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Abstract. This note is concerned with the so-called superconcentration phe-
nomenon. It shows that the Bakry-Émery’s Gamma calculus can provide rel-
evant bound on the variance of function satisfying a inverse, integrated, cur-
vature criterion. As an illustration, we present some variance bounds for the
Free Energy in di↵erent models from Spin Glasses Theory.

1. Introduction

Superconcentration phenomenon has been introduced by Chatterjee in [7] and
has given birth to a lot a work (cf. [15] for a survey). Each of these works, used
various ad-hoc methods to improve upon sub-optimal bounds given by classical
concentration of measure (cf. [4, 10]). In this note, we want to show that the
celebrated Gamma calculus from Bakry and Émery’s Theory is relevant to such
improvements. To this task, we introduce an inverse, integrated, �2 criterion
which provides a useful bound on the variance of a particular function. As far as
we know, this criterion seems to be new. We give below a sample of our modest
achievement.

Denote by �n the standard Gaussian measure on Rn and by (Pt)t�0 the standard
Ornstein-Uhlenbeck semigroup. � will stand for the so-called ”carré du champ”
operator, associated to the infinitesimal generator L = ��x ·r of (Pt)t�0, and �2

its iterated operator. We refer to section 2 for more details about this topic.

Theorem 1.1. Let f : Rn ! R be a regular function and assume that there exists
 : R+ ! R such that

(1) for any t � 0,

(1.1)

Z

Rn

�2(Ptf)d�n 
Z

Rn

�(Ptf)d�n +  (t),

(2) Z 1

0

e
�2t

Z 1

t

e
2s
 (s)dsdt < 1.

Then the following holds

Var�n(f) 
����
Z

Rn

rfd�n

����
2

+ 4

Z 1

0

e
�2t

Z 1

t

e
2s
 (s)dsdt.

with | · | the standard Euclidean norm.

Remark. Equation (3.1) can be seen as an inverse, integrated, curvature inequality
for the function f .
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As an application of Theorem 1.1, we show that some results due to Chatterjee
can be expressed in terms of such criterion. From our point of view, this expression
seems to ease the original scheme of proof and could possibly lead to various
extensions. It also permits to easily recover some known variance bounds in Spin
Glass Theory (cf. [6, 11, 12, 5]). Therefore let us present a short introduction to
this theory.

Most of the time, in Spin Glasses Theory, it is customary to consider a centered
Gaussian field

�
Hn(�)

�
�2{�1,1}n on the discrete cube {�1, 1}n (the map � 7! Hn(�)

is called the Hamiltonian of the system) and to focus on max�2{�1,1}n Hn(�) (or
min�2{�1,1}n Hn(�)). In general, this quantity is rather complex and presents a lack
of regularity. Therefore, one focusses on a smooth approximation of the maximum
(or the minimum) called the Free Energy Fn,� . This function is defined as follow

Fn,� = ± 1

�
log

✓ X

�2{�1,1}n

e
±�Hn(�)

◆

where � > 0 corresponds to (the inverse of) the temperature and its sign depends
on whether you want to study the maximum or the minimum of Hn over the
discrete cube.

For instance, for the REM, we have

Hn(�) =
p
nX�, � 2 {�1, 1}n

where (X�)�2{�1,1}n is a sequence of i.i.d. standard Gaussian random variables.

For the SK Model, the Hamiltonian is more complex,

Hn(�) = � 1p
n

nX

i,j=1

Xij�i�j , � 2 {�1, 1}n

with (Xij)1i,jn a sequence of i.i.d. standard Gaussian random variables.

As an application of our methodology (cf. section 4), we prove the following two
Propositions.

Proposition 1.1. The following holds for the SK model. Let 0 < � <
1

2
, then

(1.2) Var(Fn,�)  C� , n � 1

where C� > 0 is a constant depending only on �.

Remark. Talagrand obtained (cf. [11, 12]) such upper bound on the variance,
for 0 < � < 1, as a consequence of precise (and much harder to prove than our
variance bounds) concentration inequalities for the Free Energy together with
second moment method. As far as we know, it is the first time that such bound is
obtained through semigroups arguments.

