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1 Introduction

Mathematical models are used in many fields (one can think of environmental risk assessment, nuclear
safety, Aeronautics) to model real phenomena. This modeling gives birth to some computer code. This
code is used to perform some simulations of the model. Nevertheless in real application the code is
very expensive in time. Those code representing physical phenomena take as inputs many numerical
parameters, physical variables (those variables could be some real number, some vectors or even some
functions) and give in general several outputs. Sensitivity Analysis (SA) is the part of applied mathematics
which analysis these kind of code. In general the inputs parameters are not well known, one said that they
are uncertain. In the statistical approach we model this uncertainty by considering the inputs as random
objets (random variables, random vectors or even stochastic processes). One of the aim of sensitivity
analysis is to study how the uncertainty in the output is related to the inputs uncertainty. Hence SA can
be for example use to detect the most influent variables, to detect the variables that are not influent (and
then fixed them to some nominal value), calibrate some model inputs. There exists many technics to
perform some SA. The are local (or derivative) technics or some more global technics. In these lectures,
we will focus on an particular aspect of SA, the one that is related to the ANOVA decomposition. This
technic is based on a decomposition of the variance that gives raise to some indices (called the Sobol
indices). As it will be shown later on, these indices can be seen as indicators on the importance of some
inputs parameters.
In these notes, we will restrain our presentation to the statistical analysis of Sobol Indices.

2 Anova or the Hoeffdings decomposition of the variance

2.1 Linear models

Let (X1, . . . , Xd) be some inputs random objects and Y = f(X1, . . . , Xd) be the random output. Here f
is assumed to be unknown. In some applications f a is computer code seen as a black box, if one gives to
the computer some inputs, the code returns an answer, but we will assume that we don’t have access to
the code. In some others applications f can be some measurement of an real experience once the inputs
are fixed. One of the first method used by statistician is to fit some linear model, that is to consider that

Y =

d∑
j=1

βjXj

in that case, if the inputs are independent

Var(Y ) =

d∑
j=1

β2
jVar(Xj).

Hence β2
j
Var(Xj)

Var(Y )
represents the part of the Variance of Y that is due to the input Xj . Now if the model

is not linear, on can proceed an ANOVA type decomposition of the variance in order to quantify the
importance of an input.

2.2 The ANOVA-Hoeffding decomposition of the variance

2.2.1 A simple example

In order to understand this decomposition, we will first consider a very simple example. Let X1 ∈ {0, 1}
and X2 ∈ {0, 1, 2} be two independent random variables, having the uniform distribution respectively on
{0, 1} and on {0, 1, 2}. Let G be an application from {0, 1} × {0, 1, 2} to R then

G(X1, X2) = G∅ +G{1}(X1) +G{2}(X2) +G{1,2}(X1, X2). (1)
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Where

G∅ =
1

6

1∑
i=0

2∑
j=0

G(i, j) is the mean value of the function

G{1}(x1) =
1

3

2∑
j=0

G(x1, j)−G∅, ∀ x1 ∈ {0, 1}

G{2}(x2) =
1

2

1∑
i=0

G(i, x2)−G∅ ∀ x2 ∈ {0, 1, 2}

G{1,2}(x1, x2) = G(x1, x2)−G{1}(x1)−G{2}(x2)−G∅.

One can see that

G{1}(X1) = E (G(X1, X2)|X1)− E (G(X1, X2)) ,

G{2}(X2) = E (G(X1, X2)|X2)− E (G(X1, X2)) .

Now we have

E
(
G∅G{1}(X1)

)
= G∅

1

3

2∑
j=0

E (G(X1, j))

−G2
∅

= G∅

1

6

2∑
j=0

1∑
i=0

G(i, j)

−G2
∅ = 0.

E
(
G∅G{2}(X2)

)
= 0 by symmetry.

E
(
G{1}(X1)G{2}(X2)

)
=

(
1

2

1∑
i=0

E (G(i,X2))

)1

3

2∑
j=0

E (G(X1, j))


−G∅

1

3

2∑
j=0

E (G(X1, j))

−G∅
(

1

2

1∑
i=0

E (G(i,X2))

)
+G2

∅ = 0

E
(
G∅G{1,2}(X1, X2)

)
= 0

E
(
G{1}(X1)G{1,2}(X1, X2)

)
= E

(
G{2}(X2)G{1,2}(X1, X2)

)
= 0.

Hence the variables appearing in decomposition (1) are orthogonal. We can then perform an L2 decom-
position of the variance

Var (G(X1, X2)) = Var
(
G{1}(X1)

)
+ Var

(
G{2}(X2)

)
+ Var

(
G{1,2}(X1, X2)

)
. (2)

We will now generalize Equation (2) without specifying the law of the inputs.

2.2.2 The general model

Let X = (X1, . . . , Xd) be independent random variables, such that Xi belongs to some measurable Polish
space (Ei,B(Ei)).

Example 2.1. Take for exemple d = 4, X1 a Poisson random variable with parameter λ > 0 ie for all
k ∈ N, P (X1 = k) = e−λ λ

k

k! , X2 ∼ N (m,σ2), the distribution of X3 is the exponential law of parameter
1(with density f(t) = exp(−t), for t ≥ 0), and X4 has the Cauchy distribution on R (with density
h(t) = 1

π(1+x2)).

Example 2.2. Take for exemple d = 3, X1 a Poisson random variable with parameter λ > 0 ie for
all k ∈ N, P (X1 = k) = e−λ λ

k

k! , X2 be some centered Gaussian vector of dimension 3 and X3 be some
brownian motion.
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We denote by L2 (PX ) the set of all measurable function f on (E, E) such that E
(
f2(X )

)
< +∞ . Where

E =
∏d
i Ei and E = ⊗di=1B(Ei). The space L2 (PX ) is an Hilbert space with inner product defined by

for any f ∈ L2 (PX ) and g ∈ L2 (PX )

< f, g >= E (f(X )g(X )) .

For any A ⊂ {1, . . . , d} we set XA = (Xi)i∈A and L2
A the subspace of L2 (PX ) that are EA measurable

(EA =
∏
i∈AEi) and

L2
B⊥A = {f ∈ L2

B , ∀g ∈ L2
A, E (f(XB)g(XA)) = 0}.

Theorem 2.1 (Hoeffding). Let G ∈ L2 (PX ). Then G may be uniquely decomposed in L2 (PX ) as the
following orthogonal expansion

G(X ) =
∑

A⊂{1,...d}

GA(XA)(a.s.) (3)

where

1. ∀A ⊂ {1, . . . d}, GA ∈ L2
A.

2. ∀A′ ( A ⊂ {1, . . . d}, GA ∈ L2
A⊥A′ .

3. ∀A′, ∀A ⊂ {1, . . . d}, with A′ ∩A 6= A and for f ∈ L2
A, E (GA(XA)f(XA′)) = 0 .

proof We only prove the Theorem for d = 2, one can then give a general proof by induction. In fact the
proof is just a generalization of what we did in Equation (1). We write

G(X1, X2) = G∅ +G{1}(X1) +G{2}(X2) +G{1,2}(X1, X2). (4)

Where

G∅ = E (G(X1, X2))

G{1}(X1) = E (G(X1, X2)|X1)− E (G(X1, X2))

G{2}(X2) = E (G(X1, X2)|X2)− E (G(X1, X2))

G{1,2}(X1, X2) = G(X1, X2)−G{1}(X1)−G{2}(X2)−G∅

The orthogonals properties are straightforward consequences that the inputs are independent and that
all the functions in the decomposition are centered. �

Corollary 2.1. Under the assumptions of Theorem 2.2, if we set VA = Var (GA(XA)) = E
(
GA(XA)2

)
.

Then
Var (G(X )) =

∑
A⊂{1,...,d}

VA.

and

1 =

∑
A⊂{1,...,d} VA

Var (G(X ))
.

Remark 2.1. It is a well known fact that for L2 random variables the conditional expectation of E (Z|W )
is aW - measurable random variable that is the best approximation in the L2 sence of Z by aW - measurable
random variable. Hence GA is the best aproximation of the function G in L2

A. So VA can be seen as
the quantification of the sensitivity of G with respect to the inputs XA. Now the quantity VA/Var (G(X ))
would be the key quantity for the study of sensitivity analysis for L2 random variables. In this lectures
we will restrict our study to the studies of these quantities.

2.3 Sobol indices
Definition 2.1. Let A ⊂ {1, . . . , d}, X = (X1, . . . , Xd) be independent random variables and G be a
square integrable function of X , then we define

1. Sobol’ sensitivity index (the Sobol’ index) associated to A

SA :=
VA

Var (G(X ))
.
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2. The first order index for the input Xj

Sj := S{j}.

3. The Total Sobol’s index associated to XA

StotA = 1− SA.

In particular

Sjtot = 1−
V{j}

Var (G(X ))
.

Here A = {1, . . . , d} −A.

4. The closed Sobol’s index associated to A

SAclos =
∑
A′⊂A

SA
′
.

It is clear from Corollary 2.1 that
1 =

∑
A∈{1,...,d}

SA. (5)

Remark 2.2. If one take a close look to the proof of Theorem we can see that for any subset A of
{1, . . . , d} one has by induction that

GA(XA) = E (G(X )|XA)−
∑
A′(A

GA′(XA′).

Example 2.3. Let X := (X1, X2, X3) be three independent random variables and G a square integrable
random functions of X1, X2, X3. Hoeffding decomposition is

G(X ) = m +G1 +G2 +G3 +G1,2 +G1,3 +G2,3 +G1,2,3

With

m = E [G(X1, X2, X3)]

G1 = E [G(X )|X1]− E [G(X )]

G2 = E [G(X )|X2]− E [G(X )]

G3 = E [G(X )|X3]− E [G(X )]

G1,2 = E [G(X )|X1,2]−G1 −G2 −m
G1,3 = E [G(X )|X1,3]−G1 −G3 −m
G2,3 = E [G(X )|X2,3]−G2 −G3 −m
G1,2,3 = G(X )−G1,2 −G1,3 −G2,3 −G1 −G2 −G3 −m.

Example 2.4. Let X1, X2, X3 be three independent random variables N (0, 1) distributed and a1, a2, a3, a4
four real numbers. Consider the following application

G(X1, X2, X3) = a1X1 + a2X2 + a3X3 + a4X1X2.

