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1. Introduction

The starting point of our discussion is the STRONG LAW OF LARGE NUMBER

Theoreme 1.1. Assume (Xn)n≥1 is a sequence of i.i.d random variables such that E (|Xn|) < +∞
then

X1 + . . .+Xn

n

p.s.−→
n→∞

E(X1).

For the statistician E(X1) represents an unknown quantity to be estimated and X1+...+Xn
n is an

natural estimator. In the real life n never goes to infinity, we only have a finite number of observations
(n = 100, n = 1000). It is then natural to wonder for a fixed n if X1+...+Xn

n is close or far from E(X1).
The speed of convergence is also unnatural question we can be interested in.
The first answer concerning the rate of convergence is given by the central limit theorem

Theoreme 1.2. Let (Xn)n≥1 be a sequence of i.i.d random variables such that the variance σ2 exists
(i.e.E

(
X2
n

)
< +∞) then

√
n
(X1 + . . .+Xn

n
− E(X1)

)
Loi−→
n→∞

N (0, σ2).

Roughly speaking this theorem tells us that X1+...+Xn
n goes at rate

√
n to E(X1). Nevertheless, this

is an asymptotic result and gives us nothing when n is fixed (in particular if n is small).
The ami of this course is to présent elementary results allowing to quantify the error X1+...+Xn

n −E(X1)
for a fixed n. We will présents the first results in the area of the theory of mesure concentration and of

1
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concentration inequalities. For more detailed and more advanced mathematic the reader should take
a look of the books of Michel Ledoux [? ] and of Boucheron, Lugosi et Massart [? ].

2. Gaussian world is too perfect

2.1. Some notations.
We consider iid gaussian random variables (we can assume without lost of generality that they are
centered with variance 1). The density fundtion is

φ(x) =
exp

(
−x2/2

)
√

2π
.

The cumulative distribution function is

Φ(x) =

∫ x

−∞
φ(t)dt.

2.2. A Perfect concentration inequality ?
Take your favorite n (n is now a fixer number), we aim to know if X1+...+Xn

n is far from 0 = E(X1.
Mathematicaly speaking this can be put in the following way. Take x > 0 (the distance between
X1+...+Xn

n and 0) and let us try to estimate the probability that de distance between X1+...+Xn
n and

0 is greater than x

C(x) = P
(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ x)
Here E(X1) = 0 et X1+...+Xn

n ∼ N (0, 1/n), so

C(x) = P
(
|X1| ≥ x

√
n
)

= 2P
(
X1 ≥ x

√
n
)

=
2√
2π

∫ +∞

x

e−t
2/2dt.

It is now sufficient to control sharply
∫ +∞
x

e−t
2/2dt.

Lemma 2.1. ∀x > 0

(1) max

(
0, e−x

2/2

(
1

x
− 1

x3

))
≤
∫ +∞

x

e−t
2/2dt ≤ e−x

2/2 1

x

Proof
Majoration ∫ +∞

x

e−t
2/2dt =

∫ +∞

x

t

t
e−t

2/2dt ≤ 1

x

∫ +∞

x

te−t
2/2dt =

1

x
e−x

2/2.

Minoration Integrating by parts we get∫ +∞

x

e−t
2/2dt =

∫ +∞

x

t

t
e−t

2/2dt =
[
− e−t

2/2

t

]+∞
x
−
∫ +∞

x

1

t2
e−t

2/2dt

=
e−x

2/2

x
−
∫ +∞

x

t

t3
e−t

2/2dt ≥ e−x
2/2

x
− e−x

2/2

x3
.

Remark 2.2. The bounds in the previous Lemma can be as sharp as one wants by integrating many
times by parts. For example the upper bound can be replaced by

e−x
2/2
( 1

x
− 1

x3
+

3

x5

)
.

Theoreme 2.1 (Gaussian Concentration). For any n ≥ 1 and any x > 0

(2) 2max

(
0, e−nx

2/2

(
1√
nx
− 1

n
√
nx3

))
≤ P

(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ x) ≤ 2e−nx
2/2 1√

nx

Remark 2.3. Since the majoration and the minoration are of the same order of magnitude, we see
that we have an perfect control of C(x).

Unfortunately Gaussian world is too perfect and it would not be possible to get equivalent results in
general.
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2.3. From Markov inequality to an other concentration inequality. Markov inequality is a
powerful tool allowing to derive concentration inequalities.

