Superconcentration inequalities for centered Gaussian stationnary processes

Kevin Tanguy

Université de Toulouse

July 15, 2015

▶ What is superconcentration ?

- What is superconcentration ?
- ► Convergence of extremes (Gaussian case).

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ► Superconcentration inequality for stationary Gaussian sequences.

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ► Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ▶ Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)
- ▶ Tools and sketch of the proof.

▶ What is superconcentration ?

 $X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$

 $X = (X_1, \dots, X_n) \sim \mathcal{N}(0, \Gamma)$ with $\mathbb{E}\left[X_i^2\right] = 1$.

$$X = (X_1, \dots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}[X_i^2] = 1$.

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$\operatorname{Var}(M_n) \leq ?$$

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$\operatorname{Var}(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$Var(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

sharp inequality,

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$Var(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

sharp inequality, does not depend on Γ .

Take $\Gamma = Id$ (X_i 's independent).

Take $\Gamma = Id$ (X_i 's independent).

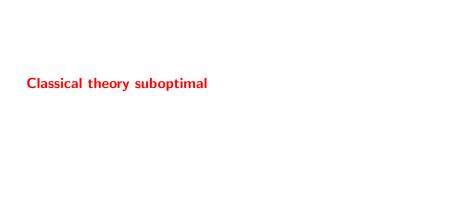
$$Var(M_n) \leq 1$$

Take $\Gamma = Id$ (X_i 's independent).

$$Var(M_n) \leq 1$$

In fact,

$$\operatorname{Var}(M_n) \leq \frac{C}{\log n}, \quad C > 0$$



Chatterjee's terminology: superconcentration phenomenon.

Chatterjee's terminology: superconcentration phenomenon.

Lot of different models

Largest eigenvalue in random matrix theory.

▶ *M* random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

M random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp\left(-\text{Tr}(M^2)/2\sigma^2\right) dM, \quad \sigma^2 = 1/4N$$

▶ $N^{2/3}(\lambda_{\text{max}} - 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]

M random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

- ▶ $N^{2/3}(\lambda_{\text{max}} 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]
- ▶ Classical theory : $Var(\lambda_{max}) \leq \frac{C}{N}$

M random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

- ▶ $N^{2/3}(\lambda_{\text{max}} 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]
- ▶ Classical theory : $Var(\lambda_{max}) \leq \frac{C}{N}$
- ▶ In fact, $Var(\lambda_{max}) \leq \frac{C}{N^{4/3}}$ [Ledoux-Rider '10].

Chatterjee's terminology: superconcentration phenomenon.

Lot of different models

Largest eigenvalue in random matrix theory.

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.

► Take a binary tree of depth *N*.

- ▶ Take a binary tree of depth N.
- ▶ Put X_e *i.i.d.* $\mathcal{N}(0,1)$ on each edge e.

- ▶ Take a binary tree of depth N.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.

- ► Take a binary tree of depth *N*.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(max_{\pi} X_{\pi}) \leq N$

- ▶ Take a binary tree of depth *N*.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(max_{\pi} X_{\pi}) \leq N \quad (X_{\pi} \sim \mathcal{N}(0, N)).$

- ▶ Take a binary tree of depth N.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(\mathsf{max}_\pi X_\pi) \leq N \quad (X_\pi \sim \mathcal{N}(0, N)).$
- ▶ In fact, $Var(\max_{\pi} X_{\pi}) \leq C$ [Bramson-Ding-Zeitouni].

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- Free energy in spin glasses theory (SK model).

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- ► Free energy in spin glasses theory (SK model).
- First passage in percolation theory.

Classical theory suboptimal

Chatterjee's terminology: superconcentration phenomenon.

Lot of different models

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- Free energy in spin glasses theory (SK model).
- First passage in percolation theory.
- Stationary Gaussian sequences.

- ▶ What is superconcentration ?
- ► Convergence of extremes (Gaussian case).

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ .

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n) = o(\log n) \ (n \to \infty)$,

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n) = o(\log n)$ $(n \to \infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{ o} G,\quad (n o\infty)$$

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{ o}G,\quad (n o\infty)$$

where
$$a_n = \sqrt{2 \log n}$$

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{\to}G,\quad (n\to\infty)$$

where $a_n = \sqrt{2 \log n}$ and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}, \ t \in \mathbb{R}$ (Gumbel).

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{\to} G, \quad (n\to\infty)$$

where
$$a_n = \sqrt{2 \log n}$$
 and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}, \ t \in \mathbb{R}$ (Gumbel).

Note : $\mathbb{P}(G \ge t) \sim e^{-t}$

Results from classical theory

$$\operatorname{Var}(M_n) \leq 1.$$

Results from classical theory

$$\mathrm{Var}(M_n) \leq 1.$$

Question:

Correct bound ?

