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Abstract. This note is concerned with an extension, at second order, of an

inequality on the discrete cube Cn = {−1, 1} (equipped with the uniform

measure) due to Talagrand ([26]). As an application, the main result of this

note is a Theorem in the spirit of a famous result from Kahn, Kalai and

Linial (cf. [14]) concerning the influence of Boolean functions. The notion of

the influence of a couple of coordinates (i, j) ∈ {1, . . . , n}2 is introduced in

section 2 and the following alternative is obtained : for any Boolean function

f : Cn → {0, 1}, either there exists a coordinate with influence at least of

order (1/n)1/(1+η), with 0 < η < 1 (independent of f and n) or there exists

a couple of coordinates (i, j) ∈ {1, . . . , n}2 with i 6= j, with influence at least

of order (logn/n)2. In section 4, it is shown that this extension of Talagrand

inequality can also be obtained, with minor modifications, for the standard

Gaussian measure γn on Rn ; the obtained inequality can be of independent

interest. The arguments rely on interpolation methods by semigroup together

with hypercontractive estimates. At the end of the article, some related open

questions are presented.

1. Introduction

The notion of influence of variables of Boolean functions has been extensively
studied over the last twenty years with applications in various areas such as random
graph theory, percolation theory and Gaussian geometry, (cf. e.g. the survey [15]).
Now, let us introduce the setting of our work, for more details on the analysis of
Boolean functions we refer the reader to [21, 11]. Let n ≥ 1 be and consider the
discrete cube Cn = {−1, 1}n equipped with the uniform measure µn. The influence
of the i-th coordinate of any function f : Cn → {0, 1} is defined as follow.

Definition 1.1. Consider some function f : Cn → {0, 1}. For any i ∈ {1, . . . , n},
the influence of the i-th coordinate is given by

(1.1) Ii(f) = P
(
f(X) 6= f(τiX)

)
where L(X) = µn and τix = (x1, . . . ,−xi, . . . , xn) for any x ∈ Cn (i.e. τix corre-
sponds to the point x with its i-th coordinate being flipped).

Remark. (1) For further purposes notice that Ii(f) can also be equivalently
expressed (if f is a Boolean function) in terms of a L1(µn) norm of some
discrete derivative. Namely, if the discrete derivative along the i-th coordi-
nate is defined as

Di(f) = f(τix)− f(x) for any x ∈ Cn,
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we have ‖Di(f)‖1 = Ii(f). In fact, for any p ≥ 1, ‖Dif‖pp = Ii(f) where
‖ · ‖p denote the norms of Lp(µn).

In [2], the authors studied the influence of the coordinates of the the so-
called Tribes function which is defined as follow : assume that n = km and
x = (x1, . . . , xkm) ∈ {−1; 1}km, then

Tribeskm(x) = max
i=1,...,m

x(i)

where x(i) = min{x(i−1)k+1, . . . , xik} for any i = 1, . . . ,m . In particular, the
function Tribeskm(x) takes the value 1 if and only if, for some i ∈ {1, . . . ,m}, one
of the tribes (x(i−1)k+1, . . . , xik) of length k is the tribes where all the coordinates
are equal to 1.

In their article, Ben-Or and Linial proved that the preceding function has all its
coordinates with influence at least of order log n/n. Besides, they have conjectured
that this result is optimal. More precisely, we give below the statement of their
result.

Proposition 1 (Ben-Or, Linial). With the preceding notations, let n be sufficiently
large and set k = log n − log log n + log log 2. Then, for all i ∈ {1, . . . , n}, the
following holds

Ii(Tribesn) =
log n

n

(
1 + o(1)

)
.

Later on, in [14], Kahn, Kalai and Linial have proved the conjecture. Namely

Theorem 2 (Kahn-Kalai-Linial). For any function f : Cn → {0, 1} there exists
i ∈ {1, . . . , n} such that, for any n ≥ 1,

(1.2) Ii(f) ≥ CVarµn(f)
log n

n

with Varµn(f) =
∫
Cn
f2dµn −

( ∫
Cn
fdµn

)2
and C > 0 is a numerical constant

independent of f and n.

By convention, in the sequel, C > 0 is a numerical constant that may change at
each occurence.

As we will briefly explain below, Theorem 2 can be proved with the help of
Talagrand inequality which can be stated as follows.

Theorem 3 (Talagrand). For any function f : Cn → R, the following inequality
holds

(1.3) Varµn(f) ≤ C
n∑
i=1

‖Dif‖22

1 + log

(
‖Dif‖2
‖Dif‖1

) ,
where C > 0 is an absolute numerical constant.

Remark. Talagrand inequality improves, by a logarithmic factor, upon the classical
Poincaré inequality (up to numerical constant) :
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(1.4) Varµn(f) ≤ 1

4

n∑
i=1

‖Dif‖22.

As mentioned before, (1.3) can be used to provide an alternative proof of Theorem
2. Indeed, consider f : Cn → {0, 1} and recall that, for any p ≥ 1, ‖Dif‖pp =

Ii(f). Then, to deduce (1.2) from (1.3), assume that Ii(f) ≤
(Varµn (f)

n

)1/2
for any

i ∈ {1, . . . , n}, since if not the results holds. Then, according to (1.3), there exists
i ∈ {1, . . . , n} such that

Varµn(f)

Cn
≤ Ii(f)

1 + log

(
1√
Ii(f)

) ≤ 4Ii(f)

4 + log

(
n

Varµn (f)

)
which easily leads to (1.2).

The aim of this note is to develop an interpolation method by semigroups to-
gether with hypercontractive arguments to reach Talagrand inequality at order two.
That is to say : the new inequalities will be similar to (1.3) with derivatives of order
two instead. The following Theorem is the main result of this note.

