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Abstract

This note is concerned with lower tail estimates for product measures.

Some improved deviation inequalities are obtained for functions satisfying

some regularity and monotonicity assumptions. The arguments are based

on semigroup interpolation together with Harris’s negative association

inequality and hypercontractive estimates.

1 Introduction

As an introduction we recall some facts about Gaussian concentration of
measure (cf. [14]) and Superconcentration theory (cf. [7]).

It is well known that concentration of measure is an e↵ective tool in various
mathematical areas (cf. [6]). In a Gaussian setting, classical concentration
results typically state that, for a Lipschitz function f : Rn

! R with Lipschitz
constant kfkLip,

�n
�
|f � E�n [f ]| � t

�
 2e

� t2

2kfk2
Lip , t � 0, (1.1)

with �n the standard Gaussian measure on Rn. Another example of concen-
tration of measure is the Poincaré inequality satisfied by �n. Namely, for
f 2 L2(�n) smooth enough :

Var�n(f) 

Z

Rn

|rf |2d�n, (1.2)

where | · | stands for the Euclidean norm on Rn. As e↵ective as (1.1) and (1.2)
are, their generality can lead to sub-optimal bounds in some particular cases.
For instance, consider the 1-Lipschitz function on Rn f(x) = maxi=1,...,n xi. At
the level of the variance, (1.2) gives

Var(Mn)  1,

with Mn = maxi=1,...,n Xi where (X1, . . . , Xn) stands for a standard Gaussian
random vector in Rn, whereas it has been proven that Var(Mn)  C/ log n
with C > 0 a numerical constant. At an exponential level (1.1) is not satisfying
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either. Indeed, it is well known in Extreme Value theory (cf. [12], pages 14�15)
that Mn can be renormalized by some numerical constants an =

p
2 log n and

bn = an �
log 4⇡+log logn

2an
, n � 1, such that

an(Mn � bn) ! ⇤0 as n ! 1

in distribution where ⇤0 corresponds to the Gumbel distribution with cumula-
tive distribution function :

P(⇤0  x) = exp(�e�x), x 2 R.

Then, it is clear that the asymptotics of ⇤0 are not Gaussian but rather
exponential on the right tail and double exponential on the left tail. It is
now obvious that (1.1) and (1.2) lead to sub-optimal results for the function
f(x) = maxi=1,...,n xi. This is referred to as Superconcentration phenomenon
(cf. [7]). This kind of phenomenon occurs for di↵erent functionals of Gaussian
random variables and has been studied in [5, 20, 21, 19, 24]. . . .

Recently, additional convexity assumptions have been fruitfully used by
Paouris and Valettas in order to improve the concentration inequality (1.1).
In the context of small ball probabilities and random Dvoretzky’s Theorem,
these two authors improved the lower tail of any convex function, thanks to
Ehrard’s inequality, in [17]. More precisely, they obtained

Theorem 1.1. [Paouris,Valettas] Let f : Rn
! R be a convex function, then

the following holds

�n

✓
f �

Z

Rn

fd�n  �t

◆
 e

�c t2

Var�n (f) , t > 1 (1.3)

where c > 0 is a universal constant.

Remark. Of course, the improvements stays in the fact that Var�n(f)  kfk2Lip
as we have just seen on the basic example of the maximum of n independent
standard Gaussian random variables. Ehrhard’s inequality has also been used
by Valettas in [24] where he proved that (1.1) is tight if the convex function f
is not superconcentrated.

Besides, the work from [17] has been used by Valettas to produce some
variations of Theorem 1.1. Indeed, as consequence of his inequality with Paouris,
combined with transportation-type arguments, he obtained (cf. [24], section
2.1.3) concentration inequalities for nondecreasing, convex functions in a log-
concave measures setting.