The methodology can also be used for the Random Energy Model (REM in
short) (cf. section 4 for more details) and provides the following bounds.

Proposition 1.2. The following holds in the REM.
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(1) High temperature regime : for 0 < � <

q
ln 2

2
, we have

Var�n(Fn,�) 
✓

1� �
2

1� 2�2

◆
1

n
, n � 1

(2) Low temperature regime : for � ⇠
p
log n, we have

Var�n(Fn,�) 
C

log n
, n � e

with C > 0 a universal constant.

Remark. (1) These bounds have to be compared with the results exposed in
[6, 7] (be careful with the di↵erent renormalization). In [6], it is shown that

Var�n(Fn,�) ⇠
C(�)

n
, � <

r
log 2

2

with C(�) = e
�2

�2 (1�e
��

2

). Despite the wrong dependance in �, we recover
the right order of magnitude in n in this temperature regime. Notice also
that in [6], the authors obtained various (according to the temperature
�) asymptotic convergence results for the (renormalized) Free Energy.
Therefore, their results only indicate the correct order of the variance of
this functional. However, to our knowledge, this the first time that such
non-asymptotic bounds on the variance of the Free energy is obtained for
the high temperature regime temperature.

(2) In [6] the low temperature regime was also investigate. Non-asymptotic
variance bound, in accordance with the convergence results from Bovier
and al., was already obtained in [7] and is presented here for the sake of
completeness.

This note is organized as follows. In section 2, we recall some facts about super-
concentration and Gamma calculus. In section 3, we will prove our main results.
Finally, in section 4, we will give some applications in Spin Glass Theory.

2. Framework and tools

In this section, we briefly recall some notions about superconcentration, Gamma
calculus and interpolation methods by semigroups. General references about these
topics could be, respectively, [7, 1].

2.1. Superconcentration. It is well known (cf. [10, 4]), that concentration of
measure of phenomenon is useful in various mathematical contexts. Such phenom-
enon can be obtained through functional inequalities. For instance, the standard
Gaussian measure, on Rn, �n satisfies a Poincaré’s inequality :

Proposition 2.1. For any function f : Rn ! R smooth enough, the following
holds

(2.1) Var�n(f) 
Z

Rn

|rf |2d�n

where | · | stands for the Euclidean norm.
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Although this inequality holds for a large class of function, it could lead to sub-
optimal bounds. A classical example is the function f(x) = maxi=1,...,n xi. For
such function, Poincaré’s inequality implies that

Var�n(f)  1

but it is known that Var�n(f) ⇠ C

logn
for some constant C > 0. In Chatterjee’s

terminology, in this Gaussian framework, a function f is said to be superconcen-
trated when Poincaré’s inequality (2.1) is sub-optimal.

As we have said in the introduction, this phenomenon has been studied in various
manner : semigroup interpolation [14], Renyi’s representation of order statistics
[3], Optimal Transport [15], Ehrard’s inequality [17],. . . (cf. the Thesis [16] for a
recent survey about superconcentration). In this note, we want to show that some
di↵erential inequalities between the operator � and �2 from Bakry and Émery’s
Theory could provide superconcentration.

2.2. Semigroups interpolation and Gamma calculus. For more details about
semigroups interpolation and � calculus, we refer to [1, 9]. Although our work can
easily be extended to a more general framework, we will focus on a Gaussian setting.

The Ornstein-Uhlenbeck process (Xt)t�0 is defined as follow :

Xt = e
�t
X +

p
1� e�2tY, t � 0,

with X and Y i.i.d. standard Gaussian vectors in Rn. The semigroup (Pt)t�0, asso-
ciated to this process, acts on a class of smooth function A (due to the integrability
of Gaussian densities, one can choose here for A the class of C1 functions whose
derivatives are rapidly decreasing) and admits an explicit representation formula :

Ptf(x) =

Z

Rn

f
�
xe

�t +
p

1� e�2ty
�
d�n(y), x 2 Rn

, t � 0

Its infinitesimal generator is given by

L = �� x ·r
Furthermore, �n is the invariant and reversible measure of (Pt)t�0. That is to say,
for any function f and g belonging to A,

Z

Rn

Ptfd�n =

Z

Rn

fd�n et

Z

Rn

fPtgd�n =

Z

Rn

gPtfd�n.

