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Outline of the Talk

I Introduction

I Basic facts on monotone rearrangement

I Transporting Poincaré inequalities

I Application in Superconcentration

I Extreme Theory and non-asymptotic deviation inequalities

I Transporting isoperimetric inequalities.
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Introduction

Concentration theory : effective tool in various mathematical areas

I Probability in high dimension

I Probability in Banach spaces

I Empirical process

I Mechanical statistics

I · · ·

Lack of precision for particular example ?
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Standard Gaussian measure

γn standard Gaussian measure on Rn, f : Rn → R smooth enough

Poincaré’s inequality

Varγn(f ) ≤
∫
Rn

|∇f |2dγn

Consequence

If X ∼ N (0, Γ) then

Var( max
i=1,...,n

Xi ) ≤ max
i=1,...,n

Var(Xi )

At this level of generality, this inequality is sharp but does not depend
on Γ. problem ?
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Toy model, Γ = Id

Mn = maxi=1,...,n Xi .

I Var(Mn) ≤ 1 (classical theory). Correct ?

I Var(Mn) ≤ C/ log n (direct calculus).

Poincaré’s inequality sub-optimal for some functionals =
Superconcentration (Chatterjee)
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Branching Random Walk

I T binary tree with depth n.

I Xe i .i .d . N (0, 1) on each edge e.

I Take a path π ∈ P
(
T
)

and set Xπ =
∑

e∈π Xe .

Var(max
π∈P

(
T
) Xπ) ≤ ?

I Classical theory : Var(max
π∈P

(
T
) Xπ) ≤ n (Xπ ∼ N (0, n)).

I In fact, Var(max
π∈P

(
T
) Xπ) = O(1) [Bramson-Ding-Zeitouni].

Tools : modified second moment method combined with comparison
arguments (very technicals proof).
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Random matrix theory

X = (Xij)1≤i ,j≤n random matrix from the GUE.

I Xij ∼ NC(0, σ2), i < j i.i.d.

I Xii ∼ NR(0, σ2/2) i.i.d.

I X hermitian (tX = X )

Largest eigenvalue

λmax = sup
|u|=1

n∑
i ,j=1

Xijuiuj

Relevant regime : σ2 ∼ 1/n.
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Random matrix theory

Var(λmax) ≤ ?

I Var(λmax) ≤ C/n (classical theory)

I Var(λmax) ≤ C/n4/3 [Ledoux-Rider].

convergence in law ?

Theorem [Tracy-Widom]

n2/3(λmax − 1)
L−→ TW
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Other examples

I First time passage in percolation theory.

I Free energy in spin glass theory (REM, GREM, SK, . . . ).

I Discrete Gaussian Free Field Z2.

I Order statistics from an i.i.d. sample (maximum, median,. . . ).

I lp, p > 2 norm of standard Gaussian vector.

I Largest particule (in moduli) of Coulomb gazes.

I · · ·

I Each models, ad-hoc methods, sometimes very technicals

I Common properties ? Is it possible, in general, to improve (even
slightly) upon classical concentration ?
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Framework

I Approach of my thesis : semi-groups interpolation and
hypercontractive arguments.

I Today : approach by Optimal Transport

We will consider product measures : µ1 ⊗ . . .⊗ µn and ν1 ⊗ . . .⊗ νn.
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Basic facts on monotone rearrangement
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Basics Facts

Let ν be a probability measure on R with density h w.r.t. the Lebesgue
measure and cumulative distribution function H.

Similarly, consider µ with its density g and cumulative distribution
function G .

Monotone rearrangement

Let t : R→ R be the function pushing µ onto ν
i.e. ∫ x

−∞
dµ =

∫ t(x)

−∞
dν
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Monotone rearrangement on the real line

For x ∈ R ∫ x

−∞
dµ =

∫ t(x)

−∞
dν ⇐⇒ G (x) = H

(
t(x)

)

After differentiation

g(x) = h
(
t(x)

)
t ′(x) ⇐⇒ t ′(x) =

g(x)

1− G (x)
×

1− H
(
t(x)

)
h
(
t(x)

)
Notation : hazard function associated to µ : κµ(x) = g(x)

1−G(x)

thus t ′(x) =
κµ(x)

κν
(
t(x)

)
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Transport of product measure in Rn

Step 1 : choose ν as γ1 the standard Gaussian measure on R and µ as
the symmetric Exponential measure (with density g(x) = 1

2e
−|x |).

