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1 Gaussian Vectors

1.1 Gaussian Random variables
Definition 1.1. Let m ∈ R and σ2 ∈ R+, we say that a random variable X is a gaussian random variable
with parameter m and σ2 is for any borelian set A ∈ B(R) we have

P (X ∈ A) =

∫
A

e−
(x−m)2

2σ2
dx√
2πσ2

.

The function f(x) = e
− (x−m)2

2σ2√
2πσ2

is the density of the law of X with respect to the Lebesgue measure on R.
We will the note X ∼ N

(
m,σ2

)
.

If m = 0 and σ2 = 1 X is called a standard Gaussian random variable. We will use the following notation

φ(x) =
e−

x2

2

√
2π

,

Φ(x) =

∫ x

−∞
φ(t)dt = P (X ≤ t) .

Φ is the cumulative distribution function of the standard gaussian random variable N (0, 1)

Exercise 1. Let X ∼ N
(
m,σ2

)
.

1. Show that E (X) = m and Var (X) = σ2.

2. Let a and b be two real numbers show that aX + b ∼ N
(
am+ b, a2σ2

)
.

3. Compute for any k ∈ N when m = 0 and σ2 = 1, E
(
Xk
)
.

Lemma 1.1. If X ∼ N
(
m,σ2

)
then

1. his cumulative function at point t ∈ R is P (X ≤ t) = Φ( t−mσ ).

2. his characteristic function is ϕ(t) = E
[
eitX

]
= eitm−σ

2t2/2.

3. his Laplace transform is L(t) = E
[
etX
]

= etm+σ2t2/2

Proof. 1. P (X ≤ t) = P
(
X−m
σ ≤ t−m

σ

)
= Φ( t−mσ ).

2. Let us assume first that m = 0 and σ2 and let Y be a standard Gaussian random variable then

h(t) := E
[
eitY

]
=

∫
R
eitxe−x

2/2 dx√
2π
.

Now, one can apply the theorem of derive under the integral and get

h′(t) =

∫
R
ixeitxe−x

2/2 dx√
2π
.

We now integrate by part and get that (u′(x) = xe−x
2/2 and v(x) = ieits) and get that h′(t) =

−th(t) and hence since h(0)=1 we have that h(t) = e−t
2/2. Now,

ϕ(t) = E
[
eitX

]
= E

[
eit(σY+m)

]
= eitmh(σt),

the result follows.

3. Let us assume first that m = 0 and σ2 and let Y be a standard Gaussian random variable then

g(t) := E
[
etY
]

=

∫
R
etxe−x

2/2 dx√
2π

= et
2/2

∫
R
e−(x−t)

2/2 dx√
2π

= et
2/2.

Now

L(t) = E
[
etX
]

= E
[
et(σY+m)

]
= etmg(σt),

the result follows.
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Exercise 2. 1. Show that if X and Y are independent and if X ∼ N
(
m1, σ

2
1

)
and X ∼ N

(
m2, σ

2
2

)
then X + Y ∼ N

(
m1 +m2, σ

2
1 + σ2

2

)
2. Let (X1, . . . , Xn) be i.i.d. standard gaussian random variables what is the law of X1+...+Xn√

n
?

1.2 Gaussian Vectors
Definition 1.2. A random vector X := (X1, . . . , Xd) is a Gaussian vector of dimension d if for any
α ∈ Rd the real random variable

< X,α >=

d∑
i=1

αiXi

is a real Gaussian variable. The expectation of X is the vector E[X] := (E[]X1, . . . ,E[Xd]) and his
Covariance matrix is a d× d matrix Γ

Γ = Cov (X) := (Cov (Xi, Xj))1≤i,j≤d .

Lemma 1.2. If X1, . . . , Xd are i.i.d standard Gaussian random variables then the vector X = (X1, . . . , Xd)
is a Gaussian random vector with E[X] = 0 and Γ = Id where Id is the identity matrix of size d.

Proof. Let α ∈ Rd and let us consider the characteristic function of Y =< x,α >

φY (t) = E
[
eitY

]
= E

[
eit

∑d
j=1 αjXj

]
=

d∏
j=1

E
[
eitαjXj

]
=

d∏
j=1

e−α
2
j t

2/2 = e−
∑d
j=1 α

2
j t

2/2.

Hence Y ∼ N
(

0,
∑d
j=1 α

2
j

)
.

Exercise 3. 1. Show that X1, . . . , Xd are independant standard gaussian random variable then X =
(X1, . . . , Xd) ∼ Nd (E[X],Γ) where Γ is a diagonal matrix.