A similar result as Theorem 1.1 or 1.3 has also been obtained in [9]. Instead
of convexity, the author of [9] assumes that f belongs to the set

H+ = {f 2 C2(Rn,R) ; monotone with @2ijf � 0, 8i, j = 1, . . . , n}

and obtained the following lower deviation estimate
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Theorem 1.2 (Nguyen Tien). Let f 2 H+ be, then the following holds

�n

✓
f �

Z

Rn

fd�n  �t

◆
 e

� t2

Var�n (f) , t � 0. (1.4)

The purpose of this note is the following : semigroup’s arguments together
with Harris negative association Lemma and hypercontractive estimates will be
used to obtain a deviation inequality for the lower tail of functions belonging to
F+ where

F+ = {f 2 C2(Rn,R) ; @if � 0, @2ijf � 0, 8i, j = 1, . . . , n}.

The obtained deviation inequalities can be seen as an extension, for the lower
tail, of Theorem 1.2. The cost of this extension is the larger quantity krfk2� (in-
stead of Varµ(f)) in the exponential. As it will be explained in remark 1, if the
measures (µi)i=1,...,n are symmetric, one can substitute F+ by the larger setH+.

At this stage, let us also notice that there exists some functions in F+

which are not convex. In dimension 2, f is not convex if Det
�
Hess f(x, y)

�
< 0

for some (x, y) 2 R2 (i.e. A = (x, y) is a saddle point and Hessf is not positive
semi-definite).

For instance, consider the real function f(x) = max(x, 0) and set h(x, y) =
f(x)2 + 4f(x)f(y) + f(y)2 for any (x, y) 2 R2. Then h is an element of F+

which is not convex. As another example, one can consider the function

f(x) =

⇢
x+ 1 when x � 0,
ex otherwise.

Then, set g(x, y) = f(x)2 + 22f(x)f(y) + f(y)2. It is a simple matter to
check that g 2 F+. Besides, g is not convex on R2 since Det

�
Hess g(x, y)

�
< 0

on R2
+. In conclusion, H+ and F+ are not restricted classes of the set of convex

functions.

Now, let us describe in more details our setting and state our main result.

Let n � 1 be fixed and consider µ = µ1⌦ . . .⌦µn where, for any i = 1, . . . , n,
dµi = e�Vi(x)dx are probability measures on B(R), the Borel �-algebra of R,
and Vi : R ! R are smooth potentials. In the sequel, we will assume that there
exists i 2 R such that

V 00
i (x) � �i 8x 2 R and i = 1, . . . , n

and will denote by  = maxi=1,...,n i.

Now, let us recall some facts about functional inequalities and their
links with related semigroups. General references on semigroups, functional
inequalities and concentration of measures are [1, 14, 6].
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In our setting, dµ(x) = e�V (x)dx is a probability measure on B(Rn), the
Borel �-algebra of Rn, with

V (x) =
nX

i=1

Vi(xi) and x = (x1, . . . , xn) 2 Rn.

It is classical that such measures can be seen as an invariant and reversible
measure of the associated di↵usion operator L = ��rV ·r. The operator L
generates the Markov semigroup of operators (Pt)t�0 and defines by integration
by parts the Dirichlet form

E(f, g) =

Z

Rn

f(�Lg)dµ =

Z

Rn

rf ·rgdµ (1.5)

for some smooth functions f, g on Rn. The set of functions for which the
preceding expression make sense is called the Dirichlet domain of L. We denote
by D(L) such set.

Given such a couple (L, µ), it is said to satisfy a spectral gap, or Poincaré,
inequality if there is a constant � > 0 such that for all functions f of the Dirichlet
domain

�Varµ(f)  E(f, f). (1.6)

with Varµ(f) =
R
Rn f2dµ � (

R
Rn fdµ)2. Similarly, it satisfies a logarithmic

Sobolev inequality if there exists a constant ⇢ > 0 such that for all functions f
of the Dirichlet domain,

⇢Entµ(f
2)  2E(f, f). (1.7)

with Entµ(f) =
R
Rn f log fdµ� (

R
Rn fdµ)(log

R
Rn fdµ) and f > 0.

One speaks of the spectral gap constant (of (L, µ)) as the largest � > 0
for which (1.6) holds, and of the logarithmic Sobolev constant (of (L, µ)) as
the best ⇢ > 0 for which (1.7) holds. We still use � and ⇢ to designate these
constants. It is classical (cf. [14]) that ⇢  �.