Theorem 4. Let 0 < s0 <
1

128 be fixed. For any Boolean function f : Cn → {0, 1}
and any n ≥ 1, the following holds

Varµn(f) ≤ C
( n∑
i=1

‖Dif‖21+e−2s0 +

n∑
i,j=1
i6=j

‖Dijf‖22[
1 + log

(
‖Dijf‖2
‖Dijf‖1

)]2)(1.5)

where Dij = Di ◦Dj for any i, j ∈ {1, . . . , n} and C > 0 is a numerical constant.

Remark. We want to highlight the fact that s0 et C are independent of f and n.

As an application of this result, we propose a theorem in the spirit of Theorem 2
with the influence I(i,j)(f) of a function f for some coordinates (i, j) ∈ {1, . . . , n}2.
This notion will be precisely defined in the sequel as an extension of the standard
notion of influence (1.1).

Corollary 5. Let f : Cn → {0, 1} be a Boolean function. Then, the following
alternative holds : either there exists i ∈ {1, . . . , n} such that

Ii(f) ≥ c
(

Varµn(f)

)1/(1+η)(
1

n

)1/(1+η)

with 0 < η < 1

or there exists (i, j) ∈ {1, . . . , n}2 (with i 6= j) such that

I(i,j)(f) ≥ cVarµn(f)

(
log n

n

)2

.

In each case, c > 0 and η are absolute constants independent of f and n.

The rest of this paper is organized as follow : section 2 provides semigroup tools and
the framework of Boolean analysis needed to prove Theorem 4. Section 3 is devoted
to the proof of Theorem 4 and Corollary 5 ; also, some remarks about extensions
at higher orders will be given. In section 4, we present how can Theorem 4 extend
in a Gaussian context. Finally, in the last section, we present some open questions
related to our work and related to some recent results in Concentration of Measure
Theory (the so-called concentration at higher order for instance).
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2. Framework and tools

2.1. Some facts about semigroups. The discrete cube Cn = {−1, 1}n is an
interesting example for which semigroups interpolation methods can be used to
reach functional inequalities. Let us briefly collect some basic properties of this
space equipped with the product measure µn, where µ = 1

2δ−1 + 1
2δ1.

The classical semigroup associated to (Cn, µ
n) (cf. [21, 11, 8]) is referred to

the Bonami-Beckner semigroup (Qt)t≥0. As it is classical, µn is its invariant and
reversible measure. Recall that the discrete Laplacian is given by

L =
1

2

n∑
i=1

Di

with Di the (discrete) partial derivative along the i-th coordinate. This differential
operator can be used to define a Dirichlet form on Cn : for any functions f, g :
Cn → R, we set

(2.1) Eµn(f, g) =

∫
Cn

f(−Lg)dµn = 4

∫
Cn

∇f · ∇gdµn,

where ∇h = (D1h, . . . ,Dnh) is the discrete gradient of any function h : Cn → R.
The operator L is also used to define the so-called Bonami-Beckner semigroup by
the formula Qt = etL with t ≥ 0. Now, let us recall some important properties of
(Qt)t≥0.

Proposition 6. (1) The Bonami-Beckner semigroup admits an integral repre-
sentation formula, for any t ≥ 0,

Qt(f)(x) =

∫
Cn

f(y)

n∏
i=1

(1 + e−txiyi)dµ
n(y) with x ∈ Cn.

(2) (Qt)t≥0 is Markovian and µn is its invariant and reversible measure.
Namely, for any t ≥ 0,

Qt(1) = 1 and

∫
Cn

fQt(g)dµn =

∫
Cn

gQt(f)dµn

for any functions f, g : Cn → R.

Remark. With this integral representation in hand, it is easily seen that the follow-
ing commutation formula holds

(2.2) QtDi = DiQt

for any i ∈ {1, . . . , n} and t ≥ 0.

It has been proven (cf. [21, 12, 9]) that (Qt)t≥0 satisfies an hypercontractive
property. That is to say

Theorem 7. (Bonami-Beckner) The semigroup (Qt)t≥0 is hypercontractive.
Namely, for any f : Cn → R, every t ≥ 0 and every q ≥ 1

(2.3) ‖Qt(f)‖q ≤ ‖f‖p,

with p = p(t) = 1 + (q − 1)e−2t.
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For further purposes, let us recall that the Poincaré inequality (1.4) is equivalent
to the following inequality, for any function f : Cn → R, we have

Varµn
(
Qt(f)

)
≤ e−2tVarµn(f) for any t ≥ 0.

Equivalently, when f is centered under µn, it reads

(2.4) ‖Qtf‖22 ≤ e−2t‖f‖22 for any t ≥ 0

since µn is the invariant measure of (Qt)t≥0.

In particular, during the proof of our main result, inequality (2.4) will be used
with Dif and Dijf for any i, j = 1, . . . , n. Indeed, notice that

(2.5)

∫
Cn

f(x)dµn =

∫
Cn

f(τix)dµn

therefore, Dif and Dijf , for any i, j = 1, . . . , n, are centered under the measure
µn.

2.2. Influences. For more details, general references on Boolean Analysis are
[21, 11]. In this section we introduce the notion of the influence of a couple of
coordinates (i, j) ∈ {1, . . . , n}2 which extends the classical notion of influence
(1.1).

Definition 2.1. For any Boolean function f : Cn → {0, 1} and for any
(i, j) ∈ {1, . . . , n}2, the influence of the couple (i, j) of the function f is given
by

(2.6) I(i,j)(f) =
1

2
‖Dijf‖1

where Dij = Di ◦Dj.