1. Assume that a3 = a4 = 0.
Then we have
E(G(X )|X1) = a1X1, E(G(X )|X2) = a2X2 and E(G(X )|X3) = 0,
we also have
E(G(X )|X1, X2) = a1X1 + a2X2, E(G(X )|X1, X3) = a1X1 and E(G(X )|X2, X3) = a2X2.
Then the Sobol’s indices are
S1 =

a21
a21+a

2
2
, S2 =

a22
a21+a

2
2
, S3 = 0S1,2 = 0, S1,3 = 0, S2,3 = 0, S1,2,3 = 0,

The closed Sobol indices for {1, 2} is
S1,2
clos = S1,2 + S1 + S2 = 1.
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2. General case
S1 =

a21
a21+a

2
2+a

2
3+a

2
4
, S2 =

a22
a21+a

2
2+a

2
3+a

2
4
, S3 =

a23
a21+a

2
2+a

2
3+a

2
4
,

S1,2 =
a24

a21+a
2
2+a

2
3+a

2
4
, S1,3 = 0, S2,3 = 0, S1,2,3 = 0.

The closed Sobol index for {1, 2} is

S1,2
clos = S1,2 + S1 + S2 =

a21 + a22 + a24
a21 + a22 + a23 + a24

.

Let us give some obvious properties of the Sobol indices.

1. If the function G does not depend on the random variable Xi then SA = 0 for any A such that
i ∈ A.

2. If SAtot = 1 then G only depends on the random which indices are in A.

3. Si quantifies the part of the variability that is due to the action of variable Xi alone. We speak
of the first order importance of Xi. Si,j quantifies the part of the variability that is due to the
interaction between the variable Xi and Xj when the first order have been removed. To understand
better this phenomenon take a1 = a2 = a3 = 0 in the previous example then G(X ) = a4X1X2 and
S1 = S2 = 0, S1,2 = 1 meaning that alone X1 and X2 has no influence on variability of the input,
but together they are responsible of all the variability.

4. Note that SAclos = Var[E(G(X )|XA)]

Var[G(X )]
.

Exercise 1 (Ishigami function). The Ishigami model is given by:

Y = G(X1, X2, X3) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1 (6)

where (Xj)j=1,2,3 are i.i.d. uniform random variables in [−π;π].
Show that

S1 = 0.3139, S2 = 0.4424, S3 = 0.

Exercise 2 (Sobol G-function). Assume that X1, . . . , Xd are i.i.d random variables uniformly distributed
on [0, 1]. Now take d real numbers a1, . . . , ad and define the Sobol G−function by

Y = gsobol(X1, . . . , Xd) =

d∏
k=1

gk(Xk) (7)

with gk(Xk) = |4Xk−2|+ak
1+ak

.
Compute Si for i ∈ {1, . . . , d}.

In general, it is not possible to compute explicitly the Sobol’s index. Indeed in most applications G is
unknown or very complicated it is then impossible to perform analytic computations. The statistician
would then want to give some estimation of these indices.

3 How to estimate Sobol index- the Sobol pick freeze Monte Carlo
method

3.1 General framework
We will focus on the estimation of closed index, since if we know all closed index we can recover all
indices.
As previously we consider a non necessarily linear regression model connecting an output Y ∈ R to
independent random input vectors X = (X1, . . . Xd) with for i = 1, . . . d, Xi belongs to some probability
space Ei. We denote

Y = f(X ) := f(X1, . . . , Xd) (8)
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where f is a deterministic real valued measurable function defined on E = E1 × . . . Ed. We assume that
Y is square integrable and non deterministic (VarY 6= 0).
For applications, it is important to be able to estimate simultaneously several index, for this purpose let
u := (u1, . . . , uk) be k subsets of Id := {1, . . . , d}. The vector of closed Sobol indices is then

Su
Cl :=

(
Var(E(Y |Xi, i ∈ u1))

Var(Y )
, . . . ,

Var(E(Y |Xi, i ∈ uk))

Var(Y )

)
.

Example 3.1. Assume d = 5, k = 3 and take u := ({1}, {1, 3, 5}, {2, 4}) in that case

Su
Cl :=

(
Var(E(Y |X1)

Var(Y )
,
Var(E(Y |X1, X3, X5)

Var(Y )
,
Var(E(Y |X2, X4))

Var(Y )

)
.

It is easy to estimate Var(Y ), the problem here is to estimate quantities like Var(E(Y |Xi, i ∈ u1)). Indeed
in general, the estimation of conditional expectation is not an easy task. We will see in the next paragraph
a very nice trick allowing to transform the variance of the conditional expectation into some covariance.
For X and for any subset v of Id we define X v by the vector such that Xv

i = Xi if i ∈ v and Xv
i = X ′i if

i /∈ v where X ′i is an independent copy of Xi. We then set

Y v := f(Xv).

Example 3.2. Assume d = 2 and Y = f(X1, X2) and assume v = {1}, X = (X1, X2) and X v = (X1, X
′
2)

where X ′2 is an independent copy of X2 (X ′2 is also independent of X1),

Y = (X1, X2) and Yv := f(X1,X
′
2).

Remark 3.1. The idea is
you keep the variable if the index is in v and you take a new one if the index is not in v.

The next lemma shows how to express Su
Cl in terms of covariances. This will lead to a natural estimator.

Lemma 3.1. For any u ⊂ Ip, one has

Var(E(Y |Xi, i ∈ u)) = Cov (Y, Y u) . (9)

Proof It is easy to see that Y and Y u have the same law, in addition we can assume without loss of
generality that E(Y ) = 0. Now conditioning on the variables Xi, for i ∈ u, Y and Y u are independent so

Cov (Y, Y u) = E (Y Y u) = E [E (Y Y u|Xi, i ∈ u)] = E [E (Y |Xi, i ∈ u)E (Y u|Xi, i ∈ u)]

= E
[
E (Y |Xi, i ∈ u)

2
]

= Var(E(Y |Xi, i ∈ u)).

�
Notation
From now on, we will denote Var(Y ) by V , Cov(Y, Y u) by Cu and ZN the empirical mean of any N -
sample (Z1, . . . , ZN ) of Z.

A first estimation for Su
Cl. In view of Lemma 3.1, we are now able to define a first natural esti-

mator of Su
Cl (all sums are taken for i from 1 to N):

Su
N,Cl =

(
1
N

∑
YiY

u1
i −

(
1
N

∑
Yi
) (

1
N

∑
Y u1
i

)
1
N

∑
Y 2
i −

(
1
N

∑
Yi
)2 , . . . ,

1
N

∑
YiY

uk
i −

(
1
N

∑
Yi
) (

1
N

∑
Y uk
i

)
1
N

∑
Y 2
i −

(
1
N

∑
Yi
)2

)
. (10)

A second estimation for Su
Cl. Since the observations consist in (Yi, Y

u1
i , . . . , Y uk

i )(1≤i≤N), a more
precise estimation of the first and second moments can be done and we are able to define a second
estimator of Su

Cl taking into account all the available information. Define

Zu
i =

1

k + 1

Yi +

k∑
j=1

Y
uj

i

 , Mu
i =

1

k + 1

Y 2
i +

k∑
j=1

(Y
uj

i )2

 .

The second estimator is then defined as

Tu
N,Cl =

(
1
N

∑
YiY

u1
i −

(
1

2N

∑
(Yi + Y u1

i )
)2

1
N

∑
Mu
i −

(
1
N

∑
Zu
i

)2 , . . . ,
1
N

∑
YiY

uk
i −

(
1

2N

∑
(Yi + Y uk

i )
)2

1
N

∑
Mu
i −

(
1
N

∑
Zu
i

)2
)
. (11)
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Remark 3.2. Let us just explain why the second estimator is going to be a little better. In Su
N,Cl in

order to estimate the expected value of E(Y ) we only use one of the sample we have that is we compute
1
N

∑
Yi. Nevertheless, since we have 2 N sample, it seems reasonable to use all the information we have

and consider 1
2N

∑
(Yi + Y u1

i ). We see that in the second case the variance of the estimator of the mean
is reduced by a factor 2.

4 Asymptotic properties of the Pick and Freeze estimators
In the previous section, we showed how to construct two estimators Su

N,Cl and T
u
N,Cl of the Sobol’s indices.

We will focus our study on Su
N,Cl, it is easy following the same road map to perform the same study for

Tu
N,Cl. The two natural questions for a statistician is then

1. Are they consistant? That means do we have a.s. convergence of Su
N,Cl?

2. If yes, do we have a central limit theorem?

The method develop to answer these questions is based on the so-called Delta-method. In the next
sub-section, we provide the statistical background needed.

4.1 The Delta method
We recall here a well known result allowing to transfer a Central Limit Theorem via a differentiable
functions.

4.1.1 Some basic facts about stochastic convergences

The results of this paragraph are some well known results concerning stochastics convergences. The
proofs can be found for example in the book written by Van Der Vaart Asymptotic Statistic.

Theorem 4.1. Let (Xn)n, (Yn)n and X,Y be some random vectors and c be a constant . Then
i) If Xn

p.s.−−→
n

X then Xn
Pr−−→
n

X.

ii) If Xn
Pr−−→
n

X thens Xn
L−→
n
X.

iii) Xn
Pr−−→
n

c if and only if Xn
L−→
n
c.

iv) If Xn
L−→
n
X and d(Xn, Yn)

Pr−−→
n

0 then Yn
L−→
n
X.

v) (Slutsky) If Xn
L−→
n
X and Yn

Pr−−→
n

c then (Xn, Yn)
L−→
n

(X, c).

vi) If Xn
Pr−−→
n

X and Yn
Pr−−→
n

Y then (Xn, Yn)
Pr−−→
n

(X,Y ).

We introduce here some useful notations

• Xn = oP (1) means that Xn converges to 0 in probability and Xn = oP (Rn) means that Xn = YnRn
where Yn converges to 0 in probability.

• Xn = OP (1) means that the family (Xn)n is uniformly tight and Xn = OP (Rn) means that Xn = YnRn
where the family (Yn)n is uniformly tight.

