## Ejercicios y simulación I

Ejercicio 1. Sean  $\mathcal{X} = (X_1, X_2, X_3)$  variables aleatorias independientes con distribución  $\mathcal{N}(0, 1)$  y cuatro numéros reales  $a_1, a_2, a_3, a_4$ . Definimos la funcion G

$$G(X_1, X_2, X_3) = a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_1 X_2.$$

- 1. Parte teórica
  - (a) Caso  $a_3 = a_4 = 0$ . Hacer la demostración que

$$\mathbb{E}(G(\mathcal{X})|X_1) = a_1 X_1,$$

$$\mathbb{E}(G(\mathcal{X})|X_2) = a_2 X_2$$

$$\mathbb{E}(G(\mathcal{X})|X_3) = 0,$$

$$\mathbb{E}(G(\mathcal{X})|X_1, X_2) = a_1 X_1 + a_2 X_2,$$

$$\mathbb{E}(G(\mathcal{X})|X_1, X_3) = a_1 X_1$$

$$\mathbb{E}(G(\mathcal{X})|X_2, X_3) = a_2 X_2$$

 $y \ calcular \ S^1, \ S^2, \ S^3, \ S^{1,2}, \ S^{1,3}, \ S^{2,3}, \ S^{1,2,3}$ 

(b) Demostrar que en el caso general

$$\begin{split} S^1 &= \frac{a_1^2}{a_1^2 + a_2^2 + a_3^2 + a_4^2}, \\ S^2 &= \frac{a_2^2}{a_1^2 + a_2^2 + a_3^2 + a_4^2}, \\ S^3 &= \frac{a_3^2}{a_1^2 + a_2^2 + a_3^2 + a_4^2}, \\ S^{1,2} &= \frac{a_1^2 + a_2^2 + a_4^2}{a_1^2 + a_2^2 + a_3^2 + a_4^2}. \end{split}$$

- 2. Parte práctica:
  - (a) Utilizando el metodo Pick-freeze construir un programa (python) que permite obtener un estimador de los diferentes índices.
  - (b) Comparar numéricamente los dos estimadores construidos con el métode pick freeze
  - (c) Ilustrar la convergencia débil de los estimadores y calculra una estimación de la varianza límite para los dos estimadores.

Ejercicio 2 (La funcion de Ishigami ). El modelo de Ishigami es definido por

$$Y = G(X_1, X_2, X_3) = \sin X_1 + 7\sin^2 X_2 + 0.1X_3^4 \sin X_1 \tag{1}$$

donde  $(X_j)_{j=1,2,3}$  son variables aleatorias independientes de ley uniforme sobre  $[-\pi;\pi]$ .

1. Demostrar que

$$S^1 = 0.3139, \quad S^2 = 0.4424, \quad S^3 = 0.$$





- 2. Supongamos que no sabemos calcular el valor teórica de  $S^{1,2}$  y de  $S^3$ . Pero queremos saber si  $S^{1,2} > S^3$ .
  - (a) Utilizando el método Pick-freeze construir un programa (python) que permite obtener los estimadores  $(S_n^{1,2}, S_n^3)$  de  $(S^{1,2}, S^3)$ .
  - (b) Utilizando el teorema del método delta sabemos que

$$\sqrt{n}\left(\begin{pmatrix} S_n^{1,2} \\ S_n^3 \end{pmatrix} - \begin{pmatrix} S^{1,2} \\ S^3 \end{pmatrix}\right) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,\Gamma).$$

 $\dot{\varepsilon}$  Cual es la matriz de covarianza  $\Gamma$ ?

- (c) Construir un programa que da un estimadore de  $\Gamma$
- (d) Construir una prueba de hipótesis estadística con nivel de significancia  $\alpha = 5/100$  de  $H_0$ :  $S^{1,2} \leq S^3$  contra  $H_1: S^{1,2} > S^3$ .

