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Introduction

Concentration theory : effective tool in various mathematical areas

I Probability in high dimension

I Probability in Banach spaces

I Empirical process

I Mechanical statistics

I · · ·

Lack of precision for particular example ?
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Standard Gaussian measure

γn standard Gaussian measure on Rn, f : Rn → R smooth enough

Poincaré’s inequality

Varγn(f ) ≤
∫
Rn

|∇f |2dγn

Consequence

If X ∼ N (0, Γ) then

Var( max
i=1,...,n

Xi ) ≤ max
i=1,...,n

Var(Xi )

At this level of generality, this inequality is sharp but does not depend
on Γ. problem ?
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Toy model, Γ = Id

Mn = maxi=1,...,n Xi .

I Var(Mn) ≤ 1 (classical theory). Correct ?

I Var(Mn) ≤ C/ log n (direct calculus).

Poincaré’s inequality sub-optimal for some functionals =
Superconcentration (Chatterjee)
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Branching Random Walk

I T binary tree with depth n.

I Xe i .i .d . N (0, 1) on each edge e.

I Take a path π ∈ P
(
T
)

and set Xπ =
∑

e∈π Xe .

Var(max
π∈P

(
T
) Xπ) ≤ ?

I Classical theory : Var(max
π∈P

(
T
) Xπ) ≤ n (Xπ ∼ N (0, n)).

I In fact, Var(max
π∈P

(
T
) Xπ) = O(1) [Bramson-Ding-Zeitouni].

Tools : modified second moment method combined with comparison
arguments (very technicals proof).
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Random matrix theory

X = (Xij)1≤i ,j≤n random matrix from the GUE.

I Xij ∼ NC(0, σ2), i < j i.i.d.

I Xii ∼ NR(0, σ2/2) i.i.d.

I X hermitian (tX = X )

Largest eigenvalue

λmax = sup
|u|=1

n∑
i ,j=1

Xijuiuj

Relevant regime : σ2 ∼ 1/n.
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Random matrix theory

Var(λmax) ≤ ?

I Var(λmax) ≤ C/n (classical theory)

I Var(λmax) ≤ C/n4/3.

convergence in law ?

Theorem [Tracy-Widom]

n2/3(λmax − 1)
L−→ TW
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Other examples

I First time passage in percolation theory.

I Free energy in spin glass theory (REM, GREM, SK, . . . ).

I Discrete Gaussian Free Field Z2.

I Order statistics from an i.i.d. sample (maximum, median,. . . ).

I · · ·

I Each models, ad-hoc methods, sometimes very technicals

I Common properties ? Is it possible, in general, to improve (even
slightly) upon classical concentration ?

Approach of my thesis : semi-groups interpolation and hypercontractive
arguments.

Attention : Hypercontractivity = logarithmic gain (sub-linearity)
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Superconcentration for stationary Gaussian sequences
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Stationary Gaussian sequences

(Xn)n≥0 centered stationary Gaussian sequence, with covariance
function E[XiXj ] = φ(|i − j |) où φ : N→ R+.

Extreme theory [Berman]

If φ(n) log n −→
n→∞

0 then√
2 log n

(
Mn − bn)

L−→ Λ0

with Mn = maxi=1,...,n Xi .

Gumbel’s distribution : P(Λ0 ≥ t) = 1− e−e
−t

(∼ e−t for t large
enough)

Kevin Tanguy About superconcentration and related topics : a short Survey



Stationary Gaussian sequences

(Xn)n≥0 centered stationary Gaussian sequence, with covariance
function E[XiXj ] = φ(|i − j |) où φ : N→ R+.
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Stationary Gaussian sequences

Variance
I Var(Mn) ≤ 1 (classical theory).

I Var(Mn) ≤ C/ log n [Chatterjee].

Tools : variance representation by semi-groups and hypercontractivity.
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Talagrand’s inequality : bounding the variance

γn standard Gaussian measure on Rn.