Now, let us recall some properties satisfied by (Pt)t�0 which will be useful in the
sequel.

Proposition 2.2. The Ornstein-Uhlenbeck semigroup (Pt)t�0 satisfies the follow-
ing properties

• Pt(f) is a solution of the heat equation associated to L

(2.2) i.e. @t(Ptf) = Pt(Lf) = L(Ptf).

• (Pt)t�0 is ergodic, that is to say, for f 2 A

(2.3) lim
t!+1

Pt(f) =

Z

Rn

fd�n = E�n [f ]
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• (Pt)t�0 commutes with the gradient r. More precisely, for any function
f 2 A,

(2.4) rPt(f) = e
�t
Pt(rf), t � 0.

• (Pt)t�0 is a contraction in L
p(�n), for any function f 2 L

p(�n) and every
t � 0,

(2.5) kPt(f)kp  kfkp.

As it exposed in [1], it is possible to give a dynamical representation of the
variance of a function f along the semigroup (Pt)t�0 :

(2.6) Var�n(f) = 2

Z 1

0

Z

Rn

|rPs(f)|2d�nds = 2

Z 1

0

e
�2s

Z

Rn

|Ps(rf)|2d�nds

2.3. Gamma calculus and Poincaré’s inequality. Let us introduce the fonda-
mental operator �2 and � from Bakry and Emery’s Theory. Given an infinitesimal
generator L set, for f and g, two smooth functions,

�(f, g) =
1

2

⇥
L(fg)�fLg�Lfg

⇤
and �2(f, g) =

1

2

⇥
L�(f, g)��(f, Lg)��(Lf, g)

⇤

In the case of the Ornstein-Uhlenbeck’s infinitesimal generator L = �� x ·r, it
is easily seen that

(2.7) �1(f) = |rf |2 �2(f) = kHessfk2
2
+ |rf |2

where kHessfk2 =
�P

n

i,j=1

�
@
2
f

@xi@xj

�2�1/2
is the Hilbert-Schmidt norm of the

tensor of the second derivatives of f .

Now, let us briefly recall how a relationship between � and �2 can be used to
give a elementary proof of Poincaré’s inequality (2.1).

First, notice that the representation formula of the variance (2.6) can be ex-
pressed in terms of � :

(2.8) Var�n(f) = 2

Z 1

0

Z

Rn

�(Ptf)d�nds.

Then, observe that (2.7) implies the celebrated curvature-dimension criterion
CD(1,+1) (cf. [1])

(2.9) �2 � �.

Set I(t) =
R
Rn �(Ptf)d�n. It is classical that

I
0(t) = �2

Z

Rn

�2(Ptf)d�n, t � 0

Thus, the inequality (2.9) leads to a di↵erential inequality

(2.10)

Z

Rn

�2(Ptf)d�n �
Z

Rn

�(Ptf)d�n , 2I + I
0  0, t � 0
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which can be easily integrated between s and t (with 0  s  t). That is

I(t)e2t  I(s)e2s.

It is now classical to let s ! 0 to easily recover Poincaré’s inequality (2.1) for the
measure �n. As we will see in the next section, we will show that a di↵erential
inequality of the form

(2.11) I
0 � �2(I +  ),

for some function  , can be used to obtain relevant bound (with respect to su-
perconcentration phenomenon) on the variance of the function f (being fixed) by
letting s fixed and t ! +1.

Remark. Let us make few remarks.

(1) As it is proved in [1], the integrated curvature dimension inequality (2.10)
is, in fact, equivalent to the Poincaré’s inequality (2.1).