Remark. (1) It is easily seen that, for any (i, j) ∈ {1, . . . , n}2,

Dijf = f(x)− f(τix)− f(τjx) + f(τijx) for any x ∈ Cn
where τij = τi ◦ τj . In particular, when i = j, Dii = 2Di. Therefore (2.6)
is an extension of the notion of influence (in its alternative formulation in
terms of L1(µn) norm).

(2) As in the classical case, it is possible to show that, for any i 6= j, ‖Dijf‖1
and ‖Dijf‖22 are equivalent. Indeed, for any (i, j) ∈ {1, . . . , n}2 with (i 6=
j), we have

(2.7) ‖Dijf‖1 ≤ ‖Dijf‖22 ≤ 2‖Dijf‖1.

From a heuristic point of view, this can be explained as follow : for any
Boolean function f : Cn → {0, 1} and any (i, j) ∈ {1, . . . , n}2, i 6= j we
have |Dijf | ∈ {0, 1, 2} for any x ∈ Cn. Besides, since f is Boolean, there
exists A ⊂ Cn such that f = 1A. Then, it is enough to study, for p ∈ {1, 2},∫

Cn

∣∣f(x)− f(τix)− f(τjx) + f(τijx)
∣∣pdµn(x) for x ∈ Cn
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along the partition of Cn induced by the set A. That is to say, it is enough
to cut the integral according to the family of sets

{x ∈ Cn ; x ∈ A, τi(x) /∈ A, τj(x) /∈ A, τij(x) /∈ A},
{x ∈ Cn ; x ∈ A, τi(x) ∈ A, τj(x) /∈ A, τij(x) /∈ A},
{x ∈ Cn ; x /∈ A, τi(x) /∈ A, τj(x) /∈ A, τij(x) /∈ A},
{x ∈ Cn ; x ∈ A, τi(x) /∈ A, τj(x) ∈ A, τij(x) ∈ A},
...

{x ∈ Cn ; x ∈ A, τi(x) ∈ A, τj(x) ∈ A, τij(x) ∈ A},

to prove this fact.

3. Proof of Theorem 4

The proof starts with the representation of the variance of f along the Bonami-
Beckner’s semigroup (Qt)t≥0 (cf. [8, 3]) :

(3.1) Varµn(f) = 2

∫ ∞
0

n∑
i=1

∫
Cn

Q2
t (Dif)dµndt.

Then, set 2s = t and for any i = 1, . . . , n, use the fact that∫
Cn

Q2
2s(Dif)dµn = ‖Qs ◦Qs(Dif)‖22 ≤ e−2s‖Qs(Dif)‖22

where the last upper bound comes from the exponential decay in L2(µn) of the
semigroup (2.4). This gives the following upper bound,

(3.2) Varµn(f) ≤ 4

∫ ∞
0

e−2s
n∑
i=1

∫
Cn

Q2
s(Dif)dµnds.

Then, set

K(s) =

n∑
i=1

∫
Cn

Q2
s(Dif)dµn for any s ≥ 0.

By a further integration by parts (2.1) and applying again the fundamental theorem
of calculus, we get for any s ≥ 0

K(s) = K(∞)−
∫ ∞
s

K ′(u)du = K(∞) + 2

n∑
i,j=1

∫ ∞
s

∫
Cn

Q2
u(Dijf)dµndu.

Besides, by ergodicity, we have

K(∞) =

n∑
i=1

(∫
Cn

Difdµ
n

)2

= 0,

where the last equality comes from the fact that, for any i ∈ {1, . . . , n}, Dif is
centered under the measure µn. Therefore, we have

(3.3) K(s) = 2

n∑
i,j=1

∫ ∞
s

∫
Cn

Q2
u(Dijf)dµndu for any s ≥ 0.

Substitute (3.3) into (3.2) and apply Fubini’s theorem to get
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Varµn(f) ≤ 4

n∑
i,j=1

∫ ∞
0

(1− e−2u)

∫
Cn

Q2
u(Dijf)dµndu.

Again, set 2s = u and use the exponential decay of (Qt)t≥0 in L2(µn) :

i.e. ‖Q2s(Dijf)‖22 ≤ e−2s‖Qs(Dijf)‖22 for any (i, j) ∈ {1, . . . , n}2.

This yields

Varµn(f) ≤ 8

n∑
i,j=1

∫ ∞
0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dijf)dµnds.

Now, cut the sum in two parts (if i = j or not). Notice that Dii = 2Di for any
i = 1, . . . , n. The variance of f is now bounded by two terms

32

n∑
i=1

∫ ∞
0

e−2s(1−e−4s)
∫
Cn

Q2
s(Dif)dµnds+8

∑
i 6=j

∫ ∞
0

e−2s(1−e−4s)
∫
Cn

Q2
s(Dijf)dµnds.

Let s0 > 0 be a parameter to be chosen later. The first term of the preceding sum
is managed as follow

32

n∑
i=1

∫ ∞
0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dif)dµnds = 32

n∑
i=1

∫ s0

0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dif)dµnds

+ 32

n∑
i=1

∫ ∞
s0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dif)dµnds

It is obvious to see that,

n∑
i=1

∫ s0

0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dif)dµnds ≤

n∑
i=1

∫ s0

0

4s

∫
Cn

Q2
s(Dif)dµnds

≤ 4s0

∫ ∞
0

n∑
i=1

∫
Cn

Q2
s(Dif)dµnds

= 2s0Varµn(f)

where the last equality comes from the dynamical representation of the variance
along the semigroup (3.1). Therefore, we have

Varµn(f) ≤ 32

n∑
i=1

∫ ∞
s0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dif)dµnds

+ 8
∑
i 6=j

∫ ∞
0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dijf)dµnds+ 64s0Varµn(f)

Now, let us choose s0 such 64s0 ≤ 1/2 ; it yields

1

2
Varµn(f) ≤ 32

∫ ∞
s0

e−2s(1− e−4s)
n∑
i=1

∫
Cn

Q2
s(Dif)dµnds

+ 8
∑
i 6=j

∫ ∞
0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dijf)dµnds.
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The hypercontractive property (2.3) of the Bonami-Beckner’s semigroup can be
used to bound the first integral (of the right hand side) of the preceding inequality.
Since by Jensen inequality, (Qt)t≥0 is also a contraction of L2(µn), for any i =
1, . . . , n and every s ≥ s0, we also have

‖Qs(Dif)‖22 = ‖Qs−s0 ◦Qs0(Dif)‖22 ≤ ‖Qs0(Dif)‖22.