Theorem [Talagrand]

f : Rn → R smooth enough

Varγn(f ) ≤ C
n∑

i=1

‖∂i f ‖2
2

1 + log ‖∂i f ‖2

‖∂i f ‖1

Improve upon Poincaré’s inequality.
Proof ?
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Semi-group

Ornstein-Uhlenbeck’s semi-group

Pt(f )(x) =

∫
Rn

f (e−tx +
√

1− e−2ty)dγn(y) t ≥ 0, x ∈ Rn

Hypercontractivity

‖Pt f ‖q ≤ ‖f ‖p(t), p(t) = (q − 1)e−2t + 1, t > 0

Note : p(t) < q (improve upon Jensen’s inequality).
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Representation formula

Interpolation by semi-group

Varγn(f ) = 2

∫ ∞
0

e−2t

∫
Rn

|Pt∇f |2dγndt

= 2

∫ ∞
0

e−2t
n∑

i=1

‖Pt(∂i f )‖2
2dt

Hypercontractivity

Pour i = 1, . . . , n

‖Pt(∂i f )‖2 ≤ ‖∂i f ‖p(t) p(t) = 1 + e−2t , t > 0.

It implies Talagrand’s inégality (after some interpolation arguments
based on Hölder’s inequality)

Kevin Tanguy About superconcentration and related topics : a short Survey



Representation formula

Interpolation by semi-group

Varγn(f ) = 2

∫ ∞
0

e−2t

∫
Rn

|Pt∇f |2dγndt

= 2

∫ ∞
0

e−2t
n∑

i=1

‖Pt(∂i f )‖2
2dt

Hypercontractivity

Pour i = 1, . . . , n

‖Pt(∂i f )‖2 ≤ ‖∂i f ‖p(t) p(t) = 1 + e−2t , t > 0.

It implies Talagrand’s inégality (after some interpolation arguments
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Application

X1, . . . ,Xn i.i.d. N (0, 1), Mn = maxi=1,...,n Xi

Superconcentration

Var(Mn) ≤ C

log n

Proof :

f (x) = max
i=1,...,n

xi =
n∑

i=1

xi1Ai
, Ai = {xi ≥ xj ∀j}

Apply Talagrand’s inequality

∂i (f ) = 1Ai
‖∂i f ‖2

2 = ‖∂i f ‖1 = P(Xi ≥ Xj ∀j) =
1

n
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At the level of variance : dealing with correlations

Talagrand’s inequality behave badly with respect to correlations !

Let X ∼ N (0, Γ)

Theorem [Chatterjee]

If ∃r0 ≥ 0 and ∃C a covering of {1, . . . , n} such that ∀i , j ∈ {1, . . . , n}
if E[XiXj ] = Γij ≥ r0 then ∃D ∈ C, i , j ∈ D

I = argmaxiXi and ρ(r0) = maxD∈C P(I ∈ D).
Then

Var(Mn) ≤ C

(
r0 +

1

log 1/ρ(r0)

)
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if E[XiXj ] = Γij ≥ r0 then ∃D ∈ C, i , j ∈ D

I = argmaxiXi and ρ(r0) = maxD∈C P(I ∈ D).
Then

Var(Mn) ≤ C

(
r0 +

1

log 1/ρ(r0)

)
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Chatterjee’s Theorem : a sketch of proof

X ∼ N (0, Γ), f : Rn → R smooth enough

Variance representation

Var
(
f (X )

)
= 2

∫ ∞
0

e−2t
n∑

i ,j=1

ΓijE[∂j f (X )Pt(∂i f )(X )]dt.

(Pt)t≥0 Ornstein-Uhlenbeck’s semi-group.

Choose f (x) = maxi=1,...,n xi

Sketch of proof

I Γ satisfies a � covering �property (which allows one to gather the
Γij in pack of same � size �).

I (Pt)t≥0 is hypercontractive, it can be used to control the size (in
Lp-norm) of each of these packs.
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Stationnary Gaussian sequences

Mn = maxi=1,...,n Xi

Recall √
2 log n

(
Mn − bn)

L−→ Λ0

with P(Λ0 ≥ t) = 1− e−e
−t

.

Non-asymptotic concentration inequality ?