(2) As we will see in the next section, the inequality I
0 � �2(I+ ) is equivalent

to an inverse, integrated, curvature dimension inequality which seems to be
new. However, notice that the major di↵erence between (2.10) and (2.11)
is that the first one holds for a large class of function whereas the second
is only true for a particular function f (and  depends on f).

3. Inverse, integrated, curvature inequality

In this section, we will use the methodology exposed in the preceding section to
obtain variance bounds for a (fixed) function f satisfying an inverse, integrated,
curvature inequality IC�n(1, ).

First, let us state a definition. We want to highlight the fact that this definition
will be stated in a Gaussian framework (Rn

,�, �n) with � associated to the infini-
tesimal generator L = �� x ·r and the Ornstein-Uhlenbeck’s semigroup (Pt)t�0.
The next definition can be extended, mutatis mutandis, to fit the general framework
of [1].

Definition 3.1. Let f : Rn ! R be a smooth function. We say that f satisfy an
inverse, integrated, curvature criterion with function  : R+ ! R if

(3.1)

Z

Rn

�2(Ptf)d�n 
Z

Rn

�(Ptf)d�n +  (t), t � 0

When the previous inequality is satisfied we denote it by f 2 IC�n(1, ).

Remark. Notice, again, that the inequality (3.1) holds, a priori, only for the function
f .

Now, let us prove our main result Theorem 1.1.

Proof. (of Theorem 1.1) Assume that f 2 IC�n(1, ) (cf. equation (3.1)) holds.
This is equivalent to the following di↵erential inequality :

(3.2) I
0 � �2(I +  ),

where I(t) =
R
Rn |rPtf |2d�n, t � 0. Set I(t) = K(t)e�2t, inequality (3.2) becomes
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(3.3) K
0(t) � �2e2t (t), t � 0

Now, integrate inequality (3.3) between s and t. That is

K(t)�K(s) � �2

Z
t

s

e
2u
 (u)du, for all 0  s  t.

Then, let t ! 1, this yields

K(s) 
⇥
lim
t!1

K(t)
⇤
+ 2

Z 1

s

e
2u
 (u)du, s � 0,

To conclude, observe that

K(t) = I(t)e2t !t!1

����
Z

Rn

rfd�n

����
2

by ergodicity of (Pt)t�0. Finally, we have, for every t � 0,

(3.4) I(t) =

Z

Rn

�(Ptf)d�n  e
�2t

✓����
Z

Rn

rfd�n

����
2

+ 2

Z 1

t

e
2s
 (s)ds

◆
.

It su�ces to use the dynamical representation of the variance (2.6) with elementary
calculus to end the proof.

⇤
Remark. This method of interpolation, between t and +1, has also been used in
[13] in order to obtain Talagrand’s inequality of higher order.

3.1. Another Variance bound. As we will see in the last section, it is sometimes
useful to restrict an ICµ(1, ), for some probability measure µ, up to a time T in
order to improve the dependance with respect to some parameter.

In other words, the setting is the following : assume that an ICµ(1, ) holds and
that we are able to produce some T > 0 such that the bound of I(T ) (given by
the equation (3.4)) is particularly nice (with respect to some parameter). Now, we
have to bound the variance in a di↵erent manner in order to use the information
on I(T ). To this task, we will prove the next proposition.

Proposition 3.1. Let f : Rn ! R be a function smooth enough. Then, for any
T > 0

Var�n(f) 
2TI(0)

1� e�2T


1

log a
� 1

a log a

�

with a = I(0)

I(T )
and I(t) =

R
Rn �(Ptf)d�n.

Remark. This proposition will be used to show that the Free Energy is superconcen-
trated for some Spin Glasses models. Although we stated the preceding Proposition
3.1 for the standard Gaussian measure �n, it will also hold (up to obvious renor-
malization) for µ the law of a centered Gaussian vector with covariance matrix
M .

To prove the preceding theorem, we will need two further arguments.

