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We consider Wigner matrices XN defined by :

XN =
1√
N


d1 a1,2 · · · a1,N
a1,2 d2 · · · a2,N
...

...
. . .

a1,N a2,N dN

 .

Where the (ai ,j)i<j and (di )i∈N are two independent families of i.i.d.
random variables centered with values in K = R or C. We assume
E[a2

1,2] = 1 and if K = R, E[d2
1 ] = 2 and if K = C, E[d2

1 ] = 1.



We have the two classical convergence results :

Theorem (Wigner 1955)
The sequence of empirical measures µ̂N := 1

N

∑N
i=1 δλi converges

weakly in probably toward the semi-circular measure σ defined by :

dσ(x) =

√
4− x2

4π
dx

Theorem (Füredi and Komlòs 1981, Bai and Yin 1988)
With the preceding notations, if the ai ,j and the di have symmetric
laws and E[a4

1,2],E[d4
1 ] < +∞, almost surely λ1(XN) et λN(XN)

converge respectively toward −2 and 2.



Random Matrices and large deviations

Definition
We say that a sequence of random variables ZN with values in a
topological space E follows a large deviation principle (LDP) with
speed v(N) and rate fonction I : E → R+ ∪ {+∞} if I is lower
semi-continuous and if for all measurable A ⊂ E :

− inf
x∈Å

I (x) ≤ lim inf
N∈N

1
v(N)

logP[ZN ∈ A] ≤

lim sup
N∈N

1
v(N)

logP[ZN ∈ A] ≤ − inf
x∈A

I (x)

Intuitively, it means :

P[ZN ≈ x ] ≈ e−v(N)I (x)
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Gaussian ensembles

In the case of Wigner matrices with Gaussian entries (called GOE
and GUE), the joint distribution of the eigenvalues is known
explicitly :

Theorem (Mehta 1991)
Let β = 1 or 2, XN a matrix from the GOE if β = 1 or the GUE if
β = 2 whose eigenvalues are λ1 < ... < λN . The law of (λ1, ..., λN)
has the following density on RN :

N!

ZβN
1x1≤...≤xN

∏
1≤i<j≤N

|λi − λj |β exp

(
−βN

4

N∑
i=1

x2
i

)
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From those formulas, one can deduce the following LDP for the
empirical measure :

Theorem (Ben Arous and Guionnet, 1997)
If (XN)N∈N is a sequence of GOE or GUE matrices, their empirical
measures µ̂N follow a LDP with speed N2 and good rate function
I (β) defined by :

I (β)(µ) =
β

2

∫
x2 + y2

4
− log |x − y |dµ(x)dµ(y) + C .



We also have a LDP with speed N for λmax(XN) :

Theorem (Ben Arous, Dembo and Guionnet, 2001)
If (XN)N∈N is a sequence of GOE or GUE matrices, λmax(XN)
follows a LDP with speed N and good rate function Jβ defined as :

Jβ(x) =
β

2

∫ x

2

√
t2 − 4dt si x ≥ 2

= +∞ if x < 2.



For tails heavier than Gaussian :

logP[|ai ,j | ≥ t] ∼ −atα with a > 0 and α < 2

we also have LDPs for the empirical measures and the largest
eigenvalue :

Theorem (Bordenave and Caputo, 2012)
The empirical measure of XN satisfy a LDP with speed Nα/2+1.

Theorem (Augeri, 2015)
The largest eigenvalue of XN satisfy a LDP with speed Nα/2.



In the general case, we just have concentration inequalities with
speed N :

Theorem (Bordenave, Caputo and Chafaï 2014)
If XN is an Hermitian random matrix such that
XN(i) = (XN(i , j))1≤j≤i are independent and f : R→ R a function
such that ||f ||TV ≤ 1 then :

∀t ≥ 0,P

[
1
N

∣∣∣∣∣
N∑
i=1

(f (λi )− E[f (λi )])

∣∣∣∣∣ ≥ t

]
≤ 2e−Nt

2/2



With stronger hypothesis, we have the following concentration
inequalities with speed N2 for the empirical measure :

Theorem (Guionnet and Zeitouni, 2000)
If XN is a Hermitian random matrix such that the
(
√
NXN(i , j))1≤i≤j≤N are independent centered with bounded

variance and satisfy log-Sobolev inequalities with the same constant
or whose laws have their support in the same compact, we have for
all f Lipschitz :

P

[
1
N

∣∣∣∣∣
N∑
i=1

(f (λi )− E[f (λi )])

∣∣∣∣∣ ≥ t

]
≤ 4 exp

(
−Ct2N2

|f |2L

)



Large deviations for the largest eigenvalue of Wigner
matrices

Definition
If µ is a centered probability measure on R with finite variance we
say that µ is sharp sub-Gaussian if for all t ∈ R :

Tµ(t) ≤ exp

(
µ(x2)t2

2

)
where Tµ(t) :=

∫
R exp(tx)dµ(x).