Step 2 : consider the monotone rearrangement t : R→ R transporting
µ onto γ1.

Step 3 : Set T : Rn → Rn as

T (x1, . . . , xn) =
(
t(x1), . . . , t(xn)

)
x = (x1, . . . , xn) ∈ Rn

Notice : T transports µn onto γn and Varγn(f ) = Varµn(f ◦ T ) for
f : Rn → R smooth enough
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Transporting Poincaré inequality
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Weighted Poincaré’s inequality

Poincaré’s inequality for the Exponential measure

Varµn(f ) ≤ 4

∫
Rn

|∇f |2dµn

then

Varγn(f ) = Varµn(f ◦ T ) ≤ 4
n∑

i=1

∫
Rn

(∂i f )2 ◦ T (x)t ′2(xi )dµ
n(x)

.

Estimate the behavior of t ′ ◦ t−1 (which can be expressed in terms of
κµ and κγ1) to bound the variance of f under γn
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Sample result

Lemma

With the preceding setting, we have the following estimates

|t ′ ◦ t−1(x)| ≤ C

1 + |x |
, x ∈ R

Thus,

Standard Gaussian measure example [T.]

Varγn(f ) ≤ C
n∑

i=1

∫
Rn

(∂i f (x))2

(
1

1 + |xi |

)2

dγn(x)

Notice : Houdré-Bobkov et Bobkov-Ledoux already obtained the
preceding inequality (in dimension 1) by other means. It is also an
explicit version of Gozlan’s theoretical work on weighted Poincaré’s
inequalities.
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Application in Superconcentration
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Application in Superconcentration

f (x) = maxi=1,...,n xi =
∑n

i=1 xi1Ai
with Ai = {xi = maxj=1,...,n xj}.

(Ai )i=1,...,n is a partition of Rn and ∂i f = 1Ai
.

Set Mn = maxi=1,...,n Xi with Xi ∼ N (0, 1) i.i.d, then

Var(Mn) ≤ C ′E
[

1

1 + M2
n

]
≤ C ′

1 + log n
+ C ′P(Mn ≤

√
log n)

≤ C ′

1 + log n
+
[
1− P(X1 ≥

√
log n)

]n
≤ C ′′

1 + log n
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Other applications

I For the Gaussian measure : we can study others functionnals
(median, lp-norms) and recover some work of Boucheron-Thomas
and Paouris-Valettas-Zinn.

I Large choice of measure : for instance, log-concave measure can
be studied. For instance, if µn = Z−1e−|x |

α/α, α ≥ 1 we obtained
(with the same methodology).

Proposition [T.]

Var(Mn) ≤ C

1 + Cα[ln(n)]2(α−1)/α

Note : as far as we know, this can’t be obtained by hypercontractive
arguments (when α > 2).This is also sharp with respect to Extreme
Theory.
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Product measure with non-identical factors

Coulomb Gazes : density of {z1, . . . , zn}

(z1, . . . , zn) ∈ Cn 7→
n∏

j=1

e−n|zj |
α

∏
1≤j<l≤n

|zj − zk |2, α ≥ 1

Consider |z |(1) ≥ . . . |z |(n).

Lemma [Rider] : representation of the largest (in moduli) particule

|z |(1)
L
= max

i=1,...,n
Ri ,

Ri all independent with density proportional to t 7→ t2i−1e−nt
α

1t≥0.
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Coulomb gazes

Step 1 : use map T to transports product of Exponential measure µn

onto ν1 ⊗ . . .⊗ νn with νi = L(Ri ).

Step 2 : estimate maxi=1,...,n |t ′i ◦ t
−1
i (x)|.

