〉 dµ.

Finally, if moreover V is uniformly convex on Ω, that is, ∇2V is uniformly bounded from
below by some κ > 0, then the spectral gap of the operator −L on the convex domain
Ω satisfies

λ1(Ω, µ) ≥ κ, (2.2)
which is the Euclidean version of the Bakry-Emery criterion [3].

In order to reinforce this spectral gap estimate or even to obtain a relevant bound
beyond this convex situation, our idea is to introduce some matrix weight in the de-
composition (2.1), freeing us from these strong convexity assumptions. This strategy is
inspired by our previous works on the intertwinings, cf. [2, 8]. See also the approach of
Wang [27] in a different context. Here is our key lemma. Below L stands for the diagonal
matrix operator acting on smooth vector fields F as LF = (LFi)i=1,...,d and the notation
W is used to remind us that it is interpreted as a weight, the unweighted version (i.e., W
is the identity) of our second identity (2.3) corresponding to the classical decomposition
(2.1).

Lemma 2.2. Let Ω ⊂ Rd be a (connected) compact set with smooth boundary ∂Ω and
outer unit-normal η. Let W be some smooth invertible matrix mapping. Then for all
f ∈ C∞(Ω), it holds∫

Ω
(−Lf)2 dµ =

∫
Ω

[
∇(W−1∇f)

]T
W TW ∇(W−1∇f) dµ

+
∫

Ω

〈
W−1∇f, (∇W T W −W T ∇W )∇(W−1∇f)

〉
dµ

+
∫

Ω

〈
∇f, (∇2V − LW W−1)∇f

〉
dµ+

∫
∂Ω

Lf 〈∇f, η〉 dµ

−
∫
∂Ω
〈∇f,∇2f η〉 dµ−

∫
∂Ω

〈
∇f,W 〈∇W−1, η〉∇f

〉
dµ.

Moreover, if f satisfies the Neumann boundary conditions 〈∇f, η〉 = 0, then∫
Ω

(−Lf)2 dµ =
∫

Ω

[
∇(W−1∇f)

]T
W TW ∇(W−1∇f) dµ
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+
∫

Ω

〈
W−1∇f, (∇W T W −W T ∇W )∇(W−1∇f)

〉
dµ

+
∫

Ω

〈
∇f, (∇2V − LW W−1)∇f

〉
dµ

+
∫
∂Ω

〈
∇f, (Jη −W 〈∇W−1, η〉)∇f

〉
dµ. (2.3)

Proof. We use the notation A = W−1 and S = (AAT )−1. Recall first the intertwining
between operators and (weighted) gradients introduced and studied in [2]:

A∇Lf = (LA −MA) (A∇f), (2.4)
where LA denotes the matrix operator acting on smooth vector fields as

LAF = LF + 2A∇A−1∇F,
and MA is the matrix corresponding to the multiplicative (or zero-order) operator

MA = A∇2V A−1 −ALA−1.

We have by integration by parts and the intertwining identity above,∫
Ω

(−Lf)2 dµ =
∫

Ω
〈∇f,∇(−Lf)〉 dµ+

∫
∂Ω
Lf 〈∇f, η〉 dµ

=
∫

Ω
〈A∇f, SA∇(−Lf)〉 dµ+

∫
∂Ω
Lf 〈∇f, η〉 dµ

=
∫

Ω
〈A∇f, S(−LA +MA)(A∇f)〉 dµ+

∫
∂Ω
Lf 〈∇f, η〉 dµ

=
∫

Ω
〈A∇f, S(−L)(A∇f)〉 dµ−

∫
Ω
〈A∇f, 2SA∇A−1∇(A∇f)〉 dµ

+
∫

Ω

〈
∇f, (∇2V − LA−1A)∇f

〉
dµ+

∫
∂Ω
Lf 〈∇f, η〉 dµ,

since
AT SMAA = ∇2V − LA−1A.

Dealing with the first term in the right-hand-side above, a second integration by parts
gives∫

Ω
〈A∇f, S(−L)(A∇f)〉 dµ =

∫
Ω

[∇(A∇f)]T S∇(A∇f) dµ+
∫

Ω
〈A∇f,∇S∇(A∇f)〉 dµ

−
∫
∂Ω
〈SA∇f, 〈∇(A∇f), η〉〉 dµ,

so that reorganizing the terms in the initial computations lead to∫
Ω

(−Lf)2 dµ =
∫

Ω
[∇(A∇f)]T S∇(A∇f) dµ+

∫
Ω

〈
∇f, (∇2V − LA−1A)∇f

〉
dµ

+
∫

Ω

〈
A∇f, (∇S − 2SA∇A−1)∇(A∇f)

〉
dµ

−
∫
∂Ω
〈SA∇f, 〈∇(A∇f), η〉〉 dµ+

∫
∂Ω
Lf 〈∇f, η〉 dµ

=
∫

Ω
[∇(A∇f)]T S∇(A∇f) dµ+ +

∫
Ω

〈
∇f, (∇2V − LA−1A)∇f

〉
dµ
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+
∫

Ω

〈
A∇f,

(
(∇A−1)T A−1 − (A−1)T ∇A−1

)
∇(A∇f)

〉
dµ

−
∫
∂Ω
〈∇f,∇2f η〉 dµ−

∫
∂Ω

〈
∇f,A−1 〈∇A, η〉∇f

〉
dµ

+
∫
∂Ω
Lf 〈∇f, η〉 dµ,

since we have∫
∂Ω
〈SA∇f, 〈∇(A∇f), η〉〉 dµ =

∫
∂Ω

〈
∇f,A−1 〈∇(A∇f), η〉

〉
dµ

=
∫
∂Ω
〈∇f,∇2f η〉 dµ+

∫
∂Ω

〈
∇f,A−1 〈∇A, η〉∇f

〉
dµ.

Hence the first desired identity is proved. Finally under the Neumann boundary condi-
tions 〈∇f, η〉 = 0 we have

0 = ∇〈∇f, η〉 = ∇2f η + (Jη)T ∇f,
from which the announced result follows. �

2.3. Proof of Theorem 1.1. Now we are able to prove the first main result of our
paper stated in the Introduction, Theorem 1.1.

Proof of Theorem 1.1. Our aim is to use Lemma 2.2 to find some convenient matrix
mapping K such that Lemma 2.1 applies. To do so, we need to understand the four
terms arising in the right-hand-side of (2.3). The first term is non-negative whereas the
second one vanishes since ∇W T W = W T ∇W , the matrix weight W being diagonal.
The most important terms are the two last ones, for which the assumptions of Theorem
1.1 directly apply: since assumption (A2) means that the boundary term is non-negative,
assumption (A1) allows us to choose the matrix mappingK equal to∇2V −LW W−1. �

As we will see on the examples, choosing a convenient matrix weight W which ensures
simultaneously the conditions (A1) and (A2) leading to the desired spectral gap estimate
is not an easy task since these conditions are not of the same nature a priori. Indeed as-
sumption (A1), which already appeared in our previous study [2] on the whole space and
provides the desired spectral gap estimate, strongly depends on the dynamics through
the presence of the Hessian matrix of V and the matrix operator L whereas (A2) does
not depend on V but only on the geometry of the boundary of the domain. Therefore
the strategy in the sequel is to find some convenient diagonal weight W balancing these
two conditions (A1) and (A2).