Proposition 2.4. Let Y be an non negative integrable random variable then for any t > 0

P(Y ≥ t) ≤ 1

t
E(Y ).

If g is increasing non negative then

P(Y ≥ t) = P(g(Y ) ≥ g(t)) ≤ E(g(Y ))

g(t)
.

Choosing g(x) = x2 we get the well known Bienaymé-Tchebichev inequality

P(|Y − E(Y )| ≥ t) ≤ V ar(Y )

t2
.

Let us go back to the perfect gassian world.

C(x) = P
(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ x) = 2P
(
X1 ≥ x

√
n
)

For t > 0 consider the application gt(y) = ety (which is obviously increasing non negative ) so from
Markov inequality we get

(3) C(x) ≤ 2e−tx
√
nE
(
etX1

)
.

Lemma 2.5. If X ∼ N (0, 1) then
E
(
etX1

)
= et

2/2

Proof

E
(
etX1

)
=

∫
R
etxe−x

2/2 dx√
2π

= et
2/2

∫
R
e−(x−t)2/2 dx√

2π
.

We will now optimized in t > 0 the right hand side of (3)

C(x) ≤ 2e−tx
√
nE
(
etX1

)
= 2e−tx

√
net

2/2

The optimum is reached for t = x
√
n, one gets

Theoreme 2.2 (Concentration Gaussienne 2). For all n ≥ 1 and all x > 0

(4) P
(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ x) ≤ 2e−nx
2/2

Remark 2.6. Let us compare inequality (2) and (4). The first one provide a bound of order 2e−nx
2/2 1√

nx
and

the second one of 2e−nx
2/2. Using Markov inequality we loose a factor of order 1√

nx
but we obtained

the dominated factor e−nx
2/2. The advantage of the second method is that it can be easily extended

outside the gaussian world.

2.4. A third Gaussian inequality ? Replacing gt(y) = ety by mk(y) = |y|k ici k ∈ N∗, Markov
inequality leads to

(5) C(x) ≤ 1
√
n
k
xk

E
(
|X1|k

)
.

Lemma 2.7 (Computing Mk = E
(
|X1|k

)
).

(1) if k = 2p then

M2p =
(2p)!

2pp!
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(2) If k = 2p+ 1 then

M2p+1 = 2pp!
2√
2π
.

Preuve Set Mk = E
(
|X1|k

)
then (integrating by parts)

Mk = 2

∫ ∞
0

xke−x
2/2dx/

√
2/pi = 2(k − 1)

∫ ∞
0

xk−2e−x
2/2dx/

√
2/pi = (k − 1)Mk−2.

(1) If k = 2p then by induction(recall that M2 = 1 ) one can see that

M2p =
(2p)!

2pp!

(2) If k = 2p+ 1 again by induction (recall that M1 = 2/
√

2π) one can see that

M2p+1 = 2pp!
2√
2π
.

Now we have to optimized (5) in k. Doesn’t seem toto be an est task ! ! ! ! !

3. Main Dish Cramér’s Method

3.1. The method. This method is baded on Markov inequality. Take any random variable Y and
t > 0 then by Markov inequality we have

(6) P (Y > x) ≤ e−txE
(
etY
)
.

Set
ΨY (t) = log

(
E
(
etY
))
.

Then (6) becomes
P (Y > x) ≤ e−tx+ΨY (t).

Set Ψ∗Y (x) lthe Legendre transform of ΨY

Ψ∗Y (x) = sup
t≥0
{tx−ΨY (t)}.

We then get
P (Y > x) ≤ e−Ψ∗

Y (x).

We will apply this method to empirical means of iid random variables. Take X1, X2, . . . Xn i.i.d
such that there exists t > 0 for which E

(
etX1

)
< +∞, we apply the previous method to Y =

X1+...+Xn
n − E(X1). Since the variable are iid it is obvious that

P
(
X1 + . . .+Xn

n
− E(X1) ≥ x

)
≤ exp

(
−t(x+ E(X1) + nΨX1(

t

n
)

)
At this point we have two possibilities

(1) The function Ψ∗Y (x) is well known (see for example 1) and in that case we obtain nice inequa-
lities.

(2) The function Ψ∗Y (x) is unknown (no closed formula or even worse the law of Y is unknown)
and in that case we will try to find clever upper bounds for e−Ψ∗

Y (x).

Example 1.