Non-asymptotic variance bounds

Var
(
|z |(1)

)
≤ Cα

n log n

Sharp with respect to some asymptotic results from Rider and
Chafäı-Péché.
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Extreme Theory and non-asymptotic deviation
inequalities

Kevin Tanguy Superconcentration and Optimal Transport



Convergence of Extremes

Recall the following fact, in the Gaussian case,√
2 log n(Mn − bn) −→

L
Λ0, n→∞

with P(Λ0 ≥ x) = 1− e−e
−t
, t ∈ R (Gumbel distribution).

What about deviation inequalities ?

i.e. P
(√

log n
(
Mn − E[Mn]

)
≥ t

)
≤ Ce−ct

It should reflect the size of the variance of Mn and the asymptotics of
Λ0 (here on the right tail).
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Extension to an exponential level : two further arguments

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ > 0

then

P
(√

K−1(Z − E[Z ]) ≥ t
)
≤ 3e−ct , t ≥ 0 (1)

Goal : obtain (1) with K ∼ Var(Mn).To this task, we use Harris’
negative association inequality

Lemma

Let f : Rn → R non-increasing and g : Rn → R non-decreasing, then

E
[
f (X )g(X )

]
≤ E

[
f (X )

]
E
[
g(X )

]
, X = (X1, . . . ,Xn)

with Xi independent random variables.
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Application in the Gaussian case

Standard Gaussian measure example [T.]

Combine all of this

Varγn(f ) ≤ C
n∑

i=1

∫
Rn

(∂i f (x))2

(
1

1 + |xi |

)2

dγn(x)

Step 1 : apply to f (x) = e
θ
2

maxi=1,...,n xi , θ > 0 to get

Var(eθMn/2) ≤ C
θ2

4
E
[
eθMn

1

1 + (Mn)2

]
(we used again the fact (Ai )i=1,...,n is a partition).
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Application in the Gaussian case

Step 2 : (x1, . . . , xn) 7→ 1
1+maxi=1,...,n xi

is a non-increasing function, so

apply Harris’s Lemma :

Var(eθMn/2) ≤ C
θ2

4
E
[
eθMn

]
E
[

1

1 + (Mn)2

]

Step 3 : conclude with previous bounds on E
[

1
1+(Mn)2

]
and the

concentration Lemma.

Notice : all we needed was a bound on the variance of Mn and the fact
that the map t ′ ◦ t−1(x) was dominated by a non-increasing function.
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Transporting Isoperimetric inequalities
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Left tail of Gumbel’s distribution

Recall that P(Λ0 ≤ x) = e−e
−x

: fast decay for the Gumbel’s left tail.

Question : is it possible to obtain non-asymptotic deviation inequalities
like for measure belonging to the Gumbel’s domain of attraction ?

Is it possible to transport stronger functional inequalities to obtain
something relevant in the domain of attraction of Gumbel’s

distribution ?
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Isoperimetric inequalities

Classical Euclidean isoperimetric problem : at volume being fixed what
are the borel sets that minimize the surface area ?

Solving an isoperimetric problem is hard in general since it consists to
find the extremal sets (here Euclidean balls).

To avoid the issue of surface area an isoperimetric problem can be
stated, equivalently, in terms of enlargements.

Euclidean isoperimetric inequality

Let A ⊂ Rn and B a Euclidean ball such that Voln(A) = Voln(B),then

Voln(Ar ) ≥ Voln(Br ), r ≥ 0

with Ar = A + rB2 and B2 stands for the unitary Euclidean ball.
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Gaussian isoperimetric inequalities

Same question with the standard Gaussian measure γn on Rn instead
of the Lebesgue measure Voln ?

Extremal sets are half space : H = {x ∈ Rn, x1 ≤ a} and
γn(H) = Φ(a) where Φ stands for the c.d.f. of standard Gaussian r.v.

Gaussian isoperimetry

Let A ⊂ Rn and H an half space s.t. γn(A) = γn(H), then

γn(Ar ) ≥ γn(Hr ) = Φ(a + r), ∀r ≥ 0,

Notice : if γn(A) ≥ 1/2 = Φ(0) then γn(Ar ) ≥ Φ(0 + r) ≥ 1− e−r
2/2.
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From isoperimetry to concentration

It can be equivalently stated in terms of function.