3. A class of convex bodies

We concentrate in this part on smooth convex bodies, that is, compact, convex sets
of Rd with non-empty interior and smooth boundary. Before turning to the applications
to this convex framework of our main result Theorem 1.1, let us briefly recall some
elements of the literature in this context. In view of the famous KLS conjecture, many
quantitative spectral gap estimates have been established in this convex setting by several
authors during the last three decades, using various methods (isoperimetry, optimal
transport, etc.). For instance among those important papers we may cite the pioneer
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work of Kannan, Lovász and Simonovits [14], Bobkov’s paper [5], or Milman’s article
[21]. In particular, an approach which revealed to be efficient is the so-called localization
method (or needle decomposition) which have been originally formalized by Payne and
Weinberger [23] in the 60s and further developed later in the 80s by Gromov and Milman
[11] and also in [14], allowing the authors to reduce the multidimensional case to a
one-dimensional problem. For instance the (log-concave version of the) famous Payne-
Weinberger inequality, whose proof relies on this method, is the following: if the potential
V is convex on the smooth convex body Ω, then

λ1(Ω, µ) ≥ π2

diam(Ω)2 , (3.1)

where diam(Ω) = supx,y∈Ω |x− y| stands for the diameter of Ω. Although optimal with
respect to the diameter by looking at the uniform distribution on one-dimensional in-
tervals, such an estimate still leaves room for improvement in higher dimension since
by tensorization the spectral gap for product measures is independent from the dimen-
sion whereas Payne-Weinberger’s inequality (3.1) applied for instance to the uniform
distribution on the hypercube exhibits a bound of order 1/d.

In this part we apply Theorem 1.1 for log-concave measures on smooth convex bodies
and improve Payne-Weinberger’s estimate under various assumptions. These results
correspond to the two other main results of the paper, Corollaries 3.1 and 3.6. Let us
start by introducing the context in which our study takes place. In most of the cases of
interest the domain Ω we consider is of the form

Ω = {x ∈ Rd : F (x) ≤ 0},

where F is some smooth convex function defined on Rd. Then the boundary is described
by the algebraic equation F = 0, the outer unit-normal is given by η = ∇F/|∇F |
provided the gradient does not vanish at the boundary. The second fundamental form
of the boundary is defined as the following quadratic form: for all vectors u, v ∈ TxΩ =
{m ∈ Rd : 〈m, η(x)〉 = 0}, the tangent space at point x ∈ ∂Ω,

〈u, Jη(x) v〉 = 1
|∇F (x)| 〈u,∇

2F (x) v〉,

so that the convexity of Ω (induced by the convexity of F ) implies that the second
fundamental form is non-negative. In the sequel, even if not explicitly written, we will
always let the matrix Jη(x) (and also the various expressions involving it) act on the
tangent space TxΩ only. Moreover, in order to lighten the notation, we will often omit
the space variable by writing Jη. The eigenvalues of the second fundamental form are
called the principal curvatures and we denote ρ(Jη) the smallest one (depending on the
space variable).

Three interesting cases we will consider are the following:
◦ The uniform distribution on Ω, i.e., the normalized volume measure with probability

density function 1Ω/vol(Ω). The potential V is null and the underlying operator L is
the Laplacian ∆ on Ω. In this context we denote for simplicity the spectral gap λ1(Ω).
◦ A log-concave probability measure related to a uniformly convex potential V on Ω.

Such measures include for instance the standard Gaussian case, i.e., V = | · |2/2.
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◦ A radial probability measure on Ω: the associated potential V : Ω→ R only depends
on the Euclidean norm, that is, V (x) = V (|x|) (using an obvious abuse of notation).
In this case µ is log-concave as soon as the one-dimensional function V is convex and
non-decreasing on R+. A typical example of a radial log-concave probability measure is
the Subbotin distribution, i.e., V = | · |α/α with α ≥ 1.

In order to apply Theorem 1.1, we will need some relevant assumption on the convex
body Ω. To do so, some preparation is required. Assume first that the origin lies in the
interior of the convex body (in the sequel we note 0 ∈ int(Ω)). Let Rmax denotes the
smallest positive number such that Ω ⊂ B(0, Rmax), the (closed) Euclidean ball centered
at the origin and with radius Rmax. Then it is easily seen that Rmax is of order of the
diameter of Ω. Moreover we have 〈x, η(x)〉 ≥ 0 for all x ∈ ∂Ω, see for instance Section 1.3
in [25]. Actually we even have 〈x, η(x)〉 ≥ Rmin where Rmin(> 0) is the largest positive
number such that B(0, Rmin) ⊂ Ω. Consider the following assumption: there exists some
β > 0 such that

Jη(x) ≥ β 〈x, η(x)〉
r2 I, x ∈ ∂Ω, (3.2)

where above and in the remainder of the paper we denote r = |x| to simplify the
notation. It is easy to show that this assumption is equivalent to the fact that Ω is
uniformly convex, i.e., the second fundamental form is uniformly bounded from below
by some positive constant (however it is a weaker assumption when the convex domain
Ω is unbounded). Indeed since r ∈ [Rmin, Rmax] at the boundary, the optimal constants
satisfy

inf
∂Ω

ρ(Jη) ≥ βRmin/R
2
max and β ≥ inf

∂Ω
ρ(Jη)Rmin.

Actually, the assumption (3.2) already appeared as a key hypothesis in the work of
Kolesnikov and Milman [17] about Brascamp-Lieb type inequalities and spectral gap
estimates. We will come back to their article in a moment. Note also that the right-
hand-side of (3.2), which is well-defined since r ≥ Rmin > 0 at the boundary, depends
on the position of the origin contrary to the uniform convexity assumption. Dealing now
with the key parameter β, we point out that we always have β ≤ 1. Indeed, let x0 ∈ ∂Ω
be a point intersecting the boundary and the sphere of radius Rmin and centered at the
origin. On the one hand the outer unit-normal at x0 is the same for Ω and B(0, Rmin)
and is given by η(x0) = x0/Rmin, so that the assumption (3.2) gives

Jη(x0) ≥ β

Rmin
I.

On the other hand at point x0 the second fundamental form is at most that of the
ball B(0, Rmin), which is (1/Rmin)I. Combining those two arguments yields the desired
conclusion. In particular β = 1 when Ω is an Euclidean ball centered at the origin.

Assume now that 0 /∈ Ω (now and in the remainder of the paper we will not consider
the unessential case 0 ∈ ∂Ω since it would require some additional technicalities in the
approximation procedures). It leads to some important observations: on the one hand
there exist some points x ∈ ∂Ω of the boundary such that 〈x, η(x)〉 < 0 and on the other
hand Rmax might be much larger than the diameter of Ω when d(0,Ω), the distance from
Ω to the origin, is very large. In particular the right-hand-side in assumption (3.2) could
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be non-positive, meaning that Ω would no longer necessarily be convex. To preserve
convexity, our idea is to slightly modify (3.2) by considering the following assumption:

Jη(x) ≥ β 〈x, η(x)〉+

r2 I, x ∈ ∂Ω, (3.3)

where the + denotes the positive part. Such assumption, which coincides with (3.2)
when 0 ∈ int(Ω), is the key hypothesis we will use in the sequel. However (3.3) does not
necessarily entail that β ≤ 1 and moreover it is not equivalent to the uniform convexity
of the domain (it is actually a weaker assumption since the optimal β in (3.3) satisfies
β ≥ inf∂Ω ρ(Jη) d(0,Ω)).

3.1. General log-concave probability measures. We are now in position to state
the first important consequence of Theorem 1.1. It corresponds to the second main result
of our paper.

