
Chapitre 11

Transport optimal

11.1 Introduction
Nous avons déjà observé plusieurs manières d’aborder la concentration de la mesure : via des

résultats isopérimétriques mais aussi grâce à des inégalités fonctionnelles. Ce chapitre à pour objectif
d’introduire un nouveau point de vue, celui du transport optimal. Comme nous le verrons, cette
théorie permet facilement d’obtenir des résultats de concentrations mais il met également en avant de
nouvelles quantités comme les distances de Wasserstein qui sont utiles pour quantifier la convergence
de mesure. Dans ce qui suit, nous allons commencer par énoncer le problème de Monge-Kantorovich
et présenter les nouveaux objets qui lui sont liés. Nous aborderons ensuite certains aspects qualitatifs
et quantitatifs de ce problème pour enfin présenter les liens existant entre transport optimal et
concentration de la mesure.

11.1.1 Problème de Monge-Kantorovich
Dans ce qui suit (E, d) désigne un espace polonais et rappelons que P(E) représente l’ensemble

des mesures de probabilités sur les boréliens de E.

Définition 11.1.1. Soient µ et ‹ deux mesures de probabilités sur E. Une application T : E æ E
transporte µ sur ‹ si ⁄

E
f(y)d‹(y) =

⁄

E
f(T (x))dµ(x)

pour toute fonction f : E æ R borélienne bornée.

Définition 11.1.2. Soient µ, ‹ œ P(E). Un couplage entre µ et ‹ est une mesure de probabilité
fi sur E ◊ E dont la première marginale vaut µ et la seconde ‹. Nous désignerons par �(µ, ‹)
l’ensemble de tels couplages

Remarque. D’un point de vu probabiliste, un couplage n’est autre que la loi d’un couple de variable
aléatoire (X, Y ) telles que L(X) = µ et L(Y ) = ‹.

Exemple 11.1.1. 1. Le couplage le plus simple et celui qui consiste à choisir fi = µ ¢ ‹.
Autrement dit, fi = L

!
(X, Y )

"
avec X et Y des variables aléatoires indépendantes de loi
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234 CHAPITRE 11. TRANSPORT OPTIMAL

respective µ et ‹.

2. Etant donné une application T : E æ E transportant µ sur ‹, il est possible de produire un
couplage déterministe en posant fiT = L(X, T (X)). En particulier,

⁄⁄

E◊E
f(x, y)dfiT (x, y) =

⁄⁄

E◊E
f

!
x, T (x)

"
dµ(x)

pour toute fonction f : E æ R borélienne bornée.

Maintenant que nous avons introduit quelques points de vocabulaire, nous pouvons énoncer le
problème de Monge-Kantorovich.

Définition 11.1.3. Etant donnés deux mesures de probabilités µ, ‹ œ P(E) ainsi qu’une fonction
mesurable c : E ◊ E æ [0, +Œ], le problème de Monge-Kantorovich consiste à minimiser le coût
de transport (entre µ et ‹) défini par

Ic(fi) =
⁄⁄

E◊E
c(x, y)dfi(x, y)

sous la contrainte fi œ �(µ, ‹).

Le coût de transport optimal entre µ et ‹ sera noté par

Tc(µ, ‹) = inf
fiœ�(µ,‹)

Ic(fi).

11.1.2 Problème de Monge-Kantorovich, résultats qualitatifs
Lorsque la fonction de coût c satisfait certaines hypothèses, le théorème suivant nous assure que

le problème de Monge-Kantorovich admet une solution.

Théorème 11.1.1. Si c : E ◊ E æ [0, +Œ] est une fonction semi-continue inférieurement alors,
pour toutes mesures µ, ‹ œ P(E), il existe fiú

œ �(µ, ‹) telle que

Tc(µ, ‹) =
⁄⁄

E◊E
c(x, y)fiú(x, y)

Remarque. fiú porte le nom de plan de transport optimal associé aux mesures µ et ‹.

Démonstration. Voici les grandes lignes de la démonstration.
1. Tout d’abord, il faut montrer que Ic est une application semi-continue inférieurement sur

P(E ◊ E).

2. L’ensemble �(µ, ‹) est ensemble compact pour la topologie de la convergence étroite. Pour
démontrer ceci, il faudra faire appel au Théorème de Prokhorov qui caractérise la compacité
relative d’un ensemble de mesure en terme de tension.

3. Pour conclure, il su�t d’utiliser le fait suivant : une fonction semi-continue inférieurement
sur un ensemble compact est minorée et atteint sa borne inférieure.
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Le lecteur est prié de se référer aux ouvrages suivants pour une démonstration de ce théorème
[144, 143].

En dimension un, il est possible de préciser la forme du couplage optimal à l’aide des fonctions
de repartition. Si µ œ P(R), nous noterons sa fonction de répartition par Fµ(x) = µ

!
] ≠ Œ, x]

"
.

Proposition 11.1.1. Soient µ, ‹ œ P(E). Si µ une mesure sans atome alors

fiú = L
!
X, T (X)

"
où T (x) = F ≠1

‹ ¶ Fµ(x)
avec L(X) = µ. De plus, T est une application croissante.
Remarque. Dire que µ est une mesure sans atome signifie que µ(a) = 0 pour tout a œ R. Il aurait
également pu être envisageable de choisir fiú = L

!
X, S(X)

"
avec

S(x) = F ≠1

‹ ¶ (1 ≠ Fµ(x)) x œ R

qui est une application décroissante.

11.1.3 Dualité de Kantorovich
Tout comme de nombreux problème de minimisation, celui de Monge-Kantorovich peut éga-

lement s’énoncer de manière duale. Comme nous le verrons, cette nouvelle formulation sera utile
pour établir un lien entre la théorie du transport optimal et la concentration de la mesure ; ceci
s’e�ectuera par le biais de nouvelles inégalités fonctionnelles.
Théorème 11.1.2 (Dualité). Soient c : E ◊ E æ [0 + Œ[ une fonction de coût semi-continue
inférieurement et µ, ‹ œ P(E) telles que Ic(µ, ‹) < +Œ. Alors

Tc(µ, ‹) = sup
(„,Â)œ�c

; ⁄

E
Â(x)µ(dx) +

⁄

E
„(y)‹(dy)

<
(11.1.1)

où �c =
;

(Â, „) œ C0

b (E) ◊ C0

b (E) ; Â(x) + „(y) Æ c(x, y) pour x, y œ E

<
.

Remarque. 1. Il est possible de relâcher la condition sur le couple (Â, „) en supposant que
Â œ L1(µ) et „ œ L1(‹).

2. La démonstration permettant d’établir cette dualité utilise la notion de c-convexité et de
monotonie cyclique par rapport à la fonction de coût c. Plus précisément, il y a équivalence
entre les assertions suivantes :

• fi est un couplage optimal ;

• le support de fi est un ensemble c-cycliquement monotone ;

• il existe une fonction f c-convexe.

Toutefois pour ne pas alourdir le cours, nous ne développerons pas ces aspects et renvoyons
le lecteur vers [144, 143]. Néanmoins, nous reviendrons brièvement sur cette notion de c-
convexité lorsque nous aborderons les opérateurs d’inf-convolution permettant de définir le
semi-groupe d’Hamilton-Jacobi.
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11.1.4 Théorème de Brenier
Lorsque E = R

n et c(x, y) = 1

2
|x ≠ y|

2 (avec | · | la distance euclidienne), la solution problème
de Monge-Kantorovich admet une forme élégante que nous allons présenter ci-dessous. Pour un tel
choix de fonction de coût, nous adopterons la notation suivante

T2(µ, ‹) = Tc(µ, ‹) avec µ, ‹ œ P(Rn).

Théorème 11.1.3 (Brenier). Soient µ, ‹ deux mesures de probabilités sur (Rn, | · |) ; si µ est
absolument continue par rapport à la mesure de Lebesgue et si T2(µ, ‹) < +Œ alors

1. il existe un unique plan de transport optimal fiú
œ �(µ, ‹) et celui-ci est déterministe

i.e. fiú = L(X, T (X)) pour T : R
n

æ R
n

avec L(X) = µ.
2. il existe une fonction convexe „ : R

n
æ R (finie µ-presque partout) telle que T = Ò„.

3. l’application T est essentiellement unique : si T̃ définie une autre solution optimale alors
T̃ = T µ-presque partout.

Remarque. 1. Ce résultat a été étendu aux cadres des variétés riemaniennes par McCann.
L’expression de l’application T est un peu plus complexe et fait intervenir la fonction
exponentielle associée à la variété.

2. En pratique, le Théorème de Brenier met en jeu un changement de variable qui s’apparente à
une équation de Monge-Ampère. Nous reviendrons ce sur point dans une section ultérieure.

Démonstration. La démonstration de ce résultat est délicate et sera omise dans ce cours. Men-
tionnons toutefois, qu’elle fait appel à des résultats d’analyse convexe (notion de sous-di�érentielle,
di�érentiabilité presque partout d’une fonction convexe,. . . ) mais aussi à la caractérisation des plans
de transports optimaux en terme de c-convexité et de c-monotonie cyclique pour le coût quadratique
euclidien. Le lecteur trouvera la démonstration de ce résultats dans [144, 143].

11.1.5 Equation de Monge Ampère
Comme mentionné un peu plus haut, lorsque c(x, y) = 1

2
|x ≠ y|

2, le Théorème de Brenier donne
lieu à un changement de variable. En e�et, sous les hypothèses du Théorème de Brenier, il existe
une application „ : R

n
æ Rfi {+Œ} telle que l’application T transportant µ sur ‹ soit de la forme

T = Ò„.