First, we present an inequality due to Cordero-Erausquin and Ledoux [8]. The
proof of this inequality rests on the fact that the Poincaré’s inequality satisfied by
�n implies an exponential decay of the variance along the semigroup (Pt)t�0.
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Lemma 3.1. [Cordero-Erausquin-Ledoux]
Let f : Rn ! R be a function smooth enough. Then, for any T > 0, the

following holds

(3.5) Var�n(f) 
2

1� e�2T

Z
T

0

I(t)dt

with I(t) =
R
Rn �(Ptf)d�n.

Proof. For the sake of completeness we give the proof of the preceding Lemma.

Var�n(f) = E�n [f
2]� E�n [(PT f)

2] + E�n [(PT f)
2]� E�n [PT f ]

2

= �
Z

T

0

d

ds
E�n [(Psf)

2]ds+Var�n(PT f)

 2

Z
T

0

I(s)ds+ e
�2TVar�n(f).

⇤

Secondly, we will use the fact that the infinitesimal generator (�L) of the
Ornstein-Uhlenbeck process (Xt)t�0 admits a (discrete) spectral decomposition.
Then, denote by dE� the spectral resolution of (�L). According to [1], this leads
to a di↵erent representation of t 7! I(t). With f : Rn ! R being fixed, we have :

I(t) =

Z

Rn

|rPtf |2d�n =

Z 1

0

�e
�2�t

dE�(f), t � 0

As it is proven in [2] (cf. Corollary 5.6), t 7! I(t) satisfies, with the preceding
representation, an Hölder-type inequality. That is to say, for every T > 0,

Lemma 3.2. [Baudoin-Wang]

(3.6) I(s)  I(0)1�s/T
I(T )s/T , 0  s  T

Now, we can prove Proposition 3.1 with the help of preceding Lemma.

Proof. (of Proposition 3.1) First use Lemma 3.1 to get

Var�n(f) 
2

1� e�2T

Z
T

0

I(t)dt.

Then, use Lemma 3.2. This yields

Var�n(f)  2

1� e�2T

Z
T

0

I(0)1�t/T
I(T )t/T dt

=
2I(0)

1� e�2T

Z
T

0

e
� t

T log a
dt

where a = I(0)

I(T )
� 1 and I(t) =

R
Rn �(Ptf)d�n. Finally, elementary calculus ends

the proof.
⇤
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4. Application in Spin Glasses’s theory

In the remaining of this section, we will show how Theorem 1.1 can be used to
provide relevant bounds on the variance of Fn,� . We will focus on the REM and
the SK Model. For the remaining of this note we will denote by f� , for � > 0, the
following function

f�(x) =
1

�
log

� nX

i=1

e
�xi

�
, x = (x1, . . . , xn) 2 Rn

4.1. Random Energy Model. In this section we will show how Theorem 1.1 is
useful to obtain relevant bound on the variance of the Free Energy Fn,� (with �

close to 0) for the REM.

Proposition 4.1. For any � > 0, f� 2 IC�n(1, ) with

 (t) = 2�2
e
�2t

I(t)

where, let us recall it, I(t) =
R
Rn �(Ptf�)d�n and � is the standard ”carré du

champ” operator.

We will need the following Lemma to prove the preceding Proposition.

Lemma 4.1. Let (ui)i=1,...,n be a family of functions, with ui : Rn ! R for any
i = 1, . . . , n, satisfying the following condition

nX

i=1

u
2

i
(x)  1 for all x 2 Rn

Then, for any function v : Rn ! R+ and any probability measure µ, we have

nX

i=1

✓Z

Rn

ui(x)v(x)dµ(x)

◆2


✓Z

Rn

vdµ

◆2

Proof. Consider the vector U = (u1v, . . . , unv) 2 Rn and recall that | · | stands the
Euclidean norm. Then, it holds

 nX

i=1

✓Z

Rn

ui(x)v(x)dµ

◆2�1/2
=

����
Z

Rn

Udµ

���� 
Z

Rn

|U |dµ =

Z

Rn

 nX

i=1

u
2

i
(x)

�1/2
v(x)dµ


Z

Rn

v(x)dµ

where the first upper bound comes from Jensen’s inequality.
⇤

Now we turn to the proof of Proposition 4.1.