Corollary 3.1. Consider a log-concave probability measure µ on a smooth convex body
Ω ⊂ Rd (d > 3). Assume that there exists some β > 0 such that (3.3) is satisfied and

∇2V (x) ≥ β 〈x,∇V (x)〉+

r2 I, x ∈ Ω. (3.4)

Then the generalized Brascamp-Lieb inequality holds: for all g ∈ C∞(Ω),

Varµ(g) ≤ 1
β(d− 2− β)

∫
Ω
r2 |∇g|2 dµ. (3.5)

In particular the spectral gap satisfies

λ1(Ω, µ) ≥ β(d− 2− β)
R2

max
.

Proof. Since the generalized Brascamp-Lieb inequality implies directly the desired spec-
tral gap estimate, let us prove only (3.5). Given ε > 0, we choose some weight Wε

which is a multiple of the identity and radial, say Wε(x) = wε(r) I for all x ∈ Ω, where
wε(r) = (ε+ r2)−β/2. Then the quantities of interest appearing in the assumption (A2)
of Theorem 1.1 rewrite as follows: at the boundary x ∈ ∂Ω, we have

Jη(x)−Wε(x) 〈∇W−1
ε (x), η(x)〉 = Jη(x) + 〈∇wε(r), η(x)〉

wε(r)
I

= Jη(x) + w′ε(r)
wε(r)

〈x, η(x)〉
r

I

= Jη(x)− βr

ε+ r2
〈x, η(x)〉

r
I

≥
(
β − βr2

ε+ r2

)
〈x, η(x)〉+

r2 I.

Hence the assumption (A2) of Theorem 1.1 is satisfied regardless of the value of ε. Now
let us come back to assumption (A1) of Theorem 1.1 and see if it is satisfied with this
choice of function wε. We have for all x ∈ Ω,

∆wε (r)
wε (r) = w′′ε (r)

wε (r) + d− 1
r

w′ε (r)
wε (r)
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= β(β + 1)r2 − βε
(ε+ r2)2 − β(d− 1)

ε+ r2 ,

so that we get

∇2V (x)− LWε(x)W−1
ε (x) = ∇2V (x) +

(−∆wε(r)
wε(r)

+ 〈∇wε(r),∇V (x)〉
wε(r)

)
I

= ∇2V (x) +
(
βdε+ β(d− 2− β)r2

(ε+ r2)2 − β〈x,∇V (x)〉
ε+ r2

)
I

≥
(
ε β 〈x,∇V (x)〉+

(ε+ r2)r2 + βdε+ β(d− 2− β)r2

(ε+ r2)2

)
I

≥ βdε+ β(d− 2− β)r2

(ε+ r2)2 I,

according to the assumption (3.4). Hence by Theorem 1.1 we obtain the following
generalized Brascamp-Lieb inequality: for all g ∈ C∞(Ω),

Varµ(g) ≤
∫

Ω

(ε+ r2)2

βdε+ β(d− 2− β)r2 |∇g|
2 dµ.

Finally, using the dominated convergence theorem on the compact set Ω as ε tends to
0 yields to the desired generalized Brascamp-Lieb inequality (3.5). The proof is now
complete. �

Comparing to Payne-Weinberger’s estimate (3.1), our result is relevant in most cases
except one: when Rmax is large compared to the diameter. Such a situation occurs
only when d(0,Ω) is very large. We will address this problem later in Section 3.4 by
considering the example of the Subbotin distribution.

As announced, we come back to the work of Kolesnikov and Milman [17] and in
particular their Theorem 6.7 established by a conformal change of (Riemannian) metric
combined with Bakry-Emery criterion. Actually, Corollary 3.1 recovers their result (with
slightly better constants) when 0 ∈ int(Ω) and extends it to more general log-concave
probability measures than the uniform distribution. It is tempting to wonder if our in-
tertwining method can be seen as a rewriting of their approach by choosing conveniently
in (2.4) the matrix weight A. After a careful reading of their paper and some attempts
to obtain clear correspondences, it seems to us that both approaches are not equivalent,
although our choice of function wε in our proof corresponds to their conformal transfor-
mation. The only situation for which both approaches coincide is the case of product
metrics, the latter being relevant in the study of unconditional log-concave probability
measures.

For the second assumption (3.4) involving also the potential V on the convex body
Ω, Corollary 3.1 is relevant in the three aforementioned frameworks:

(i) V ≡ 0 and µ is the uniform distribution on Ω;
(ii) V is uniformly convex;
(iii) V is convex and radial.

Let us now investigate in detail how this result may be applied to these situations.
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3.2. The uniform distribution. Let us start by case (i). Dealing with the uniform
distribution, the spectral estimate of Corollary 3.1 has to be interpreted as a spectral
gap comparison between convex bodies and Euclidean balls. Given a radius R > 0, it
is more or less known to specialists (see for instance our previous article [9] for a proof
based on the underlying radial structure) that λ1(B(0, R)) is of order d/R2 (recalled in
the Appendix, its exact expression does not exhibit an explicit behaviour with respect
to the dimension). Actually, Corollary 3.1 enables to recover easily this estimate since
we have β = 1 and thus we get in dimension d > 3,

λ1(B(0, R)) ≥ d− 3
R2 .

We mention that a similar estimate which is available in dimension 2 and 3 might be
obtained by rather considering in the proof of Corollary 3.1 the radial function w(r) =
exp (−r2/2R2), leading to the slightly better estimate λ1(B(0, R)) ≥ (d − 1)/R2. See
also the discussion in the Appendix. Now the question is the following: since Weinberger
[28] proved the following inequality:

λ1(Ω) ≤
(vol(B(0, 1))

vol(Ω)

)2/d
λ1(B(0, 1)),

i.e., the spectral gap λ1(B(0, 1)) of the Euclidean unit ball B(0, 1) maximizes all the
spectral gaps λ1(Ω) of bounded domains Ω with the same volume, does the reverse
Weinberger inequality hold (up to some constants) for a convenient class of domains
so that both spectral gaps would be of the same order ? Note that the convexity is a
reasonable assumption in order to avoid bottlenecks (and thus arbitrarily small spectral
gaps), but it is clearly not sufficient as suggested by the dimension free estimate for
the hypercube. Actually, the desired inequality reveals to be true by reformulating the
conclusion of Corollary 3.1 at least under the assumption (3.3). This observation leads
to the following result, which is the announced spectral gap comparison. Since in the
uniform case the spectral gap is translation invariant, we can assume that 0 ∈ int(Ω) and
the position of the origin has then to be optimized to obtain the best possible estimate.

Proposition 3.2. Assume that the smooth convex body Ω ⊂ Rd with 0 ∈ int(Ω) satisfies
the assumption (3.3). Then we have the spectral gap comparison

λ1(Ω) ≥ β(d− 2− β)
d+ 2

(
Rmin
Rmax

)2 (vol(B(0, 1))
vol(Ω)

)2/d
λ1(B(0, 1)).

Proof. The proof is straightforward from Corollary 3.1. Indeed we have the estimate

λ1(Ω) ≥ β(d− 2− β)
R2

max
.

Now we have B(0, Rmin) ⊂ Ω leading to the volume comparison

(Rmin)d vol(B(0, 1)) ≤ vol(Ω).
Testing on linear functions, the spectral gap λ1(B(0, 1)) is easily bounded from above as
follows:

λ1(B(0, 1)) ≤ d∫
B (0,1) |x|2 dx

= d
∫ 1

0 r
d−1 dr∫ 1

0 r
d+1 dr

= d+ 2.
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Finally combining all these inequalities entails the desired result. �

In particular, this estimate is relevant as soon as Rmin and Rmax are of the same order,
meaning in some sense that the convex body Ω is close to an Euclidean ball. We refer
to Milman’s paper [21] and in particular Section 5 in which the author obtains several
spectral gap comparison results for convex bodies under volume preserving perturbations
or in terms of total variation distance.