En particulier, si dµ = gdx et d‹ = fdx, nous avons (par définition de T )
⁄

Rn

h(y)g(y)dy =
⁄

Rn

h
!
T (x)

"
f(x)dx

pour toute fonction borélienne bornée h : R
n

æ R. Lorsque T est un C1-di�éomorphisme, il est
alors possible de procéder au changement de variable y = T (x) dans la première intégrale. Ainsi,
nous obtenons
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⁄

Rn

h
!
T (x)

"
g
!
T (x)

"--det Jac T (x)
--dx =

⁄

Rn

h
!
T (x)

"
f(x)dx

où Jac T (x) désigne la matrice jacobienne de T au point x. En conséquence de ceci, pour tout
x œ R

n, nous avons

f(x) = g
!
T (x)

"--det Jac T (x)
--.

En outre, puisque T = Ò„, ceci s’écrit

f(x) = g
!
Ò„(x)

"--det Hess „(x)
-- (11.1.2)

où Hess „(x) désigne la matrice (semi-définie positive) de „ au point x. L’équation (11.1.2) est
désignée sous le nom d’équation de Monge-Ampère (cf. [144, 143] pour plus de détails). Comme
nous le verrons ultérieurement, il est possible d’obtenir de nombreuses informations à partir de
cette équation.

Notons que les hypothèses sur T faites ci-dessus sont trop restrictives et irréalistes. En e�et,
puisque „ est convexe, Ò„ est définie presque partout mais il n’y a, a priori, aucune raison pour
que Ò„ soit bijective ou régulière. Toutefois, il est possible d’a�aiblir les hypothèses faites sur T
pour donner un sens à l’équation de Monge-Ampère (11.1.2) dans un contexte plus général. Cette
généralisation s’e�ectue via la notion de sous-gradient qui permet de définir une Hessienne au sens
d’Alexandrov. Ces résultats plus complexes ne seront pas abordés dans ce cours.

11.2 Problème de Monge-Kantorovich, aspect métrique
Rappelons que l’espace sous-jacent E est un espace polonais, en particulier E est muni d’une

distance d. Lorsque la fonction de coût c coïncide avec la distance d, cela donne lieu a des quantités
interessantes permettant de définir une nouvelle distance sur l’espace des mesures de probabilités
sur E (en imposant quelques conditions de moments).

D’un point de vue heuristique, la quantité Tc(µ, ‹) permet de mesurer la di�érence entre
deux mesures de probabilités. C’est pourquoi, intuitivement, si µ = ‹, il est naturel de pressentir
que le meilleur moyen de minimiser la fonctionnelle de coût est de ne rien faire : autrement dit
Tc(µ, µ) = 0. La propriété de symétrie de l’application Ic(µ, ‹) est, quant à elle, évident ; il parait
alors réaliste d’espérer qu’une inégalité triangulaire soit satisfaite.

Avant d’approfondir et de développer les quelques lignes qui précèdent, nous allons introduire
de nouvelles notations. Pour p œ [1, +Œ[ et deux mesures de probabilités µ, ‹ œ P(E), posons

Tp(µ, ‹) = inf
fiœ�(µ,‹)

⁄⁄

E◊E
d(x, y)pdfi(x, y)

Observons également le fait suivant : si x0 œ E et µ œ P(E) alors

Tp(”x0 , µ) =
⁄

E
d(x0, y)pdµ(y)



238 CHAPITRE 11. TRANSPORT OPTIMAL

Suite à cette observation, nous allons nous restreindre aux mesures pour lesquelles le coût précédent
est fini.

Définition 11.2.1. Pour p œ [1, +Œ[, nous désignons par Pp(E) l’ensemble des mesures boré-
liennes sur E qui admettent un moment d’ordre p :

Pp(E) =
;

µ œ P(E) ;
⁄

E
d(x0, x)pdµ(x) < +Œ

<

pour un certain x0 œ E.

Remarque. Il est élémentaire de vérifier que Pp(E) ne dépend pas du choix de x0.
Il est maintenant possible de définir une distance sur Pp(E) à l’aide de Tp. Ces nouvelles distances

portent le nom de distance de Kantorovich-Wasserstein.

Proposition 11.2.1. La quantité

Wp(µ, ‹) = Tp(µ, ‹)1/p

définie pour tout µ, ‹ œ Pp(E) est une distance sur Pp(E).

Remarque. En particulier, si µ = ”x et ‹ = ”y alors Wp(µ, ‹) = d(x, y).

Démonstration. La vérification de l’inégalité triangulaire est laissée en exercice.

Comme pour les normes associées Î · Îp aux espaces Lp(µ), il est possible de comparer les
distances de Kantorovich-Wassertein entre elles.

Proposition 11.2.2. Pour 1 Æ p Æ q et pour toutes mesures µ, ‹ œ Pq nous avons

Wp(µ, ‹) Æ Wq(µ, ‹).

Démonstration. Soient 1 Æ p Æ q et rappelons que pour toutes mesures de probabilité µ, Lq(µ) µ

Lp(µ), c’est pourquoi Pq µ Pp. Si (X, Y ), avec L(X) = µ et L(Y ) = ‹, désigne un couple de
variables aléatoires qui réalise Wq(µ, ‹) alors

..d(X, Y )
..

p
Æ

..d(X, Y )
..

q
= Wq(µ, ‹).

Or, par definition de Wp(µ, ‹) nous avons aussi

Wp(µ, ‹) Æ
..d(X, Y )

..
p

d’où le résultat.

Caractérisation duale de Wp

Comme nous allons le voir, il est possible de caractériser de manière duale les distances
(Wp)pØ0. Nous allons nous focaliser sur les cas p = 1 et p = 2.
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Théorème 11.2.1 (Dualité pour W1). Pour tout µ, ‹ œ P1, la distance W1(µ, ‹) est donnée par

W1(µ, ‹) = sup
fœF1

;----
⁄

E
fdµ ≠

⁄

E
fd‹

----

<
(11.2.1)

avec F1 désignant les fonctions 1-lipschitziennes.

Démonstration. Désignons par S le précédent supremum et montrons que S = W1(µ, ‹). A cet
e�et, soient f une fonction 1-lipschitzienne et (X, Y ) un couple de variables aléatoires tel que
L

!
(X, Y )

"
= fi (i.e. fi œ �(µ, ‹)). Alors

----
⁄

E
fdµ ≠

⁄

E
fd‹

---- =
--Eµ[f(X)] ≠ E‹ [f(Y )]

--

Æ Efi

#--f(X) ≠ f(Y )
--$

Æ Efi

#--d(X, Y )
--$

puisque f est 1-lipschitzienne. Ainsi, S Æ Efi[|d(X, Y )|] pour tout couplage fi œ �(µ, ‹) ; c’est
pourquoi S Æ W1(µ, ‹).

Démontrons à présent que S Ø W1(µ, ‹). Soit ‘ > 0 fixé, d’après la dualité de Kantorovich (i.e.
le théorème 11.1.2), il existe Â œ L1(µ) et „ œ L1(‹) telles que, pour tout x, y œ E

Â(x) + „(y) Æ d(x, y) et
⁄

E
Âdµ +

⁄

E
„d‹ Ø W1(µ, ‹) ≠ ‘. (11.2.2)

Posons alors f(x) = supyœE

!
„(y) ≠ d(x, y)

"
. Il n’est pas di�cile de montrer, via l’inégalité

triangulaire, que f est 1-lipschitzienne et que f œ L1(µ) fl L1(‹) puisque µ, ‹ œ P1(E).

Observons de plus, en choisissant y = x dans le supremum définissant f , que f(x) Ø „(x). En
outre, par hypothèse nous avons Â(x) + „(y) Æ d(x, y), ce qui permet d’obtenir l’inégalité suivante

f(x) = sup
yœE

!
Â(y) ≠ d(x, y)

"
Æ ≠Â(x) avec x œ E. (11.2.3)

En combinant les inégalités (11.2.2) et (11.2.3) nous obtenons

S Ø ≠

⁄

E
fdµ +

⁄

E
fd‹ Ø

⁄

E
Âdµ +

⁄

E
„d‹ Ø W1(µ, ‹) ≠ ‘

ce qui achève la démonstration.

Les mêmes arguments permettent d’obtenir un résultat similaire lorsque p = 2.

Théorème 11.2.2 (Dualité pour W2). Pour tout µ, ‹ œ P2, la distance W2(µ, ‹) est donnée par

W2(µ, ‹) = sup
fœF2

;----
⁄

E
Âdµ ≠

⁄

E
„d‹

----

<
(11.2.4)

avec F2 désignant l’ensemble des fonctions bornées Â et „ telles que

Â(x) Æ „(y) + 1
2 |x ≠ y|

2 avec x, y œ E.
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Remarque. Le choix optimal, parmi les fonctions appartenant à F2, est obtenu en choisissant Â de
la manière suivante

Â(x) = inf
yœRn

#
„(y) + 1

2 |x ≠ y|
2
$
.

Â est usuellement désignée comme l’infimum-convolution de la fonction „ pour le coût quadratique
c(x, y) = 1

2
|x ≠ y|

2.

11.2.1 Lien avec la topologie faible
Les distances (Wp)pØ1 peuvent être utilisées en rapport avec la convergence faible. Plus préci-

sément,

Théorème 11.2.3. Soient µ et (µn)nØ1 des mesures dans Pp(E). Dans ce cas, Wp(µn, µ) tend
vers 0 lorsque n æ +Œ si et seulement si

1. (µn)nØ1 converge faiblement vers µ ;
2. les moments d’ordre p de (µn)nØ1 convergent vers ceux de µ :

lim
næ+Œ

⁄

E
d(x0, x)pdµn(x) =

⁄

E
d(x0, x)pdµ(x).

Démonstration. Nous admettrons cette preuve qui nous éloignerait de notre sujet. Notons toutefois
que le sens direct de la démonstration utilise le Théorème du portemanteau (pour la convergence
faible) et l’inégalité suivante : pour tout ‘ > 0, tout p Ø 1, il existe C(‘, p) telle que

|ap
≠ bp

| Æ ‘ap + C(‘, p)|b ≠ a|
p pour tout (a, b) œ R

2

+

pour la convergence des moments. Le sens réciproque utilise des résultats d’uniforme intégrabilité
ainsi que l’équivalence entre convergence en loi et convergence en probabilité d’une suite de variables
aléatoires lorsque la limite est une constante.