Thus,

32

∫ ∞
s0

e−2s(1− e−4s)
n∑
i=1

∫
Cn

Q2
s(Dif)dµnds ≤ 32

n∑
i=1

‖Qs0(Dif)‖22
∫ ∞
s0

e−2s(1− e−4s)ds

≤ 16

n∑
i=1

‖Qs0(Dif)‖22

≤ 16

n∑
i=1

‖Dif‖21+e−2s0

where, in the last inequality, we used the hypercontractive property (2.3). To
conclude the proof, we have to bound the sum when i 6= j.

I = 8
∑
i6=j

∫ ∞
0

e−2s(1− e−4s)
∫
Cn

Q2
s(Dijf)dµnds

≤ 16
∑
i 6=j

∫ ∞
0

e−2s(1− e−2s)
∫
Cn

Q2
s(Dijf)dµnds.

Again, by the hypercontractive property (2.3) of (Qt)t≥0 we have, for any func-
tion g : Cn → R,

‖Qt(g)‖22 ≤ ‖g‖21+e−2t for any t ≥ 0.

Apply this to g = Dijf , for any i, j = 1, . . . , n with i 6= j. Then, set v = 1 + e−2t

to get

(3.4) I ≤ 16
∑
i 6=j

∫ 2

1

(2− v)‖Dijf‖2vdv.

Furthermore, Hölder’s inequality yields ‖Dijf‖v ≤ ‖Dijf‖θ1‖Dijf‖1−θ2 , with θ =

θ(v) satisfying 1
v = θ

1 + 1−θ
2 , for any v ∈ [1, 2]. To sum up, we have

I ≤ 16
∑
i6=j

‖Dijf‖22
∫ 2

1

(2− v)

(
‖Dijf‖1
‖Dijf‖2

)2θ

dv.

Now, set α =
‖Dijf‖1
‖Dijf‖2 ≤ 1, after a change of variables, we easily obtain, for i 6= j,

∫ 2

1

(2− v)

(
‖Dijf‖1
‖Dijf‖2

)2θ

dv =

∫ 1

0

ue−
2u

2−u log(1/α)du.

Then, observe that
∫ 1

0
ue−

2u
2−u log(1/α)du ≤ C[

1+log(1/α)
]2 with C > 0 a numerical

constant. Finally, we have
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I ≤ C
n∑
i 6=j

‖Dijf‖22[
1 + log

(
‖Dijf‖2
‖Dijf‖1

)]2
Remark. The scheme of proof can be extended to higher order with minor modifi-
cations. For instance, for the order three, cut the sum in three parts :

• the diagonal terms will give derivatives Di of order one ;

• when two indexes are equal we will obtain derivatives Dik of order two ;

• the other terms will give derivatives Dijk = Di ◦Dj ◦Dk of order three.

Then, it is possible to apply the same methodology. Since the notations are a little
bit heavy, we leave the details to the reader.

3.1. Proof of Corollary 5. With the Theorem 4 at hand we can prove Corollary 5.

Consider f : Cn → {0, 1} a Boolean function. Then, apply inequality (1.5)
from Theorem 4 to f .

Then, thanks to the formulation of influences in terms of Lp norms of partial

derivatives, observe that ‖Dif‖21+e−2s0
=
[
Ii(f)

]2/(1+e−2s0 )
for any i = 1, . . . , n.

Besides, for any s0 ≥ 0, notice that 2
1+e−2s0

∈ (1, 2). Therefore, with s0 ∈ [0, 1
128 ]

being fixed, this can be rewritten as 1 + η with 0 < η < 1 where η = η(s0) is
independent of f and n.

Now, recall (2.7) which gives, for any i 6= j,

‖Dijf‖1 ≤ ‖Dijf‖22 ≤ 2‖Dijf‖1.
Thus, since I(i,j)(f) = 1

2‖Dijf‖1 for any i 6= j,

Varµn(f) ≤ C
n∑
i=1

Ii(f)1+η + C
∑
i 6=j

I(i,j)(f)[
1 + log

(
1√

4I(i,j)(f)

)]2 .
If the first sum is larger than the second one, we get

Varµn(f) ≤ C
n∑
i=1

Ii(f)1+η.

Thus, there exists some i ∈ {1, . . . , n} such that Ii(f)1+η ≥ Varµn (f)
Cn . If it is not

the case, we obtain

Varµn(f) ≤ C
∑
i 6=j

I(i,j)(f)[
1 + log

(
1√

4I(i,j)(f)

)]2 .
To conclude, it is enough to follow the scheme of proof presented in the introduction
(below the equation (1.4)). We leave the details to the reader.
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Remark. (1) Following (with minor and obvious variations) the proof of
Proposition 1, it is possible to show that the influences I(i,j)(Tribeskm),

for i 6= j, are precisely of order log2 n
n2 .

