Superconcentration inequalities for centered Gaussian stationnary processes

Kevin Tanguy

Université de Toulouse

January 26, 2016

Outline

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ▶ Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)
- ▶ Tools and sketch of the proof.

▶ What is superconcentration ?

 $X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$

 $X = (X_1, \dots, X_n) \sim \mathcal{N}(0, \Gamma)$ with $\mathbb{E}\left[X_i^2\right] = 1$.

$$X = (X_1, \dots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}[X_i^2] = 1$.

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$\operatorname{Var}(M_n) \leq ?$$

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$\operatorname{Var}(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$Var(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

sharp inequality,

$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(0, \Gamma)$$
 with $\mathbb{E}\left[X_i^2\right] = 1$.

Variance upper bound

$$Var(M_n) \leq ?$$

Classical concentration theory

$$\operatorname{Var}(M_n) \leq \max_i \operatorname{Var}(X_i).$$

sharp inequality, does not depend on Γ .

Take $\Gamma = Id$ (X_i 's independent).

Take $\Gamma = Id$ (X_i 's independent).

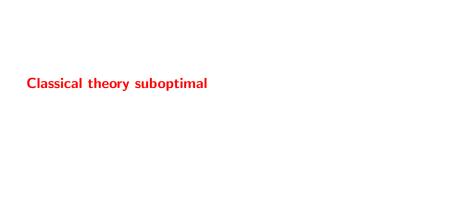
$$Var(M_n) \leq 1$$

Take $\Gamma = Id$ (X_i 's independent).

$$Var(M_n) \leq 1$$

In fact,

$$\operatorname{Var}(M_n) \leq \frac{C}{\log n}, \quad C > 0$$



Chatterjee's terminology: superconcentration phenomenon.

Chatterjee's terminology: superconcentration phenomenon.

Lot of different models

Largest eigenvalue in random matrix theory.

▶ *M* random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

M random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp\left(-\text{Tr}(M^2)/2\sigma^2\right) dM, \quad \sigma^2 = 1/4N$$

▶ $N^{2/3}(\lambda_{\text{max}} - 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]

▶ *M* random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

- ▶ $N^{2/3}(\lambda_{\text{max}} 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]
- ▶ Classical theory : $Var(\lambda_{max}) \leq \frac{C}{N}$

M random matrix from the GUE, namely

$$\mathbb{P}(dM) = Z_N^{-1} \exp(-Tr(M^2)/2\sigma^2)dM, \quad \sigma^2 = 1/4N$$

- ▶ $N^{2/3}(\lambda_{\text{max}} 1) \stackrel{d}{\to} TW$, $(N \to \infty)$, where TW so-called Tracy-Widom distribution. [Tracy-Widom '90]
- ▶ Classical theory : $Var(\lambda_{max}) \leq \frac{C}{N}$
- ▶ In fact, $Var(\lambda_{max}) \leq \frac{C}{N^{4/3}}$ [Ledoux-Rider '10].

Chatterjee's terminology: superconcentration phenomenon.

Lot of different models

Largest eigenvalue in random matrix theory.

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.

▶ Take a binary tree of depth *N*.

- ▶ Take a binary tree of depth N.
- ▶ Put X_e *i.i.d.* $\mathcal{N}(0,1)$ on each edge e.

- ▶ Take a binary tree of depth N.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.

- ► Take a binary tree of depth *N*.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(max_{\pi} X_{\pi}) \leq N$

- ▶ Take a binary tree of depth *N*.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(max_{\pi} X_{\pi}) \leq N \quad (X_{\pi} \sim \mathcal{N}(0, N)).$

- ► Take a binary tree of depth N.
- ▶ Put X_e i.i.d. $\mathcal{N}(0,1)$ on each edge e.
- ► Take a path π from the top to the bottom of the tree, $X_{\pi} = \sum_{e \in \pi} X_e$.
- ▶ Classical theory : $Var(\mathsf{max}_\pi X_\pi) \leq N \quad (X_\pi \sim \mathcal{N}(0, N)).$
- ▶ In fact, $Var(\max_{\pi} X_{\pi}) \leq C$ [Bramson-Ding-Zeitouni].

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- ► Free energy in spin glasses theory (SK model).

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- ► Free energy in spin glasses theory (SK model).
- First passage in percolation theory.

Chatterjee's terminology: superconcentration phenomenon.

- Largest eigenvalue in random matrix theory.
- Branching random walk.
- ▶ Discrete Gaussian free field on \mathbb{Z}^d .
- Free energy in spin glasses theory (SK model).
- First passage in percolation theory.
- Stationary Gaussian sequences.