11.2.2 Applications
Maintenant que nous avons préciser de quelle manière les distances de Kantorovich-Wasserstein

sont liées à la convergence de mesure, voyons quelques illustrations de ce résultat.

Théorème de la limite centrale
Débutons par un résultat classique. Soit X une variable aléatoire, centrée, réduite, de loi µ et

de carré intégrable et rappelons que “1 désigne la mesure gaussienne standard dans R. Considérons
(Xi)iØ1 une suite de copies indépendantes de X. Comme auparavant, Sn =

qn
i=1

Xi.

Théorème 11.2.4 (Théorème de la limite centrale). Dans le cadre précédent, nous avons

lim
næ+Œ

W 2

2
(µn, “1) = 0 (11.2.5)

où L(n≠1/2Sn) = µn. En particulier, n≠1/2Sn converge en loi vers Z avec L(Z) = “1.
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Etude des files d’attentes M/M/Œ

Il est également possible d’aborder des résultats plus complexes impliquant de la dépendance.
A cet e�et, rappelons qu’il est usuel de modéliser certaines files d’attentes de la manière suivante :

1. la file d’attente est composée de x0 œ R personnes.
2. A chaque instant, une personne est servie avec probabilité p œ [0, 1] et sort de la file d’attente ;

bien entendu, avec probabilité q = 1 ≠ p cette personne reste dans la file.
3. de nouvelles personnes s’insèrent dans la file d’attente. Cette quantité est déterminée par une

loi de Poisson de paramètre ⁄ > 0.
Toutes les variables aléatoires mentionnées (implicitement ou non) ci-dessus, sont supposées indé-
pendantes et nous désignons par (Xn)nØ0 le nombre de personnes dans la file à l’instant n œ N. Il se
trouve qu’il s’agit d’une chaine de Markov dont il est possible de préciser certaines de ses propriétés.

Dans ce qui suit, pour tout k, l œ N, nous noterons pas pk,l les probabilités de transitions,

i.e. pk,l = P(X1 = l, X0 = k)

Théorème 11.2.5. Dans le cadre précédent, nous avons
1. pour tout k, l œ N, pk,l =

qk·l
j=0

k!

j!(k≠j)!(l≠j)!
qjpk≠je≠⁄⁄l≠j.

2. La chaine (Xn)nØ0 est irréductible, apériodique, récurrente positive, de probabilité invariante
‹ = P( ⁄

p ).

Le théorème précédent combiné à un résultat classique de probabilité (cf. [17]), nous assure que
la chaine de Markov converge en loi vers la mesure ‹. Nous allons tâcher de quantifier cette vitesse
de convergence à l’aide de distance la distance de Wasserstein W1.

Théorème 11.2.6. Pour toute loi initiale µ0 admettant un moment d’ordre 1 et pour tout n œ N

nous avons

W1(µn, ‹) Æ qnW1(µ0, ‹) (11.2.6)

avec L(Xn) = µn.

Démonstration. Avant toutes choses, introduisons des notations :

• (Bn,l) désigne une famille de variables aléatoires de Bernoulli indépendantes de paramètre q
telles que Bn,l = 0 si le l-ième client est servi au temps n ; Bn,l = 1 sinon.

• (An)nØ0 une famille de variables aléatoires de Poisson de paramètre ⁄ > 0 telle que An désigne
le nombre d’arrivée au temps n œ N.

Dans ce qui suit, nous identifierons variables aléatoires avec leurs lois de probabilités. L’idée essen-
tielle de la preuve consiste, à partir d’une loi initiale (X0, Y0), de construire un couplage (Xn, Yn)nœN.
Il sera essentiel que les processus (Xn)nØ0 et (Yn)nØ0 soient construit à partir du même aléa. Ces
processus sont définis par récurrence comme suit :
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Xn+1 =
Xnÿ

k=1

Bn+1,k + An+1 et Yn+1 =
Ynÿ

k=1

Bn+1,k + An+1.

Pris séparément, (Xn)nØ0 et (Yn)nØ0 sont des chaines M/M/Œ. L’avantage dans ce procédé de
construction est qu’il devient aisé de calculer la di�érence entre ces deux processus, pris au même
instant :

|Xn+1 ≠ Yn+1| =
max(Xn,Yn)ÿ

k=min(Xn,Yn)+1

Bn+1,k.

Alors, si Fn désigne la tribu engendrée par les variables (Bk,l, Al)kÆn,l, nous avons

E

5--Xn+1 ≠ Yn+1

--
----Fn

6
= q

--Xn ≠ Yn

-- pour tout n œ N.

A l’aide d’une récurrence immédiate sur n œ N, nous en déduisons que E
#--Xn≠Yn

--$ = qn
E

#--X0≠Y0

--$

pour tout n œ N.

Pour conclure, considérons une loi initiale µ0 admettant un moment d’ordre 1. Désignons alors
un couple (X0, Y0) tel que W1(µ0, ‹) = E

#--X0, Y0

--$. Ainsi, par définition de W1, nous avons

W1(µn, ‹) Æ E
#--Xn ≠ Yn

--$ Æ qn
E

#--X0 ≠ Y0

--$

d’où le résultat.

11.3 Inégalité de Transport et concentration
Dans cette section, nous allons présenter les liens entre les inégalités de transport et la concen-

tration de la mesure.

Définition 11.3.1. Une mesure µ œ Pp(E) satisfait une inégalité de transport Tp(C) (avec p Ø 1)
s’il existe une constante C = Cp > 0 telle que

Wp Æ


2CH(µ, ‹), pour tout ‹ œ Pp(E) (11.3.1)

avec H(µ, ‹) =
s

E log d‹
dµ d‹ l’entropie relative de ‹ par rapport à ‹.

11.3.1 Transport et concentration, argument de Marton
Dans ce qui suit, nous supposons que µ vérifie une inégalité de transport T1(C). Comme observé

par Marton (cf. [105]), nous allons voir qu’il est possible d’obtenir un résultat de concentration
pour la mesure µ à partir de l’inégalité T1(C) (11.3.1).

En e�et, considérons deux ensemble boréliens A et B et désignons par µA (respectivement µB)
la mesure de probabilité induite par la restriction de µ à l’ensemble A (respectivement à l’ensemble
B). En combinant l’inégalité triangulaire satisfaite par W1 avec l’inégalité (11.3.1) (avec p = 1),
nous obtenons
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W1(µ1, µB) Æ W1(µ, µA) + W1(µ, µB)
Æ


2CH(µA|µ) +


2CH(µB |µ)

=

Û

2C log 1
µ(A) +

Û

2C log 1
µ(B)

où la dernière égalité provient du calcul explicite des entropies relatives. De plus, observons que
toute mesure de probabilité ayant pour lois marginales µA et µB doit avoir son support dans A◊B.
Ainsi, par définition de W1,

W1(µA, µB) Ø d(A, B) = inf
)

d(x, y) ; x œ A, y œ B
*

.

Enfin, si A et B sont choisis dans E tels que d(A, B) Ø r > 0, par ce qui précède, nous obtenons

r Æ

Û

2C log 1
µ(A)

Û

2C log 1
µ(Ar) (11.3.2)

avec, rappelons le, Ar =
)

x œ E ; d(x, A) < r
*

. L’inégalité (11.3.2) permet alors d’obtenir de la
concentration. En e�et, si µ(A) Æ

1

2
, celle-ci entraine que

r Æ


2C log 2 +

Û

2C log 1
1 ≠ µ(Ar) .

D’où, lorsque r Ø 2
Ô

2C log 2, nous avons

1 ≠ µ(Ar) Æ e≠
r

2
8C .

Comme cela a été démontré par Bobkov et Götze (cf. [23]), il est possible de préciser l’observation
de Marton. C’est le contenu du résultat suivant.

Théorème 11.3.1 (T1(C) et concentration). Soit µ une mesure de probabilité sur un espace mé-
trique (E, d) alors

W1(µ, ‹) Æ


2C1H(‹|µ) pour tout ‹ œ P1(E) (11.3.3)

avec C1 > 0 une constante numérique si et seulement si

sup
F œLip(1)

E[e⁄F (X)] Æ e
C1⁄

2
2 pour tout ⁄ œ R (11.3.4)

avec L(X) = µ et Lip(1) désigne l’ensemble des fonctions F : E æ R 1-lipschitziennes.

Remarque. La présence de la transformée de Laplace permet de montrer que les inégalités de
transport T1(C) ne sont pas adaptées pour produire des inégalités de concentration indépendantes de
la dimension. Autrement dit, les inégalités de transport T1(C) ne se tensorisent pas indépendamment
de la dimension
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Démonstration. La démonstration repose sur la formulation duale de W1 (celle donnée par le théo-
rème 11.1.2). Celle-ci a�rme que

W1(µ, ‹) = sup
5 ⁄

E
Âd‹ ≠

⁄

E
„dµ

6

où le supremum est pris sur l’ensemble des fonctions (Â, „) vérifiant Â(x) Æ „(y) + d(x, y) pour
tout x, y œ E. Même si la formulation est légèrement di�érente de celle du théorème 11.1.2, il s’agit
bien du même ensemble de fonctions.

Ainsi, d’après l’inégalité de transport T1(C), nous avons

⁄

E
Âd‹ ≠

⁄

E
„dµ Æ

Û

2CEntµ

! d‹

dµ

"
.

Cette dernière inégalité peut s’écrire de manière équivalente sous la forme
⁄

e
Âd‹ ≠

⁄

E
„dµ Æ

C⁄

2 + 1
⁄

Entµ

! d‹

dµ

"

pour tout ⁄ > 0. A présent, si g = d‹
dµ cette nouvelle inégalité devient

⁄

E
fgdµ Æ Entµ(g)

avec f = ⁄Â ≠ ⁄
s

E „dµ ≠
C⁄2

2
. Puisque cette inégalité est satisfaite pour tout choix g (i.e. pour

toute mesure de probabilité ‹), il su�t de choisir g = efs
E

ef dµ
pour obtenir que log

s
E ef dµ Æ 0.