Lemma 4.1. Let Xn be a sequence of random vectors going to zero in probability.Then for any p > 0,
and any function R such that R(0) = 0,

1. R(h) = o(‖h‖p) =⇒ R(Xn) = oP (‖Xn‖p).

2. R(h) = O(‖h‖p) =⇒ R(Xn) = OP (‖Xn‖p).
Theorem 4.2 (Classical C.L.T). Let (Zi)i∈N∗ be i.id random variables such that E

(
Z2
i

)
< ∞, let m =

E (Zi) and σ2 = Var(Zi). Let Zn = 1
n

∑n
i=1 Zi. Then

√
n
(
Zn −m

) L−→ N (0, σ2).

Remark 4.1. If the variable belongs to some Rk having the same distribution as Z = (Z1, . . . , Zk) the
result is the same the limit distribution is the centered Gaussian vector with covariances matrix Σ defined
for 1 ≤ i ≤ k and 1 ≤ j ≤ k by (Σ)i,j = Cov(Zi, Zj).

9



4.1.2 The Delta method

Now assume that you want to estimate some unknown parameter θ and that you know for some reason1

that
√
n ( Tn − θ)

L−→ X. But unfortunately you are not really interested by the θ but by some transfor-
mation of θ let’s say φ(θ). The natural question would then be:
Do we still have something like

√
n ( φ(Tn)− φ(θ))

L−→???
The answer is obviously yes if φ is linear since the continuous mapping theorem insures that

φ
(√
n ( Tn − θ)

) L−→ φ(X)

and then by linearity √
n ( φ(Tn)− φ(θ))

L−→ φ(X).

The answer is not obvious in the general case. Nevertheless it’s seems reasonable to think that if φ is
differentiable, φ behaves locally as an linear mapping and the result should be true.

Theorem 4.3 (Delta method). Let φ be an application from Rk to Rm differentiable at the point θ. Let
Tn be some random vectors in Rk and (rn)n be a sequence of real numbers going to ∞. Then

rn (φ(Tn)− φ(θ))
L−→ Dφ(θ)(T );

as soon as rn (Tn − θ)
L−→ T. Moreover the difference rn (φ(Tn)− φ(θ)) −Dφ(θ) (rn(Tn − θ)) converges

to zero in probability.

Proof Using Prohorov’s Theorem, we know that since the sequence rn(Tn − θ)
L−→ T , she is uniformly

tight. Moreover Slutsky Theorem’s shows that Tn − θ
P−→ 0. Consider now R(h) = φ(θ + h) − φ(θ) −

Dφ(θ)(h), since φ is differentiable we know that R(h) = o(‖h‖). Applying now Lemma 4.1,

φ(Tn)− φ(θ)−Dφ(θ)(Tn − θ) = R(Tn − θ) = oP (‖Tn − θ‖).

Multiplying both sides by rn, one gets

rnφ(Tn)− rnφ(θ)− rnDφ(θ)(Tn − θ) = rnoP (‖Tn − θ‖).

rnoP (‖Tn−θ‖) = oP (rn‖Tn−θ‖). In addition since rn(Tn−θ) is uniformly tight, we have that oP (rn‖Tn−
θ‖) = oP (1) 2. We have just proved the last part of the Theorem. Now Dφ(θ) is a continuous linear
mapping, hence by the continuity mapping Theorem we have

rnDφ(θ)(Tn − θ)
L−→ Dφ(θ)(T ).

We conclure using Theorem 4.1, point 4. �

Example 4.1 (Fondamental exemple). If
√
n (Tn − θ)

L−→ N (0,Σ). Then

√
n (φ(Tn)− φ(θ))

L−→ N (0, Dφ(θ),ΣDφ(θ)T )

Example 4.2. Let (Xi) be a sequence of i.i.d random variables distributed as E(λ), here λ is an unknown
parameters in ]0,+∞[. Then by the CLT we have

√
n

(
Xn −

1

λ

)
L−→ N (0,

1

λ2
).

Now applying the Delta method with φ(x) = 1
x we get

√
n

(
1

Xn

− λ
)
L−→ N (0, λ2).

1For example the C.L.T
2One shall write oP (rn‖Tn − θ‖) = rn‖Tn − θ‖Zn with Zn = oP (1) then for an ε > 0 fixed, we take M such that

P (rn‖Tn − θ‖ > M) < ε. It is then easy to see that ∀η > 0, P (rn‖Tn − θ‖Zn > η)→ 0.
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4.2 Consistency and CLT for Su
N,Cl

Theorem 4.4. If E(Y 2) < +∞ then
Su
N,Cl and T

u
N,Clconverge a.s. to Su

Cl when goes to infinity.

Proof It is a simple application of the strong law of large numbers and the continuity mapping Theorem.
�

Theorem 4.5. Assume that E(Y 4) <∞. Then:

1. √
N
(
Su
N,Cl − Su

Cl

) L→
N→∞

Nk (0,Γu,S) (12)

where Γu,S = ((Γu,S)l,j)1≤l,j≤k with

(Γu,S)l,j =
Cov(Y Y ul , Y Y uj )− Sul

ClCov(Y Y uj , Y 2)− Suj

ClCov(Y Y ul , Y 2) + S
uj

ClS
ul

ClVar(Y
2)

(Var(Y ))
2

2. √
N
(
Tu
N,Cl − Su

Cl

) L→
N→∞

Nk (0,Γu,T ) (13)

where Γu,T = ((Γu,T )l,j)1≤l,j≤k with

(Γu,T )l,j =
Cov(Y Y ul , Y Y uj )− Sul

ClCov(Y Y uj ,Mu)− Suj

ClCov(Y Y ul ,Mu) + S
uj

ClS
ul

ClVar(M
u)

(Var(Y ))
2 .

Remark 4.2. Note that in Theorem 4.5, we had the stronger assumption t E(Y 4) < ∞. But since, we
want a C.L.T for Sums of quantities like Y 2

i , it is necessary to impose that Y 2
i has a second order moment

that is E(Y 4) <∞.

Example 4.3. 1. Assume k = p, u = ({1}, . . . , {p}) and E(Y 4) <∞. We denote Y {j}i by Y ji . Here

Su
Cl =

(
Var(E(Y |X1))

Var(Y )
, . . . ,

Var(E(Y |Xp))

Var(Y )

)
and

Tu
N,Cl =

(
1
N

∑
YiY

1
i −

(
1

2N

∑
(Yi + Y 1

i )
)2

1
N

∑
Mu
i −

(
1
N

∑
Zu
i

)2 , . . . ,
1
N

∑
YiY

p
i −

(
1

2N

∑
(Yi + Y pi )

)2
1
N

∑
Mu
i −

(
1
N

∑
Zu
i

)2
)
.

The CLT becomes √
N
(
Tu
N,Cl − Su

Cl

) L→
N→∞

Np (0,Γu,T )

where Γu,T = ((Γu,T )l,j)1≤l,j≤k with

(Var(Y ))
2

(Γu,T )l,j = Cov(Y Y l, Y Y j)−SlClCov(Y Y j ,Mu)−SjClCov(Y Y l,Mu) +SjClS
l
ClVar(M

u).

2. We can obviously have a CLT for any index of order 2. Indeed if we take k = 1 and (i, j) ∈
{1, . . . , p}2 with i 6= j and u = {i, j}. We get Zu = 1

2 (Y + Y u) and Mu = 1
2

(
Y 2 + (Y u)2

)
; thus

Su
Cl =

Var(E(Y |Xi, Xj))

Var(Y )
and Tu

N,Cl =
1
N

∑
YiY

u
i −

(
1

2N

∑
(Yi + Y u

i )
)2

1
2N

∑
(Y 2 + (Y u)2)−

(
1

2N

∑
(Yi + Y u

i )
)2 .

The CLT becomes √
N
(
Tu
N,Cl − Su

Cl

) L→
N→∞

N1 (0,Γu,T )

with

(Var(Y ))
2

(Γu,T ) = Var(Y Y u)− 2Su
ClCov(Y Y u, Y 2) +

(Su
Cl)

2

2

(
Var(Y 2) + Cov(Y 2, (Y u)2)

)
.
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3. One can also straightforwardly deduce the joint distribution of the vector of all indices of order 2.
For example, if p = 3 take k = 3 and u = ({1, 2}, {1, 3}, {2, 3}) and apply Theorem 4.5.

Exercise 3. Show that Su
N,Cl is invariant by any centering (translation) of the Yi’s and Y uj

i ’s for j =
1, . . . , k.

Proof of Theorem 4.5 Since Su
N,Cl and T

u
N,Cl are invariant by any centering (translation) of the Yi’s

and Y
uj

i ’s for j = 1, . . . , k, we can simplify the next calculations translating by E(Y ). For the sake of
simplicity, Yi and Y

uj

i now denote the centered random variables.
Proof of (12) :
Recall that

Su
N,Cl − Su

Cl =

(
1
N

∑
YiY

u1
i −

(
1
N

∑
Yi
) (

1
N

∑
Y u1
i

)
1
N

∑
Y 2
i − ( 1

N

∑
Yi)2

− Su1

Cl , . . . ,
1
N

∑
YiY

uk
i −

(
1
N

∑
Yi
) (

1
N

∑
Y uk
i

)
1
N

∑
Y 2
i − ( 1

N

∑
Yi)2

− Suk

Cl

)
.

Let Wi = (YiY
uj

i , j = 1, . . . , k, Yi, Y
uj

i , j = 1 . . . , k, Y 2
i )t (i = 1, . . .) and g the mapping from R2k+2 to Rk

defined by

g(x1, . . . , xk, y, y1, . . . , yk, z) =

(
x1 − yy1
z − y2

, . . . ,
xk − yyk
z − y2

)
.