- ▶ What is superconcentration ?
- ► Convergence of extremes (Gaussian case).

Stationary Gaussian sequences

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ .

Stationary Gaussian sequences

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n) = o(\log n) \ (n \to \infty)$,

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n) = o(\log n)$ $(n \to \infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{ o} G,\quad (n o\infty)$$

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{ o}G,\quad (n o\infty)$$

where
$$a_n = \sqrt{2 \log n}$$

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{\to}G,\quad (n\to\infty)$$

where $a_n = \sqrt{2 \log n}$ and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}, t \in \mathbb{R}$ (Gumbel).

Theorem [Berman '64]

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{\to}G,\quad (n\to\infty)$$

where $a_n = \sqrt{2 \log n}$ and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}, \ t \in \mathbb{R}$ (Gumbel).

Note :
$$\mathbb{P}(G \geq t) \sim e^{-t}$$

Results from classical theory

$$\operatorname{Var}(M_n) \leq 1.$$

Results from classical theory

$$\mathrm{Var}(M_n) \leq 1.$$

Question:

Correct bound ?

Results from classical theory

$$\operatorname{Var}(M_n) \leq 1.$$

Question:

Correct bound ?

Proposition [Chatterjee '14]

$$\operatorname{Var}(M_n) \leq \frac{C}{\log n}.$$

- ▶ What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ▶ Superconcentration inequality for stationary Gaussian sequences.

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Take $X \sim \mathcal{N}(0, Id)$ and $F : \mathbb{R}^n \to \mathbb{R}$ Lipschitz.

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Take $X \sim \mathcal{N}(0, Id)$ and $F : \mathbb{R}^n \to \mathbb{R}$ Lipschitz.

$$\mathbb{P}(|F(X) - \mathbb{E}[F(X)]| \ge t) \le 2e^{-t^2/2||F||_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \leq 1$

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Take $X \sim \mathcal{N}(0, Id)$ and $F : \mathbb{R}^n \to \mathbb{R}$ Lipschitz.

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \leq 1$

$$\mathbb{P}\Big(a_n\big|M_n - \mathbb{E}[M_n]\big| \ge t\Big) \le \frac{2e^{-\frac{t^2}{2a_n^2}}}{2}, \ t \ge 0, \ a_n = \sqrt{2\log n}$$

Gaussian concentration inequality [Borel-Sudakov-Tsirelson '76]

Take $X \sim \mathcal{N}(0, Id)$ and $F : \mathbb{R}^n \to \mathbb{R}$ Lipschitz.

$$\mathbb{P}\Big(\big|F(X) - \mathbb{E}[F(X)]\big| \ge t\Big) \le 2e^{-t^2/2\|F\|_{Lip}^2}, \ t \ge 0$$

If
$$F(x) = \max_{i} x_{i}$$
, $||F||_{Lip}^{2} \leq 1$

$$\mathbb{P}\Big(a_n\big|M_n - \mathbb{E}[M_n]\big| \ge t\Big) \le \frac{2e^{-\frac{t^2}{2a_n^2}}}{2}, \ t \ge 0, \ a_n = \sqrt{2\log n}$$

does not reflect Gumbel asymptotics.

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence,

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ .

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

$$\mathbb{P}\left(\sqrt{\log n}|M_n-b_n|\geq t\right)\leq Ce^{-ct},\quad t\geq 0.$$

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

$$\mathbb{P}\left(\sqrt{\log n}|M_n-b_n|\geq t\right)\leq Ce^{-ct},\quad t\geq 0.$$

Reflects asymptotics Gumbel

Recall

Theorem [Berman 64']

 $(X_i)_{i\geq 0}$ centered normalized stationary Gaussian sequence with covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$, then

$$a_n(M_n-b_n)\stackrel{d}{ o}G,\quad (n o\infty)$$

where
$$a_n = \sqrt{2 \log n}$$
 and $\mathbb{P}(G \ge t) = 1 - e^{-e^{-t}}$, $t \in \mathbb{R}$ (Gumbel).

Note : $\mathbb{P}(G \ge t) \sim e^{-t}$

Theorem [T. 15']

 $(X_i)_{i\geq 0}$ centered stationary Gaussian, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

Reflects Gumbel asymptotics.

Theorem [T. 15']

 $(X_i)_{i\geq 0}$ centered stationary Gaussian, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

Remark : same inequality holds with b_n instead of $\mathbb{E}[M_n]$.