Autrement dit,
⁄

E
e⁄Âdµ Æ e

⁄
s

E

„dµ+C ⁄
2

2 .

Si F œ Lip(1), il est alors possible de choisir F = Â = „ dans ce qui précède (le couple (Â, „) ainsi
défini vérifie bien la condition Â(x) Æ „(y) + d(x, y)) afin de conclure.

11.3.2 Inégalité de concentration indépendante de la dimension et T2(C)
La démonstration précédente peut également être mise en place pour W2 à l’aide du théorème

de dualité 11.2.2.

Théorème 11.3.2 (T2(C) et concentration). Soit µ œ P2(Rn). Alors

W 2

2
(µ, ‹) Æ


CH‹|µ)

pour une constante C > 0 et pour tout ‹ œ P2(Rn) si et seulement si
⁄

Rn

eQf dµ Æ e
s
Rn

fdµ
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pour toute fonction mesurable bornée f : R
n

æ R ; ci-dessus, Qf désigne l’infimum-convolution

Qf(x) = inf
yœRn

#
f(y) + 1

2C
|x ≠ y|

2
$
, avec x œ R

n

entre f et le coût quadratique.

Remarque. Lorsque F est lipschitzienne, il est possible de montrer que QF Ø F ≠
C
2

ÎFÎ
2

Lip
. Ainsi le

théorème précédente fournit un résultat plus fort que le théorème 11.3.1. En fait, il a été démontré
par Gozlan (cf. [66]) que l’inégalité T2(C) est équivalente à une inégalité de concentration gaussienne
avec des paramètres indépendants de la dimension.

Comme mentionné dans la remarque précédente, l’inégalité de transport T2(C) se tensorise
indépendamment de la dimension.

Proposition 11.3.1. Soit µ = µ1 ¢ . . . , ¢µn une mesure de probabilité sur les boréliens de R
n.

Supposons que pour tout i = 1, . . . , n, µi satisfait une inégalité de transport quadratique

W2(µi, ‹i) Æ


CiH(µi|‹i),

pour n’importe quelle mesure ‹i sur R et Ci > 0. Alors,

W2(µ, ‹) Æ

Ú
max

i=1,...,n
CiH(µ|‹),

pour n’importe quelle mesure de probabilité ‹ sur R
n.

11.4 Transport optimal et inégalités fonctionnelles
Dans cette section, nous allons voir de quelle manière certaines inégalités fonctionnelles ren-

contrées dans ce cours peuvent être obtenues par des arguments de transport optimal. A titre
d’exemple, débutons par l’inégalité T2(1) satisfaite par la mesure gaussienne.

Proposition 11.4.1 (Talagrand). La mesure gaussienne standard sur R
n “n vérifie une inégalité

de transport T (2) avec C = 1.

Démonstration. D’après la propriété de tensorisation, il su�t de démontrer le cas n = 1. Soit f Ø 0
telle que

s
R

fd“1 = 1 et posons d‹ = fdµ. Par simplicité, supposons que f > 0 sur tout R. Ensuite,
définissons l’application de transport monotone T : R æ R par

‹
!
] ≠ Œ, T (x)]

"
= “1

!
] ≠ Œ, x]), x œ R,

de telle sorte à ce que ‹ soit la mesure image de “ par l’application T . La formule de changement
de variable nous fournit l’équation suivante, dite de Monge-Ampère 11.1.2,

f
!
T (x)

"
T Õ(x)e≠T (x)

2/2 = e≠x2/2 pour tout x œ R.

Ainsi, en prenant le logarithme de l’équation précédente, nous obtenons, pour tout x œ R,

log f
!
T (x)

"
+ log T Õ(x) ≠

1
2T (x)2 = ≠

1
2x2
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En intégrant cette égalité par rapport à la mesure “ et en utilisant le fait que ‹ = T#“1, nous
trouvons ⁄

R

log fd‹ = 1
2

⁄

R

[T (x)2
≠ x2]d“1 ≠

⁄

R

log T Õd“1.

En outre, une intégration par partie fournit que
⁄

R

x(T ≠ x)d“1 =
⁄

R

(T Õ
≠ 1)d“1

d’où

H(“1, ‹) =
⁄

R

log fd‹ = 1
2

⁄

R

|x ≠ T (x)|2d“1 +
⁄

R

[T Õ
≠ 1 ≠ log T Õ]d“1

Ø
1
2

⁄

R

|x ≠ T (x)|2d“1

puisque y ‘æ y ≠ 1 ≠ log y Ø 0 lorsque y Ø 0. De plus, comme ‹ est l’image de “1 par l’application
de transport T , la mesure image fi de “1 par l’application x ‘æ

!
x, T (x)

"
a pour marginales “1 et ‹

respectivement. Ceci entraine, par définition de W2,

1
2

⁄

R

|x ≠ T (x)|2d“1 =
⁄⁄

R2

1
2 |x ≠ y|

2dfi Ø W 2

2
(“1, ‹),

ce qui conclut la démonstration.

En fait, il se trouve que le cas n-dimensionel peut également être obtenu de manière similaire
(sans utiliser de tensorisation). L’idée est d’utiliser l’application de transport monotone du
théorème de Brenier 11.1.3.

Soient µ et ‹ deux mesures de probabilité sur R
n, rappelons qu’une application T : R

n
æ R

n

envoit µ sur ‹ (ou transporte µ sur ‹) si ‹ est l’image de la mesure ‹ par T . Autrement dit, pour
toute fonction borélienne positive bornée f : R

n
æ R,

⁄

R

f(y)dµ(y) =
⁄

R

f
!
T (x)

"
d‹(x).

Si µ et ‹ admettent un moment d’ordre deux, une application T poussant µ sur ‹ est dite
optimale par rapport à la distance de Kantorovich-Wasserstein W2 si

W2(µ, ‹)2 = 1
2

⁄

R

|x ≠ T (x)|2dµ(x).

Un résultat fondamental de Brenier [35] et Mc Cann [107] (présenté plus tôt) assure que lorsque µ
est absolument continu par rapport à la mesure de Lebesgue, il existe une fonction convexe „ telle
que T = Ò„ transporte µ sur ‹ de manière optimale (au sens précédent).

Soit µ = “n la mesure gaussienne standard dans R
n et supposons que d‹ = fd“n avec

f Ø 0 et
s

fd“n = 1. Lorsque celui-ci fait sens, la formule de changement de variables dans le
transport de “n à ‹ fournit l’équation de Monge-Ampère suivante :
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f
!
T (x)

"
det

!
Hess„(x)

"
e≠|T (x)|

2/2 = e≠|x|
2/2 pour tout x œ R

n,

où Hess „ désigne la hessienne de „ (nous ignorons les problèmes de régularité et le fait que T = Ò„
ne pourrait exister que presque partout). En reproduisant la démonstration du cas uni-dimensionel
et en utilisant le fait que

log Det
!
Hess „(x)

"
Æ �„ ≠ n = �

!
„ ≠

|x|
2

2
"
, (11.4.1)

nous obterons que W2(“n, ‹) Æ


H(‹|“n). Cette argument s’étend aisement aux mesures de pro-

babilités dµ = e≠V dx avec un potentiel strictement convexe V .

Théorème 11.4.1. Soit dµ = e≠V dx où HessV (x) Ø flId, c > 0 uniformément en x œ R
n. Alors,

pour toute mesure de probabilité ‹ sur R
n,

W2(‹, µ) Æ

Ú
1
fl

H(‹|µ).

11.4.1 Inégalité de Sobolev logarithmique
L’utilisation de l’équation de Monge-Ampère a permis de démontrer que “n satisfait une

inégalité de transport T2(1). Nous allons voir que le même type d’argument fonctionne au niveau
de l’inégalité de Sobolev logarithmique. Avant cela, il peut-être utile de d’observer quelques faits
concernant l’entropie d’une fonction et l’entropie relative de deux mesures.

Si
s
Rn fdµ = 1, alors

Entµ(f) =
⁄

Rn

log fd‹ = H(‹|µ)

avec d‹ = fdµ. Rappelons que µ vérifie une inégalité de Sobolev logarithmique s’il existe C > 0
telle pour toute fonction f : R

n
æ R

Entµ(f2) Æ 2C

⁄

Rn

|Òf |
2dµ

Si nous substituons f2 par f > 0 telle que
s
Rn fdµ = 1, l’inégalité de Sobolev logarithmique

précédente s’écrit de manière équivalente sous la forme suivante

H(‹|µ) Æ
C

2 I(‹)

avec I(‹) = Iµ(f) =
s
Rn

|Òf |
2

f dµ l’information de Fisher de d‹ = fdµ. Dans cette formulation, il
devient possible de démontrer la proposition 9.4.3 à l’aide des outils du transport optimal.

Démonstration. Soit f > 0 telle que
s
Rn fdµ = 1 et considérons d‹ = fd“n. Considérons l’applica-

tion de transport T optimale donnée par le théorème de Brenier 11.1.3 :

i.e. T#‹ = µ avec T = Ò„
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où „ : R
n

æ R est une fonction convexe. Pour éviter des arguments de régularisation, supposons
que tous les éléments mis en jeu sont su�samment régulier de sorte que l’équation de Monge-Ampère
suivante ait du sens. Celle-ci s’écrit

f(x)e≠|x|
2/2 = e≠|T (x)|

2/2Det
!
Hess „(x)

"
, pour tout x œ R

n.

En prenant le logarithme de l’égalité précédente et en utilisant (11.4.1), nous obtenons

log f(x) ≠
1
2 |x|

2 = ≠
1
2 |T (x)|2 + log Det

!
Hess „(x)

"

Æ ≠
1
2 |T (x)|2 + �

!
„ ≠

|x|
2

2
"
.

