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Guiding example

Suppose (Z
(n)
1 , . . . ,Z

(n)
n ) ∼ Pn where

dPn(z1, . . . , zn) =
1

Zn

n∏
i<j

‖zi − zj‖2e−n
∑n

i=1 ‖zi‖2
d`Cn(z1, . . . , zn).

Eigenvalues of a Gaussian random matrix, Ginibre matrix.
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Question

Study the limit behavior of µ̂n =
1

n

n∑
i=1

δ
Z

(n)
i

. More precisely,

find an LDP on the set of probability measures P(C).

[Hiai and Petz (1998)]
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LDP

LDP : Find vn that goes to ∞ and I : P(C)→ [0,∞] such that

P (µ̂n ' ν) = e−vn(I (ν)+o(1))

for every ν ∈ P(C). Equivalently,

1

vn
logP (µ̂n ' ν) = −I (ν) + o(1).

A bit more precisely, for any measurable set A ⊂ P(C),

− inf
ν∈Ao

I (ν) ≤ lim
n→∞

1

vn
logP (µ̂n ∈ A) ≤ − inf

ν∈Ā
I (ν).

6/29



Setting and question Idea of the proof and theorem Examples

Laplace principle

LDP regularized version :

lim
n→∞

1

vn
logE

[
e−vnf (µ̂n)

]
= − inf

ν∈P(C)
{f (ν) + I (ν)}

for every f : P(C)→ R continuous and bounded.
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Restatement of the problem

Define

G (z ,w) = −2 log ‖z − w‖+ ‖z‖2 + ‖w‖2;

dσ(z) =
e−‖z‖

2

π
d`C(z).

We have

n∏
i<j

‖zi − zj‖2e−n
∑n

i=1 ‖zi‖2
d`Cn(z1, . . . , zn)

= πn exp

− n∑
i<j

G (zi , zj)

 dσ⊗n(z1, . . . , zn).
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If we define

Hn(z1, . . . , zn) =
1

n2

n∑
i<j

G (zi , zj),

interpreted as the total (potential) energy of n particles, then

dPn =
1

Z̃n

exp
(
−n2Hn

)
dσ⊗n .

How general can Hn be ?
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General setting

M Polish space ;

σ probability measure on M ;

Hn : Mn → (−∞,∞] measurable bounded from below ;

{βn}n sequence of positive numbers.

Let γn be the finite measure given by

dγn = exp (−nβnHn)dσ⊗n .

How the limiting behavior of γn
depends on the limiting behavior of Hn ?
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Macroscopic energy

Suppose that, for every µ ∈ P(M), the following limit exists :

H(µ) = lim
n→∞

∫
Mn

Hndµ
⊗n ,

and define the relative entropy

Entσ(µ) =

∫
M

(
dµ

dσ

)
log

(
dµ

dσ

)
dσ.

In the Ginibre case,

H(µ) =
1

2

∫
C×C

G (z ,w)dµ(z)dµ(w)

= −
∫
C×C

log ‖z − w‖dµ(z)dµ(w) +

∫
C
‖z‖2dµ(z).
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Laplace principle goal

For x = (x1, . . . , xn) define

µ̂x =
1

n

n∑
i=1

δxi .

Goal : Laplace principle

If βn → β ∈ (0,∞], for f : P(M)→ R bounded continuous,

lim
n→∞

1

nβn
log

∫
Mn

e−nβnf (µ̂x)dγn(x)

= − inf
µ∈P(M)

{
f (µ) + H(µ) +

1

β
Entσ(µ)

}
.
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Main step : Dupuis and Ellis approach to LDP

Lemma (Legendre transform of the entropy)

E measurable space,

ν ∈ P(E ) and

g : E → (−∞,∞] measurable bounded from below.

Then
log

∫
E
e−gdν = − inf

τ∈P(E)

{∫
E
gdτ + Entν(τ)

}
.

1

nβn
log

∫
Mn

e−nβn
(
f (µ̂x)+Hn(x)

)
dσ⊗n(x)

= − inf
τ∈P(Mn)

{∫
Mn

(
f (µ̂x) + Hn(x)

)
dτ(x) +

1

nβn
Entσ⊗n (τ)

}
.
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Laplace principle goal II

New goal : Convergence of the infima

If βn → β ∈ (0,∞], for f : P(M)→ R bounded continuous,

inf
τ∈P(Mn)

{∫
Mn

(
f (µ̂x) + Hn(x)

)
dτ(x) +

1

nβn
Entσ⊗n (τ)

}
−−−→
n→∞

inf
µ∈P(M)

{
f (µ) + H(µ) +

1

β
Entσ(µ)

}
.
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Notion of limit

Sequence {Hn}n uniformly bounded from below,

H : P(M)→ (−∞,∞].

Definition (Macroscopic limit)

H is the macroscopic limit of Hn if

∀µ ∈ P(M)

lim
n→∞

∫
Mn

Hndµ
⊗n = H(µ) and

whenever 1
n

∑n
i=1 δxi → µ

lim inf
n→∞

Hn(x1, . . . , xn) ≥ H(µ).

This notion of convergence suffices !
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A Laplace principle

Theorem (Laplace principle for positive temperature)

Suppose

H is the macroscopic limit of Hn and

βn converges to some β ∈ (0,∞).

Then, for every bounded continuous f : P(M)→ R,

lim
n→∞

1

nβn
log

∫
Mn

e−nβnf (µ̂x)dγn(x)

= − inf
µ∈P(M)

{
f (µ) + H(µ) +

1

β
Entσ(µ)

}
.