Goal

I P(
√

2 log n(Mn − bn) ≥ t) ≤ ψ1(t), t ≥ 0

I P(
√

2 log n(Mn − bn) ≤ −t) ≤ ψ2(t), t ≥ 0

with ψi , i = 1, 2 reflecting Gumbel’s asymptotics.
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Gaussian concentration

Let f : Rn → R be a L-Lipschitz function and X ∼ N (0, Id) then

Theorem [Borell, Sudakov-Tsirel’son]

P
(
|f (X )− E

[
f (X )

]
| ≥ t

)
≤ 2e−t

2/2L

f (x) = maxi=1,...,n xi is 1-Lipschitz.

P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 2e−t

2/4 log n (classical theory)

I The Gaussian decay is not reflecting the behavior of the limiting
distribution.

I The dependance in n is very bad.

Superconcentration inequality ?
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Stationary Gaussian sequences

Superconcentration inequality [T.]

P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 3e−ct

I Up to numerical constant, same result holds with bn instead of
E[Mn].

I Corresponds to Gumbel’s asymptotics (t large),

I Implies optimal bounds on the variance,

I Consequence of a more general Theorem which holds for a large
class of stationary Gaussian fields.
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Sketch of proof

Goal : P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 3e−ct

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ ∈ R then

P
(√

K−1|Z − E[Z ]| ≥ t
)
≤ 6e−ct , t ≥ 0 (1)

We would like to obtain (1) for Z = Mn = maxi=1,...,n Xi with
K ∼ Var(Mn) ∼ C/ log n.

Proof : Extension of Chatterjee’s Theorem at an exponential level.
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Talagrand’s inequalities at higher order
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Talagrand’s inequality

Recall : γn standard Gaussian measure on Rn.

Theorem [Talagrand]

f : Rn → R smooth enough

Varγn(f ) ≤ C
n∑

i=1

‖∂i f ‖2
2

1 + log ‖∂i f ‖2

‖∂i f ‖1

can be obtained from a variance representation formula together with a
d’hypercontractive property.
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Talagrand’s inequality at higher order

Question :

Alternative representation formula

⇓

Talagrand’s inequality at order 2 ?
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Representation formula

f : Rn → R smooth enough, | · | Euclidean norm.

Variance representation

Varγn(f ) =

∣∣∣∣ ∫
Rn

∇f dγn
∣∣∣∣2

+ 2

∫ ∞
0

e−2u(1− e−2u)

∫
Rn

∣∣Pu(∇2f )
∣∣2dγndu

I Decomposition in L2 (Hermite’s polynomials) + integral remainder
term

I Similar to previous works of various authors : Houdré, Kagan,
Perez-Abreu, Ledoux, . . .

I Inverse Poincaré’s inequality straighforward.
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I Inverse Poincaré’s inequality straighforward.

Kevin Tanguy About superconcentration and related topics : a short Survey



Representation formula

f : Rn → R smooth enough, | · | Euclidean norm.

Variance representation

Varγn(f ) =

∣∣∣∣ ∫
Rn

∇f dγn
∣∣∣∣2

+ 2

∫ ∞
0

e−2u(1− e−2u)

∫
Rn

∣∣Pu(∇2f )
∣∣2dγndu

I Decomposition in L2 (Hermite’s polynomials) + integral remainder
term

I Similar to previous works of various authors : Houdré, Kagan,
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Proof

Representation formula

Varγn(f ) = 2

∫ ∞
0

e−2t

∫
Rn

|Pt∇f |2dγndt

Set K (t) =
∫
Rn |Pt∇f |2dγn, t ≥ 0

K (s)− K (t) =

∫ s

t
K ′(u)du

s →∞ by ergodicity K (∞) =
∣∣ ∫

Rn ∇f dγn
∣∣2.
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By integration by parts(∫
Rn

f (−Lf )dγn =

∫
Rn

|∇f |2dγn, L = ∆− x · ∇
)

and commutation property (∇Pt = e−tPt∇, t ≥ 0)

