Chapitre 11

Transport optimal

11.1 Introduction

Nous avons déja observé plusieurs manieres d’aborder la concentration de la mesure : via des
résultats isopérimétriques mais aussi grace a des inégalités fonctionnelles. Ce chapitre a pour objectif
d’introduire un nouveau point de vue, celui du transport optimal. Comme nous le verrons, cette
théorie permet facilement d’obtenir des résultats de concentrations mais il met également en avant de
nouvelles quantités comme les distances de Wasserstein qui sont utiles pour quantifier la convergence
de mesure. Dans ce qui suit, nous allons commencer par énoncer le probleme de Monge-Kantorovich
et présenter les nouveaux objets qui lui sont liés. Nous aborderons ensuite certains aspects qualitatifs
et quantitatifs de ce probléme pour enfin présenter les liens existant entre transport optimal et
concentration de la mesure.

11.1.1 Probléme de Monge-Kantorovich

Dans ce qui suit (F,d) désigne un espace polonais et rappelons que P(E) représente 1'ensemble
des mesures de probabilités sur les boréliens de F.

Définition 11.1.1. Soient p et v deux mesures de probabilités sur E. Une application T : E — FE
transporte | sur v st

| fwavty) = [ £r(a)duta)
E E
pour toute fonction f : E — R borélienne bornée.

Définition 11.1.2. Soient p,v € P(E). Un couplage entre u et v est une mesure de probabilité
m sur E x E dont la premiére marginale vaut p et la seconde v. Nous désignerons par II(u,v)
l’ensemble de tels couplages

Remarque. D’un point de vu probabiliste, un couplage n’est autre que la loi d’un couple de variable
aléatoire (X,Y") telles que L(X) = p et L(Y) =v.

Exemple 11.1.1. 1. Le couplage le plus simple et celui qui consiste a choisir 71 = p ® v.
Autrement dit, 7 = E((X ,Y)) avec X et Y des variables aléatoires indépendantes de loi
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234 CHAPITRE 11. TRANSPORT OPTIMAL
respective p et v.

2. Etant donné une application T' : F — FE transportant u sur v, il est possible de produire un
couplage déterministe en posant 7 = L(X,T(X)). En particulier,

[ S = [ i)

pour toute fonction f : E — R borélienne bornée.

Maintenant que nous avons introduit quelques points de vocabulaire, nous pouvons énoncer le
probleme de Monge-Kantorovich.

Définition 11.1.3. Etant donnés deux mesures de probabilités p,v € P(E) ainsi qu’une fonction
mesurable ¢ : E x E — [0,400], le probléme de Monge-Kantorovich consiste & minimiser le cott
de transport (entre u et v) défini par

3o(r) = / /E itz

sous la contrainte m € II(p,v).

Le cofit de transport optimal entre p et v sera noté par

Te(pv) = _inf Je(m).

11.1.2  Probléeme de Monge-Kantorovich, résultats qualitatifs

Lorsque la fonction de coiit ¢ satisfait certaines hypotheses, le théoréme suivant nous assure que
le probleme de Monge-Kantorovich admet une solution.

Théoréme 11.1.1. Sic : E x E — [0,+00] est une fonction semi-continue inférieurement alors,
pour toutes mesures u,v € P(E), il existe m* € U(u,v) telle que

Te(p,v) = //ExE c(z, y)m* (z,y)

Remarque. 7* porte le nom de plan de transport optimal associé aux mesures p et v.

Démonstration. Voici les grandes lignes de la démonstration.

1. Tout d’abord, il faut montrer que J. est une application semi-continue inférieurement sur
P(E x E).

2. L’ensemble II(u,v) est ensemble compact pour la topologie de la convergence étroite. Pour
démontrer ceci, il faudra faire appel au Théoréme de Prokhorov qui caractérise la compacité
relative d’un ensemble de mesure en terme de tension.

3. Pour conclure, il suffit d’utiliser le fait suivant : une fonction semi-continue inférieurement
sur un ensemble compact est minorée et atteint sa borne inférieure.
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Le lecteur est prié de se référer aux ouvrages suivants pour une démonstration de ce théoréme
[144, 143]. O

En dimension un, il est possible de préciser la forme du couplage optimal & I’aide des fonctions
de repartition. Si p € P(R), nous noterons sa fonction de répartition par Fj,(z) = u(] — oo, ]).