(1) Gaussian Random variables. Let us consider now the case where the law of the random va-
riables is N (µ, σ2)
Let (Xi)ibe i.i.d. N (µ, σ2) random variables then

E
(
etX1

)
= e

t2σ2

2 +tµ



BASIC CONCENTRATION INEQUALITIES 5

we then get

P
(
X1 + . . .+Xn

n
− E(X1) ≥ x

)
≤ exp

(
−tx+

t2σ2

2n

)
The right hand side is minimized for pour t = nx

σ2 Which lead to the following bound

P
(
X1 + . . .+Xn

n
− E(X1) ≥ x

)
≤ exp

(
−nx

2

2σ2

)
We can do the same thing for left deviations and get

P
(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ x) ≤ 2 exp

(
−nx

2

2σ2

)
One should note that the smaller σ2 is the better the bound is.

(2) Case of Poisson random variable n (P(λ)).
Let X1, . . . , Xn be iid P(λ) distributed random variables.
We begin by finding the Laplace transform of X ∼ P(λ). Let t ∈ R we have

ψX(t) = log
(
E
(
etX
))

= log

(
e−λ

+∞∑
k=0

etk
λk

k!

)
= log

(
exp

(
−λ+ λet

))
= −λ+ λet.

We will usus again Cramér’s method. For x > 0 and t > 0 we have

P
(
X1 + . . .+Xn

n
− λ ≥ x

)
≤ exp

(
−t(x+ λ) + nΨX(

t

n
)

)
= exp

(
−t(x+ λ) + n

(
−λ+ λet/n

))
The right hand side term is minimal fort = n log

(
x+λ
λ

)
, which leads to

P
(
X1 + . . .+Xn

n
− λ ≥ x

)
≤ exp

(
−n log

(
x+ λ

λ

)
(x+ λ) + n

(
−λ+ λ

x+ λ

λ

))
≤ exp

(
−n log

(
x+ λ

λ

)
(x+ λ) + nx

)
= exp

(
−nλ

[
(1 +

x

λ
) log

(
1 +

x

λ

)
− x

λ

])
Definition 3.1. Let us define for x ≥ −1 the function

h(x) = (1 + x) log(1 + x)− x.

We have

(7) P
(
X1 + . . .+Xn

n
− λ ≥ x

)
≤ exp

(
−nλh

(x
λ

))
.

Let us take a look a left déviations. Since Poisson variables are non negative positive X1+...+Xn
n −

λ is always larger or equal than −λ, we shall then take 0 < x < λ and t > 0

P
(
X1 + . . .+Xn

n
− λ ≤ −x

)
= P

(
−t
(
X1 + . . .+Xn

n

)
≥ −t (λ− x)

)
= P

(
e−t(

X1+...+Xn
n ) ≥ e−t(λ−x)

)
≤ exp

(
t(λ− x) + nΨX(− t

n
)

)
= exp

(
t(λ− x) + n

(
−λ+ λe−t/n

))
The right hand side term is minimal for t = −n log

(
λ−x
λ

)
, which leads to

P
(
X1 + . . .+Xn

n
− λ ≤ −x

)
≤ exp

(
−n log

(
λ− x
λ

)
(λ− x) + n

(
−λ+ λ

λ− x
λ

))
≤ exp

(
−n log

(
λ− x
λ

)
(λ− x)− nx

)
.

So we have for 0 < x < λ

P
(
X1 + . . .+Xn

n
− λ ≤ −x

)
≤ exp

(
−nλh

(
−x
λ

))
(8)
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Remark 3.1. On can show that if x ≥ 0 then

h(x) ≥ x2

2 + 2x/3
.

Hence the bound in Equation (7) is bounded by

P
(
X1 + . . .+Xn

n
− λ ≥ x

)
≤ exp

(
−nλh

(x
λ

))
≤ exp

(
−n x2

2λ+ 2x/3

)
≤ exp

(
−nx

2

2λ

1

1 + 2x/(3λ)

)
.

One shall compared this bound to the gaussian bound exp
(
−nx

2

2λ

)
.

(3) Case of Bernoulli random variables (B(p)).
Let X1, . . . , Xn be iid B(p) distributed random variables.
Proceeding as previously we compute for X ∼ B(p) and t ∈ R the Laplace transfer of X

ψX(t) = log
(
E
(
etX
))

= log
(
pet + (1− p)

)
.