Proof. (Proposition 4.1).
First, observe that the condition IC�n(1, ) is equivalent to

Z

Rn

�2

�
Pt(f�)

�
d�n  (1 + 2�2

e
�2t)

Z

Rn

�
⇣
Pt(f�)

�
d�n, t � 0.

That is (since �2(f) = kHessfk2
2
+ |rf |2 and �(f) = |rf |2)

(4.1)

Z

Rn

kHessPt(f�)k22d�n  2�2
e
�2t

Z

Rn

|rPt(f�)|2d�n, t � 0.
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Now, observe that, pointwise, equation (4.1) is equivalent to (thanks to the com-
mutation property between r and (Pt)t�0)

nX

i,j=1

[Pt(@
2

ij
f�)]

2  2�2

nX

i=1

[Pt(@if�)]
2
, 8t � 0

Elementary calculus yields, for every i = 1, . . . , n, and every � > 0,

@if� =
e
�xi

P
n

k=1
e�xk

and, for every j = 1, . . . , n,

@j@if� = �(@if��ij � @if�@jf�).

Thus, for every t � 0,

nX

i,j=1

[Pt(@
2

ij
f�)]

2 = �
2

nX

i=1

⇥
Pt(@if�)

⇤2�2�
nX

i=1

Pt(@if�)Pt

⇥
(@if�)

2
⇤
+�2

nX

i,j=1

⇥
Pt(@if�@jf�)

⇤2
.

First ignore the crossed terms (which are always non positive), then apply Lemma
4.1 to the third term.

Indeed, let i 2 {1, . . . , n} be fixed and set uj = @jf� and v = @if� . Thus, Lemma
4.1 implies

nX

j=1

⇥
Pt(@if�@jf�)

⇤2  P
2

t
(@if�).

This inequality finally yields,

nX

i,j=1

[Pt(@
2

ij
f�)]

2  �
2

nX

i=1

⇥
Pt(@if�)

⇤2
+�2

nX

i,j=1

⇥
Pt(@if�@jf�)

⇤2  2�2

nX

i=1

⇥
Pt(@if�)

⇤2
.

⇤

Now, the criterion IC�n(1, ) can be used gives to provide relevant bound on
the variance of Fn,� as stated in Proposition 1.2.

Proof. (of Proposition 1.2) As it will be useful in the sequel, observe that (by
symmetry) the following holds

Z

Rn

@if�d�n =
1

n
, 8i = 1, . . . , n.

Now, let � > 0 and use Theorem 1.1 which implies that

(4.2) Var�n(Fn,�) 
1

n
+ 4�2

Z 1

0

e
�2s(1� e

�2s)
nX

i=1

Z

Rn

P
2

s
(@if�)d�nds

where we used Fubini’s Theorem and the commutation property between r and Ps.

For the first bound, when � 2
�
0,

p
2

2
), it is possible to rewrite (thanks to the

dynamical representation of the variance (4.2)) the integral in the right hand side
as
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2�2Var�n(Fn,�)� 4�2

Z 1

0

e
�4s

nX

i=1

Z

Rn

P
2

s
(@if�)d�nds

Furthermore, by Jensen’s inequality and the invariance of (Pt)t�0 with respect
to �n, we have

Z

Rn

P
2

s
(@if�)d�n �

✓Z

Rn

Ps(@if�)d�n

◆2

=
1

n2
, 8i = 1, . . . , n, 8s > 0

Thus, Var�n(Fn,�) 
✓

1��
2

1�2�2

◆
1

n
.

For the second bound, we will use the inequality (4.2) together with hypercon-
tractive estimates of (Pt)t�0 (cf. [7, 15, 16, 8]). More precisely, we have

kPs(@if�)k22  k@if�k21+e�2s , 8i = 1, . . . , n, 8s > 0

It is then standard, cf. section 4 in [16] for instance, to prove that

Z 1

0

e
�2s(1� e

�2s)k@if�k21+e�2sds 
Ck@if�k22⇥

1 + log k@if�k2

k@if�k1

⇤2

where C > 0 is a numerical constant. Then, it is elementary to conclude. ⇤

4.2. SK Model. In this section we show how some work of Chatterjee (from [7])
can be rewritten in term of an inverse, integrated, curvature criterion. Then, it
allows us to easily recover a bound, obtained by Talagrand (cf. [11, 12]), on the
variance of the Free Energy for the SK model at high temperature.