Example

1. Gaussian laws.
2. Rademacher laws : 1

2(δ−p + δp).
3. The uniform law on [0, 1].



Let XN = 1√
N

(ai ,j)1≤i ,j≤N be a Wigner matrix :

Hypothesis

1. The distribution of the (ai ,j)1≤i ,j≤N are sharp sub-Gaussian.
2. The distribution of the (ai ,j)1≤i ,j≤N either verify a log-Sobolev

inequality or have their support in the same compact.

With this hypothesis, we have :

Theorem (Guionnet et H., 2019)
λmax(XN) satisfy a LDP with speed N and with the same rate
function I as in the Gaussian case :

I (x) =
1
2

∫ x

2

√
t2 − 4dt pour x ≥ 2



Spherical Integrals

To prove this theorem, we would like to evaluate the Laplace
transform of the largest eigenvalue :

t 7→ E[exp(Ntλmax(XN))]

But λmax is a complicated function of XN

As a proxy for the exponential of λmax we will use the following
spherical integral :

IN(X , θ) = Ee [exp(Nθ〈Xe, e〉)]

where e is a unit vector taken uniformly on the sphere SN−1. This
is a special case of Harris-Chandra-Itzikson-Zuber integral

HCIZ (A,B) =

∫
ON

exp(Tr(AOBO∗))dO

for B of rank one.



When the empirical measure of X is near µ and λmax(X ) is near x :

IN(X , θ) ≈ e−NJ(θ,µ,x) (Guionnet et Maïda, 2004)

Let’s prove this result with (XN)N∈N of the form :

XN = diag(η1, ..., η1︸ ︷︷ ︸
α1N

, ..., ηp, ..., ηp︸ ︷︷ ︸
αpN

, ηp+1)

with η1 < ... < ηp < ηp+1 and α1, ..., αp > 0. The eigenvalue
distribution converges toward µ = 1

p

∑p
i=1 δηi .



With γi =
∑

j ,λj=ηi
e2
j , we have

∑
γi = 1 and

〈e,XNe〉 =

p+1∑
i=1

ηiγi = ηp+1 +

p∑
i=1

(ηi − ηp+1)γi

The γ1, ..., γp follow a Dirichlet law of density :

Z−1γ
α1N

2 −1
1 ...γ

αpN

2 −1
p

1−
∑
j

γj

−1/2

1∑
γj≤1

∏
j

dγj

≈ exp
(N
2

(α1 log γ1 + ...+ αp log γp + C + o(1))
)
1∑

γj≤1

∏
j

dγj

where C = −(α1 logα1 + ...+ αp logαp)/2
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Z−1γ
α1N

2 −1
1 ...γ

αpN

2 −1
p

1−
∑
j

γj

−1/2

1∑
γj≤1

∏
j

dγj

≈ exp
(N
2

(α1 log γ1 + ...+ αp log γp + C + o(1))
)
1∑

γj≤1

∏
j

dγj

where C = −(α1 logα1 + ...+ αp logαp)/2



And so we have :

E[exp(Nθ〈e,XN , e〉)] =

∫
exp

(
N(θf (γ) + I (γ) + o(1))

)
1∑

γj≤1dγ

≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)
where

f (γ) = ηp+1 +

p∑
i=1

(ηi − ηp+1)γi and I (γ) =
1
2

p∑
i=1

αi log γi + C

so :

E[exp(Nθ〈e,XN , e〉)] ≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)



And so we have :

E[exp(Nθ〈e,XN , e〉)] =

∫
exp

(
N(θf (γ) + I (γ) + o(1))

)
1∑

γj≤1dγ

≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)
where

f (γ) = ηp+1 +

p∑
i=1

(ηi − ηp+1)γi and I (γ) =
1
2

p∑
i=1

αi log γi + C

so :

E[exp(Nθ〈e,XN , e〉)] ≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)



And so we have :

E[exp(Nθ〈e,XN , e〉)] =

∫
exp

(
N(θf (γ) + I (γ) + o(1))

)
1∑

γj≤1dγ

≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)
where

f (γ) = ηp+1 +

p∑
i=1

(ηi − ηp+1)γi and I (γ) =
1
2

p∑
i=1

αi log γi + C

so :

E[exp(Nθ〈e,XN , e〉)] ≈ exp
(
N( max∑

γi≤1
(θf (γ) + I (γ)) + o(1))

)



If we denote

G (z) =

p∑
1

αi (z − ηi )−1 =

∫
R

1
z − t

dµ(t)

on ]ηp,+∞[.