- Reflects Gumbel asymptotics.
- ▶ Implies $Var(max_i X_i) \leq \frac{C}{\log n}$ (optimal).

Tools

Proof?

Tools

Proof?

Chatterjee's scheme of proof for the variance at the exponential level.

Tools

Proof?

Chatterjee's scheme of proof for the variance at the exponential level.

General theorem implies superconcentration inequality for Gaussian stationary sequences.

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ► Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in \mathcal{C}(r_0)$ such that $i, j \in D$;

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;

Explanation : if $\Gamma = Id$, choose $r_0 > 0$ then $\mathcal{C}(r_0) = \Big\{\{1\}, \ldots \{n\}\Big\}$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \ge r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;

Explanation : if $\Gamma = Id$, choose $r_0 > 0$ then $\mathcal{C}(r_0) = \{\{1\}, \dots \{n\}\}$. Indeed, if $\Gamma_{ii} > 0$ then i = j.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation :
$$\mathcal{C}(r_0) = \{\{1\}, \dots \{n\}\}$$
 partition of $\{1, \dots, n\}$, so $\sum_i 1_{\{I=i\}} = 1$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : $\mathcal{C}(r_0) = \left\{\{1\}, \ldots \{n\}\right\}$ partition of $\{1, \ldots, n\}$, so $\sum_i 1_{\{l=i\}} = 1$. In general, $\mathcal{C}(r_0)$ "slightly bigger" than a partition and C > 1.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Let $\rho(r_0) = \max_{D \in \mathcal{C}(r_0)} \mathbb{P}(I \in D)$.

Explanation : If $\Gamma = Id$, $\mathcal{C}(r_0) = \{\{1\}, \dots, \{n\}\}$,

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $C(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) =$

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $C(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) = 1/n$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Explanation : If
$$\Gamma = Id$$
, $\mathcal{C}(r_0) = \{\{1\}, \dots, \{n\}\}$, $\mathbb{P}(I = i) = \mathbb{P}(X_i \ge X_j \, \forall j) = 1/n$. Then $\rho(r_0) \le 1/n$.

 $X=(X_1,\ldots,X_n)\sim \mathcal{N}(0,\Gamma)$ Assume that for some $r_0\geq 0$, there exists a covering $\mathcal{C}(r_0)$ of $\{1,\ldots,n\}$ verifying :

- ▶ for all $i, j \in \{1, ..., n\}$ such that $\Gamma_{ij} \geq r_0$, there exists $D \in C(r_0)$ such that $i, j \in D$;
- ▶ there exists $C \ge 1$ such that, a.s., $\sum_{D \in \mathcal{C}(r_0)} 1_{\{I \in D\}} \le C$, where $I = \operatorname{argmax}_i X_i$.

Let $\rho(r_0) = \max_{D \in \mathcal{C}(r_0)} \mathbb{P}(I \in D)$. Then, for every $\theta \in \mathbb{R}$,

$$\operatorname{Var}\left(e^{\theta M_n/2}\right) \leq C \frac{\theta^2}{4} \left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

Conclusion?

Conclusion?

Take Z random variable

Conclusion?

Take Z random variable

$$\operatorname{Var}\left(e^{\theta Z/2}\right) \leq \frac{\theta^2}{4} \operatorname{K}\mathbb{E}\left[e^{\theta Z}\right], \quad \theta \in \mathbb{R}$$

Conclusion?

Take Z random variable

$$\operatorname{Var}\left(e^{\theta Z/2}\right) \leq \frac{\theta^2}{4} \operatorname{K}\mathbb{E}\left[e^{\theta Z}\right], \quad \theta \in \mathbb{R}$$

implies

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le 6e^{-ct/\sqrt{K}}, \quad t > 0$$

$$\mathrm{Var}\Big(e^{\theta M_n/2}\Big) \leq C\,\frac{\theta^2}{4}\Big(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\Big) \mathbb{E}\left[e^{\theta M_n}\right].$$

$$\mathrm{Var}\Big(e^{\theta M_n/2}\Big) \leq C\,\frac{\theta^2}{4}\Big(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\Big) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

$$\operatorname{Var}\left(e^{\theta M_n/2}\right) \leq C \frac{\theta^2}{4} \left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

where $K_{r_0} = \max\left(r_0, \frac{1}{\log(1/\rho(r_0))}\right)$ and c > 0.

$$\operatorname{Var}\!\left(e^{\theta M_n/2}\right) \leq C\,\frac{\theta^2}{4}\!\left(r_0 + \frac{1}{\log\left(1/\rho(r_0)\right)}\right) \mathbb{E}\left[e^{\theta M_n}\right].$$

implies

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct/\sqrt{K_{r_0}}}, \quad t \ge 0,$$

where $K_{r_0} = \max\left(r_0, \frac{1}{\log(1/\rho(r_0))}\right)$ and c > 0.