First, we need to express the � and �2 operator when �n is replaced by µ the
law of a centered Gaussian vector, in Rn, with covariance matrix M .

Let X be a random Gaussian vector with L(X) = µ and consider Y an indepen-
dant copy of X. It is then possible to define the generalized Ornstein-Uhlenbeck
process, which we will still denote by (Xt)t�0, as follow

Xt = e
�t
X +

p
1� e�2tY, t � 0

Similarly, we also denote by (Pt)t�0 the associated semigroup. Then, it is known
(cf. [7, 14, 16]) that, for any smooth function f : Rn ! R,

I(t) =

Z

Rn

�(Ptf)dµ = 2

Z

Rn

e
�2t

X

i,j

Mij(@if)Pt(@jf)dµ, t � 0

As we will see latter, it will be more convenient to work with

Ir(t) = 2

Z

Rn

e
�2t

X

i,j

(Mij)
r(@if)Pt(@jf)dµ, t � 0

where r is a positive integer. In the rest of this section, we choose f = f� .

Proposition 4.2 (Chatterjee). Assume that Mij � 0 for all (i, j) 2 {1, . . . , n}2.
Then, for any t � 0, the following holds

(4.3) I
0
r
(t) � �2

⇥
Ir(t) + 2�2

e
�2t

Jr+1(t)
⇤

with Jr(t) = e
2t
Ir(t).
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Remark. (1) In [7], Chatterjee proved that J
0
r
(t) � �4�2

e
�2t

Jr+1(t) for any
r 2 N⇤. The proof is similar the proof of Lemma 4.1 with the additional
use of Hölder’s inequality.

(2) In particular, when r = 1, Chatterjee’s proposition amounts of saying that

f� 2 ICµ(1, )

with  (t) = 2�2
e
�2t

J2(t). Unfortunately, it remains hard to upper bound
this quantity by something relevant.

As observed in the preceding remark, the inverse, integrated, curvature criterion
can not be used in the present form. However, it is possible to recycle the arguments
of section 3. That is, use l times, with l 2 N, the fundamental Theorem of analysis
(on t 7! Ir(t)) together with the inequality (4.3) and let l ! +1. This leads to a
useful bound on the function t 7! Ir(t) for any r 2 N⇤.

Proposition 4.3 (Chatterjee). Assume that Mij � 0 for all (i, j) 2 {1, . . . , n}2.
Then, for any t � 0, the following holds

(4.4) Ir(t)  e
�2t

nX

i,j=1

(Mij)
r
e
2�

2
e
�2t

Mij⌫i⌫j , 8r � 1

where ⌫i =
R
Rn @if�dµ for all i = 1, . . . , n.

Remark. When r = 1, the main step of Chatterjee’s proof is equivalent to show
that f� 2 ICµ(1, ) with  (t) = 2�2

e
�2t

P
i,j=1

Mije
2�

2
e
�2t

Mij⌫i⌫j . The proof of
this result can be found in [7] (pages 108� 110).

Unfortunately, the repeated use of the di↵erential inequality (4.3) degrades the
upper bound on t 7! Ir(t). As we will briefly see in the next subsection, Chatterjee
used equation (4.4) only for a fixed T > 0 (large enough). We show, in the next
Proposition, that this bound (for r = 1) is still relevant to recover some work of
Talagrand on the variance of F�,n, with small �, for the SK model (cf. [11, 12]).

Now, let us prove Proposition 1.1.

Proof. (of Proposition 1.1) First we show that inequality (4.4) leads to a general
upper bound on the variance of Fn,� which might be of independant interest.
Then, we choose M to be the covariance structure of the SK model and proved
inequality (1.2).