(2) As communicated to us by Krzysztof Oleszkiewicz (cf. [22]) an alternative
argument based on spectral decomposition and logarithmic Sobolev
inequality can be used to reach conclusion which is similar to the one
obtained in Corollary 5.

4. Extension to a Gaussian setting

It is well known (cf. [7]) that Talagrand inequality has also been obtained for
the standard Gaussian measure γn on Rn. We want to emphasize the fact that the
interpolation method (with the exact same arguments) used for (Cn, µ

n) also work
(Rn, γn) with the Ornstein-Uhlenbeck semigroup instead.

First, we will briefly remind the reader of some properties of such semigroup (for
more details we refer the reader to [1]). Then, we present a variance representation
formula, which already appeared under a different form in [13]. This representation
formula can be seen as a Taylor expansion of the variance of f with some remainder
term. Finally we will briefly explain how the proof can be done with the help of
the arguments used during the proof of Theorem 4.

4.1. Ornstein-Uhlenbeck semigroup. This section gather some essential prop-
erties of the Ornstein-Uhlenbeck semigroup (Pt)t≥0. Let f : Rn → R be a smooth
function, the Ornstein-Uhlenbeck’s semigroup satisfies the following properties.

Proposition 8. (Pt)t≥0 is Markovian and γn is its invariant and reversible mea-
sure. Namely, for any t ≥ 0, we have

Pt(1) = 1 and

∫
Rn
fPt(g)dγn =

∫
Rn
gPt(f)dγn,

for any smooth functions f, g : Rn → R. The Ornstein-Uhlenbeck’s semigroup
admits a integral representation formula,

Pt(f)(x) =

∫
Rn
f
(
e−tx+

√
1− e−2ty

)
dγn(y)

for any x ∈ Rn and any t ≥ 0.

Remark. This integral representation easily leads to the following commutation
property between the semigroup and the gradient ∇ :

(4.1) ∇Pt = e−tPt∇ for any t ≥ 0.

An integration by parts formula also holds in this setting. Indeed, denote by L =
∆ − x · ∇ the infinitesimal generator of (Pt)t≥0, then for any smooth functions
f : Rn → R and g : Rn → R it holds

(4.2)

∫
Rn
f(−Lg)dγn =

∫
Rn
∇f · ∇gdγn.

It has been proven (cf. [1, 20]) that (Pt)t≥0 also satisfies an hypercontractive
property.
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Theorem 9 (Nelson). The semigroup (Pt)t≥0 is hypercontractive. Namely, for any
f : Rn → R smooth enough, every t ≥ 0 and every p ≥ 1

(4.3) ‖Pt(f)‖q ≤ ‖f‖p,

with p = p(t) = 1 + (q − 1)e−2t.

4.2. Variance representation. The theorem below will be crucial to reach the
version of Theorem 4 in a Gaussian setting.

In the sequel, ∇2f will stand for the Hessian matrix of any smooth function
f : Rn → R and, with obvious notations, ∇pf (with p ≥ 2) corresponds to higher
order. We said that f ∈ Cm(Rn) if , for every α1, α2, . . . , αn non-negative integers,
such that α = α1 + α2 + · · ·+ αn ≤ m,

∂αf

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

exists and is continuous on Rn.

Theorem 10. Within the preceding framework, consider f : Rn → R and assume
that there exists m ≥ 1 such that f ∈ Cm(Rn). Assume also that f and all its
partial derivatives belong to L2(γn). Then, for every 1 ≤ p ≤ m − 1, we have the
following representation formula

(4.4)

Varγn(f) =

p∑
k=1

1

k!

∣∣∣∣ ∫
Rn
∇kfdγn

∣∣∣∣2 +
2

p!

∫ ∞
0

e−2t
(
1− e−2t

)p ∫
Rn

∣∣Pt(∇p+1f)
∣∣2dγndt,

where | · | stands for the Euclidean norm.

Remark. (1) Notice that, when p → ∞, the formula (4.4) yields, up to
integration by parts, the decomposition of a function of L2(γn) along the
Hermite polynomial basis (cf. [1]).

(2) In his article [17], Ledoux uses similar interpolation arguments (with the
interval [0, t] instead of [t,+∞[) in order to obtain another representation
formula for the variance of a function f .

(3) As in [17], the same proof can be performed with the entropy instead of the
variance. However, formulas are not so easily handled. For instance, at the
first iteration of the method we obtain, for f : Rn → R such that f > 0,

2Entγn(f) =

∣∣∣∣ ∫Rn ∇fdγn∣∣∣∣2∫
Rn fdγn

+

∫ ∞
0

e−2u(1− e−2u)

∫
Rn
kudγndu

with ku = (Puf)−3
∣∣Pu(∇f)tPu(∇f)− Pu(f)Pu(∇2f)

∣∣2 and where

Entγn(f) =

∫
Rn
f log fdγn −

(∫
Rn
fdγn

)(
log

∫
Rn
fdγn

)
.

Since ku ≥ 0 for every u ≥ 0, this implies, for any f such that
∫
Rn fdγn=1,
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2Entγn(f2) ≥
∣∣∣∣ ∫

Rn
∇fdγn

∣∣∣∣2.
This lower bound corresponds to the inverse logarithmic Sobolev inequality
(cf. [1]).

Proof. (of Theorem 10)
The starting point of the proof is the dynamical representation of the variance of a
function f : Rn → R, along the Ornstein-Uhlenbeck’s semigroup (cf. [1])

Varγn(f) = 2

∫ ∞
0

e−2t
∫
Rn

∣∣Pt(∇f)
∣∣2dγndt.

Set

K1(t) =

∫
Rn

∣∣Pt(∇f)|2dγn for any t ≥ 0.