Let (Pt)t�0 be a Markov semigroup with generator L acting on a suitable
class of functions on

�
Rn,B(Rn)

�
. A particular feature of the logarithmic

Sobolev inequalities is the (equivalent, cf. [10]) hypercontractive property of
the semigroup (Pt)t�0. Precisely, the logarithmic Sobolev inequality (1.7) is
equivalent to saying that, whenever p � 1 + e2⇢t, for all functions f in Lp(µ),

kPt(f)k2  kfkp. (1.8)

For simplicity, we say below that a probability measure µ, in this context,
is hypercontractive with constant ⇢.

Finally, let us also recall that an Orlicz norm k · k� is defined as follow :
given a Young function �, set
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kfk� = inf

⇢
c > 0 ;

Z

Rn

�

✓
|f |

c

◆
dµ � 1

�

the associated Orlicz norm of a measurable function f : Rn
! R. In the

sequel, let � : R+ ! R+ be convex such that �(x) = x2

log(e+x) for x � 1 and

�(0) = 0. To ease the notation, we set krfk2� as a shorthand for
Pn

i=1 k@ifk
2
�

where @i, for any i 2 {1, . . . , n}, stands for the i-th partial derivative operator.

In this context, the following Theorem is our main result.

Theorem 1.3. Within the preceding framework, assume that (µi)i=1,...,n are
hypercontractive with constant ⇢. Then, for any smooth f 2 F+ we have

Entµ(e
�f )  C⇢,krfk2�Eµ[e

�f ] (1.9)

where C⇢, = 2e[1+(/⇢)]+

⇢(1�e�1) . In particular, the following holds

µ

✓
f �

Z

Rn

fdµ  �t

◆
 e

�c⇢,�
t2

2krfk2
� , t � 0 (1.10)

where c⇢,� > 0 is a universal constant.

Remark. 1. In practice, it is classical to bound (cf. [8] )krfk2� by the fol-
lowing quantity :

krfk2� =
nX

i=1

k@ifk
2
�  C

nX

i=1

k@ifk22
1 + log k@ifk1/k@ifk2

with C > 0 a numerical constant.

2. When, the standard Gaussian measure is considered

i.e. Vi(x) =
x2

2
, i = 1, . . . , n and x 2 R

the quantity krfk2� can be replaced by the variance Var�n(f) which is
smaller. This is essentially Tien’s result 1.2.

3. When the measures (µi)i=1,...,n are symmetric (e.g. the Gaussian measure
�n), one can consider the set H+ instead of F+. Indeed, suppose f 2 H+

is not increasing then it is enough to perform a change of variable and
consider f(�x) 2 F+.

We want to highlight the fact that only  2 R is required here, it appears
as a mild property shared by numerous potentials such as, for example,
double-wells potentials on the line of the form V (x) = ax4

� bx2, a, b > 0. The
stronger strict convexity assumption V 00

� ⇢ > 0 (satisfied by the standard
Gaussian measure �n) actually implies that µ satisfies a logarithmic Sobolev
inequality, and thus hypercontractivity, with constant ⇢ (cf. [1]).

To better understand where the improvement lies in Theorem 1.3 Let us
recall some facts : for a smooth function f : Rn

! R it is known (cf. the
introduction of [24] and references therein) that



2 TOOLS 6

Varµ(f)  krfk2�  Eµ[|rf |2]  kfk2Lip

and each terms can be di↵erent from one another. For instance (cf. [7, 22, 5]),
in a Gaussian case, if f(x) = maxi=1,...,n xi

Var�n(f) '
1

log n
' krfk2� and E�n [|rf |2] = kfk2Lip = 1.

If f(x) = Med(x1, . . . , xn), we have

Var�n(f) '
1

n
, krfk2� '

1

log n
and E�n [|rf |2] = kfk2Lip = 1.