Before turning to the case (ii) of a uniformly convex potential V , let us justify at
least for the ball why we may assume in Proposition 3.2 that 0 ∈ int(Ω). Let Ω be the
Euclidean ball B(a,R) of radius R and centered at point a = a1e1 with a1 ≥ 0, where
e1 denotes the first vector of the standard canonical basis of Rd. For x at the boundary,
we have η(x) = x/R, Jη(x) = (1/R) I and

〈x, η(x)〉+

r2 = 〈a1e1 +Rη(x), η(x)〉+

‖a1e1 +Rη(x)‖2

= (a1〈e1, η(x)〉+R)+

a2
1 +R2 + 2Ra1〈e1, η(x)〉

.

Thus

sup
x∈∂Ω

〈x, η(x)〉+

r2 = sup
u∈[−1,1]

(a1u+R)+

a2
1 +R2 + 2Ra1u

.

If 0 ∈ int(B(a,R)), that is if a1 < R, then the supremum is attained at u = −1 and has
value 1/(R− a1) and the condition (3.3) holds if and only if

β ≤ 1− a1
R

(≤ 1).

If now 0 /∈ B(a,R), that is if a1 > R, then the supremum is attained at u = 1 and has
value 1/(R+ a1) so that the condition (3.3) holds if and only if

β ≤ 1 + a1
R
.

Denote βmax the above bound on β according to the situation we consider. Then the
best lower bound on the spectral gap appearing in Corollary 3.1 is

βmax(d− 2− βmax)
R2

max
= βmax(d− 2− βmax)

(R+ a1)2 .

Of course βmax has to be < d − 2 to entail a relevant estimate. In the case a1 < R, we
have βmax = 1− a1/R and the previous bound behaves asymptotically as (d− 3)/R2 as
a1 is small (it is actually reached for a1 = 0) whereas if a1 > R, βmax = 1 + a1/R and

βmax(d− 2− βmax)
(R+ a1)2 =

d− 3− a1
R

R2 (1 + a1
R

) ,
which is always < (d− 3)/R2.
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3.3. The uniformly convex case. We consider briefly the case (ii) for which the
potential V is uniformly convex on Ω: there exists α1 > 0 such that ∇2V (x) ≥ α1 I
for all x ∈ Ω. Assume to simplify that 0 ∈ int(Ω) and V attains its unique mininum
at the origin. By compactness there exists α2 > 0 such that ∇2V (x) ≤ α2 I, x ∈ Ω.
Then the assumption (3.4) holds for all β ∈ (0, α1/α2] hence Corollary 3.1 applies for
all β ∈ (0, α1/α2] such that the assumption (3.3) is satisfied. If the convex domain Ω is
not bounded, that is, Rmax is infinite, but still satisfies the assumption (3.3), then the
spectral estimate becomes irrelevant but the generalized Brascamp-Lieb inequality (3.5)
remains available under the assumption that α2 is finite, concerning possibly interesting
and non classical situations (we have in mind for instance a two dimensional standard
Gaussian distribution restricted to the epigraph of a parabola including the origin).

3.4. The Subbotin distribution. Let us finally consider the radial log-concave case
(iii). We have ∇V (x) = V ′(r)x/r and

∇2V (x) = V ′(r)
r

I +
(
V ′′(r)− V ′(r)

r

)
xxT

r2 , x ∈ Ω.

The eigenvalues are V ′′(r) and V ′(r)/r with respective eigenspace Rx and (Rx)⊥, its
orthogonal complement. Hence a sufficient condition ensuring the assumption (3.4) is
the following:

min
{
V ′′(r), V

′(r)
r

}
≥ β V ′(r)

r
, x ∈ Ω.

The aim of this part is to investigate the particular case of the Subbotin distribution,
which is an interesting example worthy to be investigated in detail. Recall that the
potential V on the convex body Ω is of the form V = | · |α/α for α > 1 (actually, the
case α = 1 could also be considered as well, but would require a slight modification of
the argument below). By (2.2) we have the estimate

λ1 (Ω, µ) ≥ inf
x∈Ω

min
{
V ′′(r), V

′(r)
r

}
= inf

x∈Ω
min{1, α− 1} rα−2.

For α ≥ 2 it yields
λ1 (Ω, µ) ≥ d(0,Ω)α−2. (3.6)

In particular if 0 ∈ int(Ω) then the potential V is not uniformly convex at the origin.
For α ∈ (1, 2] it is uniformly convex and we have

λ1 (Ω, µ) ≥ (α− 1)Rα−2
max . (3.7)

Actually, we will see that, except for the standard Gaussian case α = 2, these bounds are
not sufficient in general and have to be reinforced to reach the sharp order of the spectral
gap with respect to the dimension. For instance if Ω is the ball B(0, R) for some R > 0,
we expect a competition between two different regimes, depending on the position of R
(= Rmax) with respect to the average value

∫
Rd |x| dµ(x), which is of order d1/α: when

R� d1/α the spectral gap should be comparable to that of the uniform distribution on
the ball B(0, R), which is of order d/R2 as we have seen previously, since in this case
the Subbotin distribution is close to the uniform law on B(0, R) (for instance in total
variation distance), whereas for large R� d1/α the regime we expect should be similar
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to that of the Subbotin on the whole space Rd, which is approximatively d1−2/α, cf.
[9]. In all these cases we observe that the estimate (3.7) obtained by using the uniform
convexity is not sufficient to reach the expected results.

Now it is time to state our result which can be seen as a refinement of Corollary 3.1 in
the Subbotin case. Below we allow the parameter β given by (3.3) to be null since some
of the results are still relevant for general convex bodies (for the other situations it does
not bring any information since the lower bound obtained on the spectral gap vanishes).
Similarly, we state the result for d > 3 but some of the statements are relevant for d = 2
or d = 3 as long as the lower bound obtained on the spectral gap is positive (although for
small dimension our results are somewhat comparable to Payne-Weinberger’s inequality
(3.1) as soon as diam(Ω) and Rmax are of the same order).

Proposition 3.3. Let Ω ⊂ Rd (d > 3) be a smooth convex body satisfying (3.3) for
some β ≥ 0. Let µ be the Subbotin distribution with parameter α > 1 on Ω. Denote
βα = min{β, 1, α− 1}. Then the spectral gap satisfies:

• If α > 2, then we have

λ1 (Ω, µ) ≥ max
{
βα(d− 2− βα)

R2
max

, Cα βα

(
d− 2− βα

2

)1−2/α
, d(0,Ω)α−2

}
,

with Cα = α
4

(
α−2

2

)(2−α)/α
.

• If α ∈ (1, 2], then

λ1 (Ω, µ) ≥ max
{
βα (d+ α− 2− βα)

R2
max

, (α− 1)Rα−2
max

}
.

In the case α ∈ (1, 2), if moreover 0 ∈ int(Ω) then the estimate can be improved
for large Rmax as

λ1 (Ω, µ) ≥ α

4

(2− α
α− 1

)1−2/α
(d+ α− 2)1−2/α.

Proof. We first consider the case α > 2. Then we take W = wI with w the radial
function w(r) = r−b and b > 0 to be chosen later (if 0 ∈ int(Ω) then a regularization
procedure similar to that emphasized in the proof of Corollary 3.1 is required; we omit
the details). First as before, the hypothesis (3.3) allows us to bound from below the
term at the boundary x ∈ ∂Ω as follows:

Jη(x)−W (x) 〈∇W−1(x), η(x)〉 = Jη(x) + w′(r)
w(r)

〈x, η(x)〉
r

I

= Jη(x)− b 〈x, η(x)〉
r2 I

≥ (β − b) 〈x, η(x)〉+

r2 I.