When r = 1, equation (4.4) combined with equation (2.8) implies that, for any
� > 0,

Varµ(Fn,�)  2

Z 1

0

e
�2t

nX

i,j=1

Mije
2�

2
e
�2t

Mij⌫i⌫jdt

 1

2�2

nX

i,j=1

e
2�

2
Mij⌫i⌫j

Following Chatterjee (cf. [7]), choose M to be the covariance structure of the
SK model. That is,
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M��0 =

✓
1p
n

nX

i=1

�i�
0
i

◆2

, 8�,�0 2 {�1, 1}n.

Besides, observe (by symmetry) that, for each � 2 {�1, 1}n,

⌫� = Eµ

⇥
@�Fn,�

⇤
=

1

2n
.

Thus,

Varµ(Fn,�) 
1

2�2
E�,�0

⇥
e
2�

2
�

1p
n
�i�

0
i

�2
�

where E�0� stands for the expectation under the product measure induced by the
Rademacher random variables �i,�0

i
, i = 1, . . . , n.

Finally, if � 2
�
0, 1

2

�
we have E�,�0

⇥
e
2�

2
�

1p
n

Pn
i=1 �i�

0
i

�2
�
= C(�). Indeed, observe

first that
P

n

i=1
�i�

0
i
has the same distribution as

P
n

i=1
�i. Then, it is enough to

use Hoe↵ding’s inequality (cf.[4]), which gives the following deviation inequality

P
✓

1p
n

nX

i=1

�i > t

◆
 e

�t
2
/2

t � 0,

to conclude. ⇤
Remark. (1) Preceding result can also be used to show that the ground states

of the SK model is superconcentrated. Indeed, since

kf� � max
i=1,...,n

k1  log n

�
for all � > 0,

we have

Varµ
�

max
�2{�1,1}n

Hn(�)
�
 3Varµ(Fn,�) + 6

✓
log n

�

◆2

with � > 0

Then, choose � = 1/4, this yields Varµ
�
max�2{�1,1}n Hn(�)

�
 C�(log n)2

which improve upon the bound given by Poincaré’s inequality.

4.3. Improvements of Variance bounds with respect to the parameter �.

Let us collect some results of Chatterjee and briefly explain how Proposition 3.1
can be used to improve the dependance of the variance bounds with respect to �.
However, the dependance in n will be worse.

Chatterjee used, in [7], a Theorem of Bernstein about completely monotone
function. As far as we are concerned, the spectral framework exposed in section 3
seems to be more natural to work with and provides equivalent results.

The arguments, in order to improve the dependance in �, can be summarize as
follow : choose T such that I(T ) can be bounded by a relevant quantity and apply
Proposition 3.1.

Proposition 4.4 (Chatterjee). In the SK model the following holds

Varµ(Fn,�) 
C1n log(2 + C2�)

log n
, 8� > 0

with C1, C2 > 0 two numerical constants.
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Remark. Here T > 0 is choosen such that

E�,�0


M��0e

2�
2
e
�2T

M��0

�
= C� , 8� > 0

where M��0 =
�

1p
n

P
n

i=1
�i�

0
i

�2
and C� > 0 is a constant that does not depend on

n. That is T = 1

2
log

�
2�

2

�

�
for some su�ciently small constant � > 0 (cf. [7]).

Proposition 4.5 (Chatterjee). In the REM, the following holds for � > 2
p
log 2,

Varµ(Fn,�)  C�

where C� > 0 is a constant that does not depend on n.

Remark. Here T is choosen as T = 1

2
log(2�2) so that I(T )  n

2n
e
�2T

e
n and the

upper bound is relevant in the low temperature regime (cf. [7, 6]). Notice the
di↵erence of renormalization with Proposition 1.2 (one has to replace the number
of random variables n by 2n and the i.i.d. standard Gaussian random variables
(Xi)i=1,...,2n by

p
nXi in the Proposition).

Aknowledgment : I thank M. Ledoux for fruitful discussions on this topic. I also
warmly thank the referee for helpful comments in improving the exposition and the
simplification of the proof of Lemma 4.1.
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