Then, according the fundamental theorem of calculus, for any 0 ≤ t ≤ s, we have

K1(t) = K1(s)−
∫ s

t

K ′1(u)du

using the fact that ∇Pu(f) = e−uPu(∇f) and the integration by parts formula
(4.2), we obtain

K ′1(u) =
d

du

∫
Rn
|Pu(∇f)|2dγn = −2

∫
Rn
e−2u|Pu(∇2f)|2dγn

Finally, for every 0 ≤ t ≤ s,

K1(t) = K1(s) + 2

∫ s

t

e−2u
∫
Rn
|Pu(∇2f)|2dγndu,

Thus, when s→∞,

K1(t) =

∣∣∣∣ ∫
Rn
∇fdγn

∣∣∣∣2 + 2

∫ ∞
t

e−2u
∫
Rn
|Pu(∇2f)|2dγndu,

by ergodicity of (Pt)t≥0. Substitute K1 into the representation formula to get

Varγn(f) =

∣∣∣∣ ∫
Rn
∇fdγn

∣∣∣∣2 + 4

∫ ∞
0

e−2t
∫ ∞
t

e−2u
∫
Rn
|Pu(∇2f)|2dγndudt.

Then, by Fubini’s Theorem,

Varγn(f) =

∣∣∣∣ ∫
Rn
∇fdγn

∣∣∣∣2 + 2

∫ ∞
0

e−2u(1− e−2u)

∫
Rn
|Pu(∇2f)|2dγndu.

In order to obtain the general statement, iterate the scheme of proof : set similarly

K2(u) =

∫
Rn
|Pu(∇2f)|2dγn,

then

K2(u) =

∣∣∣∣ ∫
Rn
∇2fdγn

∣∣∣∣2 + 2

∫ ∞
u

e−2t
∫
Rn
|Pt(∇3f)|2dγndt.

After some substitution, it is enough to calculate∣∣∣∣ ∫
Rn
∇2fdγn

∣∣∣∣2 × [2 ∫ ∞
0

e−2u(1− e−2u)du

]
=

1

2

∣∣∣∣ ∫
Rn
∇2fdγn

∣∣∣∣2
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and

4

∫ ∞
0

e−2t
(∫

Rn
|Pt(∇3f)|2dγn

)
×
[ ∫ t

0

e−2u(1− e−2u)du

]
dt.

A straightforward calculus yields

2

∫ t

0

e−2u(1− e−2u)du =
(
1− e−2t

)2
for any t ≥ 0.

Then, proceed by induction to conclude. Indeed, we can define by induction the
coefficients that appeared at each iteration. To this task, set

a0(t) = 2e−2t for any t ≥ 0 and a1 =

∫ ∞
0

a0(t)dt.

Then, for k ≥ 1, ak(t) = a0(t)
∫ t
0
ak−1(u)du and ak =

∫∞
0
ak(t)dt. It is not difficult

to show that, for every k ≥ 0 and every t ≥ 0,

ak(t) =
2

k!
e−2t

(
1− e−2t

)k
.

Thus, for every k ≥ 0, ak = 1
k! . �

4.3. Taylor expansion of the variance with remainder term. We focus on
the particular case p = 1. We present below what can be deduced from the repre-
sentation formula (4.4).

4.3.1. Order 1. For p = 1, the representation formula of the variance tells us that

(4.5) Varγn(f) =

∣∣∣∣ ∫
Rn
∇fdγn

∣∣∣∣2 + 2

∫ ∞
0

e−2t(1− e−2t)
∫
Rn
|Pt(∇2f)|2dγndt.

The second term is always strictly positive, so it implies an inverse Poincaré
inequality (cf. [1])

Varγn(f) ≥
∣∣∣∣ ∫

Rn
∇fdγn

∣∣∣∣2.
It is also possible to control the remainder term in order to upper bound the variance
of f . Indeed, based on (4.5) , we can apply the hypercontractive scheme of proof
(of Talagrand inequality) to reach the following Theorem.

Theorem 11. Within the preceding framework, for any function f : Rn → R
smooth enough, we have

Varγn(f) ≤
∣∣∣∣ ∫

Rn
∇fdγn

∣∣∣∣2 + C

n∑
i,j=1

‖∂2ijf‖22[
1 + log

‖∂2
ijf‖2

‖∂2
ijf‖1

]2 ,
with C > 0 a universal numerical constant.

Proof. Start with the representation formula (4.5)

2

∫ ∞
0

e−2t(1−e−2t)
∫
Rn
|Pt(∇2f)|2dγndt = 2

n∑
i,j=1

∫ ∞
0

e−2t(1−e−2t)
∫
Rn

(
Pt(∂

2
ijf)

)2
dγndt,

Then, it is enough to bound
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I = 2

n∑
i,j=1

∫ ∞
0

e−2t(1− e−2t)‖Pt(∂ijf)‖22dt.

To this task, use the hypercontractive property (9) of (Pt)t≥0. Namely, for any
function smooth g : Rn → R,

‖Pt(g)‖22 ≤ ‖g‖21+e−2t , t ≥ 0.

with g = ∂ijf , for any i, j = 1, . . . , n and follow the exact same estimates that has
been used after inequality (3.4). We leave the details to the reader. �

Similarly, as the discrete case, it is possible to extend Theorem 11 at higher order.
Notice again that the second term (with the logarithmic factor) can be seen as the
remainder term of Taylor’s expansion of the variance.

Theorem 12. Let f : Rn → R be such that f ∈ Cp(Rn) for some p ≥ 1 and all its
partial derivatives (up to order p) belong to the space L2(γn). Then, for any p ≥ 1,
we have

Varγn(f) ≤
p∑
k=1

1

k!