Hence the assumption (A2) of Theorem 1.1 is satisfied provided b ≤ β. We now con-
centrate on the term inside the domain in assumption (A1). For x ∈ Ω, the smallest
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eigenvalue of the matrix ∇2V (x)− LW (x)W−1(x) is given by

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (1− b) rα−2 + b(d− 2− b)

r2 . (3.8)

On the one hand taking b = βα = min{β, 1} yields for all x ∈ Ω,

ρ
(
∇2V (x)− LW (x)W−1(x)

)
≥ βα(d− 2− βα)

R2
max

.

On the other hand when Rmax is large, it is better to keep the first term in (3.8) and to
bound from below the whole expression by the minimum on (0,∞) of the function

g : r 7→ (1− b) rα−2 + b(d− 2− b)
r2 .

It is obtained in

r0 =
( 2b(d− 2− b)

(α− 2)(1− b)

)1/α
,

and has value

g(r0) = α

(1− b
2

)2/α (b(d− 2− b)
α− 2

)1−2/α
.

Choosing for simplicity b = βα/2 leads to the more presentable lower bound:

g(r0) ≥ α

4

(
α− 2

2

)(2−α)/α
βα

(
d− 2− βα

2

)1−2/α
.

Finally using (3.6) completes the proof in the case α > 2.
We now turn to the case 1 < α ≤ 2 for small Rmax. Although the same function
w(r) = r−b as above may be used, the function w(r) = exp (−εrα/α) with ε > 0 chosen
below produces a slightly better lower bound. By (3.3), the term at the boundary x ∈ ∂Ω
satisfies

Jη(x) + w′(r)
w(r)

〈x, η(x)〉
r

I = Jη(x)− εrα−1 〈x, η(x)〉
r

I

≥ 〈x, η(x)〉+

r2 (β − εrα) I,

hence the assumption (A2) of Theorem 1.1 is satisfied as soon as ε ≤ β/Rαmax. Moreover,
since

∆w(r)
w(r) = w′′(r)

w(r) + d− 1
r

w′(r)
w(r)

= ε2r2(α−1) − ε(d+ α− 2)rα−2,

one has

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (α− 1)rα−2 + ε(d+ α− 2)rα−2 − εr2(α−1) − ε2r2(α−1)

= (α− 1− εrα)rα−2 + ε(d+ α− 2− εrα)rα−2

≥ (α− 1− b)rα−2 + b(d+ α− 2− b)
Rαmax

rα−2
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≥ b(d+ α− 2− b)
R2

max
,

the two inequalities being consequences of the choice ε = b/Rαmax with b ≤ βα =
min{β, α − 1}. As such, choosing finally b = βα yields the desired bound for suffi-
ciently small Rmax in the case α ∈ (1, 2].
Let us achieve the proof by providing the relevant bound for large Rmax. As noticed
earlier, the standard Gaussian case α = 2 is straightforward by using the sharp estimate
(3.7), which also holds when 1 < α < 2. However it can be improved in the latter case
to reach the sharp regime with respect to the dimension at least when 0 ∈ int(Ω). Note
that in this case we have 〈x, η(x)〉 ≥ 0 for all x ∈ ∂Ω so that the assumption (A2) of
Theorem 1.1 is trivially satisfied for any non-decreasing radial function w. We now take
W (x) = w(r) I with the non-decreasing radial function w(r) = exp (εrα/α) with ε > 0
to be chosen conveniently. In contrast to the previous situation, observe that the sign
in front of ε is now a +, which makes a great difference for our purpose. For x ∈ Ω, we
have

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (α− 1− ε (d+ α− 2)) rα−2 + ε(1− ε)r2(α−1)

≥ (α− 1− ε (d+ α− 2)) rα−2 + ε

2 r
2(α−1),

which is positive as soon as ε ∈ (0, (α− 1)/(d+α− 2)) ⊂ (0, 1/2]. Denoting ϕ the latter
function of r ∈ (0, Rmax], one observes that the minimum of ϕ on R+ is attained at point

r0 =
((2− α)(α− 1− ε(d+ α− 2))

ε(α− 1)

)1/α
,

so that for all r ∈ (0, Rmax],

ϕ(r) ≥ α (α− 1− ε(d+ α− 2))
2(α− 1)

((2− α)(α− 1− ε(d+ α− 2))
ε(α− 1)

)1−2/α
.

Choosing the parameter
ε = α− 1

2(d+ α− 2) ∈ (0, 1/2),

yields the inequality

ρ
(
∇2V (x)− LW (x)W−1(x)

)
≥ α

4

(2− α
α− 1

)1−2/α
(d+ α− 2)1−2/α,

which ends the proof in the case 1 < α < 2. �

Before commenting the results obtained in Proposition 3.3, let us mention that sim-
ilarly to Corollary 3.1 we are also able to state a generalized Brascamp-Lieb inequality
in the Subbotin case. For instance when α ≥ 2, the above choice w(r) = exp (−εrα/α)
with ε = βα/R

α
max and βα = min{β, 1} ensures on the one hand that the assumption

(A2) of Theorem 1.1 is satisfied, and on the other hand

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (1− εrα)rα−2 + ε(d+ α− 2− εrα)rα−2

≥ (1− βα)rα−2 + βα(d+ α− 2− βα)
Rαmax

rα−2
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≥ 1− βα
Rαmax

r2(α−1) + βα(d+ α− 2− βα)
Rαmax

rα−2,

so that it leads to the following inequality: for all g ∈ C∞(Ω),

Varµ(f) ≤
∫

Ω
|∇f |2 r2

βα(d+ α− 2− βα) + (1− βα)rα
(
Rmax
r

)α
dµ.

On the other hand when 0 ∈ int(Ω), choosing w(r) = exp (εrα/α) with ε > 0 some
conveniently chosen parameter (assumption (A2) of Theorem 1.1 is then automatically
satisfied) entails that

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (1− ε (d+ α− 2)) rα−2 + ε(1− ε)r2(α−1)

≥ Cα,d
(
rα−2 + r2(α−1)

)
,

with Cα,d some explicit constant depending on α and behaving as 1/d as d goes to
infinity, so that it leads to another generalized Brascamp-Lieb inequality similar to the
one we obtained previously on the whole space Rd (cf. page 1049 in [2]). As such, it is
not clear how to compare these two inequalities between them and with (3.5), even in
the Gaussian case α = 2.

Now let us come back to the spectral results obtained in Proposition 3.3. Actually, the
various lower bounds on the spectral gaps appear with a maximum, meaning that some
comparison depending on the parameters of interest has to be done. More precisely, it
is interesting to note that one has to compare Rαmax and the dimension d to find which
estimate is the best, justifying the discussion on the ball B(0, R) before Proposition
3.3. Moreover, to see the relevance of our estimate, let us focus on the ball B(0, R) for
which some results are already available in the literature. According to [6, 9], this radial
situation can be reduced to a careful study of the one-dimensional radial part and in
this case we have the two-sided estimates, cf. [9]:

(d− 1)µ(B(0, R))∫
B (0,R) |x|2 dµ(x) ≤ λ1(B(0, R), µ) ≤ dµ(B(0, R))∫

B (0,R) |x|2 dµ(x) .

Hence the following asymptotic result holds:

λ1(B(0, R), µ) ∼
d→∞

dµ(B(0, R))∫
B (0,R) |x|2 dµ(x) .

Passing then in polar coordinates and using Laplace’s method for the estimation of
integrals leads to the exact asymptotics

λ1(B(0, R), µ) ∼
d→∞

max
{
d

R2 , d
1−2/α

}
.