If ι = inf
(
H + 1

βEntσ

)
<∞, it implies an LDP with

rate function H +
1

β
Entσ − ι and speed nβn
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Positive temperature case limit

Suppose that

(X
(n)
1 , . . . ,X

(n)
n ) ∼ γn

γn(Mn)
.

Under the conditions of the preceding theorem :

Theorem (Limit of empirical measures)

If H + 1
βEntσ has a unique minimizer µeq,

1

n

n∑
i=1

δ
X

(n)
i

a.s.−−−→
n→∞

µeq.
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Infinite β

What happens when βn →∞ ? Two more conditions.

{Hn}n confining : Let xn = (x1, . . . , xn).

lim inf
n→∞

Hn(xn) <∞ =⇒ {µ̂xn}n is precompact in P(M).

H regular : If H(µ) <∞, there exists µn → µ such that

∀n, Entσ(µn) <∞ and lim
n→∞

H(µn) = H(µ).
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Another Laplace principle

Theorem (Laplace principle for zero temperature)

Suppose

H is the macroscopic limit of Hn,

βn tends to infinity,

{Hn}n is confining and

H is regular.

Then, for every bounded continuous f : P(M)→ R,

lim
n→∞

1

nβn
log

∫
Mn

e−nβnf (µ̂x)dγn(x)

= − inf
µ∈P(M)

{f (µ) + H(µ)} .
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Zero temperature case limit

Suppose that

(X
(n)
1 , . . . ,X

(n)
n ) ∼ γn

γn(Mn)
.

Under the conditions of the preceding theorem :

Theorem (Limit of empirical measures)

If H has a unique minimizer µeq,

1

n

n∑
i=1

δ
X

(n)
i

a.s.−−−→
n→∞

µeq.
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Γ-convergence

Theorem (Γ-convergence)

Suppose

H is the macroscopic limit of Hn and

{Hn}n is confining.

Then, for every bounded continuous function f : P(M)→ R

lim
n→∞

inf
xn∈Mn

{f (µ̂xn) + Hn(xn)}

= inf
µ∈P(M)

{f (µ) + H(µ)} .
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Deterministic case limit

Suppose that

lim
n→∞

[
Hn(X

(n)
1 , . . . ,X

(n)
n )− inf Hn

]
= 0.

Under the conditions of the preceding theorem :

Theorem (Limit of empirical measures)

If H has a unique minimizer µeq,

1

n

n∑
i=1

δ
X

(n)
i

−−−→
n→∞

µeq.
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Two-body interaction

Suppose Hn is given by

Hn(x1, . . . , xn) =
1

n2

∑
i<j

G (xi , xj)

for some G : M ×M → (−∞,∞].

H(µ) = 1
2

∫
M×M G (x , y)dµ(x)dµ(y).

G bounded from below =⇒ {Hn}n unif. bounded from below.

G lower semicont. =⇒ H is the macroscopic limit of Hn.

G (x , y)→∞ when x , y →∞ =⇒ {Hn}n confining.

H regular : enough to ask µn � σ instead of Entσ(µn) <∞.

25/29



Setting and question Idea of the proof and theorem Examples

k-body interaction

G : Mk → (−∞,∞] lower semicont. and bounded from below.

Hn(x1, . . . , xn) =
1

nk

∑
{i1,...,ik}⊂{1,...,n}

G (xi1 , . . . , xik ).

Macroscopic limit

H(µ) =
1

k!

∫
Mk

Gdµ⊗k .
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Random polynomial energy term

G : M ×M → (−∞,∞] and ν ∈ P(M)

Hn(x1, . . . , xn) =
n + 1

n2
log

(∫
M
e−

∑n
i=1 G(xi ,x)dν(x)

)
.

This term appears for Gaussian random polynomials !

Under some conditions, the macroscopic limit is

H(µ) = − inf
x∈supp ν

{∫
M
G (x , y)dµ(y)

}
.
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Thank you for your attention !
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Concrete examples

Ginibre ensemble. {Xi ,j}i ,j≥1 i.i.d. complex standard Gaussians.
Define

Xn =

(
Xi ,j√
n

)
1≤i ,j≤n

.

Law of eigenvalues of Xn : M = C with βn = n,

G (z ,w) = −2 log ‖z − w‖+ ‖z‖2 + ‖w‖2

and dσ(z) =
e−‖z‖

2

π
d`C(z).

LDP : [Hiai and Petz (1998)].
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Spherical ensemble. X̃n ∼ Xn independent. Define

Yn = XnX̃−1
n .

Law of eigenvalues of Yn : M = C with βn = n,

G (z ,w) = −2 log |z − w |+ log(1 + |z |2) + log(1 + |w |2)

and dσ(z) =
1

π(1 + |z |2)2
d`C(z).

LDP : [Hardy (2012)].
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Gaussian Kac polynomials. {ai}i≥0 i.i.d. complex standard
Gaussians. Define

pn(z) =
n∑

i=0

aiz
i .

Law of zeros of pn : M = C with βn = n,

G (z ,w) = −2 log |z − w |+ 2 log+ |z |+ 2 log+ |w |,

dσ(z) =
1

2π
min(1, |z |−4)d`C(z),

with the extra term for ν the uniform measure on the unit circle.

LDP : [Zeitouni and Zelditch (2010)].
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