Following t Cramér’s method for 0 < x < 1 − pand t > 0 (the restriction on x is valid since
Bernoulli random variables are smaller than 1) we have

P
(
X1 + . . .+Xn

n
− p ≥ x

)
≤ exp

(
−t(x+ p) + nΨX(

t

n
)

)
= exp

[
−t(x+ p) + n log

(
pet + (1− p)

)]
Set u = pet hence the right hand side term is optimized for u = (1−p)(x+p)

n−(x+p) (i.e. t = log(u/p)).

P
(
X1 + . . .+Xn

n
− p ≥ x

)
≤ exp

[
− log(u/p)(x+ p) + n log

(
(1− p)(x+ p)

n− (x+ p)
+ (1− p)

)]
≤ exp

[
−(x+ p) log

(
(1− p)(x+ p)

p(n− (x+ p))

)
+ n log

(
n(1− p)
n− (x+ p)

)]
≤ exp

[
− (n− (x+ p)) log

(
(n− (x+ p))

(1− p)

)
− (x+ p) log

(
x+ p

p

)
+ n log (n)

]
For a general Random variable these computations are not feasible We shall then proceed by compa-
rison.

4. Classical inequalities

4.1. Sub-gaussian random variables.

Definition 4.1. A centered random variable X is said to be sub-gaussian with variance term v if

ψX(t) := log
(
E
(
etX
))
≤ vt2

2

We denote those variable by X ∈ G(v).

Theoreme 4.1 (Sub Gaussian concetration). Let v > 0, if X1, . . . , Xn are i.i.d random variable
belonging to G(v). Then for all x > 0,

P
(
X1 + . . .+Xn

n
≥ x

)
≤ exp

(
−nx

2

2v

)
.

Proof
We use (again ) Cramé’s method, then we bound ψXby its counterpart gaussian.

But what happent for non sub-gaussian random variables ? For example assume you have in hand
exponential random variables. Take n iid random variable with exponential law with parameter λ > 0.
Then if t < λ and if X ∼ E(λ)

ψX(t) = log
(
E
(
etX
))

= log

(∫ +∞

0

etyλe−λydy

)
= log

(
λ

λ− t

)
.

Hence if t < nλ we get

P
(
X1 + . . .+Xn

n
− 1

λ
≥ x

)
≤ exp

(
−t(x+

1

λ
) + n log

(
λ

λ− t/n

))
.
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The right hand side is optimized for t = nxλ2

1+xλ (note that t ≤ nλ). Which leads to

P
(
X1 + . . .+Xn

n
− 1

λ
≥ x

)
≤ exp

(
− nxλ2

1 + xλ
(x+

1

λ
) + n log

(
λ

λ− xλ2

1+xλ

))
,

≤ exp (−nxλ+ n log (1 + xλ)) ,

≤ exp (−n [xλ− log (1 + xλ)]) .

Obviously this bound is greater than the gaussian bound ! ! !

4.2. Hoeffding’s inequality.

4.2.1. Bounded random variables are sub-gaussian.

Lemma 4.1. Let Z be a centered random variable (E(Z) = 0) taking its values in [a, b] (a ≤ Z ≤ b

a.s. ). Then Z ∈ G
(

(b−a)2

4

)
Proof
Step 1 : We shall note that (the distance from Z to the middle point of [a, b] is smaller than b− a)∣∣∣∣Z − b+ a

2

∣∣∣∣ ≤ b− a
2

Hence

Var(Z) ≤ (b− a)2

4
Step 2 : Let us compute

ψZ(t) = log
(
E
(
etZ
))

ψ′Z(t) =
E
(
ZetZ

)
E (etZ)

ψ′′Z(t) =
E
(
Z2etZ

)
E (etZ)

−
(
E
(
ZetZ

))2
(E (etZ))

2 = E
(
Z2etZe−ψZ(t)

)
−
(
E
(
ZetZe−ψZ(t)

))2

The last term looks like a variance. Noticing that E
(
etZe−ψZ(t)

)
= 1 the fonction u 7→ etue−ψZ(t) is

a probability density with respect to the law of Z. Hence if U is a random variable admitting this
density we have

Var(U) = E
(
Z2etZe−ψZ(t)

)
−
(
E
(
ZetZe−ψZ(t)

))2

Since a ≤ Z ≤ bwe also have a ≤ U ≤ b and step 1 is valid for U we then have

ψ′′Z(t) ≤ (b− a)2

4
.