Let us mention that (1.1) has already been improved for convex functions,
with E�n [|rf |2] instead of kfk2Lip in [23, 4] (cf. [18] section 5.2). Thus, in
Theorem 1.3, we obtain something slightly better. However, this bound is a
priori larger (except for the Gaussian case) than the one involving Varµ(f)
which would be the desired one for every µ.

Now, let us describe the organization of the article. Section 2 is concerned
with semigroup facts and negative association. In section 4 we prove Theorem
1.3. Section 4 will describe some extensions. Finally, in section 5, we say a few
words about Theorem 1.2.

In the sequel, we will always assume that the functions are su�ciently inte-
grable with respect to µ in order that studied inequalities make sense and the
commutation between integrals and derivatives are legit. Also, by convention,
C > 0 is a numerical constant that may change at each occurence.

2 Tools

2.1 Semigroup properties

In this section, we present some tools needed to prove Theorem 1.3. In the
context described in the introduction, let us collect some important properties
of the semigroup (Pt)t�0. Again, for more details, the reader is referred to [1]
(or [13], pages 306� 328, for a shorter exposition).

Proposition 2.1. Within the preceding framework, the following holds

• For any smooth function f : Rn
! R, the semigroup (Pt)t�0 solves the

heat equation associated to L.

i.e. @tPt(f) = LPt(f) = Pt(Lf) for any t � 0. (2.1)

• (Pt)t�0 is ergodic : for any smooth function f : Rn
! R.

lim
t!+1

Pt(f) = Eµ[f ]. (2.2)
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• For any i = 1, . . . , n and any smooth function f : Rn
! R, the uni-

form lower bound V 00
i � �i, is equivalent to the following commutation

property
|@iPt(f)|  etPt(|@if |) for any t � 0 (2.3)

where  = maxi=1,...,n i.

Remark. 1. When µ = �n the commutation property (2.3) is exact (cf. [13,
1]) Namely, for any i = 1, . . . , n and any smooth function f : Rn

! R

@iPt(f) = e�tPt(@if) for any t � 0. (2.4)

This fact can also be checked on the representation formula (2.10) given
in the sequel.

2. The uniform lower bound V 00
i � �i, for any i = 1, . . . , n, can be seen

as a strong gradient bound and is part of Bakry-Emery’s theory (cf. [8],
Corollary 3 and equation (22) therein in particular).

2.2 Semigroup representation of the Entropy

As it will be needed in the sequel, we state below some representation (cf.
[1] section 5.5 or section 2.1 in [13]) of the entropy of a function along the
semigroup (Pt)t�0.

Entµ(f
2) =

Z +1

0

Z

Rn

|rPt(f2)|

Pt(f2)
dµdt. (2.5)

As it is exposed in [8], when µ satisfies a logarithmic Sobolev inequality there
is no need to deal with large value of t in (2.5). Indeed, a logarithmic Sobolev
inequality is equivalently stated as a exponential decay of the entropy along the
semigroup. Namely,

Entµ
�
Pt(f)

�
 e�2t⇢Entµ(f) for every t � 0 (2.6)

and every positive function f in L1(µ). Therefore, the combination of the
preceding representation (2.5) by semigroup together with the exponential decay
of the the entropy (cf. [1] page 244) along the semigroup we have, for any T > 0,

Entµ(f
2) 

1

1� e�2⇢T

Z T

0

Z

Rn

|rPt(f2)|

Pt(f2)
dµdt. (2.7)

In the sequel, we choose e.g. T = 1
2⇢ .

2.3 Semigroup and Harris inequality

As mentioned earlier, in order to investigate the lower tail, one has to use neg-
ative association inequality. Therefore we state below Harris’s Lemma (cf.[6]
page 43) and see how it can be combined with semigroups. Recall that mono-
tonicity or convexity properties of a function f : Rn

! R are understood
coordinate-wise.
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Proposition 2.2 (Harris’s negative association inequality). Let f : Rn
! R

and g : Rn
! R two monotone functions with di↵erent monotonicity, then

E
⇥
f(X)g(X)

⇤
 E

⇥
f(X)

⇤
E
⇥
g(X)

⇤
for X = (X1, . . . , Xn) (2.8)

with Xi independent random variables.