∣∣∣∣ ∫
Rn
∇kfdγn

∣∣∣∣2 + C

n∑
i1,...,ip+1=1

‖∂i1,...,ip+1
f‖22[

1 + log

(
‖∂i1,...,ip+1

f‖2
‖∂i1,...,ip+1

f‖1

)]p+1

with C > 0 a numerical constant.

Remark. Observe that the sum
∑p
k=1

1
k!

∣∣∣∣ ∫Rn ∇kfdγn∣∣∣∣2 is precisely the beginning

of the expansion of a function f ∈ L2(γn) along the Hermite’s polynomials basis.

5. Further comments and remarks

To conclude this note, we would like to make some remarks about the potential
extension of our work.

5.1. Potential extensions. Let us start with the discrete cube.

5.1.1. Biased cube. It is possible to equip the discrete cube {−1, 1}n with a biased
measure νnp = (pδ1 + qδ−1)⊗n with p ∈ [0, 1] and q + p = 1. This measure also
satisfied a Poincaré and logarithmic Sobolev inequalities (cf. [21, 8]). νnp is also

the invariant measure of an hypercontractive and ergodic semigroup (T pt )t≥0. It
is then obvious that our results can be immediately extended to such setting.
However, some care has to be taken with the constant involved in the proof : some
of them will depend on the logarithmic Sobolev constant pq log p−log q

p−q , p 6= q of νnp .

The study of the dependence in p of the measure νnp has been proven useful
(cf. [5, 26] for more details) concerning sharp threshold for monotone graph. For
instance, in [10], the authors proved the following

Theorem 13 (Friedgut-Kalai). For every symmetric monotone set A and every
ε > 0, if νnp (A) > ε then νnq (A) > 1 − ε for q = p + c1 log(1/2ε)/ log n where c1 is
an absolute constant.

They also asked if the following holds (cf. [10] for more details)

Conjecture 1. Let P be any monotone property of graphs on n vertices and ε > 0.
If νnp (P ) > ε, then νnq (P ) > 1− ε for q = p+ c log(1/2ε)/ log2 n.
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The proof fo Theorem 13 relies on the so-called Russo-Margulis’s Lemma (cf.
[5, 10]) and Kahn-Kalai-Linial Theorem 2. It is then natural to ask if Talagrand
inequalities at order two (and its consequences in terms of influences) for the
biased cube can be used to prove Conjecture 1 ?

As a matter of fact, it can be shown (with elementary calculus) that Russo-
Margulis’s Lemma can be extended at order two. However it seems (cf. [25]) that
the extension of Kahn-Kalai-Linial’s theorem at order two is too rough to prove the
conjecture. Maybe one should add further arguments.

5.1.2. General setting. As another extension of our work, it is possible to consider
the general framework of Cordero-Erausquin and Ledoux’s article [8]. Indeed, as
they have investigated in their paper, the crucial point of Talagrand inequality
(1.3) is the decomposition of the Dirichlet energy along directions which commutes
with the semigroup (cf. [8] for more details) together with some hypercontractive
estimates. Even if this extension is straightforward, we did not want to get into
this level of generality for the sake of clarity of our exposition. However, we want to
emphasize that (Cn, ν

n
p ) and (Rn, γn) (and more general measures) fit this setting.

5.2. Links with concentration of measure. As far as we are concerned, it
seems that our work has some connection with some recent results of Concentration
of Measure Theory. General references for this topic are [18, 5].

In a Gaussian setting, the Concentration of Measure phenomenon is usually stated
as follow.

Theorem 14 (Borell-Sudakov-Tsirel’son-Ibragimov). Let f : Rn → R be a Lips-
chitz function and X a standard Gaussian vector in Rn. Then, the following holds

(5.1) P
(∣∣f(X)− E[f(X)]|

∣∣ ≥ t) ≤ 2e−t
2/2‖f‖2Lip for any t ≥ 0.

where ‖f‖Lip = sup

{
|f(x)−f(y)|
|x−y| , x, y ∈ Rn, x 6= y

}
.

This result is known to be sharp for the large deviation regime (cf. [19, 24]).
Nevertheless, it is not the case for the small deviation regime as it can been seen
on the Lipschitz function f(x) = maxi=1,...,n xi.

5.2.1. Superconcentration inequalities. In their article [23], Paouris and Valettas,
proved that Talagrand inequality (in a Gaussian setting) can be used to precise
inequality (5.1) in the small deviation regime. More precisely, they proved the
following

Proposition 15 (Paouris-Valettas). Let f : Rn → R be a Lipschitz function with

|f(x)− f(y)| ≤ b‖x− y‖2, |f(x)− f(y)| ≤ a‖x− y‖∞, x, y ∈ Rn

and ‖∂if‖1 ≤ A for all i ∈ {1, . . . , n}. Then, if we set F = f−Eγn [f ], for all λ > 0
we have

Varγn(eλF ) ≤ Cλ2b2

log

(
e+ b2

aA

)Eγn
[
e2λF

]
.
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In particular, for any t ≥ 0,

(5.2) P
(∣∣f(X)− E[f(X)]|

∣∣ ≥ t) ≤ 4 exp

(
− cmax

{
t2

b2
,
t

b

√
log
(
e+

b2

aA

)})
where C, c > 0 are universal constants.

Remark. It is a simple matter to check that equation (5.2) is sharp (except for the
left tail) for the function f(x) = maxi=1,...,n xi. Such achievements are part of the
Superconcentration phenomenon introduced by Chatterjee in [7]. We also refer to
[27, 29, 28] for recent results in this topic (in particular, the article [27] gives some
kind of extension of Proposition 15 for correlated Gaussian measures).