If G (ηp+1) ≤ 2θ the limit of N−1 logE[exp(Nθ〈e,XN , e〉)] is :

2θηp+1 + log 2θ −
p∑
1

αi log(ηp+1 − ηi )− 1

If G (ηp+1) > 2θ, it is :

2θG−1(2θ) + log 2θ −
p∑
1

αi log(G−1(2θ)− ηi )− 1



If we denote

G (z) =

p∑
1

αi (z − ηi )−1 =

∫
R

1
z − t

dµ(t)

on ]ηp,+∞[.
If G (ηp+1) ≤ 2θ the limit of N−1 logE[exp(Nθ〈e,XN , e〉)] is :

2θηp+1 + log 2θ −
p∑
1

αi log(ηp+1 − ηi )− 1

If G (ηp+1) > 2θ, it is :

2θG−1(2θ) + log 2θ −
p∑
1

αi log(G−1(2θ)− ηi )− 1



Let us sketch the proof in the Wigner case, β = 1 and
ai ,j , ai ,i = di/

√
2 have the same law. First we begin by examining

the behavior of :

E[IN(XN , θ)] = EX ,e [exp(Nθ〈XNe, e〉)]

We want to determine the limit F (θ) of N−1 logE[IN(XN , θ)] if it
exists.



Here the sharp sub-Gaussian character of the entries is crucial.
Letting L(t) = logE[exp(ta1,2)], we have by fixing e ∈ SN−1 :

EX [exp(Nθ〈e,XNe〉)] = EX [
∏

1≤i≤j≤N
exp(
√
2
1i 6=j
√
2Nθai ,jeiej)]

=
∏

1≤i≤j≤N
E[exp(

√
2
1i 6=j
√
2Nθai ,jeiej)]

= exp(
∑

1≤i≤j≤N
L(
√
2
1i 6=j
√
2Nθeiej))

≤ exp(
∑

1≤i≤j≤N
21i 6=jNθ2|eiej |2)

≤ exp(Nθ2)
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∏
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exp(
√
2
1i 6=j
√
2Nθai ,jeiej)]

=
∏

1≤i≤j≤N
E[exp(

√
2
1i 6=j
√
2Nθai ,jeiej)]

= exp(
∑

1≤i≤j≤N
L(
√
2
1i 6=j
√
2Nθeiej))

≤ exp(
∑

1≤i≤j≤N
21i 6=jNθ2|eiej |2)

≤ exp(Nθ2)



If |ei | ≤ N−1/4−ε, we have
√
N|eiej | ≤ N−2ε and

EX [exp(Nθ〈e,XNe〉)] = EX [
∏

1≤i≤j≤N
exp(
√
2
1i 6=j
√
2Nθai ,jeiej)]

= exp(
∑

1≤i≤j≤N
21i 6=jNθ2|eiej |2 + o(N−2ε))

For 0 < ε < 1/4, Pe [∀i , |ei | ≤ N−1/4−ε] ∼ 1 and so :

F (θ) = lim
N

1
N

logEX [IN(XN , θ)] = θ2



Large deviation upper bound

P[λmax(XN) ≈ x ] ≤ E[1λNmax≈x
IN(XN , θ)

IN(XN , θ)
]

= E[1λNmax≈x IN(XN , θ)]e−N(J(θ,σ,x)+o(1))

≤ e−N(J(θ,σ,x)−F (θ)+o(1))

≤ e−N(I (x)+o(1))

where I (x) = supθ>0(J(θ, σ, x)− F (θ)).



Large deviation upper bound

P[λmax(XN) ≈ x ] ≤ E[1λNmax≈x
IN(XN , θ)

IN(XN , θ)
]

= E[1λNmax≈x IN(XN , θ)]e−N(J(θ,σ,x)+o(1))

≤ e−N(J(θ,σ,x)−F (θ)+o(1))

≤ e−N(I (x)+o(1))

where I (x) = supθ>0(J(θ, σ, x)− F (θ)).



For the lower bound, we will tilt the measure and find θ > 0 such
that :

lim
N

1
N

log
E[1λmax≈x IN(XN , θ)]

E[IN(XN , θ)]
= 0

We can restrict ourselves to the study of the tilted measures P(θ,e) :

dP(θ,e)(X ) =
exp(Nθ〈e,XNe〉)

EX [exp(Nθ〈e,XNe〉)]
dP(X )

=
∏

1≤i≤j≤N
exp(
√
2
1i 6=j

θ
√
2Neiejai ,j − L(

√
2
1i 6=j

θ
√
2Neiej))

avec ∀i , |ei | ≤ N−1/4−ε.