Ainsi, puisque T = Ò„, nous en déduisons que

log f(x) Æ ≠
1
2 |Ò„ ≠ x|

2
≠ x · (Ò„ ≠ x) + �

!
„ ≠

|x|
2

2 )

= ≠
1
2 |Ò„ ≠ x|

2 + L
!
„ ≠

|x|
2

2
"

avec L = � ≠ x · Ò le générateur infinitésimal du semi-groupe d’Ornstein-Uhlenbeck. A présent,
intégrons la dernière inégalité obtenue par rapport à d‹ = fd“n, ceci fourni

⁄

Rn

f log fd“n Æ ≠
1
2

⁄

Rn

f |Ò„ ≠ x|
2d“n +

⁄

Rn

fL
!
„ ≠

|x|
2

2
"
d“n.

Il est alors possible d’utiliser la formule d’intégration par partie vérifiée par L et “n,
⁄

Rn

fL
!
„ ≠

|x|
2

2 d“n = ≠

⁄

Rn

Òf · Ò(„ ≠ x)d“n

donc
⁄

Rn

f log fd“n Æ ≠
1
2

⁄

Rn

f |Ò„ ≠ x|
2d“n ≠

⁄

Rn

Òf · Ò(„ ≠ x)d“n

Æ
1
2

⁄

Rn

|Òf |
2

f
d“n = 1

2I(‹)

La dernière ligne s’obtient en utilisant l’inégalité,

≠
1
2 |b|

2
≠ a · b Æ

1
2 |a|

2 (valable pour tous vecteurs a, b œ R
n)

en choisissant a = |Òf |
Ô

f
et b =

Ô
fÒ(„ ≠ x).

Remarque. Bien entendu, la démonstration précédente fonctionne aussi pour des mesures log-
concaves :

dµ = e≠V dx

lorsque HessV (x) Ø flId avec fl > 0. En fait, pour de telles mesures µ, il a été démontré par Ca�arelli
(cf. [38]) que l’application de transport T envoyant “n vers µ (i.e. T#“n

= µ) est lipschitzienne avec
ÎTÎlip Æ fl≠

1
2 .
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11.4.2 Inégalités de Brunn-Minkowski et de Prekopa-Leidler
Pour illustrer la polyvalence des méthodes de transport optimal, nous allons montrer qu’elles

permettent d’obtenir l’inégalité de Brunn-Minkowski dont nous rappelons l’énoncé ci-dessous.

Théorème 11.4.2 (Brunn-Minkowski). Pour tout ensembles boréliens bornés A, B œ R
n, nous

avons

Voln(A + B)1/n
Ø Voln(A)1/n + Voln(B)1/n (11.4.2)

où A = B = {x + y ; x œ A, y œ B} désigne la somme de Minkowski des ensembles A et B ;
Voln désigne l’élément de volume de R

n (i.e. il s’agit de la mesure de Lebesgue).

L’équation (11.4.2) peut s’exprimer de manière équivalente sous la forme multiplicative suivante

Voln(◊A + (1 ≠ ◊)B) Ø Voln(A)◊Voln(B)1≠◊
’◊ œ [0, 1] (11.4.3)

Remarque. Comme nous l’avons déjà mentionné plus tôt (cf. théorème 6.2.1), l’inégalité de Brunn-
Minkowski permet de résoudre facilement le problème isopérimétrique euclidien. En e�et, si B
désigne une boule euclidienne de rayon r > 0 centrée en 0 alors l’inégalité (11.4.2) nous assure que

Voln(Ar)1/n = Voln(A + B)1/n
Ø Voln(A)1/n + v(r)1/n

où v(r) désigne le volume d’une boule euclidienne de rayon r > 0. De plus, si D est une boule
euclidienne de rayon s > 0 telle que Voln(A) = Voln(D) alors, puisque v1/n est une application
linéaire, nous avons

Voln(A)1/n + v(r)1/n = v(s)1/n + v(r)1/n = v(s + r)1/n = Voln(Dr)1/n.

Autrement dit, nous avons montré

Voln(Ar) Ø Voln(Dr) ’r > 0

ce qui correspond bien à la solution du problème isopérimétrique euclidien.

Le passage de la forme additive à la forme multiplicative n’est pas di�cile, voici les arguments
principaux :

1. Pour tout ◊ œ [0, 1], il su�t d’appliquer (11.4.2) aux ensembles ◊A et (1 ≠ ◊)B pour obtenir
(11.4.3).

2. Réciproquement, il su�t d’appliquer (11.4.3) aux ensembles

AÕ = Voln(A)≠1/nA et BÕ = Voln(B)≠1/nB

puis de choisir

◊ = Voln(A)1/n

Voln(A1/n + Voln(B)1/n
œ [0, 1]

pour obtenir, par homogénéité, (11.4.2).
L’intérêt de cette formulation multiplicative est que celle-ci admet une version fonctionnelle plus

générale. Il s’agit de l’inégalité de Prékopa-Leidler.
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Théorème 11.4.3 (Prékopa-Leidler). Soit ◊ œ [0, 1] et considérons u, v et w des fonctions positives
et mesurables sur R

n telles que

w
!
◊x + (1 ≠ ◊)y

"
Ø u(x)◊v(y)1≠◊ pour tous x, y œ R

n (11.4.4)

alors ⁄

Rn

wdx Ø

3 ⁄

Rn

udx

4◊3 ⁄

Rn

vdx

41≠◊

(11.4.5)

Remarque. En particulier, le résultat précédent appliqué aux fonctions caractéristiques d’ensembles
mesurables bornés A et B de R

n permet de retrouver la forme multiplicative (11.4.3) de Brunn-
Minkowski. L’inégalité de Prekopa-Leidler peut-être étendue à un contexte Riemannien en utilisant
la notion de géodésique et de courbure (cf. [43].

Démonstration. La démonstration proposée ci-dessous est due à F. Barthe (cf. [18]). Celle-ci repose
sur une récurrence sur la dimension n.

Supposons que n = 1. Par homégénéité, nous pouvons supposer que
s
R

udx =
s
R

vdx = 1 et,
par des arguments de régularisation, nous pouvons supposer que u et v sont des fonctions continues
strictement positives. Notons alors dµ = udx et d‹ = vdx et considérons l’application de transport
T : R æ R telle que

‹
!
] ≠ Œ, T (x)]

"
= µ

!
] ≠ Œ, x]

"
pour tout x œ R.

Observons que T est croissante et di�érentiable, de plus T#µ = ‹. L’équation de Monge-Ampère
associée (qui n’est rien d’autre qu’un changement de variable) s’écrit

v
!
T (x)

"
T Õ(x) = u(x) pour tout x œ R.

Posons alors z(x) = ◊x + (1 ≠ ◊)T (x), nous avons alors zÕ(x) = ◊ + (1 ≠ ◊)T Õ(x). De plus, d’après
l’inégalité arithmético-géométrique, nous avons

zÕ(x) Ø
!
T (x)

"1≠◊ pour tout x œ R. (11.4.6)

Alors, d’après l’hypothèse (11.4.4) et (11.4.6), nous avons

⁄

R

wdx =
⁄

R

x
!
z(x)

"
zÕ(x)dx Ø

⁄

R

u(x)◊v
!
T (x)

"1≠◊
zÕ(x)dx

Ø

⁄

R

u(x)◊v
!
T (x)

"1≠◊!
T Õ(x)

"1≠◊
dx

=
⁄

R

udx = 1

puisque, par construction, u(x)1≠◊ =
3

v
!
T (x)

"!
T Õ(x)

"41≠◊

. Ceci démontre le résultat lorsque

n = 1. Supposons alors que n > 1 et que le théorème de Brunn-Minkowski est vérifié sur R
n≠1.

Considérons u, v et w trois fonctions vérifiant (11.4.4) pour un certain ◊ œ [0, 1]. Soit q œ R fixé et
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définissons uq : R
n≠1

æ [0, +Œ[ par uq(x) = u(x, q). Procédons de manière analogue pour définir
vq et wq à partir de v et w. Observons ensuite que si q = ◊q0 + (1 ≠ ◊)q1 avec q0, q1 œ R alors

wq

!
◊x + (1 ≠ ◊)y

"
Ø uq0(x)◊vq1(y)1≠◊ pour tous x, y œ R

n≠1.

D’après l’hypothèse de récurrence, nous en déduisons que
⁄

Rn≠1
wqdx Ø

3 ⁄

Rn≠1
uq0dx

4◊3 ⁄

Rn≠1
vq1dx

41≠◊

ce qui permet d’appliquer les arguments mis en place en dimension 1. Autrement dit,
⁄

Rn

wdx =
⁄

R

3 ⁄

Rn≠1
wqdx)dq Ø

3 ⁄

Rn

udx)◊

3 ⁄

Rn

vd

41≠◊

ce qui est le résultat voulu.

Nous expliquons ci-dessous, de quelle manière l’inégalité de Prekopa-Leindler (vue comme
version fonctionnelle de l’inégalité de Brunn-Minkowski) permet d’obtenir des inégalités de concen-
trations pour certains types de mesures (mesures uniformes sur la sphère ou mesure gaussiennes
par exemple). Les idées présentées ci-dessous ont été introduites par Maurey (cf. [106]).

Supposons que µ est une mesure de probabilité sur R
n de la forme dµ = e≠V dx avec V un

potentiel régulier strictement convexe. Autrement dit, il existe fl > 0 telle que pour tout x, y œ R
n,

V (x) + v(y) ≠ 2V
!x + y

2
"

Ø
fl

4 |x ≠ y|
2 (11.4.7)

Un exemple typique de telle mesure est la mesure gaussienne “n sur Rn pour laquelle l’inégalité pré-
cédente est vérifiée pour fl = 1. L’inégalité de Prékopa-Leidler nous permet de montrer le théorème
suivant :

Théorème 11.4.4. Soit µ une mesure de probabilité telle que dµ = e≠V dx et V vérifie (11.4.7).
Alors,

–µ(r) Æ 2e≠flr2/4 r > 0

avec –µ la fonction de concentration associée à µ (cf. définition 6.1.1). En particulier,

–“n
(r) Æ 2e≠r2/4 r > 0

Démonstration. Considérons les fonctions suivantes :

u(x) = eQf(x)≠V (x), v(y) = e≠f(y)≠V (y) et w(z) = e≠V (z)

où, rappelons-le, Qf est l’infimum-convolution défini par

Qf(x) = inf
yœRn

#
f(y) + fl

4 |x ≠ y|
2
$

x œ R
n.