(Stationary case :
$$K_{r_0} = 1/\log n$$
)

Recall

Theorem [T. '15]

 $(X_i)_{i\geq 0}$ centered stationary Gaussian sequence, covariance function ϕ . Assume $\phi(n)=o(\log n)$ $(n\to\infty)$ and technicals hypothesis, then

$$\mathbb{P}(|M_n - \mathbb{E}[M_n]| \ge t) \le 6e^{-ct\sqrt{\log n}}, \quad t \ge 0.$$

- What is superconcentration ?
- Convergence of extremes (Gaussian case).
- ► Superconcentration inequality for stationary Gaussian sequences.
- Main result (abstract theorem)
- Tools and sketch of the proof.

Main steps

► Semigroup representation of the variance

Main steps

- ► Semigroup representation of the variance
- Hypercontractivity

Main steps

- ► Semigroup representation of the variance
- Hypercontractivity
- ▶ Proper use of the covering $C(r_0)$.

$$X \sim \mathcal{N}(0,\Gamma)$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $(Q_t)_{t\geq 0}$ is hypercontractive :

 $X \sim \mathcal{N}(0,\Gamma)$, take Y independent copy of X

Ornstein Uhlenbeck generalized

$$X^{t} = Xe^{-t} + \sqrt{1 - e^{-2t}}Y, \quad t \ge 0$$

$$Q_t f(x) = \mathbb{E}\left[f\left(xe^{-t} + \sqrt{1 - e^{-2t}}Y\right)\right], \quad t \ge 0, x \in \mathbb{R}^n$$

 $(Q_t)_{t\geq 0}$ is hypercontractive :

$$\mathbb{E}\left[|Q_t f|^2\right]^{1/2} \le \mathbb{E}\left[|f|^p\right]^{1/p}, \quad p = 1 + e^{-2t} < 2.$$

$$X \sim \mathcal{N}(0,\Gamma)$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(e^{\theta M_n/2} \right)$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E}\left[\nabla f \cdot Q_t \nabla f\right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(e^{\theta M_n/2}\right) = \frac{\theta}{2} \mathbb{1}_{\{X_i = \mathsf{max}\}} e^{\theta M_n/2}$$
.

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E} \left[\nabla f \cdot Q_t \nabla f \right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(e^{\theta M_n/2}\right) = \frac{\theta}{2} \mathbb{1}_{\left\{X_i = \mathsf{max}\right\}} e^{\theta M_n/2}.$$

Similar as

$$\partial_i \left(\max_j x_j \right) = \partial_i \left(\sum_i x_j 1_{\{x_j = \max\}} \right)$$

$$X \sim \mathcal{N}(0, \Gamma)$$

When $\Gamma = Id$,

$$\operatorname{Var}(f) = \int_0^\infty e^{-t} \mathbb{E} \left[\nabla f \cdot Q_t \nabla f \right] dt$$

General case

$$\operatorname{Var}(e^{\theta M_n/2}) = \int_0^\infty e^{-t} \sum_{i,j} \Gamma_{ij} \mathbb{E}\left[f_i Q_t f_j\right] dt$$

with
$$f_i = \partial_i \left(e^{\theta M_n/2}\right) = \frac{\theta}{2} \mathbb{1}_{\left\{X_i = \mathsf{max}\right\}} e^{\theta M_n/2}.$$

Similar as

$$\partial_i \Big(\max_j x_j \Big) = \partial_i \Big(\sum_i x_j \mathbb{1}_{\{x_j = \max\}} \Big) = \mathbb{1}_{\{x_i = \max\}}$$

Denote $\emph{I} = \mathrm{argmax}_i X_i$ and $\emph{I}^t = \mathrm{argmax}_i X_i^t.$

Denote
$$\emph{I} = \mathrm{argmax}_i X_i$$
 and $\emph{I}^t = \mathrm{argmax}_i X_i^t.$

$$\mathcal{I} = \mathbb{E}\left[\sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{X_i = \max\}} e^{\theta M_n/2} 1_{\{X_i^t = \max\}} e^{\theta M_n^t/2}\right]$$