Hence one deduces that the estimates of Proposition 3.3 applied to the ball B(0, R)
directly recover these asymptotics up to some unessential prefactors depending only on
α since we have β = 1 and Rmax = R.

As mentioned just after the proof of Corollary 3.1, there exists a situation for which
Payne-Weinberger’s result is better than ours: when the diameter of the convex body is
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sufficiently small compared to Rmax (enforcing the distance d(0,Ω) to be large). Note
that since we always have

d(0,Ω) ≤ Rmax ≤ d(0,Ω) + diam(Ω),

Rmax and d(0,Ω) are of the same order as soon as the diameter is sufficiently small
compared to Rmax. Therefore Payne-Weinberger’s estimate (3.1) is better than ours
appearing in Proposition 3.3 in the range

1
diam(Ω)2 � max

{
d

R2
max

, Rα−2
max

}
.

(in the maximum above we ignore the unessential prefactors which do not depend on
the quantities of interest, Rmax, the dimension and the diameter). However using the
rotational invariance of the Subbotin distribution will allow us to improve our estimates
in this setting by considering functions that depend only on d−1 coordinates. This idea
already appeared in [7] for the Gaussian case and revealed to be fruitful to estimate the
spectral gap. Assume that Ω is far from the origin and that its diameter is sufficiently
small. Since the Subbotin measure is radial, one can make a change of coordinates by a
rotation and assume that int(Ω)∩Re1 6= ∅, where recall that e1 is the first vector of the
standard canonical basis of Rd. Given some vector x ∈ Rd, we set x−1 = (0, x2, . . . , xd)
and r−1 = |x−1|. Note that one always has r ≥ r−1. We denote

R−1,max = sup
x∈Ω

r−1,

which is always smaller than (and sometimes comparable to) the diameter. The assump-
tion in force now, which is the analogue of (3.3) adapted to the present situation, is the
following geometric condition: there exists β̃ ≥ 0 such that

Jη(x) ≥ β̃ 〈x−1, η(x)〉+

r2
−1

I, x ∈ ∂Ω. (3.9)

Although the meaning of this geometric condition is not completely clear, it is satisfied
with β̃ = 1 for the ball B(a,R). Indeed we have Jη(x) = (1/R) I for all x ∈ ∂Ω and
since x = a+Rη(x), we get x−1 = Rη(x)−1 and

〈x−1, η(x)〉+

r2
−1

= R|η(x)−1|2

R2|η(x)−1|2
= 1
R
.

Note that if there exists some x ∈ ∂Ω such that r−1 = 0, then a necessary condition to
get (3.9) at point x is 〈x−1, η(x)〉 ≤ 0.

Now we can state the desired improvement of Proposition 3.3 when considering the
above situation. As we will see in the proof, our idea is to consider W = wI with w a
function depending only on r−1 instead of r as in the proof of Proposition 3.3. The price
to pay for such a modification is not too high since we only lose a bit on the dimension
in the constants (d is replaced by d− 1).

Proposition 3.4. Let Ω ⊂ Rd (d > 4) be a smooth convex body such that int(Ω)∩Re1 6=
∅. Assume that Ω satisfies (3.9) for some β̃ ≥ 0. Let µ be the Subbotin distribution with
parameter α > 1 on Ω. Denote β̃α = min{β̃, 1, α− 1}. Then the spectral gap satisfies:
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• If α > 2, then

λ1 (Ω, µ) ≥ max

 β̃α(d− 3− β̃α)
R2
−1,max

, Cαβ̃α

(
d− 3− β̃α

2

)1−2/α

, d(0,Ω)α−2

 ,
with Cα = α

4

(
α−2

2

)(2−α)/α
.

• If α ∈ (1, 2], then

λ1 (Ω, µ) ≥ max
{
β̃α(d+ α− 3− β̃α)

R2
−1,max

, (α− 1)Rα−2
max

}
.

Proof. The proof is somewhat similar to that of Proposition 3.3 except we consider
now W = wI with w a function depending only on r−1. In the case α > 2 we set
w(r−1) = r−β̃α−1 so that on the one hand the hypothesis (3.9) entails that the assumption
(A2) of Theorem 1.1 is satisfied and on the other hand, the smallest eigenvalue of the
matrix ∇2V (x)− LW (x)W−1(x) for x ∈ Ω is given by

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (1− β̃α) rα−2 + β̃α(d− 3− β̃α)

r2
−1

≥ (1− β̃α) rα−2
−1 + β̃α(d− 3− β̃α)

r2
−1

,

because r ≥ r−1 and α > 2. Since the optimization procedure is then exactly the same
as in Proposition 3.3, the case α > 2 is achieved.
As in Proposition 3.3, to improve a bit the constant with respect to the dimension in
the case 1 < α ≤ 2, we rather consider the function w(r−1) = exp(−εrα−1/α) with
ε = β̃α/R

α
−1,max. Hence the assumption (A2) of Theorem 1.1 is satisfied and for all

x ∈ Ω we have
ρ
(
∇2V (x)− LW (x)W−1(x)

)
= (α− 1)rα−2 + ε(d+ α− 3)rα−2

−1 − εr
α−2 rα−1 − ε2r

2(α−1)
−1

= (α− 1− εrα−1)rα−2 + ε(d+ α− 3− εrα−1)rα−2
−1

≥ β̃α(d+ α− 3− β̃α)
R2
−1,max

.

The proof is now complete. �

As mentioned previously, the assumption (3.9) is the direct analogue of (3.3) adapted
to our situation, but it is not completely satisfactory since its geometrical meaning seems
difficult to understand. Hence a stronger but more readable assumption relies on the
uniform convexity of the convex body.

Proposition 3.5. Let Ω ⊂ Rd (d ≥ 2) be a smooth uniformly convex body such that
int(Ω) ∩ Re1 6= ∅. Denote ρ = inf∂Ω ρ(Jη) > 0. Let µ be the Subbotin distribution with
parameter α > 1 on Ω. Then we have the spectral gap estimate

λ1(Ω, µ) ≥ min{cα, ρR−1,max}
2(d− 1)
3R2
−1,max

,

where cα = min{1, α− 1}.
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Proof. As in the proof of Proposition 3.4, we consider W = wI with w depending on
r−1. Let us choose w of the form w(r1) = C − r2

−1 where C > R2
−1,max is some constant

to be chosen later. Given x ∈ ∂Ω, we have

Jη(x)−W (x) 〈∇W−1(x), η(x)〉 = Jη(x)− 2r−1
C − r2

−1

〈x−1, η(x)〉
r−1

I.

Since we always have 〈x−1, η(x)〉 ≤ r−1, the assumption (A2) of Theorem 1.1 is satisfied
as soon as

ρ ≥ sup
x∈∂Ω

2r−1
C − r2

−1
= 2R−1,max
C −R2

−1,max
,

that is,

C ≥ R2
−1,max

(
1 + 2

ρR−1,max

)
.

Now we have for all x ∈ Ω,

ρ
(
∇2V (x)− LW (x)W−1(x)

)
= cαr

α−2 − rα−2 2r2
−1

C − r2
−1

+ 2(d− 1)
C − r2

−1

= 2(d− 1)
C − r2

−1
+
cαC − (cα + 2)r2

−1
C − r2

−1
rα−2

≥ 2(d− 1)
C − r2

−1
,

provided

C ≥ R2
−1,max

(
1 + 2

cα

)
.