Ejercicio 3 (Sobol G-funcion (\*\*)). Sea  $X_1, \ldots, X_d$  variables aleatorias independiente con distribución uniforme sobre [0,1]. Considera los números reales  $a_1,\ldots,a_d$ , la función G de Sobol está definida por

$$Y = g_{sobol}(X_1, \dots, X_d) = \prod_{k=1}^{d} g_k(X_k)$$
 (2)

 $con\ g_k(X_k) = rac{|4X_k-2|+a_k}{1+a_k}.$   $Calcula\ y\ estima\ S^i\ para\ i\in\{1,\ldots,d\}.\ Ilustrar\ la\ convergencia\ débil\ de\ los\ estimadores\ y\ calculra\ una$ estimación de la varianza límite para los dos estimadores.

**Ejercicio 4.** Mostrar que el estimador  $S_N^u$  de un índice de Sobol es invariante si reemplazamos los Y por Y - c donde c es una constante.

Ejercicio 5. La fórmula de Bréguet permite de calcular el consumo de combustible de un avión en función de differentes variables:

$$M_{fuel} = M \left( e^{\frac{SFC \cdot g \cdot Ra}{V \cdot F} \, 10^{-3}} - 1 \right) \,.$$
 (3)

Variables fijas

- $M:=peso\ del\ avi\'on$
- g : la constante de gravitación universal,
- Ra : Range = distancia recorrida

Entradas incertas

- V : Cruise speed = velocidad del avión
- ullet F : Lift-to-drag ratio = coeficiente aerodinámico
- SFC: Specific Fuel Consumption = calidad del motor

Elegimos las distribuciones de V, F y SFC con la ayuda de los ingenieros

| variable | distribucion                                                | parámetro                           |
|----------|-------------------------------------------------------------|-------------------------------------|
| V        | Uniforme                                                    | $(V_{min}, V_{max})$                |
| F        | Beta                                                        | $(7, 2, F_{min}, F_{max})$          |
| SFC      | $\theta_2 e^{-\theta_2(u-\theta_1)} 1_{[\theta_1,+\infty[}$ | $\theta_1 = 17.23, \theta_2 = 3.45$ |

El fabricante de aviones quiere saber si él necesita mejorar la geometría de su avión o el motor. Por eso se pregunta si  $S^{SFC} \geqslant S^F$ . Construir una prueba de hipótesis estadística con nivel de significancia  $\alpha = 5/100$  de  $H_0: S^{SFC} \geqslant S^F$  contra  $H_1: S^{SFC} \leq S^F$ .





| variable | valor nominal | min  | max   |
|----------|---------------|------|-------|
| V        | 231           | 226  | 234   |
| F        | 19            | 18.7 | 19.05 |

**Ejercicio 6.** Sea  $Y = X_1 + X_2$  con  $X_1$  y  $X_2$  independientes de distribución uniforme sobre [0,1]. Calcula  $S^1$  y la designaldad de concentración de typo Bennett.

**Ejercicio 7.** (\*\*)

Sea

$$Y = \exp\{X_1 + 2X_2\},\tag{4}$$

donde  $X_1$  y  $X_2$  independientes con distribúcion  $\mathcal{N}(0,1)$ .

1. Mostrar que

$$f_Y(y) = \frac{1}{\sqrt{10\pi}y} e^{-(\ln y)^2/10} \mathbbm{1}_{\mathbb{R}^+}(y) \quad and \quad F_Y(y) = \Phi\left(\frac{\ln y}{\sqrt{5}}\right),$$

donde

$$\Phi(x) := \int_{-\infty}^{x} e^{-t^2/2} dt / \sqrt{2\pi}.$$

2. Mostrar que los índices de Cramér-von Mises  $S^1_{2,CVM}$  y  $S^2_{2,CVM}$  valen

$$S_{2,CVM}^1 = \frac{6}{\pi} \arctan 2 - 2 \approx 0.1145$$
  
 $S_{2,CVM}^2 = \frac{6}{\pi} \arctan \sqrt{19} - 2 \approx 0.5693.$ 

3. Escribe un programa que estima  $S^1_{2,CVM}$  y  $S^2_{2,CVM}$ .