Since Paouris and Valettas’s work relies on Talagrand inequality (1.3), we wonder
if Theorem 11 can be of any help to precise any further the Concentration of
Measure phenomenon for the Gaussian measure γn.

5.2.2. Higher order of concentration of measure. Recently, Bobkov, Gotze and
Sambale wrote an article [4] about higher order of concentration inequalities.
In particular, they studied sharpened forms of the Concentration of Measure
phenomenon for functions typically centered at stochastic expansions (the so-called
Hoeffdding decomposition) of order d− 1 for any d ∈ N. They obtained deviations
for smooth functions of independent random variables under some probability
measure ν satisfying a logarithmic Sobolev inequality. One of their main results
involved some bounds of derivatives of order d. As a sample, they proved the
following.

As it is presented in [4], some notations are needed. Given a function f ∈ Cd(Rn)
we define f (d) to be the (hyper-) matrix whose entries

f
(d)
i1...id

(x) = ∂i1...idf, d = 1, 2, . . .

represent the d-fold (continuous) partial derivatives of f at x ∈ Rn. By considering
f (d)(x) as a symmetric multilinear d-form, we define operator-type norms by

|f (d)(x)|Op = sup{f (d)(x)[v1, . . . , vd] : |v1| = . . . = |vd| = 1}
For instance, |f (1)(x)|Op is the Euclidean norm of the gradient ∇f(x), and

|f (2)(x)|Op is the operator norm of the Hessian ∇2f(x). Furthermore, the following
short-hand notation will be used

‖f (d)‖Op,p =

(∫
Rn
|f (d)|pOpdν

)1/p

, for any p ∈ (0,+∞].

Now, we can state their result.

Theorem 16 (Bobkov-Götze-Sambale). Let ν be a probability measure on Rn sat-
isfying a logarithmic Sobolev inequality with constant σ2 and let f : Rn → R be
Cd-smooth function such that∫

Rn
fdν = 0 and

∫
Rn
∂i1...ikfdν = 0

for all k = 1, . . . , d− 1 and 1 ≤ i1 ≤ . . . ≤ ik ≤ n. Assume that

‖f (d)‖HS,2 ≤ 1 and ‖f (d)‖Op,∞ ≤ 1

Then, there exists some universal constant c > 0 such that
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∫
Rn

exp

(
c

σ2
|f |2/d

)
dν ≤ 2.

Remark. A possible choice is c = 1/(8e). Note that, by integration by parts, if µ is
the standard Gaussian measure γn, the conditions

∫
Rn fdν = 0 and

∫
Rn ∂i1...ikfdν =

0 are satisfied, if f is orthogonal to all polynomials of (total) degree at most d− 1.
Such concentration’s results for non Lipschitz functions (which are orthogonal to
some part of an orthonormal basis) have been already obtained in various papers,
we refer to the article [4] and references therein for more details.

Their proof relies on the logarithmic Sobolev inequality together with some com-
parison of moments. Recall that logarithmic Sobolev’s inequality is equivalent to
the hypercontractive property of the associated semigroup (cf. [1]). We ask if it
is possible to recover their results with semigroup arguments ? In particular, is
it possible to prove (and maybe improve by a dimension factor) Theorem 16 (for
d = 2) with Talagrand inequality at order two from Theorem 11 ?

5.3. Gaussian influences. In [16], the authors extended the notion of influence 1.1
to a continuous setting. This notion has also been investigated in [8] (cf. Theorem
6, p.15). This particular theorem relies on a variation on Talagrand inequality. In
a Gaussian context, they obtained the following result

Theorem 17 (Cordero-Erausquin, Ledoux). Let f : Rn → R be a smooth function
such that |f | ≤ 1, then

Varγn(f) ≤ C
n∑
i=1

‖∂if‖1(1 + ‖∂if‖1)[
1 + log+( 1

‖∂if‖1 )
]1/2

for some universal constant C > 0.

This inequality is of particular interest when f = 1A (or some smooth approx-
imation) for some subset A in Rn. Indeed, ‖∂if‖1 can be seen as the geometric
influence Ii(A) of the i-th coordinate on the set A and, if γn(A) = a, it can be
proved (cf. Corollary 7, p.17 in [8]) that

Ii(A) ≥ a(1− a) log n1/2

Cn
.

As observed by Bouyrie (cf. [6]), it is natural to ask if some variations around
Theorem 11 can be of any help to precise the last inequality for some subset A.
Indeed, Bouyrie noticed that the combination of the arguments presented in [8]
(during the proof of Theorem 17) and Talagrand inequality (of order 2) 11 yields
the following inequality : let f : Rn → R be smooth enough such that |f | ≤ 1 then

Varγn(f)−
∣∣∣∣ ∫

Rn
∇fdγn

∣∣∣∣2 ≤ 8

n∑
i,j=1

‖∂ijf‖1
1 + log(1/‖∂ijf‖1)

.

In particular, when f is a smooth approximation of 1A (with A ⊂ Rn), notice
that in this case, by integrations by parts, the left-hand-side corresponds to

γn(A)
(
1− γn(A)

)
− b(A)

where b(A) designs the barycenter of A defined as
∫
A
xdγn(x). However, the right

hand side seems more complicated to interpret geometrically. We wonder if it can
be of any significance if A is chosen to be a half-space.



18 KEVIN TANGUY UNIVERSITY OF ANGERS, FRANCE

Acknowledgment. This work has been initiated during my thesis and I thank
my Ph.D advisor M. Ledoux for introducing this problem to me and for fruitful
discussions. I am also indebted to K. Oleszkiewicz for several comments and
precious advices. I also want to thank C. Houdré for kindly pointing out to me the
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