Under P(θ,e), the entries of XN have the following expectations :

E(e,θ)[(XN)i ,j ] =
√
2
1i=j L′(

√
2
1i 6=j θ
√
2Neiej)√

N
= (2θee∗)i ,j+O(N−2ε).

Vare,θ[(XN)i ,j ] = 21i=j
L′′(
√
2
1i 6=j θ
√
2Neiej)√

N
=

21i=j

√
N

+ O(N−2ε)

We have then XN = X̃N + 2θee∗ where X̃N is a Wigner matrix.
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=
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The behavior of the largest eigenvalue of this sum is well-known
(BBP transition). If z > 2 is an eigenvalue of X̃N + 2θee∗ outside
the bulk then :

det(X̃N + 2θee∗ − z) = 0
det(IN + 2θ(X̃N − z)−1ee∗) = 0

1 + 2θ〈e, (X̃N − z)−1e〉 = 0
Gσ(z) = 1

2θ

In order to have the lower bound for an x > 2, we have to choose θ
such that Gσ(z) = 1

2θ .



With the same sharp sub-Gaussian assumptions on the entries, we
can generalize the previous result to other models :
I Wishart matrices.
I Matrices with variance profiles (with some conditions on the

variance profile).
We have the same universality phenomenon holds (the rate
function does not depend on the law of the entries).
If we relax the sharpness of the sub-Gaussian assumption, we end
up with large deviations upper and lower bounds that coincide near
∞ and near 2.



For these other results, the two crucial aspects of the proof that
differ are :

1. The convergence of 1
N logEX ,e [exp(θN〈XNe, e〉)] to some

F (θ).
2. The large deviations lower bound.
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Sub-Gaussian matrices

We now relax the sub-Gaussian hypothesis and we only assume
that :

sup
x∈R

L(x)

x2 = A ∈]
1
2
,+∞[

The large deviation upper bound still holds :

P[λmax(XN) ≈ x ] ≤ e−NĪ (x)

were Ī (x) = sup(J(θ, σ, x)− F̄ (θ)) with

F̄ (θ) = lim sup
N

1
N
EX ,e [exp(Nθ〈e,XNe〉)]



F (θ) and large deviation lower bound

For the lower bound, we need to prove F (θ) actually exist sand is
differentiable.
1. This is true for small enough θ if A < 2. Then F (θ) = θ2 and

we have the same lower bound than in the GOE case near
x = 2.

2. This is true for large enough θ if ψ : x 7→ L(x)/x2 is either
increasing on R+ or attains its maximum at unique point m∗
such that ψ′′(m∗) < 0. Then we have a lower bound for large
x but I (x) ≈ x2/4A.



Other instances of uses of spherical integral for LDPs :

1. Largest eigenvalue of AN + UBNU
∗ [Guionnet and Maïda

2019]
2. Largest eigenvalue of XN + DN [McKenna 2019]
3. Empirical measure of the diagonal entries of UBNU

∗

[Belinschi, Guionnet and Huang 2020]
4. The couple (λmax, |v1|2) (where v is the eigenvector associated

to λmax) for a spiked Gaussian matrix XN + θww∗ [Guionnet
and Biroli 2019]



We can generalize the sharp sub-Gaussian results to the k largest
eigenvalue by generalizing the result on the spherical integrals.

Theorem (Guionnet and H., 2020)
Let (XN)N be a sequence of deterministic self-adjoint matrices such
that, ||X || ≤ M the i-th largest eigenvalue converges toward λi for
i ≤ k and the eigenvalue distribution converge toward µ
If e1, ..., ek are k random vectors taken uniformly on the unit sphere
and conditioned to be orthogonal and θ1 ≥ θ2 ≥ .... ≥ θk ≥ 0,
then :

lim
N→∞

1
N

logE[exp(N
k∑

i=1

θi 〈ei ,XNei 〉)] =
k∑

i=1

J(θi , µ, λi )



As a consequence we have :

Theorem (Guionnet and H., 2020)
With the same assumptions as in the first theorem, if λ1 ≥ ... ≥ λk
are the largest eigenvalue of XN , the k-uplet (λ1, ..., λk) satisfy a
LDP with rate function I (k) defined as :

I (x1, ..., xk) = 12≤xk≤...≤x1

k∑
i=1

I (x)



Thanks for your attention.