Par définition de Qf et l’hypothèse de convexité (11.4.7), la condition (11.4.4) est satisfaite pour
le choix ◊ = 1

2
. En conséquence, d’après le théorème de Prékopa-Leidler 11.4.3, nous avons
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1 =
⁄

Rn

e≠V dx Ø

⁄

Rn

eQf dµ

⁄

Rn

e≠f dµ.

Pour obtenir de la concentration, il su�t de choisir un ensemble mesurable A µ R
n et d’appliquer

ce qui précède à la fonction f définie par

f(x) =
;

0 si x œ A
+Œ sinon.

Dans ce cas, Qf(x) = fl
4
d(x, A)2 avec d(x, A) la distance euclidienne du point x à l’ensemble A.

Tous ceci entraine alors que
⁄

Rn

e
fl

4 d(·,A)
2
dµ Æ

1
µ(A)

puisque
s
Rn e≠f dµ = µ(A). Enfin, pour tout r > 0, posons F (x) = min

!
d(x, A), r

"
. Nous avons

alors

1 ≠ µ(Ar) = µ(F Ø r) Æ e≠⁄r2
E[e⁄F 2

]

et le choix de ⁄ = fl
4

permet d’obtenir le résultat escompté

1 ≠ µ(Ar) Æ
1

µ(A)e≠flr2/4.

11.5 Semi-groupe d’Hamilton-Jacobi et hypercontractivité
Certains résultats décrit plus tôt faisaient intervenir des fonctions obtenues par infimum-

convolution (les fonctions Qf ). Il est possible d’expliquer plus en détails pourquoi de telles
fonctions interviennent. Pour cela, nous devons introduire les équations aux dérivées partielles
d’Hamilton-Jacobi.

Dans un contexte euclidien, ce problème s’énonce comme suit : étant donnée une fonction lip-
schitzienne f : R

n
æ R, nous souhaitons trouver (x, t) ‘æ v(x, t) : Rn

◊ R+ æ R telle que
;

ˆtv + 1

2
|Òv|

2 = 0 sur R
n
◊]0, +Œ[

v = f sur R
n

◊ {t = 0}

La solution de ce problème est donnée par l’infimum-convolution de f avec la distance eucli-
dienne :

Qtf(x) = inf
yœRn

#
f(y) + 1

2t
|x ≠ y|

2
$

avec t > 0 et x œ R
n.

Il se trouve que la famille d’opérateur (Qt)tØ0 défini un semi-groupe de générateur infinitésimal
(non linéaire) L = ≠

1

2
|Òf |

2. Cette famille permet d’approfondir les liens entre transport optimal
et inégalités fonctionnelles.
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Débutons par un résultat de Otto-Villani qui permet d’obtenir une inégalité T2(C) à partir d’une
inégalité de Sobolev logarithmique.

Théorème 11.5.1 (Otto-Villani). Considérons la mesure de probabilité dµ = e≠V dx avec V :
R

n
æ R. Si µ vérifie une inégalité de Sobolev logarithmique de constante C > 0 :

i.e. Entµ(f2) Æ 2CEµ[|Òf |
2]

pour toute fonction f : R
n

æ R su�samment régulière, alors µ vérifie une inégalité de transport
T2(C).

Démonstration. Pour démontrer ceci, nous utiliserons la formulation duale de T2(C) (cf. théorème
11.3.2) : µ vérifie une inégalité T2(C) de constante C si et seulement si

⁄

Rn

eQf dµ Æ e
s
Rn

fdµ

avec Qf(x) = infyœRn

#
f(y) + 1

2C |x ≠ y|
2
$

pour tout x œ R
n.. En outre, à l’aide des notations

introduites plus tôt, observons que Qf(x) = QCf(x) ; ceci expliquant pourquoi nous allons utiliser
le semi-groupe d’Hamilton-Jacobi (Qt)tØ0 pour démontrer le théorème d’Otto-Villani.

A cet e�et, observons que pour tout t, s > 0 nous avons Qt(sf) = sQstf . En particulier, si t = C
et s = 1

C nous avons
⁄

Rn

eQf dµ Æ e
s
Rn

fdµ
≈∆

⁄

Rn

e
1
C

Q1(Cf)dµ Æ

⁄

Rn

e
s
Rn

fdµ

Quitte à remplacer f par 1

C f , cela revient à
⁄

Rn

e
1
C

Q1(f)dµ Æ e
1
C

s
Rn

fdµ

Considérons alors la fonction H(t) = log �(t)

t pour t œ [0, 1] avec �(t) =
s
Rn e

t

C
Qt(f)dµ. En

observant le fait
H(0) = lim

tæ0

1
t

log �(t) = 1
C

⁄

Rn

fdµ

nous constatons que l’inégalité T2(C) est équivalente à H(0) Ø H(1). Ainsi, devons montrer que si
une inégalité de Sobolev logarithmique est vérifiée alors la fonction t ‘æ H(t) est décroissante sur
[0, 1].

Ici, nous avons

H Õ(t) = ≠
1
t2

log �(t) + 1
t

�Õ(t)
�(t)

C’est pourquoi

H Õ(t) Æ 0 ≈∆ t�Õ(t) Æ �(t) log �(t)
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Or,
�Õ(t)(t) =

⁄

Rn

1
C

Qt(f)e t

C
Qt(f)dµ + t

C

⁄

Rn

ˆtQt(f)e t

C
Qt(f)dµ.

Alors, en utilisant le fait que Qt(f) vérifie l’équation d’Hamilton-Jacobi ˆtQt(f) + 1

2
|ÒQt(f)2 = 0,

nous obtenons

t�Õ(t) =
⁄

Rn

t

C
Qt(f)e t

C
Qt(f)dµ ≠

t2

2C

⁄

Rn

|ÒQt(f)|2e
t

C
Qt(f)dµ.

Nous allons alors utiliser l’inégalité de Sobolev logarithmique pour majorer le deuxième terme du
membre de droite de l’inégalité précédente. En e�et, si g2 = e

t

C
Qt(f) celle-ci nous assure que

Entµ(g2) =
⁄

Rn

t

C
Qt(f)e t

C
Qt(f)dµ ≠ �(t) log �(t)

Æ
t2

2C

⁄

Rn

|ÒQt(t)|2e
t

C
Qt(f)dµ

Ce qui est équivalent à
⁄

Rn

t

C
Qt(f)e t

C
Qt(f)dµ ≠

t2

2C

⁄

Rn

|ÒQt(f)|2e
t

C
Qt(f)dµ Æ �(t) log �(t).

Autrement dit t�Õ(t) Æ �(t) log �(t) qui est l’inégalité désirée.

Nous avions déjà vu, dans le cas gaussien (cf. théorème 9.4.1), que le semi groupe d’Ornstein-
Uhlenbeck était hypercontractif si et seulement si “n vérifie une inégalité de Sobolev logarithmique.
Il se trouve qu’il est possible d’obtenir un lien similaire entre une mesure de probabilité µ et le semi
groupe d’Hamilton-Jacobi.

Théorème 11.5.2 (Bakry-Gentil-Ledoux). Soit µ une mesure de probabilité absolument continue
par rapport à la mesure de Lebesgue. Si µ vérifie une inégalité de Sobolev logarithmique de constante
C > 0 alors, pour toute fonction f : R

n
æ R mesurable et bornée nous avons

..eQtf
..

a+t/C
Æ Îef

Îa pour tout t Ø 0 et a œ R. (11.5.1)

Réciproquement, si l’inégalité (11.5.1) est vérifiée pour un certain a ”= 0, pour tout t Ø 0 et toute
fonction mesurables bornées f : R

n
æ R alors µ vérifie une inégalité de Sobolev logarithmique de

constante C > 0.

Démonstration. L’idée clé est de suivre la démonstration du théorème de Nelson 9.4.1 à l’échelle
exponentielle. Autrement dit, considérons la fonction H(t) = 1

q(t)
log �(t) avec q(0) = a et

�(t) =
s
Rn eq(t)Qt(f)dµ. A nouveau, pour obtenir l’hypercontractivité de (Qt)tØ0 il su�t de

montrer que H(t) Æ H(0).

Ici, nous avons
H Õ(t) = qÕ(t)

q(t) log �(t) + 1
q(t)

�Õ(t)
�(t) .

En outre,
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�Õ(t) =
⁄

Rn

#
qÕ(t)Qt(f) + q(t)ˆtQt(t)

$
eq(t)Qt(f dmu

= qÕ(t)
⁄

Rn

Qt(f)eq(t)Qt(f)dµ ≠
q(t)

2

⁄

Rn

|ÒQtf |
2eq(t)Qt(f)dµ

puisque Qt(f) vérifie l’équation d’Hamilton-Jacobi ˆtQt(f) + 1

2
|ÒQt(f)2 = 0. De plus,

⁄

Rn

Qt(f)eq(t)Qt(f) = 1
q(t)

#
Entµ(g2) + �(t) log �(t)

$

avec g2 = eq(t)Qt(f). En d’autres termes nous avons,

H Õ(t) = qÕ(t)
q2(t)�(t)Entµ(g2) ≠

1
2�(t)

⁄

Rn

|ÒQtf |
2eq(t)Qt(f)dµ

Or, d’après l’inégalité de Sobolev logarithmique appliquée à g2, nous avons également

Entµ(g2) Æ
Cq2(t)

2

⁄

Rn

|ÒQtf |
2eq(t)Qt(f)dµ.