Let Σ denote the covariance matrix of Wi and set

E = E(Y ), V = Var(Y ), CZ = Cov(Y, Y Z), CX = Cov(Y, Y u), C = Cov(Y Z , Y u),W = (Y Y u, Y, Y 2, Y u, Y Y Z , Y Z)t

and

Σ =


Var(Y Y u) Cov(Y Y u, Y ) Cov(Y Y u, Y 2) Cov(Y Y u, Y u) Cov(Y Y u, Y Y Z) Cov(Y Y u, Y Z)

Cov(Y, Y Y u) V Cov(Y, Y 2) CX Cov(Y, Y Y Z) CZ
Cov(Y 2, Y Y u) Cov(Y 2, Y ) Var(Y 2) Cov(Y 2, Y u) Cov(Y 2, Y Y Z) Cov(Y 2, Y Z)
Cov(Y u, Y Y u) CX Cov(Y u, Y 2) V Cov(Y u, Y Y Z) C
Cov(Y Y Z , Y Y u) Cov(Y Y Z , Y ) Cov(Y Y Z , Y 2) Cov(Y Y Z , Y u) Var(Y Y Z) Cov(Y Y Z , Y Z)
Cov(Y Z , Y Y u) CZ Cov(Y Z , Y 2) C Cov(Y Z , Y Y Z) V


First, the following central limit theorem holds

√
N

(
1

N

∑
Wi − E(W )

)
L→

N→∞
N2k+2 (0,Σ)

We then apply the so-called Delta method to W and g so that
√
N
(
g(WN )− g(E(W ))

) L→
N→∞

N
(
0, Jg(E(W ))ΣJg(E(W ))t

)
with Jg(E(W )) the Jacobian of g at point E(W ).
Define (g1, . . . , gk) := g. For i = 1, . . . , k, j = 1, . . . , k,

∂gj
∂xi

(E(W )) = 1
V δi,j

∂gj
∂y (E(W )) = 0
∂gj
∂yi

(E(W )) = 0
∂gj
∂z (E(W )) = −S

uj
Cl

V

with δi,i = 1 and δi,j = 0 if i 6= j. Thus Γu,S = Jg(E(W ))ΣJg(E(W ))t is as stated in Theorem 4.5.

Proof of (13) :
The proof is similar to the one of (12). We now defineWi = (YiY

uj

i , j = 1, . . . , k, Yi, Y
uj

i , j = 1 . . . , k, (Y u
i )2)t.

We apply the delta method to g from R2k+2 into Rk defined by

g(x1, . . . , xk, y, y1, . . . , yk, z) =

 x1 −
(
y+y1

2

)2
z −

(
y+y1+...+yk

k+1

)2 , . . . , xk −
(
y+yk

2

)2
z −

(
y+y1+...+yk

k+1

)2
 .
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For i = 1, . . . , k, j = 1, . . . , k, 
∂gj
∂xi

u(E(W )) = 1
V δi,j

∂gj
∂y (E(W )) = 0
∂gj
∂yi

(E(W )) = 0
∂gj
∂z (E(W )) = −S

uj
Cl

V .

�

Exercise 4. Let Y = X1 +X2 with X1 and X2 i.i.d. N (0, 1) distributed. Let u = ({1}, {2}

Su
Cl =

(
Var(E(Y |X1))

Var(Y )
,
Var(E(Y |X2))

Var(Y )

)
Give an explicit formula for the covariance matrices of Theorem 4.5.

4.3 Application to significance Test

In order to simplify the notation we will write the vectors Su
Cl as column vectors. In this section, we

give a general procedure to build significance tests of level α and then illustrate this procedure on two
examples.
Let u := (u1, . . . , uk) so that for any i = 1, . . . , k, ui is a subset of Ip := {1, . . . , p}. Similarly, let
v := (v1, . . . , vl) and w := (w1, . . . , wl) be l be so that for any i = 1, . . . , l, vi ⊆ Ip and wi ⊆ Ip.
Consider the following general testing problem

H0 : Su
Cl = 0 and Sv

Cl = Sw
Cl against H1 : H0 is not true.

Remark 4.3. Note that one can also test

H0 : Su
Cl ≤ s against H1 : Su

Cl > s,

or
H0 : Su

Cl ≤ Sv
Cl against H1 : Su

Cl > Sv
Cl.

Appling Theorem 4.5 we have

GN :=
√
N

((
Su
N,Cl

Sv
N,Cl − Sw

N,Cl

)
−
(

Su
Cl

Sv
Cl − Sw

Cl

))
L→

N→∞
Nk+l (0,Γ) . (14)

Since we have an explicit expression of Γ we may build an estimator ΓN of Γ thanks to empirical means.
Note that (ΓN )N converges a.s. to Γ. Define

G̃N :=
√
N

(
Su
N,Cl

Sv
N,Cl − Sw

N,Cl

)
.

Then:

GN = G̃N −
(

Su
Cl

Sv
Cl − Sw

Cl

)
.

Corollary 4.1. Under H0, G̃N
L→

N→∞
Nk+l (0,Γ).

Under H1, |G̃N (1)|+ |G̃N (2)| a.s.→
N→∞

∞.

This corollary allows us to construct several tests. It is a well-known fact that in the case of a vectorial
null hypothesis "there exists no uniformly most powerful test, not even among the unbiased tests". In
practice, we return to the dimension 1 introducing a function F : Rk+l → R and testing H0(F ) : F (h) = 0
(respectively H1(F ) : F (h) 6= 0) instead of H0 : h = 0 (resp. H1 : h 6= 0). The choice of a reasonable test
"depends on the alternatives at which we wish a high power".
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Remark 4.4. If we take as test statistic TN = AG̃N where A is a linear form defined on Rl+k, under
H0, TN

L→
N→∞

N (0, AΓA′). Replacing Γ by ΓN and using Slutsky’s lemma we get

(AΓNA
′)−1/2TN

L→
N→∞

N (0, 1) .

Thus we reject H0 if (AΓNA
′)−1/2TN ≥ zα where zα is the 1−α quantile of a standard Gaussian random

variable.
One can have a similar result when A is not anymore linear but only C1 by applying the so-called Delta
method.

4.3.1 Numerical applications: toy examples

Example 1 In this first toy example, we compare 5 different test statistics through their power function.
Let X = (X1, X2) ∼ N (0, I2), and

Y = f(X) = λ1X1 + λ1X2 + λ2X1X2,

with 2λ21 + λ22 = 1. We consider here the following testing problem

H0 : S1
Cl = S2

Cl = λ21 = 0 against H1 : λ1 6= 0.

Then, computations lead to

Γ(1, 1) = Γ(2, 2) = 3− 2λ21 − 11λ41 + 24λ61 − 24λ81

Γ(2, 1) = Γ(1, 2) = −7λ41 + 24λ61 − 24λ81.

The Gaussian limit in Theorem 4.5 is N2(0, 3Id2) under H0 while it is asymptotically distributed as
N2(0,Γ) under H1.

Test 1: we take as test statistic TN,1 = G̃N (1) + G̃N (2).
UnderH0, TN,1

L→
N→∞

N (0, 6) so we rejectH0 if TN,1 > zα where zα/
√

6 is the (1−α) quantile of a standard

Gaussian random variable.While under H1, following the procedure of Remark 4.4 with A = (1 1).(
TN,1 − 2

√
Nλ21

)
/(2[Γ(1, 1) + Γ(1, 2)])1/2

L→
N→∞

N (0, 1).

It is then easy to compute the theoretical power function.

Test 2: since the Sobol indices are non negative, the testing problem is naturally unilateral. However in
view of more general contexts we introduce the test statistic TN,2 = |G̃N (1)|+ |G̃N (2)|. We reject H0 if
TN,2 > zα where zα/

√
3 is the (1− α) quantile of the random variable having

2√
π
e−u

2/4Φ(u/
√

2)1 R+(u)

as density (Φ being the distribution function of a standard Gaussian random variable). Under H1, the
power function of TN,2 and the limit variance are estimated using Monte Carlo technics.
Test 3: in the same spirit, we introduce the test statistic TN,3 = |G̃N (1) + G̃N (2)|. We reject H0 if
TN,3 > zα where zα/

√
6 is the (1−α/2) quantile of a standard Gaussian random variable.Under H1, the

power function of TN,3 and the limit variance are estimated using Monte Carlo technics.
Test 4: we use the L2 norm and consider TN,4 = (GN (1))2 + (GN (2))2. Under H0, TN,4/3

L→
N→∞

χ2(2)

so we reject H0 if TN,4 > zα where zα/3 is the (1− α) quantile of a χ2 random variablewith 2 degrees of
freedom. Under H1, the power function of TN,4 and the limit variance are estimated using Monte Carlo
technics.

Test 5: we use the infinity norm and consider TN,5 = max(|GN (1)|; |GN (2)|). We reject H0 if TN,5 > zα
where zα/

√
3 is the [1+

√
1− α]/2 quantile of a standard Gaussian random variable.Under H1, the power

function of TN,5 and the limit variance are estimated using Monte Carlo technics.
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N Min Mean Max
10 0.041 0.0463 0.048
50 0.042 0.0482 0.050
100 0.044 0.0489 0.051
500 0.047 0.0510 0.053
1000 0.049 0.0510 0.055

Table 1: Results for the Ishigami function

Example 2 Let X = (X1, X2, X3) ∼ N (0, I3), 2λ21 + λ22 = 1 and

Y = f(X) = λ1(X2 +X3) + λ2X1X2.

Let us test if X1 has any influence ie H0 : S
{1}
Cl = 0, S{1,2}Cl = S

{2}
Cl and S

{1,3}
Cl = S

{3}
Cl . Applying

Theorem 4.5 we easily get

GN :=
√
N


 S1

N,Cl

S1,2
N,Cl − S2

N,Cl

S1,3
N,Cl − S3

N,Cl

−
 S1

Cl

S1,2
Cl − S2

Cl

S1,3
Cl − S3

Cl


 L→

N→∞
N3 (0,Γ) .

Here under H0 the covariance limit Γ in Theorem 4.5 is the identity matrix. Under H1 we use its explicit
expression given in Theorem 4.5 to compute an empirical estimator ΓN .

Ishigami function The Ishigami model is given by:

Y = f(X1, X2, X3) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1 (15)

for (Xj)j=1,2,3 are i.i.d. uniform random variables in [−π;π]. Exact values of these indices are analytically
known:

S
{1}
Cl = 0.3139, S

{2}
Cl = 0.4424, S

{3}
Cl = 0.

We perform simulations in order to show that our test procedure allows us to recover the fact that
S
{3}
Cl = 0, even for relatively small values of N . In Table 1, we present the simulated confidence levels

obtained for N ∈ {10, 50, 100, 500, 1000} by the following procedure. For each value of N , we use a 1000
sample to estimate the confidence level and we repeat this scheme 20 times. We give in Table 1 the
minimum, the mean and the maximum of these 20 distinct simulated values of the confidence levels.