Results from classical theory

$$\operatorname{Var}(M_n) \leq 1.$$

Question:

Correct bound ?

Proposition [Chatterjee '14]

$$\operatorname{Var}(M_n) \leq \frac{C}{\log n}$$
.

- ▶ What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ▶ Superconcentration inequality for stationary Gaussian sequences.

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \le 1$

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \le 1$

$$\mathbb{P}(\left|M_n - \mathbb{E}[M_n]\right| \ge t) \le \frac{2e^{-t^2/2}}{t^2}, \ t \ge 0$$

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Take $X \sim \mathcal{N}(0, Id)$ and $F : \mathbb{R}^n \to \mathbb{R}$ Lipschitz.

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \le 1$

$$\mathbb{P}\Big(\big|M_n - \mathbb{E}[M_n]\big| \ge t\Big) \le \frac{2e^{-t^2/2}}{t^2}, \ t \ge 0$$

does not reflect Gumbel asymptotics.

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence,

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ .

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

$$\mathbb{P}\left(\sqrt{\log n}|M_n-b_n|\geq t\right)\leq Ce^{-ct},\quad t\geq 0.$$

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

$$\mathbb{P}\left(\sqrt{\log n}|M_n-b_n|\geq t\right)\leq Ce^{-ct},\quad t\geq 0.$$

Reflects asymptotics Gumbel

Recall

Theorem [Berman 64']

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{\to} G, \quad (n\to\infty)$$

where
$$a_n = \sqrt{2 \log n}$$
 and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}$, $t \in \mathbb{R}$ (Gumbel).

Note : $\mathbb{P}(G \ge t) \sim e^{-t}$

Theorem [T. 15']

 $(X_i)_{i\geq 0}$ centered stationary Gaussian, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

Reflects Gumbel asymptotics.

Theorem [T. 15']

 $(X_i)_{i\geq 0}$ centered stationary Gaussian, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

- Reflects Gumbel asymptotics.
- ▶ Implies $Var(\max_i X_i) \leq \frac{C}{\log n}$ (optimal).

Tools

Proof?

Tools

Proof?

Chatterjee's scheme of proof for the variance at the exponential level.

Tools

Proof?

Chatterjee's scheme of proof for the variance at the exponential level.

General theorem implies superconcentration inequality for Gaussian stationary sequences.

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ► Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)

General theorem [T. '15]

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

General theorem [T. '15]

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in \mathcal{C}(r_0)$ such that $i, j \in D$;

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;

Explanation : if $\Gamma = Id$, choose $r_0 > 0$ then $\mathcal{C}(r_0) = \Big\{\{1\}, \ldots \{n\}\Big\}$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;

Explanation : if $\Gamma = Id$, choose $r_0 > 0$ then $\mathcal{C}(r_0) = \{\{1\}, \dots \{n\}\}$. Indeed, if $\Gamma_{ii} > 0$ then i = j.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation :
$$C(r_0) = \{\{1\}, \dots \{n\}\}$$
 partition of $\{1, \dots, n\}$, so $\sum_i 1_{\{I=i\}} = 1$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : $\mathcal{C}(r_0) = \left\{\{1\}, \ldots \{n\}\right\}$ partition of $\{1, \ldots, n\}$, so $\sum_i 1_{\{l=i\}} = 1$. In general, $\mathcal{C}(r_0)$ "slightly bigger" than a partition and $C \geq 1$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Let $\rho(r_0) = \max_{D \in \mathcal{C}(r_0)} \mathbb{P}(I \in D)$.

Explanation : If $\Gamma = Id$, $\mathcal{C}(r_0) = \{\{1\}, \dots, \{n\}\}$,

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $C(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) =$

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $C(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) = 1/n$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $\mathcal{C}(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) = 1/n$. Then $\rho(r_0) \le 1/n$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Let $\rho(r_0) = \max_{D \in \mathcal{C}(r_0)} \mathbb{P}(I \in D)$. Then, for every $\theta \in \mathbb{R}$,

$$\operatorname{Var}\left(e^{\theta M_n/2}\right) \leq C \frac{\theta^2}{4} \left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

Conclusion?

Conclusion?

Take Z random variable

Conclusion?

Take Z random variable

$$\operatorname{Var}\left(e^{\theta Z/2}\right) \leq \frac{\theta^2}{4} \operatorname{K}\mathbb{E}\left[e^{\theta Z}\right], \quad \theta \in \mathbb{R}$$

Conclusion?