Denote $\emph{I} = \mathrm{argmax}_i X_i$ and $\emph{I}^t = \mathrm{argmax}_i X_i^t.$

$$\mathcal{I} = \mathbb{E} \Big[\sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{X_i = \max\}} e^{\theta M_n/2} 1_{\{X_i^t = \max\}} e^{\theta M_n^t/2} \Big]$$
$$= \mathbb{E} \Big[e^{\theta (M_n + M_n^t)/2} \sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{I = i\}} 1_{\{I^t = j\}} \Big]$$

Denote $I = \operatorname{argmax}_i X_i$ and $I^t = \operatorname{argmax}_i X_i^t$.

$$\mathcal{I} = \mathbb{E}\left[\sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{X_i = \max\}} e^{\theta M_n/2} 1_{\{X_i^t = \max\}} e^{\theta M_n^t/2}\right]$$

$$= \mathbb{E}\left[e^{\theta (M_n + M_n^t)/2} \sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{I = i\}} 1_{\{I^t = j\}}\right]$$

$$= \mathbb{E}\left[e^{\theta (M_n + M_n^t)/2} \Gamma_{II^t}\right]$$

Denote $\emph{I} = \mathrm{argmax}_i X_i$ and $\emph{I}^t = \mathrm{argmax}_i X_i^t.$

$$\mathcal{I} = \mathbb{E} \Big[\sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{X_i = \max\}} e^{\theta M_n/2} 1_{\{X_i^t = \max\}} e^{\theta M_n^t/2} \Big] \\
= \mathbb{E} \Big[e^{\theta (M_n + M_n^t)/2} \sum_{i,j=1}^{n} \Gamma_{ij} 1_{\{I = i\}} 1_{\{I^t = j\}} \Big] \\
= \mathbb{E} \Big[e^{\theta (M_n + M_n^t)/2} \Gamma_{II^t} \Big] \\
= \sum_{k>0} \mathbb{E} \Big[e^{\theta (M_n + M_n^t)/2} \Gamma_{II^t} 1_{\{2^{-k-1} \le \Gamma_{II^t} \le 2^{-k}\}} \Big].$$

Cut the sum according to the size of Γ_{ij} .

$$\mathcal{I} \leq \sum_{k=0}^{k_0} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{\Gamma \geq r_0\}} \right] + \sum_{k=k_0+1}^{\infty} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{2^{-k-1} \leq \Gamma \leq 2^{-k}\}} \right]$$

$$\mathcal{I} \leq \sum_{k=0}^{k_0} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{\Gamma \geq r_0\}} \right] + \sum_{k=k_0+1}^{\infty} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{2^{-k-1} \leq \Gamma \leq 2^{-k}\}} \right]$$

$$\leq 2 \sum_{D \in \mathcal{C}(r_0)} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{I,I^t \in D\}} \right] + \sum_{k \geq 0} r_0 \mathbb{E} \left[e^{\theta F^t/2} 1_{\{2^{-k-1} \leq \Gamma \leq 2^{-k}\}} \right]$$

$$\mathcal{I} \leq \sum_{k=0}^{k_0} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{\Gamma \geq r_0\}} \right] + \sum_{k=k_0+1}^{\infty} 2^{-k} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{2^{-k-1} \leq \Gamma \leq 2^{-k}\}} \right] \\
\leq 2 \sum_{D \in \mathcal{C}(r_0)} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{I,I^t \in D\}} \right] + \sum_{k \geq 0} r_0 \mathbb{E} \left[e^{\theta F^t/2} 1_{\{2^{-k-1} \leq \Gamma \leq 2^{-k}\}} \right] \\
= 2 \sum_{D \in \mathcal{C}(r_0)} \mathbb{E} \left[e^{\theta F^t/2} 1_{\{I,I^t \in D\}} \right] + r_0 \mathbb{E} \left[e^{\theta F^t/2} \right].$$

$$\mathbb{E}\left[e^{ heta F^t/2}
ight] \leq \mathbb{E}[e^{ heta M_n}]$$
 Cauchy-Schwarz, Gaussian rotational invariance

 $\mathbb{E}\left[e^{\theta F^t/2}\right] \leq \mathbb{E}[e^{\theta M_n}] \text{ Cauchy-Schwarz, Gaussian rotational invariance}$ Use of Hölder's inequality

$$\begin{split} \mathbb{E}\left[e^{\theta F^t/2}\mathbf{1}_{\{I,I^t\in D\}}\right] &= \mathbb{E}\left[e^{\theta M_n/2}\mathbf{1}_{\{I\in D\}}\,e^{\theta M_n^t/2}\mathbf{1}_{\{I^t\in D\}}\right] \\ &\leq \mathbb{E}\left[e^{\theta p M_n/2}\mathbf{1}_{\{I\in D\}}\right]^{1/p}\,\mathbb{E}\left[e^{\theta q M_n^t/2}\mathbf{1}_{\{I^t\in D\}}\right]^{1/q}. \end{split}$$