In the sequel, this proposition will also be used at the level of the semigroup.
That is to say for the underlying heat kernel measure pt(x, dy) which is defined
(cf. [1] page 12) as

Pt(f)(x) =

Z

Rn

f(y)pt(x, dy) with t � 0 and x 2 Rn.

This is the content of the following Lemma.

Lemma 2.1. Let t � 0 and x 2 Rn be fixed and consider f and g two monotone
functions with di↵erent monotonicity, then

Pt(fg)(x)  Pt(f)(x)Pt(g)(x).

The following Lemma explains, in our context, that the semigroup (Pt)t�0

preserves monotonicity properties of a function.

Lemma 2.2. Let f : Rn
! R be monotone, then x 7! Pt(f)(x), t � 0 shares

the same monotonicity properties as the function f .

Proof. As it is exposed in [15], in our setting, we have the following representa-
tion of rPtf(x) for any x 2 Rn and t � 0.

rPtf(x) = E
⇥
rf(Xt)e

�
R t
0 V 00(Xs)ds

��X0 = x
⇤
. (2.9)

Thus, x 7! Ptf(x) shares the same monotonicity properties as f .

Remark. 1. In the Gaussian setting, for quadratic potentials, this property is
obvious thanks to Mehler’s formula which gives an explicit representation
of the Ornstein-Uhlenbeck semigroup :

Ptf(x) =

Z

Rn

f(xe�t +
p
1� e�2ty)d�n(y), t � 0, x 2 Rn. (2.10)

2. Representation as (2.9) is part of the so-called intertwinnings relation
between a semigroup with some di↵erential operator (cf.[3, 2] and
references therein).

3. The fact that a semigroup preserves the monotonicity of a function has
also been investigate in [16].
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3 Study of the lower tail - Proof of Theorem 1.3

Recall that the measures (µi)i=1,...,n are assumed to be hypercontractive with
constant ⇢. In this section we prove Theorem 1.3 thanks to Lemma 2.1 and 2.2.

Proof. Let f 2 F+ be. Then, start with the representation formula (2.7)

Entµ(f
2) 

1

1� e�2⇢T

Z T

0

Z

Rn

|rPt(f2)|

Pt(f2)
dµdt

and apply it to e�f/2. We obtain, thanks to the commutation properties (2.3),

Entµ(e
�f ) 

1

1� e�2⇢T

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t (@ife

�f )

Pt(e�f )
dµdt.

Notice that, for any i 2 {1, . . . , n}, @if and e�f are monotone with di↵erent
monotonicity. Therefore, by Lemma 2.2, this is also the case for Pt(@if) and
Pt(e�f ). Then, by applying Lemma 2.1 twice, we get

Entµ(e
�✓f ) 

1

1� e�2⇢T

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t (@if)

P 2
t (e

�f )

Pt(e�f )
dµdt


1

1� e�2⇢T
Eµ[e

�f ]⇥

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t (@if)dµdt

where in the last upper bound we used that µ is the invariant measure of
(Pt)t�0. Namely, Eµ[Pt(h)] = Eµ[h] for any smooth functions h : Rn

! R.

Finally, in the preceding inequality, the last factor can be upper bounded by
hypercontractive arguments. To this task, we follow the proof of Talagrand’s
inequalities exposed in [8] (pages 8� 9) in order to obtain

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t (@if)dµ 

2e[1+(/⇢)]+

⇢

nX

i=1

k@ifk
2
� (3.1)

To sum up, we have proven

Entµ(e
�f )  C⇢,krfk2�Eµ[e

�f ].

with C⇢, = 2e[1+(/⇢)]+

⇢(1�e�2⇢T ) . The deviation inequality is classically obtained by

applying the preceding inequality to e�✓f with ✓ � 0.

Remark. Let us notice that the preceding scheme of proof can also be done at
the level of the variance with the dynamical representation (used in [8])

Varµ(f) = 2

Z 1

0

Z

Rn

|rPt(f)|
2dµdt.