It is easy to see that ψZ(0) = 0 (log(1) = 0) and that ψ′Z(0) = 0 ( E(Z) = 0), so using taylor expansion
of order two we have

ψZ(t) =
t2

2
ψ′′Z(θ) ≤ t2(b− a)2

8
.

4.2.2. Hoeffding’s inequality. Applying the two previous results we get

Theoreme 4.2. Let X1, . . . , Xn be n indépendant random variables. Assume that for all index i,
Xi ∈ [ai, bi]. Set

S =

n∑
i=1

(Xi − E(Xi)) .

Then if t > 0, we have

P (S ≥ t) exp

(
− 2t2∑n

i=1 (bi − ai)2

)
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4.3. Bennett’s inequality.

Theoreme 4.3 (Bennett’s inequality). Let X1, . . . , Xn be n independent random variables with finite
variance. Assume that for all index i, Xi ≤ b. Set

S =

n∑
i=1

(Xi − E(Xi))

and

v =

n∑
i=1

E(X2
i ).

For u ∈ R, set φ(u) = eu − u− 1 and for u ≥ −1, h(u) = (1 + u) log(1 + u)− u Then
(1) For t > 0

ψS(t) := log
(
E
(
etS
))
≤ n log

(
1 +

v

nb2φ(bt)

)
≤ v

b2
φ(bt)

(2) For x > 0,

P (S ≥ x) ≤ exp

(
− v

b2
h

(
bx

v

))
Proof

(1)
Step 1 : One can assume (without loss of generality) that b = 1 .
Step 2 : Note first that u 7→ φ(u)

u2 is increasing. Hence since Xi ≤ 1 it is obvious that

φ(tXi) ≤ t2X2
i φ(t) = X2

i

(
et − t− 1

)
etXi ≤ tXi + 1 +X2

i

(
et − t− 1

)
Step 3 : We computs ψS(t) and use step 2

ψS(t) =

n∑
i=1

log
(
E
[
et(Xi−E(Xi))

])
=

n∑
i=1

(
log
(
E
[
etXi

])
− tE(Xi)

)
≤

n∑
i=1

(
log
(
1 + tE(Xi) + E(X2

i )
(
et − t− 1

))
− tE(Xi)

)
using the concavity of u 7→ log(1 + u) we have

ψS(t) ≤ n
(

log

(
1 + t

∑n
i=1 E(Xi)

n
+
v

n

(
et − t− 1

))
− t
∑n
i=1 E(Xi)

n

)
≤ v

(
et − t− 1

)
.

Which proves the first point.
(2) Cramér’s method again ! !

P (S ≥ x) ≤ e−tx+ψS(t) ≤ e−tx+v(et−t−1)

The right hand side is optimized for t = log
(
1 + x

v

)
, we then get

P (S ≥ x) ≤ e− log(1+ x
v )x+v( xv−log(1+ x

v ))

≤ e−v[(1+ x
v ) log(1+ x

v )− xv ].

Remark 4.2. One can see that

h(u) ≥ u2

2(1 + u/3)
.

which provides

P (S ≥ x) ≤ e−
x2

2(v+bx/3) .
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4.4. Bernstein’s inequality. Or how one can take into account information on the variances.

Theoreme 4.4 (Bernstein’s inequality). Let X1, . . . , Xn be n independent random variables such that
there exists iv > 0 and > 0 satisfying

∑n
i=1 E(X2

i ) ≤ v and
n∑
i=1

E
[
(Xi)

q
+

]
≤ q!

2
vcq−2, ∀q ≥ 3,

where x+ = max(x, 0). Set

S =

n∑
i=1

(Xi − E(Xi))

Set for u > 0, h1(u) = 1 + u−
√

1 + 2u Then

(1) Pour 0 < t < 1/c

ψS(t) := log
(
E
(
etS
))
≤ vt2

2(1− ct)
(2) For x > 0,

P
(
S ≥

√
2vx+ cx

)
≤ exp (−x)

Proof

(1) Like in the previous proof we consider the function φ(u) = eu−u−1. This function is bounded
by u2/2 as soon as u ≤ 0

φ(u) ≤ u2

2
∀u ≤ 0.

Let t > 0 then

φ(tXi) =

+∞∑
q=2

tqXq
i

q!
≤ t2X2

i

2
+

+∞∑
q=3

tq(Xi)
q
+

q!