Gaussian concentration for Lipschitz function

γn

(∣∣f −Med(f )
∣∣ ≥ t

)
≤ 2e−t

2/2L2
, t ≥ 0

Remark : f (x) = max1,...,n xi is 1-Lipschitz and preceding inequality
yields

P
(∣∣Mn − E[Mn]

∣∣ ≥ t

)
≤ Ce−t

2/2, t ≥ 0

It does not reflect the size of Var(Mn) neither the asymptotics of the
Gumbel !
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Transporting isoperimetric inequalities improves the
concentration

Talagrand obtained isoperimetric inequalities (with different
enlargements) for the symmetric Exponential measure.

Transporting it onto γn improve concentration results. As a
consequence it implies

Transporting Talagrand’s inequality

P
(√

log n
∣∣Mn − E[Mn]

∣∣ ≥ t

)
≤ Ce−ct , t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. N (0, 1).

Remark : reflects the size of Var(Mn) and the right tail of Gumbel’s
distribution (but not the left tail !). Similar results for correlated
Gaussian random variables have been obtained by Tanguy.
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Reaching the left tail in Gumbel’s domain of attraction

One way to reach the asymptotics of the left tail of the Gumbel’s
distribution is to use another isoperimetric inequality. Bobkov obtained
an isoperimetric inequality for the Exponential measure on Rn

+.

This times he only considered particular sets A ⊂ Rn
+ (well suited for

maximum) and used uniform enlargements B∞ instead of Euclidean.

Transporting Bobkov’s inequality

P(Mn − E[Mn] ≤ −t) ≤ Ce−e
ct
, t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. Gamma random variables.

Sharp with respect to Extreme theory (left tail of Gumbel’s
distribution). Still work for log-concave measure on Rn

+.

Kevin Tanguy Superconcentration and Optimal Transport



Reaching the left tail in Gumbel’s domain of attraction

One way to reach the asymptotics of the left tail of the Gumbel’s
distribution is to use another isoperimetric inequality. Bobkov obtained
an isoperimetric inequality for the Exponential measure on Rn

+.

This times he only considered particular sets A ⊂ Rn
+ (well suited for

maximum) and used uniform enlargements B∞ instead of Euclidean.

Transporting Bobkov’s inequality

P(Mn − E[Mn] ≤ −t) ≤ Ce−e
ct
, t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. Gamma random variables.

Sharp with respect to Extreme theory (left tail of Gumbel’s
distribution). Still work for log-concave measure on Rn

+.

Kevin Tanguy Superconcentration and Optimal Transport



Reaching the left tail in Gumbel’s domain of attraction

One way to reach the asymptotics of the left tail of the Gumbel’s
distribution is to use another isoperimetric inequality. Bobkov obtained
an isoperimetric inequality for the Exponential measure on Rn

+.

This times he only considered particular sets A ⊂ Rn
+ (well suited for

maximum) and used uniform enlargements B∞ instead of Euclidean.

Transporting Bobkov’s inequality

P(Mn − E[Mn] ≤ −t) ≤ Ce−e
ct
, t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. Gamma random variables.

Sharp with respect to Extreme theory (left tail of Gumbel’s
distribution). Still work for log-concave measure on Rn

+.

Kevin Tanguy Superconcentration and Optimal Transport



Reaching the left tail in Gumbel’s domain of attraction

One way to reach the asymptotics of the left tail of the Gumbel’s
distribution is to use another isoperimetric inequality. Bobkov obtained
an isoperimetric inequality for the Exponential measure on Rn

+.

This times he only considered particular sets A ⊂ Rn
+ (well suited for

maximum) and used uniform enlargements B∞ instead of Euclidean.

Transporting Bobkov’s inequality

P(Mn − E[Mn] ≤ −t) ≤ Ce−e
ct
, t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. Gamma random variables.

Sharp with respect to Extreme theory (left tail of Gumbel’s
distribution). Still work for log-concave measure on Rn

+.

Kevin Tanguy Superconcentration and Optimal Transport



Thank you for your attention
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