4.3.2 Numerical applications: a real test case

It is customary in aeronautics to model the fuel mass needed to link two fixed countries with a commercial
aircraft by the Bréguet formula:

Mfuel = (Mempty +Mpload)
(
e

SFC·g·Ra
V ·F 10−3

− 1
)
. (16)

The fixed variables are

• Mempty : Empty weight = basic weight of the aircraft (excluding fuel and passengers)

• Mpload : Payload = maximal carrying capacity of the aircraft

• g : Gravitational constant

• Ra : Range = distance traveled by the aircraft

The uncertain variables are

• V : Cruise speed = aircraft speed between ascent and descent phase

• F : Lift-to-drag ratio = aerodynamic coefficient

15



variable density parameter
V Uniform (Vmin, Vmax)
F Beta (7, 2, Fmin, Fmax)

SFC θ2 e
−θ2(u−θ1) 1 [θ1,+∞[ θ1 = 17.23, θ2 = 3.45

Table 2: Uncertainty modeling

• SFC : Specific Fuel Consumption = characteristic value of engines

We model the uncertainties as presented in Table 2.
The probability density function of a beta distribution on [a, b] with shape parameters (α, β) is

g(α,β,a,b)(x) =
(x− a)(α−1)(b− x)β−1

(b− a)β−1B(α, β)
1 [a,b](x) ,

where B(·, ·) is the beta function. We take the nominal and extremal values of V and F as in Table 3.

variable nominal value min max
V 231 226 234
F 19 18.7 19.05

Table 3: Minimal and maximal values of uncertain variables

The uncertainty on the cruise speed V represents a relative difference of arrival time of 8 minutes.
The airplane manufacturer may wonder whether he has to improve the quality of the engine (SFC) or
the aerodynamical property of the plane (F ). Thus we study the sensitivity of Mfuel with respect to F
and SFC and we want to know if H0 : SSFC > SF or H1 : SSFC ≤ SF . Applying the test procedure
described previously we can not reject H0.

5 Concentration Inequalities

5.1 Motivation

The starting point is the STRONG LAW OF LARGE NUMBER

Theorem 5.1. Assume (Xn)n≥1 is a sequence of i.i.d random variables such that E (|Xn|) < +∞ then

X1 + . . .+Xn

n

p.s.−→
n→∞

E(X1).

For the statistician E(X1) represents an unknown quantity to be estimated and X1+...+Xn

n is an natural
estimator. In the real life n never goes to infinity, we only have a finite number of observations (n = 100,
n = 1000). It is then natural to wonder for a fixed n if X1+...+Xn

n is close or far from E(X1). The speed
of convergence is also unnatural question we can be interested in.
The first answer concerning the rate of convergence is given by the central limit theorem

Theorem 5.2. Let (Xn)n≥1 be a sequence of i.i.d random variables such that the variance σ2 exists
(i.e.E

(
X2
n

)
< +∞) then

√
n
(X1 + . . .+Xn

n
− E(X1)

)
Loi−→
n→∞

N (0, σ2).

Roughly speaking this theorem tells us that X1+...+Xn

n goes at rate
√
n to E(X1). Nevertheless, this is

an asymptotic result and gives us nothing when n is fixed (in particular if n is small).
The aim of concentration inequalities is to give non asymptotic results allowing to quantify the error
X1+...+Xn

n −E(X1) for a fixed n. There exists several concentration inequalities, we will only present the
one needed for our purpose.
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5.2 Bennett’s inequality
Theorem 5.3 (Bennett’s inequality). Let X1, . . . , Xn be n independent random variables with finite
variance. Assume that for all index i, Xi ≤ b. Set

S =

n∑
i=1

(Xi − E(Xi))

and

v =

n∑
i=1

E(X2
i ).

For u ∈ R, set φ(u) = eu − u− 1 and for u ≥ −1, h(u) = (1 + u) log(1 + u)− u Then

1. For t > 0

ψS(t) := log
(
E
(
etS
))
≤ n log

(
1 +

v

nb2φ(bt)

)
≤ v

b2
φ(bt)

2. For x > 0,

P (S ≥ x) ≤ exp

(
− v

b2
h

(
bx

v

))
Proof

1.
Step 1: One can assume (without loss of generality) that b = 1 .
Step 2: Note first that u 7→ φ(u)

u2 is increasing. Hence since Xi ≤ 1 it is obvious that

φ(tXi) ≤ t2X2
i φ(t) = X2

i

(
et − t− 1

)
etXi ≤ tXi + 1 +X2

i

(
et − t− 1

)
Step 3: We computs ψS(t) and use step 2

ψS(t) =

n∑
i=1

log
(
E
[
et(Xi−E(Xi))

])
=

n∑
i=1

(
log
(
E
[
etXi

])
− tE(Xi)

)
≤

n∑
i=1

(
log
(
1 + tE(Xi) + E(X2

i )
(
et − t− 1

))
− tE(Xi)

)
using the concavity of u 7→ log(1 + u) we have

ψS(t) ≤ n
(

log

(
1 + t

∑n
i=1 E(Xi)

n
+
v

n

(
et − t− 1

))
− t
∑n
i=1 E(Xi)

n

)
≤ v

(
et − t− 1

)
.

Which proves the first point.

2. We use the Cramér’s method3

P (S ≥ x) ≤ e−tx+ψS(t) ≤ e−tx+v(e
t−t−1)

The right hand side is optimized for t = log
(
1 + x

v

)
, we then get

P (S ≥ x) ≤ e− log(1+ x
v )x+v( x

v−log(1+
x
v ))

≤ e−v[(1+
x
v ) log(1+ x

v )− x
v ].

3We recall that if h is a positive function then Markov inequality says that P (h(X) ≥ h(x)) ≤ E(h(X))
h(x)

, and consider
h(x) = etx
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Remark 5.1. One can see that

h(u) ≥ u2

2(1 + u/3)
.

which provides

P (S ≥ x) ≤ e−
x2

2(v+bx/3) .

Notation
V will denote Var(Y ) and as previously h is defined for x > −1 by

h(x) = (1 + x) ln(1 + x)− x.

5.3 Concentration inequalities for Su
N,Cl

Let us introduce the following random variables

U±i = YiY
u
i − (Su

Cl ± y)(Yi)
2 et J±i = (Su

Cl ± y)Yi − Y u
i

Set V +
U (resp. V −U , V +

J and V −J ) the moment of order 2 of the variables U+
i (resp. U−i , J+

i and J−i ).

Theorem 5.4. Soit b > 0 et y > 0. We assume that Yi and Y u
i belongs to [−b, b]. Then

P
(
Su
N,Cl ≥ Su

Cl + y
)
≤M1 + 2M2 + 2M3, (17)

P
(
Su
N,Cl ≤ Su

Cl − y
)
≤M4 + 2M2 + 2M5, (18)

where

M1 = exp

{
−
NV +

U

b2U
h

(
bU

V +
U

yV

2

)}
M2 = exp

{
−NV

b2
h

(
b

V

√
yV

2

)} M3 = exp

{
−
NV +

J b
2

b2U
h

(
bU

bV +
J

√
yV

2

)}
M4 = exp

{
−
NV −U
b2U

h

(
bU

V −U

yV

2

)}

M5 = exp

{
−
NV −J b

2

b2U
h

(
bU

bV −J

√
yV

2

)}

and bU = b2(1 + Su
Cl + y).

Proof
Since Su

Cl and S
u
N,Cl are invariant when one translate the variables Y and Y u we can assume that E(Y ) = 0.

1. U+
i et U−i are bounded by bU , J+

i and J−i by bU/b, moreover

E(U+
i ) = −yV E(J+

i ) = 0
E(U−i ) = yV E(J−i ) = 0

and
V ±U = Var(Y Y u) + (Su

Cl + y)2Var(Y 2)− 2(Su
Cl ± y)Cov(Y Y u, Y 2) + y2V 2

V ±J = ((Su
Cl ± y)2 + 1)V − 2(Su

Cl ± y)Cu.

2. Proof of (17). As

{a+ b ≥ c} ⊂ {a ≥ c/2} ∪ {b ≥ c/2} et {ab ≥ c} ⊂ {|a| ≥
√
c} ∪ {|b| ≥

√
c}

18



we have

P
(
Su
N,Cl ≥ Su

Cl + y
)

= P

(
1
N

∑N
i=1 YiY

u
i − Y NY

u

N

1
N

∑N
i=1(Yi)2 −

(
Y N
)2 ≥ Su

Cl + y

)

= P

(
1

N

N∑
i=1

(
U+
i − E(U+)

)
+ Y NJ

+

N ≥ yV

)

≤ P

(
N∑
i=1

(
U+
i − E(U+)

)
] ≥ N yV

2

)
+ P

(
N∑
i=1

Yi ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−Yi) ≥ N
√
yV

2

)
+ P

(
N∑
i=1

J+
i ≥ N

√
yV

2

)

+P

(
N∑
i=1

(−J+
i ) ≥ N

√
yV

2

)
.

Inequality (17) comes from the application of Bennett’s inequality (apply Bennett’s result five time).

3. Proof (18). Similarly we have

P
(
Su
N,Cl ≤ Su

Cl − y
)

= P

(
1

N

N∑
i=1

(
−U−i + E(U−)

)
+ (−Y N )J

−
N ≥ yV

)

≤ P

(
N∑
i=1

(
−U−i + E(U−)

)
≥ N yV

2

)
+ P

(
N∑
i=1

Yi ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−Yi) ≥ N
√
yV

2

)
+ P

(
N∑
i=1

J−i ≥ N
√
yV

2

)

+P

(
N∑
i=1

(−J−i ) ≥ N
√
yV

2

)
.

Inequality (18) comes from the application of Bennett’s inequality (apply Bennett’s result five time).

�

Exercise 5. Let Y = X1 +X2 where X1 and X2 are i.i.d. uniformly distributed on [0, 1]. Let u = {1},
and compute in that case Su

Cl and the bound M1, M2 and M3.

6 Case of Vectorial outputs

6.1 Motivation
We begin by considering two examples that enlighten the need for a proper definition of sensitivity indices
for multivariate outputs.