K ′(u) =
d

du

∫
Rn

|Pu∇f |2dγn =

− 2

∫
Rn

e−2u|Pu∇2f |2dγn

Finally

K (t) =

∣∣∣∣ ∫
Rn

∇f dγn
∣∣∣∣2 + 2

∫ ∞
t

e−2u

∫
Rn

e−2u|Pu∇2f |2dγndu

Substitute the expression of K (t) in the representation formula to
conclude.
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First iteration

Varγn(f ) =

∣∣∣∣ ∫
Rn

∇f dγn
∣∣∣∣2

+ 2

∫ ∞
0

e−2u(1− e−2u)

∫
Rn

∣∣Pu(∇2f )
∣∣2dγndu

Iterate the procedure (set K2(t) =
∫
Rn

∣∣Pu(∇2f )
∣∣2dγn. . . )

Iteration at order p

p ≥ 1

Varγn(f ) =

p∑
k=1

1

k!

∣∣∣∣ ∫
Rn

∇k f dγn

∣∣∣∣2
+

2

p!

∫ ∞
0

e−2t(1− e−2t)p
∫
Rn

∣∣Pt(∇p+1f )
∣∣2dγndt
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Talagrand’s inequality at order 2

Control the remainder term with (Pt)t≥0’s hypercontractivity .

R = 2
n∑

i ,j=1

∫ ∞
0

e−2u(1− e−2u)

∫
Rn

[
Pu

(
∂ij f
)]2

dγndu

= 2
n∑

i ,j=1

∫ ∞
0

e−2u(1− e−2u)‖Pu

(
∂ij f
)
‖2

2du

Follow the proof of Talagrand’s inequality and get an improvement
thanks to the factor 1− e−2u
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Inégalités Talagrand d’ordre 2

Théorème [T.]

Varγn(f ) ≤
∣∣∣∣ ∫

Rn

∇f dγn
∣∣∣∣2 + C

n∑
i ,j=1

‖∂ij f ‖2
2[

1 + log
‖∂ij f ‖2

‖∂ij f ‖1

]2

Remark : this inequality can be obtained at any order p ≥ 1.
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Boolean Analysis
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Analyse booléenne

Historically, Talagrand’s inequality has been obtained on Cn = {−1, 1}n
with µn = ( 1

2δ−1 + 1
2δ1)⊗n.

Theorem [Talagrand]

f : Cn → {0, 1}

Varµn(f ) ≤ C
n∑

i=1

‖Di f ‖2
2

1 + log ‖Di f ‖2

‖Di f ‖1

with Di f (x) =
f (x)−f

(
τi (x)

)
2 τi (x) = (x1, . . . ,−xi , . . . , xn), x ∈ Cn.
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Historically, Talagrand’s inequality has been obtained on Cn = {−1, 1}n
with µn = ( 1

2δ−1 + 1
2δ1)⊗n.

Theorem [Talagrand]

f : Cn → {0, 1}

Varµn(f ) ≤ C
n∑

i=1

‖Di f ‖2
2

1 + log ‖Di f ‖2

‖Di f ‖1

with Di f (x) =
f (x)−f

(
τi (x)

)
2 τi (x) = (x1, . . . ,−xi , . . . , xn), x ∈ Cn.
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Influence and KKL’s Theorem

f : Cn → {0, 1}, µn = ( 1
2δ−1 + 1

2δ1)⊗n

Influence

Ii (f ) = P
(
f (X ) 6= f

(
τi (X )

))
, L(X ) = µn

Probability that the i-th coordonnate is pivotal for input X

Theorem [Kalai-Kahn-Linial]

∀f : Cn → {0, 1}, ∃i ∈ {1, . . . , n} Ii (f ) ≥ c
log n

n

(f is implicitly assumed to be centered. This inequality is optimal on
Tribes functions)

KKL’s Theorem can be proved by Talagrand’s inequality
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Talagrand’s inequality

f : Cn → {0, 1}

Ii (f ) = ‖Di f ‖1 = ‖Di f ‖2
2, i = 1, . . . , n

(Up to numerical constant)

Talagrand’s inequality in terms of influences

Varµn(f ) ≤ C
n∑

i=1

Ii (f )

1 + log 1

1/
√

Ii (f )

.
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Application : Kahn-Kalai-Linial’s Theorem

If it exists i ∈ {1, . . . , n} such that Ii (f ) ≥ C√
n

then

Ii (f ) ≥ C log n
n .