2. Let X ∼ N (0, 1) and ε independent of X such that P (ε = 1) = P (ε = 1) = 1/2. Show that both
εX ∼ N (0, 1) but that the vector X, εX is not Gaussian. In particular a vector X whose coordinate
are Gaussian is not necessary a Gaussian vector.

Proposition 1.1. The law of a gaussian vector X ∼ Nd (m,Γ) in Rd is characterized by the mean vector
m = E[X] and is covariance matrix Γ. More precisely, for any α ∈ Rd

ΦX(α) = E
[
ei<α,X>

]
= exp

(
i < α,m > −< α,Γα >

2

)
Proof. Just recall that by definition < α,X > is a gaussian random variable with mean < α,m > and
with variance

σ2 := Var (< α,X >)

σ2 = Var

 d∑
j=1

αjXj

 =
∑
j,k

αjαkΓj,k =< α,Γα > .

Proposition 1.2. 1. Let X ∼ Nd (m,Γ), A be a linear mapping fron Rd to Rm and b be a fixed vector
in Rm. Then Y = AX+b is the gaussian vector Y ∼ Nm (Am+ b, AΓAt), where At is the transpose
of the matrix A.

2. If X ∼ Nm (0, Id), m ∈ Rd and Γ a symmetric matrix with non negative eigenvalues then m +√
ΓX ∼ Nm (m,Γ).

3. Let m ∈ Rd and Γ a symmetric matrix with positive eigenvalues then the Gaussian vector X ∼
Nm (m,Γ) admits a density with respect to the Lebesgue’s measure on Rd defined by

exp

(
−1

2
< x−m,Γ−1(x−m) >

)
dx

(2π)d/2
√
Det(Γ)

.
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1.3 Practical and Exercices
Exercise 4. 1. Let Z1, . . . , Zn be i.i.d N (0, 1) random variables. we set Zn = 1

n

∑n
k=1 Zk. Show that

G =
(
Z1 − Zn, Z2 − Zn, . . . , Zn − Zn, Zn

)
is a Gaussian vector, compute its covariance matrix Γn.

2. Show that Un =
(
Z1 − Zn, Z2 − Zn, . . . , Zn − Zn

)
and Zn are independant.

3. Let Σn be the covariance matrix of the Gaussian vector Un. Determine the eigenvalues of Σn. What
is the law of ‖Un‖.

Exercise 5. Let (X,Y ) be a random vector uniformly distributed on unit ball

D =
{

(x, y);x2 + y2 < 1
}
.

Using polar coordinate we can write

X = R cos(Θ), Y = R sin(Θ).

Set

R′ =
√
−4 log(R)

U =R′ cos(Θ)

V =R′ sin(Θ).

1. Show that U and V are two independent Standard gaussian random variables (U ∼ N (0, 1) and
U ∼ N (0, 1)).

2. Write a program (in matlab or R or...) that simulate random variables uniformly distributed on
D. We assume here that our computer can simulate independent and uniformly distributed random
variable on the interval [0, 1].

3. Write a program that simulate N independent gaussian vector Nd(0, Id).

Exercise 6. Let U1 and U2 be a two independent uniformly distributed on [0, 1]. Set

X1 =
√
−2 log(U1) cos (2πU2) ,

X1 =
√
−2 log(U1) sin (2πU2) .

1. Show that X1 and X2 are two independent Standard gaussian random variables (U ∼ N (0, 1) and
U ∼ N (0, 1)).

2. Write a program that simulate N independent gaussian vector Nd(0, Id).

Exercise 7. Let Σ be a symmetric positive matrix of size d and µ be a vector in Rd. The aim of this
exercice is to perform the simulation of a gaussian Nd(µ,Σ).

1. Case d = 1, show that if X ∼ N (0, 1) then ΣX + µ ∼ Nd(µ,Σ). Write the corresponding code to
simulate a Nd(µ,Σ) random variable.

2. Case d = 2, let (Y1, Y2) ∼ N2 ((µ1, µ2),Σ) with

Σ =

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
where σ2

i = Var(Yi) and ρ = Cov(Y1,Y2)
σ1σ2

.

(a) Show that if

A =

(
σ1 0

σ2ρ σ2
√

1− ρ2

)
then AAt = Σ

(b) Let X ∼ N2 (0, I2) what is the law of AX + (µ1, µ2)?
(c) Write the corresponding code to simulate a N2(µ,Σ) random variable.

3. General case. Use the Cholesky to decompose Σ as AAt.
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