En conséquence,

H Õ(t) Æ 0 ≈∆
C

2 q(tÕ) ≠
1
2 Æ 0

La résolution de cette inégalité di�érentielle nous fournit q(t) Æ
t
C + a qui est le résultat attendu.

La réciproque s’obtient de la même manière que dans le théorème 9.4.1.

11.6 Hiérarchie des inégalités fonctionnelles
Comme nous l’avons déjà observé, il existe une certaine hiérarchie parmi les inégalités fonc-

tionnelles étudiées. Au sommet de celle-ci, il y a l’inégalité de Sobolev logarithmique qui permet
d’obtenir une inégalité de Poincaré. De plus, puisqu’une inégalité de Sobolev logarithmique en-
traine à la fois une inégalité de transport T2(C), il est naturel de s’intéresser aux liens existants
entre l’inégalité T2(C) et l’inégalité de Poincaré. Le résultat suivant fournit une réponse à cette
question

Proposition 11.6.1. Soit µ une mesure de probabilité admettant une densité par rapport à la
mesure de Lebesgue. Si µ satisfait une inégalité de transport T2(C) avec C > 0 alors µ vérifie une
inégalité de Poincaré de constante C

2
.

Démonstration. Supposons qu’une inégalité de transport T2(C) est vérifiée. Dans sa formulation
duale, cela signifie que

⁄

Rn

eQ(f)dµ Æ e
s
Rn

dµ

Appliquons cette inégalité à tf avec t æ 0 et utilisons le fait suivant (valable pour tout x œ R
n)

Q(tf)(x) = tf(x) ≠
C

4 t2
|Òf |

2 + o(t2) lorsque t æ 0
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afin de déterminer des développements limités des deux membres de la formulation duale de l’in-
égalité T2(C). D’une part, nous obtenons

⁄

Rn

eQ(tf)dµ = 1 + t

⁄

Rn

fdµ + t

2

⁄

Rn

f2dµ ≠
Ct2

4

⁄

Rn

|Òf |
2dµ + o(t2)

et, d’autre part,

e
t
s
Rn

fdµ = 1 + t

⁄

Rn

fdµ + t2

2
! ⁄

Rn

fdµ
"2 + o(t2).

En combinant ces deux résultats, et après simplifications, nous obtenons

t2

2 Varµ(f) Æ
Ct2

4

⁄

Rn

|Òf |
2dµ

Autrement dit, une inégalité de Poincaré de constante C
2

est satisfaite.

Remarque. D’une certaine manière, l’inégalité T2(C) peut se voir comme une version duale de la
propriété (·) introduite par Maurey dans [106].

Dans certains cas, il est possible de renverser certaines parties de la hiérarchie que nous venons
d’établir afin d’obtenir une inégalité de Sobolev logarithmique à partir d’une inégalité de transport
T2(C). Dans ce qui suit, nous considérons une mesure sur les boréliens de R

n de la forme dµ = eV dx
avec V : R

n
æ R une application convexe.

Théorème 11.6.1 (HWI (Otto-Villani)). Dans le cadre précédent, supposons que µ vérifie une
inégalité de transport T2(C) avec C > 0 alors l’inégalité suivante est satisfaite : pour toute fonction
f : R

n
æ R su�samment régulière et pour toutes mesures ‹ œ P2(Rn) nous avons

Entµ(f) Æ


CT2(µ|‹)I1/2(‹) (11.6.1)

où I(‹) est l’information de Fisher associée à la mesure ‹.

Remarque. 1. En particulier, cette inégalité reliant entropie, information de Fisher et distance
de Kantorovich-Wasserstein permet de renverser la hiérarchie habituelle des inégalités fonc-
tionnelles. En e�et, si une inégalité de transport T2(C) est satisfaite, nous obtenons (à partir
de (11.6.1))

Entµ(f) Æ 2CI(‹)

Autrement dit, µ vérifie une inégalité de Sobolev logarithmique de constante 2C.

2. En fait, il est possible d’obtenir une inégalité HWI plus générale. En remplaçant l’hypothèse
de convexité (portant sur V ) par Hess V Ø flId avec fl œ R (au lieu de fl Ø 0), il est possible
de montrer que

Entµ(f) Æ T2(µ, ‹)I1/2(‹) ≠
fl

2T 2

2
(µ, ‹)

De plus, si µ vérifie une inégalité de transport T2(C) avec une constante C > 0 su�samment
petite, il est possible de montrer que µ vérifie également une inégalité de Sobolev logarith-
mique ; cependant le lien entre les constantes devient plus complexe (cf. [14]).
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Démonstration. D’après le théorème de Brenier, il existe une application convexe „ : R
n

æ R
n

telle que

T 2

2
(‹, µ) =

⁄

Rn

|x ≠ Ò„(x)|2d‹(x)

avec d‹ = fdµ. L’équation de Monge-Ampère associé s’écrit alors

f(x)e≠V (x) =
--Det

!
Hess „(x))

--e≠V
!

Ò„(x)

"
x œ R

n

Pour simplifier les notations, posons �(x) = „(x) ≠
1

2
|x|

2 pour tous x œ R
n. L’équation de Monge-

Ampère se formule alors de manière équivalente sous la forme suivante :

f(x)e≠V (x) =
--Det

!
Id + Hess �(x)

--e≠V
!

x+Ò�(x)

"
x œ R

n.

Ainsi,

log f(x) = V (x) ≠ V
!
x + Ò�(x)

"
+ log

3--Det
!
Id + Hess �(x)

"--
4

Æ V (x) ≠ V
!
x + Ò�(x)

"
+ ��(x)

puisque log
--Det(Id + A)

-- Æ Tr(A) pour toutes matrices A symétriques réelles. En outre, puisque
x ‘æ V (x) est convexe,

V (x) ≠ V
!
x + Ò�(x)

"
Æ ≠ÒV (x) · Ò�(x)

Si L = � ≠ ÒV · V nous avons donc montré que

log f(x) Æ L�(x). (11.6.2)

L’interêt de cette nouvelle formulation est que dµ = e≠V (x)dx est la mesure réversible et invariante
associée à l’opérateur L, en particulier : la formule d’intégration par partie suivante est satisfaites
Rn f(≠L�)dµ =

s
Rn Ò� · Òfdµ. Ainsi, en multipliant (11.6.2) par f et en intégrant par rappport

à dµ nous obtenons
⁄

Rn

f log fdµ Æ

⁄

Rn

fL�dµ = ≠

⁄

Rn

Òf · Ò�dµ

enfin, d’après l’inégalité de Cauchy-Schwarz, nous avons

≠

⁄

Rn

Òf · Ò�dµ Æ

Û⁄

Rn

|Ò�|2fdµ ◊

Û⁄

Rn

|Òf |2

f

= T2(µ, ‹)I1/2(‹)

puisque T 2

2
(µ, ‹) =

s
Rn |x ≠ Ò„(x)|2d‹ =

s
Rn |Ò�|

2fdµ.

Remarque. Nous venons de proposer une démonstration utilisant des arguments provenant de
la théorie du transport optimal. Il également possible d’obtenir une preuve qui n’utilise que des
semi-groupes (cf. [14]). Voici les arguments clés :
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1. Par interpolation, il est possible de montrer que pour tout T > 0

Entµ(f) =
⁄ T

0

Iµ

!
Pt(f)

"
dt + Entµ

!
PT (f)

"

avec l’information de Fisher de la fonction f sous µ Iµ(f) =
s
Rn

|Òf |
2

f dµ et (Pt)tØ0 = (etL)tØ0,
le semigroupe associé à l’opérateur L = � ≠ ÒV · Ò et la mesure dµ = e≠V dx. Cette égalité
peut également être vue comme une conséquence de l’identité de Bruijn :

d

dt
Entµ(Ptf) = ≠Iµ(Ptf) (11.6.3)

2. Lorsque Hess(V ) Ø flId avec fl œ R, cette hypothèse entraine une décroissante exponentielle
de l’information de Fisher le long du semi groupe. Autrement dit,

Iµ(Ptf) Æ e≠2fltIµ(f) t Ø 0

Ceci permet de contrôler le premier terme impliquant l’information de Fisher.
3. Enfin pour conclure, il faut contrôler Entµ

!
PT (f)

"
à l’aide d’inégalité d’Harnack. Celle-ci fait

intervenir le semi groupe d’Hamilton-Jacobi (Qt)tØ0. Il est alors possible de conclure la preuve
en utilisant la réversibilité de (Qt)tØ0 par rapport à µ avec la formulation duale de l’inégalité
T2(C).

Détaillons ce dernier point. Il a été démontré (cf. [145, 146, 13]) qu’un critère CD(fl, +Œ) est
équivalente à une inégalité de type Harnack. Dans sa forme logarithmique, celle-ci s’énonce comme
suit

Pt(log g)(x) Æ log Ptg(y) + fl

2
|x ≠ y|

2

e2flt ≠ 1 pour tout x, y œ R
n et t Ø 0.

Ce genre de résultat est notamment pratique pour obtenir des minorations, sous µ, du noyau
pt(x, y) associé au semi-groupe. Appliquons l’inégalité précédente avec t = T > 0 et g = PT (f),
nous obtenons

PT (log PT f)(x) Æ log P2T f(y) + |x ≠ y|
2

2—(T ) pour tout x, y œ R
n

où

—(T ) =
I

e2flT
≠1

fl si fl ”= 0
2T sinon.

En prenant l’infimum sur y œ R
n, ceci-fournit PT log PT (f)(x) Æ Q—(T ) log P2T f avec (Qt)tØ0 le

semi-groupe d’Hamilton-Jacobi introduit plus tôt dans ce chapitre.

Par réversibilité, nous avons alors Entµ(PT f) =
s
Rn PT f log PT fdµ =

s
Rn fPT log PT fdµ. C’est

pourquoi, en utilisant l’inégalité d’Harnack logarithmique, nous obtenons

Entµ(PT f) Æ

⁄

Rn

fQ—(T )(log P2T f)dµ = 1
—(T )

⁄

Rn

fQ1(—(T ) log P2T f)dµ.
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En outre,
s
Rn log P2T fdµ Æ log(

s
Rn P2T fdµ) = 0. Autrement dit,

Entµ(PT f) Æ
1

—(T )

5 ⁄

Rn

Q1fd‹ ≠

⁄

Rn

fdµ

6
.