Example 6.1. Let us consider the following nonlinear model

Y = fa,b(X1, X2) :=

(
fa,b1 (X1, X2)

fa,b2 (X1, X2)

)
=

(
X1 +X1X2 +X2

aX1 + bX1X2 +X2

)
where X1 and X2 are assumed to be i.i.d. standard Gaussian random variables (r.v.s).
First, we compute the one-dimensional Sobol indices Sj(fa,bi ) of fa,bi with respect to Xj (i, j = 1, 2). We
get

(S1(fa,b1 ), S1(fa,b2 )) = (1/3, a2/(1 + a2 + b2))

(S2(fa,b1 ), S2(fa,b2 )) = (1/3, 1/(1 + a2 + b2)).
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So that, the ratios
S1(fa,bi )

S2(fa,bi )
, i = 1, 2

do not depend on b. Moreover, for |a| > 1, as this ratio is greater than or equal to 1, X1 seems to have
more influence on the output.
Now let us perform a sensitivity analysis on ‖Y ‖2. Straightforward calculus lead to

S1(‖Y ‖2) ≥ S2(‖Y ‖2) ⇐⇒ (a− 1)(a3 + a2 + 5a+ 5− 4b) ≥ 0.

For the quantity ‖Y ‖2, the region where X1 is the most influent variable depends on the value of b. This
region is not very intuitive.

Example 6.2. Here, we study the following two-dimensional model

Y = f(X1, X2) =

(
X1 cosX2

X1 sinX2

)
with (X1, X2) ∼ Unif([0; 10]) ⊗ Unif([0;π/2]).
We obviously get

S1(fa,b1 ) = S1(fa,b2 ) =
10

5π2 − 30
≈ 0.52

S2(fa,b1 ) = S2(fa,b2 ) =
3(π2 − 8)

4(π2 − 6)
≈ 0.36.

So that X1 seems to have more influence on the output than X2.
If we consider ‖Y ‖2, we straightforwardly get ‖Y ‖2 = X2

1 that does not depend on X2.

A last motivation to introduce new Sobol indices is related to the statistical problem of their estimation.
As the dimension increases the statistical estimation of the whole vector of scalar Sobol indices becomes
more and more expensive. Moreover, the interpretation of such a large vector is not easy. This strengthens
the fact that one needs to introduce Sobol indices of small dimension, which condense all the information
contained in a large collection of scalars.
In the next section we define new Sobol indices generalizing the scalar ones and containing all the
information.

6.2 Definition of the new indices
We denote by X := (X1, . . . , Xd) the random input, defined on some probability space (Ω,F ,P) and
valued in some measurable space E = E1 × · · · × Ed. We denote also by Y the output

Y = f(X1, . . . , Xd),

where f : E → Rk is an unknown measurable function (d and k are positive integers). We assume
that X1, . . . , Xd are independent and that Y is square integrable (i.e. E(‖Y ‖2) < ∞). We also assume,
without loss of generality, that the covariance matrix of Y is positive definite.
Let u be a subset of {1, . . . , d} and denote by ∼u its complement in {1, . . . , d}. Further, we set Xu =
(Xi, i ∈ u) and Eu =

∏
i∈uEi.

As the inputs X1, . . . , Xd are independent, f may be decomposed through the Hoeffding decomposition
see Theorem 2.2

f(X) = c+ fu(Xu) + f∼u(X∼u) + fu,∼u(Xu, X∼u), (19)

where c ∈ Rk, fu : Eu → Rk, f∼u : E∼u → Rk and fu,∼u : E → Rk are given by

c = E(Y ), fu = E(Y |Xu)− c, f∼u = E(Y |X∼u)− c, fu,∼u = Y − fu − f∼u − c.

Thanks to L2-orthogonality, computing the covariance matrix of both sides of (19) leads to

Σ = Cu + C∼u + Cu,∼u. (20)

Here Σ, Cu, C∼u and Cu,∼u are denoting respectively the covariance matrices of Y , fu(Xu), f∼u(X∼u)
and fu,∼u(Xu, X∼u).
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Remark 6.1. Notice that for scalar outputs (i.e. when k = 1), the covariance matrices are scalar (vari-
ances), so that (20) may be interpreted as the decomposition of the total variance of Y . The summands
traduce the fluctuation induced by the input factors Xu and X∼u, and the interactions between them. The
(univariate) Sobol index Su(f) = Var(E(Y |Xu))/Var(Y ) is then interpreted as the sensibility of Y with
respect to Xu. Due to non-commutativity of the matrix product, a direct generalization of this index is
not straightforward.

In the general case (k ≥ 2), for any square matrix M of size k, the equation (20) can be scalarized in the
following way

Tr(MΣ) = Tr(MCu) + Tr(MC∼u) + Tr(MCu,∼u).

This suggests to define as soon as Tr(MΣ) 6= 0 the M -sensitivity measure of Y with respect to Xu as

Su(M ; f) =
Tr(MCu)

Tr(MΣ)
.

Of course we can analogously define

S∼u(M ; f) =
Tr(MC∼u)

Tr(MΣ)
, Su,∼u(M ; f) =

Tr(MCu,∼u)

Tr(MΣ)
.

The following lemma is obvious.

Lemma 6.1.

1. The generalized sensitivity measures sum up to 1

Su(M ; f) + S∼u(M ; f) + Su,∼u(M ; f) = 1. (21)

2. 0 ≤ Su(M ; f) ≤ 1.

3. Left-composing f by a linear operator O of Rk changes the sensitivity measure accordingly to

Su(M ;Of) =
Tr(MOCuO

t)

Tr(MOΣOt)
=

Tr(OtMOCu)

Tr(OtMOΣ)
= Su(OtMO; f). (22)

4. For k = 1 and for any M 6= 0, we have Su(M ; f) = Su(f).

6.3 The important identity case

We now consider the special case M = Idk (the identity matrix of dimension k). We set Su(f) =
Su(Idk; f). The index Su(f) has the following obvious properties

Proposition 6.1.

1. Su(f) is invariant by left-composition of f by any isometry of Rk i.e.

for any square matrix O of size k s.t. OtO = Idk, Su(Of) = Su(f);

2. Su(f) is invariant by left-composition by any nonzero scaling of f i.e.

for any λ ∈ R, Su(λf) = Su(f);

Remark 6.2. The properties in this proposition are natural requirements for a sensitivity measure. In
the next section, we will show that these requirements can be fulfilled by Su(M ; f) only when M = λIdk
(λ ∈ R∗). Hence, the canonical choice among indices of the form Su(M ; f) is the sensitivity index Su(f).
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6.4 Identity is the only good choice

The following proposition can be seen as a kind of reciprocal of Proposition 6.1.

Proposition 6.2. Let M be a square matrix of size k such that

1. M does not depend neither on f nor u;

2. M has full rank;

3. Su(M ; f) is invariant by left-composition of f by any isometry of Rk.

Then Su(M ; ·) = Su(·).

Proof We can write M = MSym +MAntisym where M t
Sym = MSym and M t

Antisym = −MAntisym. Since,
for any symmetric matrix V , we have
Tr(MAntisymV ) = 0, we deduce that Su(M ; f) = Su(MSym; f) (Cu and Σ being symmetric matrices).
Thus we assume, without loss of generality, that M is symmetric.
We diagonalize M in an orthonormal basis: M = PDP t, where P tP = Idk and D diagonal. We have

Su(M ; f) =
Tr(PDP tCu)

Tr(PDP tΣ)
=

Tr(DP tCuP )

Tr(DP tΣP )
= Su(D;P tf).

By assumption 1. and 3., M can be assumed to be diagonal.
Now we want to show that M = λIdk for some λ ∈ R∗. Suppose, by contradiction, that M has two
different diagonal coefficients λ1 6= λ2. It is clearly sufficient to consider the case k = 2. Choose f = Id2
(hence, p = 2), and u = {1}. We have Σ = Id2 and Cu =

(
1 0
0 0

)
. Hence on one hand Su(M ; f) = λ1

λ1+λ2
.

On the other hand, let O be the isometry which exchanges the two vectors of the canonical basis of R2.
We have Su(M ;Of) = λ2

λ1+λ2
. Thus 3. is contradicted if λ1 6= λ2. The case λ = 0 is forbidden by 2.

Finally, it is easy to check that, for any λ ∈ R∗, Su(λIdk; ·) = Su(Idk; ·) = Su(·). �
We now give two toy examples to illustrate our definition.

Example 6.3. We consider as first example

Y = fa(X1, X2) =

(
aX1

X2

)
,

with X1 and X2 i.i.d. standard Gaussian random variables. We easily get

S1(fa) =
a2

a2 + 1
and S2(fa) =

1

a2 + 1
= 1− S1(f).

Example 6.4. We consider Example 6.1

Y = fa,b(X1, X2) =

(
X1 +X1X2 +X2

aX1 + bX1X2 +X2

)
.

We have

S1(fa,b) =
1 + a2

4 + a2 + b2
and S2(fa,b) =

2

4 + a2 + b2

and obviously

S1(fa,b) ≥ S2(fa,b) ⇐⇒ a2 ≥ 1.

This result has the natural interpretation that, as X1 is scaled by a, it has more influence if and only if
this scaling enlarges X1’s support i.e. |a| > 1.
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6.5 Estimation of Su(f)

6.5.1 The Pick and Freeze estimator

In practice, the covariance matrices Cu and Σ are not analytically available. So as in the scalar case
(k = 1),we will estimate Su(f) by using a Monte-Carlo Pick and Freeze method, which uses a finite
sample of evaluations of f .
For this purpose we set Y u = f(Xu, X

′
∼u) where X ′∼u is an independent copy of X∼u which is still

independent of Xu. Let N be an integer. We take N independent copies Y1, . . . , YN (resp. Y u
1 , . . . , Y

u
N )

of Y (resp. Y u). For l = 1, . . . , k, and i = 1, . . . , N , we also denote by Yi,l (resp. Y u
i,l) the l

th component
of Yi (resp. Y u

i ). We then define the following estimator of Su(f)

Su,N =

∑k
l=1

(
1
N

∑N
i=1 Yi,lY

u
i,l −

(
1
N

∑N
i=1

Yi,l+Y
u
i,l

2

)2)
∑k
l=1

(
1
N

∑N
i=1

Y 2
i,l+(Y u

i,l)
2

2 −
(

1
N

∑N
i=1

Yi,l+Y u
i,l

2

)2) . (23)

Remark 6.3. Note that this estimator can be written

Su,N =
Tr (Cu,N )

Tr (ΣN )
(24)

where Cu,N and ΣN are the empirical estimators of Cu = Cov(Y, Y u) and Σ = Var(Y ) defined by

Cu,N =
1

N

N∑
i=1

Y u
i Y

t
i −

(
1

N

N∑
i=1

Yi + Y u
i

2

)(
1

N

N∑
i=1

Yi + Y u
i

2

)t

and

ΣN =
1

N

N∑
i=1

YiY
t
i + Y u

i (Y u
i )t

2
−

(
1

N

N∑
i=1

Yi + Y u
i

2

)(
1

N

N∑
i=1

Yi + Y u
i

2

)t
.