Furthermore, when µ = �n, one can choose T = +1. Then, thanks to the exact
commutation property (2.4) between r and (Pt)t�0 together with the preceding
dynamical representation of the variance, we get
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Ent�n(e
�f )  E�n [e

�f ]Var�n(f).

4 Some extensions

Let us say a few words about some potential extensions. As it was emphasized
in [8], one key features of the preceding methodology is the following. Given a
Markov semigroup (Pt)t�0 with generator L and invariant measure µ. Assume
that (L, µ) is hypercontractive and that the associated Dirichlet form E may be
decomposed along directions �i acting on functions on some state space E as

E(f, f) =
nX

i=1

Z

E
�2
i (f)dµ

in a way that, for each i = 1, . . . , n, �i commutes to (Pt)t�0 in the sense that,
for some constant  2 R, every t � 0 and f smooth enough,

�i(Ptf)  etPt

�
�i(f)

�
. (4.1)

In the current article, this commutation property is obtained as a strong
gradient bound from Bakry and Emery’s Gamma 2 criterion and is stated in
(2.3).

As a first example, one can investigate the standard exponential measure (or,
more generally, gamma measure) dµ = e�

Pn
i=1 xi1{x1�0} . . . 1{xn�0}dx1 . . . dxn

on Rn
+ with the direction �i(f) =

p
xi@i. According to [1, 20], the commutation

properties (4.1) is satisfied with  = �1. Now, observe that the operator �i, i =
1, . . . , n preserves the key features of the function f . More precisely, assume
f 2 F+, then it is easy to check that xi 7! �i(f) 2 F+. Besides the following
identity, for any ✓ 2 R, holds

�i(e
✓f ) = ✓e✓f�i(f).

Therefore, it is possible to apply Harris’s negative association 2.2 in this
situation.

Indeed, in this setting, it is then easy to extend slightly the result of the
current article. Following the lines of the proof of our main result, we obtain

Entµ(e
�f ) 

1

2� e�2�T

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t

�
�i(f)e

�f
�
dµdt

 Eµ[e
�f ]⇥

✓
1

2� e�2�T

Z T

0
e2t

nX

i=1

Z

Rn

P 2
t (�i(f))dµdt

◆

 Eµ[e
�f ]⇥ C⇢,k�(f)k

2
�

where k�(f)k2� is a shorthand for
Pn

i=1 k�i(f)k2�. Notice also, according to [8],
that hypercontractive estimates also yields the following upper bound
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k�(f)k2�  C
nX

i=1

k�ifk22
1 + log

�
k�ifk1/k�ifk2

�

with C > 0 a numerical constant. It is obvious that the same proof holds at
the level of the variance. This bounds has to be compared with Proposition
2.20 (for k = 1) in [17].

As exposed in [8], non-product measures can also be investigated. For in-
stance, if µ stands for the uniform probability measure on the sphere Sn�1, one
may consider the following fact

E(f, f) =

Z

Sn�1

f(��f)dµ =
1

2

X

i,j=1

Z

Sn�1

(Di,jf)
2dµ

where the direction Dij = xi@j � xj@i, i, j = 1, . . . , n. The operators Dij

commute in an essential way to the spherical Laplacian � = 1
2

Pn
i,j=1 D

2
ij so

that (4.1) holds with  = 0. However, the monotone properties needed in the
proof (in order to apply Harris’s negative association inequality) seems to be
di�cult to characterize.

5 Some remarks about theorem 1.2

We briefly want to highlight the fact that the arguments used in [9] can be
easily expressed in terms of semigroup arguments. As we focus on the Gaussian
case, notice that (Pt)t�0 stands for the Ornstein-Uhlenbeck semigroup. This
reformulation gives shorter proof as we will show in the sequel. Unfortunately,
the strategy presented below relies on exact commutation and can not be
extended to the measure µ.

Following [9], introduce the operator Tg defined as follows

Tg(y) =

Z 1

0
E�n [rf(X) ·rPt(g)(y)]dt with y 2 Rn

where f : Rn
! R is fixed, g : Rn

! R is centered under �n and L(X) = �n.