Take Z random variable

$$\operatorname{Var}\left(e^{\theta Z/2}\right) \leq \frac{\theta^2}{4} \operatorname{K}\mathbb{E}\left[e^{\theta Z}\right], \quad \theta \in \mathbb{R}$$

implies

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le 6e^{-ct/\sqrt{K}}, \quad t > 0$$

$$\mathrm{Var}\Big(e^{\theta M_n/2}\Big) \leq C\,\frac{\theta^2}{4}\Big(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\Big) \mathbb{E}\left[e^{\theta M_n}\right].$$

$$\operatorname{Var}\!\left(e^{\theta M_n/2}\right) \leq C\,\frac{\theta^2}{4}\!\left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

$$\operatorname{Var}\left(e^{\theta M_n/2}\right) \leq C \frac{\theta^2}{4} \left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

where $K_{r_0} = \max\left(r_0, \frac{1}{\log(1/\rho(r_0))}\right)$ and c > 0.

$$\operatorname{Var}\!\left(e^{\theta M_n/2}\right) \leq C\,\frac{\theta^2}{4}\!\left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

where $K_{r_0} = \max\left(r_0, \frac{1}{\log(1/\rho(r_0))}\right)$ and c > 0.

(Stationary case :
$$K_{r_0} = 1/\log n$$
)

Recall

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)
- Tools and sketch of the proof.

Key steps of the proof

Main steps

► Semigroup representation of the variance

Key steps of the proof

Main steps

- ► Semigroup representation of the variance
- Hypercontractivity

Key steps of the proof

Main steps

- ► Semigroup representation of the variance
- Hypercontractivity
- ▶ Proper use of the covering $C(r_0)$.

$$X \sim \mathcal{N}(0,\Gamma)$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $(Q_t)_{t\geq 0}$ is hypercontractive :

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $(Q_t)_{t\geq 0}$ is hypercontractive :

$$\mathbb{E}\left[|Q_t f|^2\right]^{1/2} \le \mathbb{E}\left[|f|^p\right]^{1/p}, \quad p = 1 + e^{-2t} < 2.$$

$$X \sim \mathcal{N}(0,\Gamma)$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \frac{\theta^2}{4} \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \frac{\theta^2}{4} \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i (e^{\theta M_n/2})$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \frac{\theta^2}{4} \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(\mathrm{e}^{\theta M_n/2} \right) = \frac{\theta}{2} \mathbf{1}_{\{X_i = \mathsf{max}\}} \mathrm{e}^{\theta M_n/2}.$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \frac{\theta^2}{4} \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(\mathrm{e}^{\theta M_n/2} \right) = \frac{\theta}{2} \mathbf{1}_{\{X_i = \mathsf{max}\}} \mathrm{e}^{\theta M_n/2}.$$

Similar as

$$\partial_i \left(\max_j x_j \right) = \partial_i \left(\sum_i x_j \mathbb{1}_{\{x_j = \max\}} \right)$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \frac{\theta^2}{4} \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(e^{\theta M_n/2} \right) = \frac{\theta}{2} \mathbb{1}_{\{X_i = \max\}} e^{\theta M_n/2}$$
.

Similar as

$$\partial_i \Big(\max_j x_j\Big) = \partial_i \Big(\sum_j x_j \mathbb{1}_{\{x_j = \max\}}\Big) = \mathbb{1}_{\{x_i = \max\}}$$

Key steps for the proof

lacktriangle Cut the sum according to the size of Γ_{ij} (with the covering $\mathcal{C}(r_0)$)

Key steps for the proof

- ightharpoonup Cut the sum according to the size of Γ_{ij} (with the covering $\mathcal{C}(r_0)$)
- Bound each term with hypercontractivity

Key steps for the proof

- ▶ Cut the sum according to the size of Γ_{ij} (with the covering $C(r_0)$)
- Bound each term with hypercontractivity
- ▶ Remember $C(r_0)$ is "slightly bigger" than a partition of \mathbb{R}^n .

Similar results

▶ Gaussian stationary processes on \mathbb{R}^n .

Similar results

- ▶ Gaussian stationary processes on \mathbb{R}^n .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$.

Similar results

- ▶ Gaussian stationary processes on \mathbb{R}^n .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$.

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

Similar results

- Gaussian stationary processes on \mathbb{R}^n .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$.

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]

Similar results

- ▶ Gaussian stationary processes on \mathbb{R}^n .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$.

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

- ▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]
- convergence in distribution Gumbel randomly shifted [Bramson-Ding-Zeitouni '15].

Similar results

- ▶ Gaussian stationary processes on \mathbb{R}^n .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$.

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

- ▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]
- convergence in distribution Gumbel randomly shifted [Bramson-Ding-Zeitouni '15].

Hypercontractivity alone doesn't work .