6.5.2 Asymptotic properties

A straightforward application of the Strong Law of Large Numbers leads to

Proposition 6.3 (Consistency). Su,N converges almost surely to Su(f) when N → +∞.

We now study to the asymptotic normality of (Su,N )N .

Proposition 6.4 (Asymptotic normality). Assume E(Y 4
l ) <∞ for all l = 1, . . . , k. For l = 1, . . . , k, we

set
Ul = (Y1,l − E(Yl))(Y

u
1,l − E(Yl)), Vl = (Y1,l − E(Yl))

2 + (Y u
1,l − E(Yl))

2.

Then √
N (Su,N − Su(f))

L→
N→∞

N1

(
0, σ2

)
(25)

where

σ2 = a2
∑

l,l′∈{1,...,k}

Cov(Ul, Ul′) + b2
∑

l,l′∈{1,...,k}

Cov(Vl, Vl′)

+ 2ab
∑

l,l′∈{1,...,k}

Cov(Ul, Vl′), (26)

with

a =
1∑k

l=1 Var(Yl)
, b = −a

2
Su(f).
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6.6 Numerical illustrations

In this section, we provide numerical simulations for the sensitivity indices Su(f) defined in Section ??.
We consider again Example 6.4 with k = p = 2, a = 2 and b = 3 which leads to the following model

Y = f(X1, X2) =

(
X1 +X2 +X1X2

2X1 + 3X1X2 +X2

)
.

In the “Gaussian case” (respectively “Uniform case”), we take X1 and X2 independent standard Gaussian
random variables (resp. independent uniform random variables on [0, 1]). In these two cases, a simple
analytic calculation yields the true values of the sensitivity indices S1(f) and S2(f).

7 A first approach for indices based on the whole distribution

We consider, here a numerical code Y seen as a function of the vector of the distributed input (Xr)r=1,··· ,d
(d ∈ N∗),

Y = f(X1, . . . , Xd), (27)

where f is a regular unknown numerical function on the state space E1 × E2 × . . . × Ed on which the
distributed variables (X1, . . . , Xd) are living. The random inputs are assumed to be independent. We
recall that thanks to the so-called Hoeffding decomposition, f is expanded as an L2-sum of uncorrelated
functions involving only a part of the random inputs. For any subset v of Id = {1, . . . , d}, this leads to
an index called the Sobol index that measures the amount of randomness of Y carried in the subset of
input variables (Xi)i∈v. Since nothing has been assumed on the nature of the inputs, one can consider
the vector (Xi)i∈v as a single input. Thus without loss of generality, let us consider the case where v
reduces to a singleton. The numerator Hv of the Sobol index related to the input Xv is

Hv = Var (E [Y |Xv]) = Var(Y )− E
[
(Y − E [Y |Xv])

2
]

(28)

while the denominator of the index is nothing more than the variance of Y . In order to estimate Hv we
saw the the clever trick of the Pick and Freeze method. More precisely, let Xv be the random vector
such that Xv

v = Xv and Xv
i = X ′i if i 6= v where X ′i is an independent copy of Xi. Then, setting

Y v := f(Xv) (29)

an obvious computation leads to the nice relationship

Var(E(Y |Xv)) = Cov (Y, Y v) . (30)

The last equality leads to a natural Monte Carlo estimator (Pick and Freeze estimator)

T vN,Cl =
1

N

N∑
j=1

YjY
v
j −

 1

2N

N∑
j=1

(Yj + Y vj )

2

(31)

where for j = 1, · · · , N , Yj (resp. Y vj ) are independent copies of Y (resp. Y v). As pointed out before,
Sobol indices are based on L2 decomposition. As a matter of fact, Sobol indices are well adapted to
measure the contribution of an input on the deviation around the mean of Y .
We introduce a new sensitivity index that is based on the conditional distribution of the output and
requires only 3×N .
The code will be denoted by Z = f(X1, . . . , Xd) ∈ Rk. Let F be the distribution function of Z. For any
t = (t1, . . . , tk) ∈ Rk,

F (t) = P (Z 6 t) = E
[
1 {Z6t}

]
and F v(t) the conditional distribution function of Z conditionally on Xv:

F v(t) = P (Z 6 t|Xv, ) = E
[
1 {Z6t}|Xv

]
.
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Notice that {Z 6 t} means that {Z1 6 t1, . . . , Zk 6 tk}. Obviously, E [F v(t)] = F (t). Now, we apply the
previous framework with Y (t) = 1 {Z6t} and p = 2. Hence, for t ∈ Rk fixed, we have a consistent and
asymptotically normal estimation procedure for the estimation of

E
[
(F (t)− F v(t))2

]
.

We define a Cramér Von Mises type distance of order 2 between L (Z) and L (Z|Xv) by

Dv
2,CVM :=

∫
Rk

E
[
(F (t)− F v(t))2

]
dF (t). (32)

The aim of the rest of the section is dedicated to the estimation ofDv
2,CVM and the study of the asymptotic

properties of the estimator. Notice that

Dv
2,CVM = E

[
E
[
(F (Z)− F v(Z))

2
]]
. (33)

Let us note that these indices are naturally adapted to multivariate outputs.

Remark 7.1. Unlike the procedure for p = 2, we did not normalize the generalized Sobol index of Y (t).
The purpose, that becomes clear in this section, is to avoid numerical explosion during the estimation
procedure. Indeed, the normalizing term would be F (t)(1− F (t)), like in the Anderson-Darling statistic,
canceling for small and large values of t. Nevertheless, in view of the following proposition, one can
consider 4Dv

2,CVM instead of Dv
2,CVM in order to have an index bounded by 1 as for the Sobol index. The

asymptotic properties will not be affected by this renormalizing factor, so we still consider Dv
2,CVM .

Proposition 7.1. One has the following properties.

1. 0 6 Dv
2,CVM 6

1
4 . Moreover, if k = 1 and F is continuous, we have 0 6 Dv

2,CVM 6
1
6 .

2. Dv
2,CVM is invariant by translation, by left-composition by any nonzero scaling of Y .

We then proceed to a double Monte-Carlo scheme for the estimation ofDv
2,CVM and consider the following

design of experiment consisting in:

1. two N -samples of Z: (Zv,1j , Zv,2j ), 1 6 j 6 N ;

2. a third N -sample of Z independent of (Zv,1j , Zv,2j )16j6N : Wk, 1 6 k 6 N .

The empirical estimator of Dv
2,CVM is then given by

D̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)2
 . (34)

The consistency of D̂v
2,CVM follows directly from the following lemma:

Lemma 7.1. Let G and H be two L1−measurable functions. Let (Uj)j∈IN and (Vk)k∈IN be two inde-
pendent samples of iid rv such that E[G(U1, V1)] = 0 and E[H(U1, U2, V1)] = 0. We define SN and TN
by

SN =
1

N2

N∑
j,k=1

G(Uj , Vk) and TN =
1

N3

N∑
i,j,k=1

H(Ui, Uj , Vk).

Then SN and TN converge a.s. to 0 as N goes to infinity.

Proof. (i) If we prove that E[S4
N ] = O

(
1
N2

)
, we then apply Borel-Cantelli lemma to deduce the almost

sure convergence of SN to 0. Clearly,

E[S4
N ] =

1

N8

∑
E[G(Ui1 , Vj1)G(Ui2 , Vj2)G(Ui3 , Vj3)G(Ui4 , Vj4)]
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where the sum is taken over all the indices i1, i2, i3, i4, j1, j2, j3, j4 from 1 to N . The only scenarii that
could lead to terms in O

(
1
N

)
or even O (1) appear when we sum over indices all different except 2 i’s or

2 j’s or over indices all different. Nevertheless, in those cases, at least one term of the form E[G(Ui, Vj)]
appears. Since the function G is centered, those scenarii are then discarded.

(ii) Analogously, it suffices to show that E[T 4
N ] = O

(
1
N2

)
. The only scenarii that could lead to terms

in O
(

1
N

)
or even O (1) appear when we sum over indices all different except 2 i’s, 2 j’s or 2 k’s or over

indices all different. Nevertheless, in those cases, at least one term of the form E[H(Ui, Uj , Vk)] appears.
Since the function H is centered, those scenarii are then discarded.

Corollary 7.1. D̂v
2,CVM is strongly consistent as N goes to infinity.

Proof. The proof is based on Lemma 7.1. First, we define Zj =
(
Zv,1j , Zv,2j

)
, G(Zj ,Wk) = 1 {Zv,1

j 6Wk}1 {Zv,2
j 6Wk},

F (Zj ,Wk) = 1
2

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)
and H(Zi, Zj ,Wk) = F (Zi,Wk)F (Zj ,Wk). Second we pro-

ceed to the following decomposition

D̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk

}
)2


=

1

N2

N∑
j,k=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −
1

4N3

N∑
i,j,k=1

(
1 {Zv,1

i 6Wk} + 1 {Zv,2
i 6Wk}

)(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)

=
1

N2

N∑
j,k=1

G(Zj ,Wk)− 1

N3

N∑
i,j,k=1

H(Zi, Zj ,Wk)

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+
1

N2

N∑
j,k=1

E[G(Zj ,Wk)]− 1

N3

N∑
i,j,k=1

E[H(Zi, Zj ,Wk)]

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+ E[G(Z1,W1)]−
(

1− 1

N

)
E[H(Z1, Z2,W1)]− 1

N
E[H(Z1, Z1,W1)].

The two first sums converges almost surely to 0 by Lemma 7.1. The remaining term goes to E[G(Z1,W1)]−
E[H(Z1, Z2,W1)] as N goes to infinity.

It remains to show that Dv
2,CVM = E[G(Z1,W1)]− E[H(Z1, Z2,W1)]. On the one hand,

Dv
2,CVM =

∫
R
E[(F (t)− F v(t))2]dF (t) = E[H2

v (W )]

= E[Cov(1 {Zv,1
1 6W1}, 1 {Zv,2

1 6W1})]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2].