By hypercontractivity,

$$\mathbb{E}\left[e^{\theta q M_n^t/2} \mathbf{1}_{\{I^t \in D\}}\right]^{1/q} = \mathbb{E}[Q_t^q (e^{\theta M_n/2} \mathbf{1}_{\{I \in D\}})]^{1/q}$$

By hypercontractivity,

$$\mathbb{E}\left[e^{\theta q M_n^t/2} 1_{\{I^t \in D\}}\right]^{1/q} = \mathbb{E}[Q_t^q (e^{\theta M_n/2} 1_{\{I \in D\}})]^{1/q} \leq \mathbb{E}\left[e^{\theta p M_n/2} 1_{\{I \in D\}}\right]^{1/p}$$

then

By hypercontractivity,

$$\mathbb{E}\left[e^{\theta q M_n^t/2} 1_{\{I^t \in D\}}\right]^{1/q} = \mathbb{E}[Q_t^q (e^{\theta M_n/2} 1_{\{I \in D\}})]^{1/q} \leq \mathbb{E}\left[e^{\theta p M_n/2} 1_{\{I \in D\}}\right]^{1/p}$$

then

$$\mathbb{E}\left[e^{\theta F^t/2} 1_{\{I,I^t \in D\}}\right] \leq \mathbb{E}\left[e^{\theta p M_n/2} 1_{\{I \in D\}}\right]^{2/p}$$

By hypercontractivity,

$$\mathbb{E}\left[e^{\theta q M_n^t/2} 1_{\{I^t \in D\}}\right]^{1/q} = \mathbb{E}[Q_t^q (e^{\theta M_n/2} 1_{\{I \in D\}})]^{1/q} \leq \mathbb{E}\left[e^{\theta p M_n/2} 1_{\{I \in D\}}\right]^{1/p}$$

then

$$\mathbb{E}\left[e^{\theta F^t/2} \mathbf{1}_{\{I,I^t \in D\}}\right] \leq \mathbb{E}\left[e^{\theta p M_n/2} \mathbf{1}_{\{I \in D\}}\right]^{2/p}$$

by Hölder's inequality

$$\mathbb{E}\left[e^{\theta F^t/2}1_{\{I,I^t\in D\}}\right]\leq \mathbb{P}(I\in D)^{\frac{2-p}{p}}\,\mathbb{E}\left[e^{\theta M_n}1_{\{I\in D\}}\right].$$

Finally with the property of the covering $C(r_0)$.

$$\mathcal{I} \leq \left(r_0 + C\rho(r_0)^{\frac{2-p}{p}}\right) \mathbb{E}[e^{\theta M_n}].$$

Similar results

▶ Gaussian stationary processes on \mathbb{R}^d .

- ▶ Gaussian stationary processes on \mathbb{R}^d .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$

- ▶ Gaussian stationary processes on \mathbb{R}^d .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$ (infinite group of finite type+volume growth condition ok).

- ▶ Gaussian stationary processes on \mathbb{R}^d .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$ (infinite group of finite type+volume growth condition ok).
- ▶ Uniform measure on the sphere $S^{n-1} \subset \mathbb{R}^n$.

- ▶ Gaussian stationary processes on \mathbb{R}^d .
- ▶ discrete Gaussian free field on \mathbb{Z}^d , $d \ge 3$ (infinite group of finite type+volume growth condition ok).
- ▶ Uniform measure on the sphere $S^{n-1} \subset \mathbb{R}^n$.
- ▶ Log-concave measures on \mathbb{R}^n with convexity assumptions.

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

- ▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]
- convergence in distribution Gumbel randomly shifted [Bramson-Ding-Zeitouni '15].

Hypercontractivity relevant Gaussian processes \simeq independent case (variance $\sim \frac{1}{\log n}$).

discrete Gaussian free field on \mathbb{Z}^2 completely different behavior.

- ▶ $Var(M_n) = O(1)$ [Bramson-Ding-Zeitouni]
- convergence in distribution Gumbel randomly shifted [Bramson-Ding-Zeitouni '15].

Hypercontractivity alone doesn't work .