Otherwise ∀i ∈ {1, . . . , n} Ii (f ) ≤ C√
n

(1)

Talagrand’s inequality yields that

∃i ∈ {1, . . . , n} s.t. C
n ≤

Ii (f )

1+log 1

1/
√

Ii (f )

(2)

IIt is enough to use (1) to deduce C
n ≤

Ii (f )
log n from (2).
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Influence of order 2

f : {−1, 1}n → {0, 1} define

Influence of order 2

(i , j) ∈ {1, . . . , n}2.

I(i ,j)(f ) = P
(
(i , j) est pivotal

)

Beware I(i ,i)(f ) = Ii (f ) !

Similarly (up to numerical constants)

I(i ,j)(f ) = ‖Dij f ‖2
2 = ‖Dij f ‖1, (withDij = Di ◦ Dj)

Talagrand’s inequality of ordre 2 on the cube ? Yes ! (same proof as the
Gaussian case with two additionally technical issues)
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On the Cube

Talagrand’s inequality at order 2 [T.]

Varµn(f ) ≤ C
n∑

i=1

‖Di f ‖2
p + C

∑
i 6=j

‖Dij f ‖2
2[

1 + log
‖Dij f ‖2

‖Dij f ‖1

]2

with 1 < p < 2.

Application : proof of KKL’s Theorem type at order 2
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KKL’s Theorem at order 2

f : Cn → {0, 1}

KKL’s Theorem at order 2 [T.]

Either ∃i ∈ {1, . . . , n}

Ii (f ) ≥ c

(
1

n

)1/1+η(p)

0 < η(p) < 1

or ∃i 6= j ∈ {1, . . . , n}

I(i ,j)(f ) ≥ c

(
log n

n

)2

with c > 0 a numerical constant.

Proof : same method as KKL’s Theorem
(Tribes functions also optimal for the second alternative)
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Thanks for your attention
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Superconcentration for product measures and Optimal
Transport
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Basics Facts

µn symmetric exponential measure on Rn, γn standard Gaussian
measure on Rn.

Monotone rearrangement

µn
T−→ γn

where T (x1, . . . , xn) =
(
t(x1), . . . , t(xn)

)
with t : R→ R s.t.∫ x

−∞
dµ1 =

∫ t(x)

−∞
dγ1

Notice : Varγn(f ) = Varµn(f ◦ T ).
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Weighted Poincaré’s inequality

Poincaré’s inequality for the Exponential measure

Varµn(f ) ≤ 4

∫
Rn

|∇f |2dµn

then

Varγn(f ) = Varµn(f ◦ T ) ≤ 4
n∑

i=1

∫
Rn

(∂i f )2 ◦ T (x)t ′2(xi )dµn(x)

.
Recall that µn

T−→ γn with T (x1, . . . , xn) =
(
t(x1), . . . , t(xn)

)
Estimate

the behavior of t ′ ◦ t−1 to bound the variance of f under γn
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Sample result

Standard Gaussian measure example [T.]

Varγn(f ) ≤ C
n∑

i=1

∫
Rn

(∂i f (x))2

(
1

1 + |xi |

)2

dγn(x)

I It can provide application in Superconcentration) of Gozlan’s
theoretical study of weighted Poincaré’s inequalities

I Great flexibility of the method : large choice of measure
(log-concave, uniform,. . . ), various choice of functionals (médiane,
maximum, lp-norms, largest eigenvalue (in moduli) of Ginibre
ensemble . . . ).

I Extension to an exponentiel level in order to obtain deviation
inequalities (similar to Boucheron/Thomas’s work on order
statistics).

I Transport of isoperimetrics inequalities in order to obtain more
precise left deviations inequalities.
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