26



On the other hand,

E[G(Z1,W1)]− E[H(Z1, Z2,W1)]

= E[1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]−
1

4
E[
(

1 {Zv,1
1 6W1} + 1 {Zv,2

1 6W1}

)(
1 {Zv,1

2 6W1} + 1 {Zv,2
2 6W1}

)
]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]]E[E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]E[1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]

2

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2].

We now turn to the asymptotic normality of D̂v
2,CVM . We follow van der Vaart [1] to establish the

following proposition (more precisely Theorems 20.8 and 20.9, Lemma 20.10 and Example 20.11).

Theorem 7.1. The sequence of estimators D̂v
2,CVM is asymptotically Gaussian in estimating Dv

2,CVM

that is
√
N
(
D̂v

2,CVM −Dv
2,CVM

)
is weakly convergent to a Gaussian centered variable with variance ξ2

given by (35).

Proof. We define

GiN (t) =
1

N

N∑
j=1

1 {Zv,i
j 6s}, i = 1, 2,

G1,2
N (t, t) =

1

N

N∑
j=1

1 {Zv,1
j 6t}1 {Zv,2

j 6t},

FN (t) =
1

N

N∑
k=1

1 {Wk6t}.

and rewrite D̂v
2,CVM as a regular function depending on the four empirical processes defined behind:

D̂v
2,CVM =

∫ [
G1,2
N −

(
G1
N + G2

N

2

)2
]
dFN .

Since these processes are cad-lag functions of bounded variation, we introduce the maps ψ1, φ2 :
BV1[−∞,+∞]2 7→ R and Ψ : BV1[−∞,+∞]4 7→ R by

ψi(F1, F2) =

∫
(F1)idF2 and Ψ(F1, F2, F3, F4) = ψ1(F1, F4)− ψ2

(
F2 + F3

2
, F4

)
,

where set BVM [a, b] is the set of cÃ d-lÃ g functions of variation bounded by M .

By Donsker’s theorem,
√
N
(
G1
N − F,G2

N − F,G
1,2
N − G̃,FN − F

)
L→

N→∞
G

where G(t, s) = P
(
Zv,1 6 t, Zv,2 6 s

)
, G̃(t) = G(t, t) and G is a centered Gaussian process of dimension

4 with covariance function defined for (t, s) ∈ R2 by

Π(t, s) = E
(
XtX

T
s

)
− E (Xt)E (Xs)

T
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and Xt :=
(
1 {Zv,16t}, 1 {Zv,26t}, 1 {Zv,16t}1 {Zv,26t}, 1 {W6t}

)T .
Using the chain rule 20.9 and Lemma 20.10 in [1], the map Ψ is Hadamard-differentiable from the domain
BV1[−∞,+∞]4 into R. The derivative is given by

(h1, h2, h3, h4) 7→ ψ′(F3,F4)
(h3, h4)− ψ′

(F1+F2
2 ,F4)

(
h1 + h2

2
, h4

)
where the derivative of ψ (resp. φ) are given by Lemma 20.10:

(h1, h2) 7→ h2ϕ ◦ F1|+∞−∞ −
∫
h2−dϕ ◦ F1 +

∫
ϕ′(F1)h1dF2

taking ϕ ≡ Id (resp. ϕ(x) = x2) and h− is the left-continuous version of a cÃ d-lÃ g function h.
Since

D̂v
2,CVM = Ψ

(
G1
N ,G2

N ,G
1,2
N ,FN

)
,

we apply the functional delta method 20.8 in [1] to get limit distribution of
√
N
(
D̂v

2,CVM −Dv
2,CVM

)
converges weakly to the following limit distribution∫

h4−d(F 2 − G̃) +

∫
h3dF −

∫
F (h1 + h2)dF.

Since the map Ψ is defined and continuous on the whole space BV1[−∞,+∞]4, the delta method in its
stronger form 20.8 in [1] implies that the limit variable is the limit in distribution of the sequence

Ψ′
(F,F,G̃,F )

(√
N
(
G1
N − F,G2

N − F,G
1,2
N − G̃,FN − F

))
=
√
N

[∫
(FN − F )− d

(
F 2 − G̃)

)
+

∫ (
G1,2
N − G̃− F

(
G1
N + G2

N − 2F
))
dF

]
.

We define

U :=

∫
1 {W<t}d

(
F 2(t)−G(t, t)

)
= G(W+,W+)− F (W+)2,

V :=

∫ [
1 {Zv,16t}1 {Zv,26t} −

(
1 {Zv,16t} + 1 {Zv,26t}

)
F (t)

]
dF (t) =

1

2

(
F (Zv,1)2 + F (Zv,2)2

)
− F (Zv,1 ∨ Zv,2).

Obviously,

E(U) =

∫ (
G(t+, t+)− F (t+)2

)
dF (t),

E(U2) =

∫ (
G(t+, t+)− F (t+)2

)2
dF (t),

E(V ) =

∫ (
F (t)2 −G(t, t)

)
dF (t),

E(V 2) =
1

2

∫
F (t)4dF (t) +

∫∫ [
F (t ∨ s)

(
F (t ∨ s)− F (t)2 − F (s)2

)
+

1

2
F (t)2F (s)2

]
dG(t, s).

By independence, the limiting variance ξ2 is

ξ2 = VarU + VarV. (35)

8 Practical
Exercise 6 (Ishigami function). The Ishigami model is given by:

Y = G(X1, X2, X3) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1 (36)

where (Xj)j=1,2,3 are i.i.d. uniform random variables in [−π;π].
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1. Show that
S1 = 0.3139, S2 = 0.4424, S3 = 0.

2. Make a program, that gives the Pick and Freeze estimator of these indices (see Equation (10) and
Equation (31)).

3. Illustrate Theorem 4.5 in dimension 1 with a program.

Exercise 7 (Sobol G-function). Assume that X1, . . . , Xd are i.i.d random variables uniformly distributed
on [0, 1]. Now take d real numbers a1, . . . , ad and define the Sobol G−function by

Y = gsobol(X1, . . . , Xd) =

d∏
k=1

gk(Xk) (37)

with gk(Xk) = |4Xk−2|+ak
1+ak

.

1. Compute Si for i ∈ {1, . . . , d}.

2. Make a program, that gives the Pick and Freeze estimator of these indices (see Equation (10) and
Equation (31)).

3. Illustrate Theorem 4.5 in dimension 1 with a program.

Exercise 8. Consider X1 and X2 two independent standart Gaussian variable and

Z = f(X1, X2) =
(
2X1 + 3X1X2 +X2

)
.

Make a program that computes D̂v
2,CVM defined in Equation 34

9 Answer to some exercices
Answer to Exercice 1. We will first compute de Variance of Y . For doing so, we start by computing
its mean. By linearity and independence of the inputs one has

E(Y ) = E (sinX1) + 7E
(
sin2X2

)
+ 0.1E

(
X4

3

)
E (sinX1)

=
1

2π

∫ π

−π
sin(t)dt+

7

2π

∫ π

−π
sin2(t)dt+

0.1

4π2

∫ π

−π
t4dt

∫ π

−π
sin(t)dt.

Now since sin(t) = sin(−t) we have
∫ π
−π sin(t)dt = 0 and using the fact that sin2(t) = 1

2 (1− cos(2t)) it is
easy to see that 1

2π

∫ π
−π sin2(t)dt = 1

2 . In the same way using that sin4(t) = 1
8 (3− 4 cos(2t) + 2 cos(4t))

we see that 1
2π

∫ π
−π sin4(t)dt = 3

8 . Hence

E(Y ) =
7

2
.

Now, let us compute E(Y 2)

E(Y 2) = E
(
sin2X1

)
+ 49E

(
sin4X2

)
+ 0.01E

(
X8

3

)
E
(
sinX2

1

)
+ 14E (sinX1)E

(
sin2X2

)
+ 1.4E

(
sin2X2

)
E
(
X4

3

)
E (sinX1) + 0.2E

(
X4

3

)
E
(
sin2X1

)
= E

(
sin2X1

)
+ 49E

(
sin4X2

)
+ 0.01E

(
X8

3

)
E
(
sinX2

1

)
+ 0.2E

(
X4

3

)
E
(
sin2X1

)
=

1

2
+

147

8
+

π8

1800
+
π4

50
.

Hence

Var(Y ) =
1

2
+

147

8
+

π8

1800
+
π4

50
− 49

4
' 26.09

Now

E (Y |X1) =

(
1 +

π4

50

)
sin(X1) +

7

2
.
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We can now compute S1

S1 =
Var [E (Y |X1)]

Var [E (Y )]
=

Var
[(

1 + π4

50

)
sin(X1)

]
Var [E (Y )]

=

1
2 [
(

1 + π4

50

)2
1
2 + 147

8 + π8

1800 + π4

50 −
49
4

' 0.3139.

E (Y |X2) = 7 sin2(X2).

We can now compute S2

S2 =
Var [E (Y |X2)]

Var [E (Y )]
=

Var
[
7 sin2(X2).

]
Var [E (Y )]

=
49
8

1
2 + 147

8 + π8

1800 + π4

50 −
49
4

' 0.4424.

In the same spirit E (Y |X3) = 0). Hence S3 = 0.

Answer to Exercice 2. For any k we have4 E (|4Xk − 2|) = 1. Hence E (gk(Xk)) = 1+ak
1+ak

= 1. We
deduce easily that by independence that

E(Y ) = 1.

Let us compute5 E
(
g2k(Xk)

)
=

a2k+2ak+E(|4Xk−2|2)
(1+ak)2

=
a2k+2ak+

16
3 −4

(1+ak)2
=

(1+ak)
2+ 1

3

(1+ak)2
, one can deduce that

Var(Y 2) =

d∏
k=1

3(1 + ak)2 + 1

3(1 + ak)2
− 1.

Now since for any index l, E (gl(Xl)) = 1 we have

E(Y |Xk) = gk(Xk).

Hence

Var [E(Y |Xk)] = E
(
gk(Xk)2

)
− 1 =

3(1 + ak)2 + 1

3(1 + ak)2
− 1 =

1

3(1 + ak)2
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4Compute
∫ 1
0 |4t− 2|dt

5Recall that E (|4Xk − 2|) = 1, and compute
∫ 1
0 (4t2 − 2)2dt
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