Proposition 11.1.1. Soient p,v € P(E). Si u une mesure sans atome alors

™ =L(X,T(X)) ou T(z)=F,"oF,)

avec L(X) = p. De plus, T est une application croissante.

Remarque. Dire que p est une mesure sans atome signifie que p(a) = 0 pour tout a € R. Il aurait
également pu étre envisageable de choisir 7* = E(X ,S(X )) avec

S(x)=F, o(1-F,(z)) z€R

qui est une application décroissante.

11.1.3 Dualité de Kantorovich

Tout comme de nombreux probléme de minimisation, celui de Monge-Kantorovich peut éga-
lement s’énoncer de maniere duale. Comme nous le verrons, cette nouvelle formulation sera utile
pour établir un lien entre la théorie du transport optimal et la concentration de la mesure; ceci
s’effectuera par le biais de nouvelles inégalités fonctionnelles.

Théoréme 11.1.2 (Dualité). Soient ¢ : E x E — [0+ oo[ une fonction de coit semi-continue
inférieurement et p,v € P(E) telles que J.(u,v) < +00. Alors

Tin = s { [ wwtao) + [ owvian (11.1.1)

(RIS 2
ou d, = {(1/),(;5) € CY(E) x CYUE); ¥(z) + ¢(y) < c(x,y) pour z,y€ E}

Remarque. 1. TI est possible de relacher la condition sur le couple (1, ¢) en supposant que
e LY(p) et ¢ € LY(v).

2. La démonstration permettant d’établir cette dualité utilise la notion de c-convexité et de
monotonie cyclique par rapport a la fonction de coiit c¢. Plus précisément, il y a équivalence
entre les assertions suivantes :

e 7 est un couplage optimal ;

e le support de 7 est un ensemble c-cycliquement monotone ;

e il existe une fonction f c-convexe.
Toutefois pour ne pas alourdir le cours, nous ne développerons pas ces aspects et renvoyons
le lecteur vers [144, 143]. Néanmoins, nous reviendrons briévement sur cette notion de c-

convexité lorsque nous aborderons les opérateurs d’inf-convolution permettant de définir le
semi-groupe d’Hamilton-Jacobi.
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11.1.4 Théoréme de Brenier

Lorsque E = R™ et ¢(z,y) = 1|z — y|? (avec | - | la distance euclidienne), la solution probléme
de Monge-Kantorovich admet une forme élégante que nous allons présenter ci-dessous. Pour un tel
choix de fonction de cofit, nous adopterons la notation suivante

Ta(p,v) = Te(p,v)  avec p,v e P(R").

Théoréme 11.1.3 (Brenier). Soient u,v deuz mesures de probabilités sur (R™,|-1|); si p est
absolument continue par rapport d la mesure de Lebesgue et si Ta(u,v) < +00 alors

1. il existe un unique plan de transport optimal 7* € I, v) et celui-ci est déterministe
ie. " =L(X,T(X)) pour T :R"—=R"

avec L(X) = p.
2. il existe une fonction convere ¢ : R™ — R (finie u-presque partout) telle que T = V.

3. Uapplication T est essentiellement unique : si T définie une autre solution optimale alors
T =T p-presque partout.

Remarque. 1. Ce résultat a été étendu aux cadres des variétés riemaniennes par McCann.
L’expression de l'application T est un peu plus complexe et fait intervenir la fonction
exponentielle associée a la variété.

2. En pratique, le Théoréeme de Brenier met en jeu un changement de variable qui s’apparente a
une équation de Monge-Ampere. Nous reviendrons ce sur point dans une section ultérieure.

Démonstration. La démonstration de ce résultat est délicate et sera omise dans ce cours. Men-
tionnons toutefois, qu’elle fait appel & des résultats d’analyse convexe (notion de sous-différentielle,
différentiabilité presque partout d’une fonction convexe,. . .) mais aussi a la caractérisation des plans
de transports optimaux en terme de c-convexité et de c-monotonie cyclique pour le coiit quadratique
euclidien. Le lecteur trouvera la démonstration de ce résultats dans [144, 143]. O

11.1.5 Equation de Monge Ampere

Comme mentionné un peu plus haut, lorsque c¢(z,y) = %|x —y|?, le Théoréme de Brenier donne
lieu & un changement de variable. En effet, sous les hypothéses du Théoréme de Brenier, il existe
une application ¢ : R™ — RU {400} telle que I'application T transportant p sur v soit de la forme

T =Vé.