Lemma 5.1. With the preceding notations, for any ✓ � 0, we have

E�n [e
✓fg] = ✓E�n [e

✓fTg].

Proof. Since g is centered under �n and by ergodicity (2.2) of (Pt)t�0, we have

E�n [e
✓f (g � E�n [g])] = E�n [e

✓f (P0(g)� P1(g))].

Thus, by the fundamental Theorem of calculus, we have
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E�n [e
✓fg] = E�n


e✓f

✓
�

Z 1

0

d

dt
Pt(g)dt

◆�

=

Z 1

0
E�n

⇥
e✓f

�
� LPt(g)

�⇤
dt by (2.1)

=

Z 1

0
E�n [re✓f ·rPt(g)]dt by (1.5)

= ✓E�n [e
✓fTg].

Remark. The use of the operator Tg was the main idea of the article [9], we
state it in a slightly di↵erent way which avoids a lot of calculus. For further
purposes, observe that E�n [Tg] = Cov�n(f, g). In particular,

E�n [Tf ] = Var�n(f). (5.1)

As in [9], the proof of Theorem 1.2 relies on Lemma 5.1. To stay as close as
possible to the original proof, consider g 2 F+ and set f = �g.

For notational convenience, set m =
R
Rn fd�n. Then, for any ✓ � 0 define

 (✓) = E�n [e
✓(f�m)]. From Lemma 5.1, we have

 0(✓) = E�n [e
✓(f�m)(f �m)] = ✓E�n [e

✓(f�m)Tf ].

Besides,

✓E�n [e
✓(f�m)Tf ] = ✓E�n


e✓(f�m)

�
Tf �Var�n(f)

��
+ ✓Var�n(f)E�n [e

✓(f�m)].

To conclude, it is enough to show that E�n


e✓(f�m)

�
Tf � Var�n(f)

��
 0.

Indeed, if it is the case we have

 0(✓)  ✓Var�n(f) (✓).

Once integrated, this di↵erential inequality yields

E�n [e
✓(f�m)]  eVar�n (f) ✓2

2 for all ✓ � 0. (5.2)

Finally, the deviation inequality from Theorem 1.2 is obtained by classical
arguments : one has to use Cherno↵ inequality and optimize in ✓ � 0.

Now, let us show that E�n


e✓(f�m)

�
Tf � Var�n(f)

��
 0. To this task, use

Lemma 5.1 with g = Tf �Var�n(f) (which, according to (5.1), is centered under
�n) to get

E�n


e✓(f�m)

�
Tf �Var�n(f)

��
= ✓E�n [e

✓(f�m)TTf ].
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Now, let us investigate TTf , thanks to the exact commutation property (2.4),
we have, for any y 2 Rn (omitted here),

TTf =

Z 1

0
e�tE�n [rf · Pt(rTf )]dt

=

Z 1

0
e�t

nX

i=1

E�n [@ifPt(@iTf )]dt.

Besides, for any i = 1, . . . , n,

@iTf = @i

Z 1

0

nX

j=1

E�n [@jf@jPt(f)]dt

=

Z 1

0

nX

j=1

E�n [@
2
ijf@jPt(f) + @jf@

2
ijPt(f)]dt

=

Z 1

0

nX

j=1

e�tE�n [@
2
ijfPt(@jf) + e�t@jfPt(@

2
ijf)]dt

 0

by hypothesis on f . Thus, E�n


e✓(f�m)

�
Tf � Var�n(f)

��
 0 and the proof is

complete.

Remark. Theorem 1.2 implicitly uses a covariance identity (through the opera-
tor Tf ). Similar identities have been used in [11] for infinitely divisible random
vectors having finite exponential moments. In particular, sharp deviation
inequalities were obtained. We wonder if Theorem 1.3 can be extend to this
level of generality.
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ments and precious remarks. We warmly thank the anonymous referee for help-
ful comments in improving the exposition. We also thank P. Monmarché who
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