Therefore choosing C as the best constant satisfying both constraints, i.e.,

C = R2
−1,max

(
1 + 2

min{cα, ρR−1,max}

)
,

entails

λ1(Ω, µ) ≥ inf
x∈Ω

2(d− 1)
C − r2

−1
= 2(d− 1)

C
,

which in turn implies the desired spectral gap estimate since the minimum above involv-
ing cα is smaller than 1. �

3.5. The case of generalized Orlicz balls. To finish this work, let us investigate a
somewhat different situation, that is, when the second fundamental form Jη is diagonal.
This is the case when the function F describing the domain Ω has an additive form, that
is for instance,

F (x) =
d∑
i=1

Ui(xi)− 1, x ∈ Rd,
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where the potentials Ui : R→ R+ are smooth one-dimensional functions, since we have
at the boundary x ∈ ∂Ω,

η(x) = 1√∑d
i=1 U

′
i(xi)2

(
U ′1(x1), . . . , U ′d(xd)

)T
,

and
Jη(x) = 1√∑d

i=1 U
′
i(xi)2

diagU ′′i (xi), x ∈ Rd.

Above the diagonal matrix diagU ′′i (xi) has the U ′′i (xi) on the diagonal. In particular
when the Ui are convex functions, the domain Ω is convex and called a generalized Orlicz
ball, cf. [19] (note that similarly to [19] we do not assume any symmetry assumption
on the Ui). Although the forthcoming result might be adapted to general probability
measures, in particular product measures on Ω, let us provide a simplified version in
the context of the uniform probability measure on the convex body Ω. This corollary,
derived from Theorem 1.1 and which exhibits a dimension free spectral gap estimate,
corresponds to the third and last main result of the paper.
Corollary 3.6. Let Ω be of the form

Ω =
{
x ∈ Rd :

d∑
i=1

Ui(xi) ≤ 1
}
,

where the smooth functions Ui : R→ R+ are convex. We assume moreover the following
properties: there exists some R > 0 such that
◦ Ω ⊂ [−R,R]d;
◦ there exists some q > 0 such that for all i ∈ {1, . . . , d},

q |U ′i(xi)| ≤ U ′′i (xi), xi ∈ [−R,R].
Then the spectral gap satisfies

λ1(Ω) ≥ 1
R2 arctan

(2Rq
π

)2
.

Proof. In contrast to all the previous cases met in this paper, we choose for any x ∈ Ω
the diagonal matrix weight W (x) in Theorem 1.1 of the form diagwi(xi), where the
wi are some smooth positive functions on [−R,R]. In other words W is still a smooth
invertible diagonal matrix mapping, but not necessarily a multiple of the identity. Then
we have

∇2V (x)− LW (x)W−1(x) = diag −w
′′
i (xi)

wi(xi)
, x ∈ Ω,

and at the boundary x ∈ ∂Ω,

Jη(x)−W (x) 〈∇W−1(x), η(x)〉 = 1√∑d
i=1 U

′
i(xi)2

diag
(
U ′′i + w′i

wi
U ′i

)
(xi).

For any i ∈ {1, . . . , d} we set wi(xi) = cos(εxi) for some relevant ε > 0 to be deter-
mined thereafter (depending on the parameters q and R). Hence the assumption (A2)
in Theorem 1.1 is satisfied as soon as

U ′′i (xi) ≥ ε tan(εxi)U ′i(xi), xi ∈ [−R,R].
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Then the choice ε = arctan(2Rq/π)/R ⊂ (0, π/2R) guarantees this inequality (and the
fact that the wi are positive). Finally, the assumption (A1) in Theorem 1.1 holds and
we obtain the spectral gap estimate

λ1(Ω) ≥ inf
x∈Ω

min
i=1,...,d

−w′′i (xi)
wi(xi)

= ε2,

which is the desired result. �

It is worth noticing that the dimension free estimate of Corollary 3.6 seems useless
when the spectral gap is expected to depend on the dimension. For instance in the case
of the `p unit ball with p ≥ 1, denoted Bp, the potentials Ui are of the form Ui(xi) = |xi|p,
xi ∈ [−1, 1], and the spectral gap λ1(Bp) is of order d2/p, cf. [26] for the case p ∈ [1, 2]
and [20] for p ≥ 2. Thus it satisfies the famous KLS conjecture. However our estimate
becomes relevant as p tends to infinity since Corollary 3.6 entails, when applied to the
`p unit ball with q = p − 1 and R = 1, the lower bound arctan (2(p− 1)/π)2 which
converges to π2/4. This quantity is the expected value of the spectral gap obtained by
tensorization, the `∞ unit ball being nothing but the hypercube [−1, 1]d.

To go further into the analysis, it is known that there is no monotonicity properties
of the spectral gap with respect to the inclusion of domains, even in the convex case.
Indeed one could believe a priori that, similarly to the one-dimensional case, the spectral
gap decreases when the convex domain increases since it is intimately related to the
speed of convergence to equilibrium of the underlying Brownian motion. Nevertheless,
considering some thin rectangle Ω ⊂ [−R,R]d localized around the diagonal of the
hypercube shows that this intuition is false: since its largest side is of order R

√
d, the

spectral gap λ1(Ω) is of order 1/dR2 whereas λ1([−R,R]d) = π2/4R2. Note however
that Klartag [15] proved a kind of monotonicity property in the unconditional situation:
if Ω ⊂ [−R,R]d is unconditional then

λ1 (Ω) ≥ λ1([−R,R]d).
Hence Corollary 3.6 can be seen as a generalization of Klartag’s result beyond the un-
conditional setting as soon as the parameter q does not depend on the dimension. For
instance it should be applied to some domain Ω involving non symmetric one-dimensional
potentials on a centered bounded interval of the type

Ui(xi) = 1{xi≥0} |xi|pi + 1{xi<0} |xi|qi ,

for pi, qi ≥ 1. See also the work of Kolesnikov and Milman [19] in which the authors
show that the generalized Orlicz balls ΩE =

{
x ∈ Rd :

∑d
i=1 Ui(xi) ≤ E

}
(without the

boundedness restriction ΩE ⊂ [−R,R]d for some R > 0) satisfy the KLS conjecture for
certain levels E ∈ R under an assumption on the rate of growth at infinity of the Ui.

4. Appendix

Considering the case of a product measure on a cube, we are able to reach optimality
in Theorem 1.1. Indeed the idea is to take the matrix mapping W as the Jacobian matrix
of the diffeomorphism whose coordinates are the eigenfunctions related to the spectral
gap of the one-dimensional marginal distributions. As such, the weight W satifies the
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assumptions (A1) and (A2) and is thus diagonal (for assumption (A2), an approximation
procedure somewhat similar to that emphasized in Corollary 3.6 is required). In this ap-
pendix, we focus our attention on the spectral gap λ1(B(0, R)) of the centered Euclidean
ball B(0, R) of radius R > 0 endowed with the uniform distribution and wonder if a
possible optimality in Theorem 1.1 can be reached in this non-product context. We will
see that such an analysis leads to an interesting phenomenon and opens the door to a
natural open question. Before going further into the details, let us recall how to identify
the exact expression of the spectral gap λ1(B(0, R)), cf. for instance Weinberger [28].
Actually, the associated eigenspace is known to be of dimension d and the corresponding
eigenfunctions are given (in a vector field notation) by

F (x) = g(r)
r

x, x ∈ B(0, R),

where g is solution to the equation

g′′(r) + (d− 1) g
′(r)
r

+
(
λ1(B(0, R))− d− 1

r2

)
g = 0,

which vanishes at 0. This is a generalized Bessel equation and classical computations
provide the generic solution given by

g(r) =
(√

λ1(B(0, R)) r
)1− d2

J d
2

(√
λ1(B(0, R)) r

)
, (4.1)

where Jd/2 stands for the Bessel function of the first kind Jς , i.e.,

Jς(r) :=
∞∑
k=0

(−1)k
(
r
2
)ς+2k

k!Γ(ς + k + 1) ,

with ς = d/2. Moreover a standard analysis shows that the ratio g′/g is non-negative
up to the first zero of g′. We have