En prenant le supremum sur les fonctions f , nous en déduisons (via la formulation duale de W2

11.2.2) que

Entµ(PT f) Æ
1

2—(T )W2(‹, µ)2

avec d‹ = fdµ. En utilisant cette dernière majoration avec les deux premiers points, il ne reste plus
qu’à optimiser en T > 0 pour conclure la démonstration.

11.7 Références historiques
Les notes qui suivent sont tirées de [143, 14, 68].

Le transport optimal trouve ses sources dans les travaux de Monge à la fin du 18ième siècle.
Grâce à ses capacités mathématiques, ce brillant géomètre fut admit dans une école militaire
alors que ses origines modestes auraient du l’exclure de ce genre d’instruction. Là-bas, il peut
développer ses idées qui lui permirent de mettre en place de nouvelles méthodes qui s’avérèrent
e�caces et polyvalentes. Tout ceci, lui permit d’être nommé professeur à l’âge de 22 ans ; cette
promotion assurait également à ses supérieurs que les travaux de Monge deviennent des secrets
militaires, uniquement accessibles à des o�ciers de haut rang. Par la suite, Monge devient l’un des
ardents combattants scientifiques de la révolution française et servi, en tant que professeur, sous
de nombreux régimes. Il échappa notamment à une sentence de mort durant la terreur et, plus
tard, devint un ami proche de Napoléon. Il enseigna d’ailleurs à l’école normale supérieur et l’école
polytechnique de Paris qui venaient d’être reformées au début du règne napoléonien.

En 1781, Monge publia son fameux mémoire sur la théorie des déblais et des remblais. Dans
ce mémoire, il considère le problème suivant : supposons que nous disposions à un endroit E
d’une quantité de sable que nous souhaitons déplacer sur un site de construction F . De plus,
chacun des déplacements d’une partie du sable x de E à un emplacement y sur le site F
coûte une certaine somme c(x, y). En modélisant ceci (le tas de sable et le site de construc-
tion) par des mesures de probabilités µ et ‹, la théorie du transport optimal cherche à minimiser
le coût (par la suite ce coût sera la distance d entre les points x œ E et y œ F ) d’un tel déplacement.

D’un point de vue économique, le problème précédent peut aussi s’énoncer en termes de
boulangeries (par exemple) cherchant à approvisionner en pain ou pâtisseries di�érents cafés.
Dans ce problème, les quantités de pains produites dans ces boulangeries ainsi que les quantités
consommées dans les cafés sont supposés connus à l’avance. Le problème revient donc à trouver de
quelle manière chaque unité de pain doit être acheminée de sorte que le coût de ce transport soit
minimal.

Beaucoup plus tard, le problème de Monge fut redécouvert par la mathématicien Kantorovich.
Ce dernier, né en 1912, est également un brillant mathématicien : à l’âge de 18, il possédait déjà
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une solide renommée internationale et devint professeur à l’âge de 22 ans. En 1938, un laboratoire
le consulta à propos de problèmes d’optimisation en économie. Kantorovich développa alors de
nouvelles méthodes de programmation linéaire afin de les résoudre et ces nouveaux travaux firent
de lui une personnalité incontournable de l’économie. Notons toutefois qu’une grande partie de
ses travaux ne furent pas publiés immédiatement car ces derniers étaient étroitement surveillés
par les autorités Soviétiques ; d’ailleurs, il n’était même pas permit à Kantorovich de s’exprimer
publiquement sur ses découvertes. Enfin, En 1975, ses travaux furent mondialement connus et
Kantorovich fut récompensé (conjointement avec Koopmans) pour leurs contributions à la théorie
d’optimisation d’allocation de ressources.

Les travaux que nous avons présentés dans ce chapitre concernent le problème de couplages
optimaux. Dans ce domaine, Kantorovich fut à l’origine de nombreux résultats qu’il démontra
à l’aide d’outils d’analyse fonctionnelle. Citons en particulier le théorème de dualité qui porte
son nom. Il fallut attendre encore quelques années pour que Kantorovich fasse le lien entre ses
travaux et ceux de Monge dans [80, 81, 82]. Ces travaux peuvent être considérés comme l’acte de
naissance de la théorie du transport optimal ; depuis, le problème de couplage optimal porte le
nom de problème de Monge-Kantorovich. Cette théorie possède de nombreux liens avec d’autres
domaines des mathématiques, citons quelques exemples : la reconnaissance de forme, la conception
d’antennes réflectives ou de lentilles, problème d’irrigations et de conception de réseaux, . . . (cf.
[143]).

L’existence d’une application de transport provenant du gradient d’une fonction convexe prend
ses origines dans les travaux de Knott et Smith (cf. [123]) mais aussi ceux de Rüschendorf et
Rachev (cf. [119]). Brenier, quant à lui, annonça ses résultats majeurs dans une courte note pour
ensuite publier les démonstrations de ces derniers dans [35] en 1991 et mis en avant la pertinence
géométrique de son théorème dans l’étude d’équations aux dérivées partielles.

Le choix de la terminologie des distances de Wasserstein est, apparemment, attribué à
Dobrushin. Cependant, il semblerait que la définition explicite de ces distances n’apparaisse pas
exactement dans les travaux de Wasserstein et furent plutôt l’oeuvre de Kantorovich. Bien que
cette terminologie de distance de Wasserstein soit extrêmement répandue actuellement, il semble
judicieux de lui attribuer le nom de distance de Kantorovich-Wasserstein ; malgré tout, ceci ne
permet pas de rendre hommage aux nombreux mathématiciens qui ont travaillé sur cette notion :
Gini, Mallows, Tanaka, Hoe�ding, Fréchet, Rubinstein, Ornstein, Salvemini, Dall’Algio,. . .

Parmi les distances de Wasserstein, le cas p = 1 a déjà été rencontré dans un chapitre précédent
sous le nom de distance de Kantorovich-Rubinstein permettant de considérer l’espace des mesures
signées M(E) comme un espace métrique.

Nous avons retrouver dans ce chapitre l’inégalité de Brunn-Minkowski sous sa forme fonction-
nelle d’inégalité de Prékopa-Leindler. Alors que sa formulation euclidienne semblait bien connu des
mathématiciens de l’époque (cf. [98, 114]), il fallut attendre les travaux de Cordero-Erausquin pour
obtenir, grâce au formalisme du transport optimal, une version de celle-ci sur la sphère. Plus tard,
en 2001, Cordero-Erausquin, McCann et Schmuckenschläger furent capable de développer les outils
nécessaires permettant d’établir rigoureusement ce genre d’inégalité dans un cadre riemannien
[43]. Bobkov et Ledoux ont montré dans [26] de quelle manière il était possible de retrouver de
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nombreuses inégalités fonctionnelles (notamment celle de Sobolev logarithmique) à partir d’une
inégalité semblable à celle de Prékopa-Leindler.

Les inégalités de transport Tp(C) furent étudiées dès le début des années 90 ; en revanche,
l’inégalité de Csiszar-Pinsker date des années 60. La formulation duale de ces inégalités, pour
p = 1 et p = 2 est due à Bobkov et Götze (cf. [23]). L’utilisation systématique de cette nouvelle
formulation fut exploitée par Bobkov, Gentil et Ledoux dans [25]. Ce genre d’argument est
notamment à la base de la démonstration du théorème d’Otto-Villani, assurant qu’une inégalité
de Sobolev logarithmique entraine une inégalité de transport T2(C). Toujours dans [25], les
auteurs mettent également en avant les liens existants entre inégalités de Sobolev logarithmiques
et hypercontractivité du semi-groupe d’Hamilton-Jacobi. L’argument de tensorisation remonte
aux travaux de Marton et ont été adaptés à de nouvelles situations (comme celle des chaines de
Markov faiblement dépendantes) depuis. Le théorème de Gozlan, établissant l’équivalence entre
une inégalité T2(C) avec de la concentration gaussienne indépendante de la dimension, introduit
une idée nouvelle : utiliser le théorème de Sanov provenant de la théorie des grandes déviations ;
des utilisations de ce genre d’idée sont décrites dans l’article de survol [68], citons, par exemple, la
découverte par Gozlan d’une nouvelle démonstration du théorème d’Otto-Villani.

Comme nous l’avons mentionné dans ce chapitre, Talagrand fut le premier à montrer que
la mesure gaussienne vérifiait une inégalité de transport quadratique. L’extension de ce type
d’inégalités à des mesures strictement log-concaves a été entrepris ensuite, citons notamment les
travaux de Gentil, Guillin et Miclo à ce sujet. L’inégalité HWI d’Otto et Villani permit d’identifier
les liens profonds entre le transport optimal et le monde des inégalités fonctionnelles. A ce titre,
la démonstration de l’inégalité de Sobolev logarithmique gaussienne et due à Cordero-Erausquin.
Nous avons aussi vu dans ce chapitre qu’il était possible, sous certaines hypothèses, d’obtenir une
inégalité de Sobolev logarithmique à partir d’une inégalité de transport T2(C) (via l’inégalité HWI),
il est donc naturel de s’interroger quant à une éventuelle équivalence entre ces deux inégalités.
Cattiaux et Guillin montrent dans [39], à l’aide d’un contre-exemple, que l’inégalité de Sobolev
logarithmique est strictement plus forte qu’une inégalité de transport de coût quadratique.

Dans cette courte introduction à la théorie du transport optimal, nous n’avons pas abordé les
travaux récents de Lott, Sturm et Villani qui ont utilisé le formalisme du transport optimal pour
proposer une définition synthétique de courbure dans des espaces métriques mesurés (cf. [143]).



262 CHAPITRE 11. TRANSPORT OPTIMAL