E (φ(tXi)) ≤
t2E

(
X2
i

)
2

+

+∞∑
q=3

tqE
[
(Xi)

q
+

]
q!

n∑
i=1

E (φ(tXi)) ≤
t2v

2
+

+∞∑
q=3

tqvcq−2

2

n∑
i=1

E (φ(tXi)) ≤
v

2

+∞∑
q=2

tqcq−2.

The série is convergent if and only if tc < 1 that is t ≤ 1/c. We control now ψS(t) (we shall
use againlog(u) ≤ u− 1 for u > 0).

ψS(t) = log
[
E
(
etS
)]

=

n∑
i=1

(
log
[
E
(
et

∑n
i=1Xi

)])
− t

n∑
i=1

E (Xi)

≤
n∑
i=1

(
E
(
et

∑n
i=1Xi

)
− 1− tE (Xi)

)
=

n∑
i=1

E (φ(tXi))

≤ v

2

+∞∑
q=2

tqcq−2

≤ vt2

2

1

1− tc
.

Which proves the first point.

(2) Let y>0 and 0 < t < 1/c

P (S ≥ y) ≤ e−ty+ψS(y) ≤ e−ty+ vt2

2
1

1−tc .(9)
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Set h(t) = ty − vt2

2
1

1−tc we aim to optimized this expression in t ∈ [0, 1/c]. Set u = cy
v (ie

y = uv
c , then

h(t) =
uvt

c
− vt2

2(1− ct)
.

Dividing by v the critical points are given by

u

c
− t

1− ct
− ct2

2(1− ct)2
= 0.

Multiplying by 2(1− ct)2 we have

t2 − 2t

c
+

2u

c2(1 + 2u)
= 0.

the square root of the discriminant is
√

∆ =
2

c
√

1 + 2u
.

The only critical point less than1/c is

t∗ =
1

c

(
1− 1√

1 + 2u

)
.

which leads to

h(t∗) = v

 u
c2

(
1− 1√

1 + 2u

)
−

√
1 + 2u

(
1− 1√

1+2u

)2

2c2


=

v

c2
h1(u)

h1 is defined for u > 0 by

h1(u) = 1 + u−
√

1 + 2u.

Rewritting Equation (9) we get

P (S ≥ y) ≤ exp
(
− v

c2
h1(

cy

v
)
)

The inequality

P
(
S ≥

√
2vx+ cx

)
≤ exp (−x)

is obtained using the inverse of l h1(u). This inverse is h−1
1 (t) = t+

√
t.

Remark 4.3. (1) An equivalent for of this inequality is given by

P (S ≥ y) ≤ exp
(
− v

c2
h1(

cy

v
)
)

(2) One can see that for u > 0

h1(u) ≤ u2

2(1 + u)
.

Then under the same assumptions we have

P (S ≥ y) ≤ exp

(
− t2

2(v + ct)

)
.

5. The case of Sobol indices

The results of this Section comme from the work of Gamboa, Janon Klein, Lagnoux et Prieur [? ]
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5.1. Black box models. We consider regression models

(10) Y = f(X) := f(X1, . . . , Xp).

Here Y ∈ R and X = (X1, . . . Xp) with for i = 1, . . . p, the Xi’s are any indépendant random objects.
Xi will dénote the space in which Xi leaves. f is assumed to be a deterministic function and Y such
that 0 < VarY < +‖infty).
One goal of sensitivity analysis is to determined influent variables. Sobol indices allow to quantifie
this influence.
Let us recall their definitions. Take u a subset of Ip := {1, . . . , p} : . The closed Sobol index is (see [?
])

Su
Cl :=

Var(E(Y |Xi, i ∈ u))

Var(Y )
.

5.2. Pick and freeze method for estimation. In real life E f is unknown and so are the cobol
indices. We shall then provide some estimation procedure for them. For X and a subset v of Ip we set
Xv lthe vector such that Xv

i = Xi if i ∈ v and Xv
i = X ′i if i /∈ v where X ′i is an independent copy of

Xi. We then set
Y v := f(Xv).

The next lemma’s gives a nice covariance représentation of the numerator of Sobol index (see [? ,
Lemma 1.2])

Lemma 5.1. For any u ⊂ Ip, we have

(11) Var(E(Y |Xi, i ∈ u)) = Cov (Y,Yu) .