JacF (x) = g(r)
r

I +
(
g′(r)− g(r)

r

)
xxT

r2 , (4.2)

and since we have η(x) = x/r, we get at the boundary S(0, R) (the sphere centered at
the origin and of radius R),

JacF (x) η(x) = g′(R)
R

x,

so that each coordinate of the vector field F satisfies the Neumann boundary conditions
if and only if g′(R) = 0. In other words, if we note the function J̃ς : u 7→ u1−d/2Jd/2(u),
it means that the derivative at point u =

√
λ1(B(0, R))R of J̃ς applied with ς = d/2 van-

ishes. Thus if pς denotes the first positive zero of J̃ς , then the spectral gap λ1(B(0, R)),
corresponding to the smallest positive eigenvalue, is given by

λ1(B(0, R)) =
p2
d
2

R2 . (4.3)
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Actually, an interesting question is the following: which radial function leads to the
largest spectral gap estimate ? After some computations somewhat similar to the pre-
vious ones, such a radial function is given by

w(r) =
(√

λr
)1− d2 J d

2−1

(√
λr
)
,

for some convenient λ > 0 determined when saturating the boundary condition w(R) +
Rw′(R) ≥ 0, that is, λ = p2

d/2−1/R
2, so that we obtain

λ1(B(0, R)) ≥
p2
d
2−1

R2 .

However this lower bound is not really explicit in terms of the dimension, as the optimal
one (4.3).

Let us return to our original questioning about a potential optimality in Theorem
1.1 in the non-product context of the uniform measure on B(0, R). Similarly to the
product measure case, we intend to choose the weight W as the Jacobian matrix of
the eigenfunctions associated to the spectral gap λ1(B(0, R)), cf. the formula (4.2).
Although W is not diagonal (thus Theorem 1.1 cannot be used directly), let us observe
however how the assumptions (A1) and (A2) are satisfied. Since W is not invertible on
the boundary S(0, R), we still work on the ball B(0, R) but we consider on the extended
ball B(0, R+ε) for some ε > 0 the smooth matrix mapping Wε = JacFε . Here Fε denotes
the vector field whose coordinates are the eigenfunctions associated to the spectral gap
λ1(B(0, R + ε)), with the corresponding function gε defined analogously to (4.1). From
the computations below, we will see that Wε is invertible on B(0, R). We simply denote
W and g the respective quantities for ε = 0. Moreover we (still) denote ∆ the diagonal
matrix operator with the Laplacian acting on functions on the diagonal.
On the one hand the identity ∆Fε = −λ1(B(0, R + ε))Fε holds on the smaller ball
B(0, R) and leads to

∇2V − LW W−1 = −∆JacFε (JacFε )−1 = λ1(B(0, R+ ε)) I,

since the Laplacian commutes with the Jacobian. Hence assumption (A1) is satisfied.
On the other hand we need some additional computations to verify assumption (A2).
Recall that by (4.2) we have

Wε (x) = gε (r)
r

I +
(
g′ε (r)− gε (r)

r

)
xxT

r2 , x ∈ B(0, R).

Above the matrix xxT /r2 is that of the orthogonal projection onto Rx. In particular the
matrix Wε (x) is diagonalizable and x is an eigenvector associated to the eigenvalue g′ε (r)
whereas any vector of the orthogonal complement (Rx)⊥ is an eigenvector associated to
the eigenvalue gε (r)/r. Since gε and g′ε do not vanish on (0, R + ε), thus on (0, R], Wε

is invertible on B(0, R) and

W−1
ε (x) = r

gε (r) I +
( 1
g′ε (r) −

r

gε (r)

)
xxT

r2 , x ∈ B(0, R).
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Note that because η(x) = x/r we have for all i, j = 1, . . . , d,〈
∇
(
xixj
r2

)
, η(x)

〉
=

d∑
k=1

(
xj
r2 δi,k + xi

r2 δj,k −
2xixjxk
r4

)
xk
r

= 0,

where δ is the usual Kronecker delta symbol. Since for any smooth radial function h we
have ∇h(r) = h′(r)x/r, we obtain〈

∇W−1
ε (x), η(x)

〉
= ∂

∂r

(
r

gε (r)

)
I + ∂

∂r

( 1
g′ε (r) −

r

gε (r)

)
xxT

r2 .

Finally at the boundary x ∈ S(0, R), we have on the hyperplane η(x)⊥,

Jac η(x)−Wε (x)
〈
∇W−1

ε (x), η(x)
〉

=
( 1
R
− gε (R)

R

∂

∂r

(
r

gε (r)

) ∣∣∣
r=R

)
I

= g′ε (R)
gε (R) I,

meaning that assumption (A2) is satisfied for each fixed ε > 0 since g′ε/gε ≥ 0 on (0, R+ε)
and thus on (0, R]. Finally assumption (A1) is satisfied with the (optimal) constant
matrix λ1(B(0, R)) I by passing to the limit ε→ 0 since λ1(B(0, R+ ε))→ λ1(B(0, R)).
Moreover g′ε (R)/gε (R) → g′(R)/g(R) = 0, i.e., the boundary term in (A2) vanishes.
The validity of these limits can be obtained either by a classical continuity argument or
by using directly the exact expression (4.3) of the spectral gap of any Euclidean ball and
plugging then into the formula (4.1) defining gε .

As announced earlier, the previous discussion does not allow us to use directly Theo-
rem 1.1 because the matrix mapping W is not diagonal. However we can apply Lemma
2.2 with the above weight Wε and let ε → 0 to get the following identity: if µ is the
uniform probability measure on B(0, R), then for all f ∈ C∞N (B(0, R)),∫

B (0,R)
(−Lf)2 dµ =

∫
B (0,R)

[
∇(W−1∇f)

]T
W TW ∇(W−1∇f) dµ

+
∫
B (0,R)

〈
W−1∇f, (∇W T W −W T ∇W )∇(W−1∇f)

〉
dµ

+λ1(B(0, R))
∫
B (0,R)

|∇f |2 dµ.

Although the first term is always non-negative, some computations show that for all
i, j = 1, . . . , d,(

∇W T W −W T ∇W
)
i,j

= 1
r2

(
g′(r)− g(r)

r

)2
(xjei − xiej) ,

where (ek)k=1,...,d is the usual canonical basis of Rd. Therefore the matrix of vectors
∇W T W −W T ∇W is not zero and thus it is not clear to us that the second integral
above vanishes, as it is trivially the case when W is diagonal (or when f is one of the
eigenfunctions associated to the spectral gap λ1(B(0, R)) since in this case W−1∇f is
constant). Nevertheless according to the (integrated version of) Bakry-Emery criterion,
cf. [3], we know a priori that the sum of these two integrals is non-negative. Hence
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a challenging question would be to prove directly that this sum is non-negative for all
f ∈ C∞N (B(0, R)).
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373, 2008.

[27] F.Y. Wang. Modified curvatures on manifolds with boundary and applications. Potential Anal.,
41:699-714, 2014.

[28] H.F. Weinberger. An isoperimetric inequality for the N -dimensional free membrane problem. J.
Rational. Mech. Anal., 5:633-636, 1956.

(M. Bonnefont) UMR CNRS 5251, Institut de Mathématiques de Bordeaux, Université
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