Thanks to this Lemma, we can derive a natural estimator

Su
N,Cl =

1
N

∑
YiY

u
i −

(
1
N

∑
Yi
) (

1
N

∑
Y u
i

)
1
N

∑
Y 2
i −

(
1
N

∑
Yi
)2 .(12)

This estimator is consistent and goes almost surely to the true cobol index. As usual, in applications,
n is finite and one would want to quantify the distance between the estimator and the true value.
The main differences with respect to the previous sections are the following

(1) The estimator is not a sum of independent random variables.

(2) The estimator has a bias.

Notation
V will denote Var(Y ) and as previously h is defined for x > −1 by

h(x) = (1 + x) ln(1 + x)− x.

5.3. Concentration inequalities for Su
N,Cl. Let us introduce the following random variables

U±i = YiY
u
i − (Su

Cl ± y)(Yi)
2 et J±i = (Su

Cl ± y)Yi − Y u
i

Set V +
U (resp. V −U , V +

J and V −J ) the moment of order 2 of the variables U+
i (resp. U−i , J+

i and J−i ).

Theoreme 5.1. Soit b > 0 et y > 0. We assume that Yi and Y u
i belongs to [−b, b]. Then

P
(
Su
N,Cl ≥ Su

Cl + y
)
≤M1 + 2M2 + 2M3,(13)

P
(
Su
N,Cl ≤ Su

Cl − y
)
≤M4 + 2M2 + 2M5,(14)

where

M1 = exp

{
−
NV +

U

b2U
h

(
bU

V +
U

yV

2

)}
M2 = exp

{
−NV

b2
h

(
b

V

√
yV

2

)} M3 = exp

{
−
NV +

J b
2

b2U
h

(
bU

bV +
J

√
yV

2

)}
M4 = exp

{
−
NV −U
b2U

h

(
bU

V −U

yV

2

)}
M5 = exp

{
−
NV −J b

2

b2U
h

(
bU

bV −J

√
yV

2

)}
and bU = b2(1 + Su

Cl + y).
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Proof
Since Su

Cl and Su
N,Cl are invariant when one translate the variables Y and Y u we can assume that

E(Y ) = 0.

(1) U+
i et U−i are bounded by bU , J+

i and J−i by bU/b, moreover

E(U+
i ) = −yV E(J+

i ) = 0
E(U−i ) = yV E(J−i ) = 0

and
V ±U = Var(Y Y u) + (Su

Cl + y)2Var(Y 2)− 2(Su
Cl ± y)Cov(Y Y u, Y 2) + y2V 2

V ±J = ((Su
Cl ± y)2 + 1)V − 2(Su

Cl ± y)Cu.

(2) Proof of (13). As

{a+ b ≥ c} ⊂ {a ≥ c/2} ∪ {b ≥ c/2} et {ab ≥ c} ⊂ {|a| ≥
√
c} ∪ {|b| ≥

√
c}

we have

P
(
Su
N,Cl ≥ Su

Cl + y
)

= P

(
1
N

∑N
i=1 YiY

u
i − Y NY

u

N

1
N

∑N
i=1(Yi)2 −

(
Y N
)2 ≥ Su

Cl + y

)

= P

(
1

N

N∑
i=1

(
U+
i − E(U+)

)
+ Y NJ

+

N ≥ yV

)

≤ P

(
N∑
i=1

(
U+
i − E(U+)

)
] ≥ N yV

2

)
+ P

(
N∑
i=1

Yi ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−Yi) ≥ N
√
yV

2

)
+ P

(
N∑
i=1

J+
i ≥ N

√
yV

2

)

+P

(
N∑
i=1

(−J+
i ) ≥ N

√
yV

2

)
.

Inequality (13) comes from the application of Bennett’s inequality (apply Bennett’s result
five time).

(3) Proof (14). Similarly we have

P
(
Su
N,Cl ≤ Su

Cl − y
)

= P

(
1

N

N∑
i=1

(
−U−i + E(U−)

)
+ (−Y N )J

−
N ≥ yV

)

≤ P

(
N∑
i=1

(
−U−i + E(U−)

)
≥ N yV

2

)
+ P

(
N∑
i=1

Yi ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−Yi) ≥ N
√
yV

2

)
+ P

(
N∑
i=1

J−i ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−J−i ) ≥ N
√
yV

2

)
.

Inequality (14) comes from the application of Bennett’s inequality (apply Bennett’s result
five time).

E-mail address: thierry.klein@math.univ-toulouse.fr
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