En particulier, si du = gdzx et dv = fdx, nous avons (par définition de T')

hw)sto)dy = [ h(T(@)fa)do

R’n
pour toute fonction borélienne bornée h : R® — R. Lorsque T est un C'-difféomorphisme, il est

alors possible de procéder au changement de variable y = T'(x) dans la premiere intégrale. Ainsi,
nous obtenons
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h(T(x))g(T(x))|det Jac T (x)|dx = / h(T(x)) f(z)dx

Rn

ou JacT(z) désigne la matrice jacobienne de T au point z. En conséquence de ceci, pour tout
x € R™, nous avons

f(@) = g(T(x))|det Jac T(x)|.

En outre, puisque T' = V¢, ceci s’écrit

f(@) =g(Ve(x))|det Hess ¢()| (11.1.2)

ou Hess ¢(z) désigne la matrice (semi-définie positive) de ¢ au point x. L’équation (11.1.2) est
désignée sous le nom d’équation de Monge-Ampere (cf. [144, 143] pour plus de détails). Comme
nous le verrons ultérieurement, il est possible d’obtenir de nombreuses informations a partir de
cette équation.

Notons que les hypothéses sur T faites ci-dessus sont trop restrictives et irréalistes. En effet,
puisque ¢ est convexe, V¢ est définie presque partout mais il n’y a, a priori, aucune raison pour
que V¢ soit bijective ou réguliere. Toutefois, il est possible d’affaiblir les hypotheses faites sur T
pour donner un sens a l’équation de Monge-Ampere (11.1.2) dans un contexte plus général. Cette
généralisation s’effectue via la notion de sous-gradient qui permet de définir une Hessienne au sens
d’Alexandrov. Ces résultats plus complexes ne seront pas abordés dans ce cours.

11.2 Probleme de Monge-Kantorovich, aspect métrique

Rappelons que ’espace sous-jacent E est un espace polonais, en particulier E est muni d’une
distance d. Lorsque la fonction de cotit ¢ coincide avec la distance d, cela donne lieu a des quantités
interessantes permettant de définir une nouvelle distance sur 1'espace des mesures de probabilités
sur E (en imposant quelques conditions de moments).

D’un point de vue heuristique, la quantité 7.(u,v) permet de mesurer la différence entre
deux mesures de probabilités. C’est pourquoi, intuitivement, si = v, il est naturel de pressentir
que le meilleur moyen de minimiser la fonctionnelle de coiit est de ne rien faire : autrement dit
Te(i, ) = 0. La propriété de symétrie de 'application Z.(u, ) est, quant & elle, évident; il parait
alors réaliste d’espérer qu’'une inégalité triangulaire soit satisfaite.

Avant d’approfondir et de développer les quelques lignes qui précedent, nous allons introduire
de nouvelles notations. Pour p € [1, +00[ et deux mesures de probabilités u, v € P(E), posons

Ty = ot [ dawyyasy)

mell(p,v)

Observons également le fait suivant : si xg € E et u € P(E) alors

T (Gut) = /E d(z0,y)Pdu(y)
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Suite & cette observation, nous allons nous restreindre aux mesures pour lesquelles le cotit précédent
est fini.

Définition 11.2.1. Pour p € [1,+o00[, nous désignons par P,(E) Uensemble des mesures boré-
liennes sur E qui admettent un moment d’ordre p :

7o) = {uwe PE): [ dlan ) < +oc

pour un certain xg € E.

Remarque. 11 est élémentaire de vérifier que P,(E) ne dépend pas du choix de zo.

Il est maintenant possible de définir une distance sur P,(E) & I’aide de 7,. Ces nouvelles distances
portent le nom de distance de Kantorovich-Wasserstein.

Proposition 11.2.1. La quantité
Wy(u,v) = Tou,v)'/?
définie pour tout p,v € Py(E) est une distance sur Pp(E).
Remarque. En particulier, si p = 6, et v = §, alors Wy, (u,v) = d(z,y).
Démonstration. La vérification de I'inégalité triangulaire est laissée en exercice. O

Comme pour les normes associées || - ||, aux espaces LP(u), il est possible de comparer les
distances de Kantorovich-Wassertein entre elles.

Proposition 11.2.2. Pour 1 < p < q et pour toutes mesures i, v € Py nous avons
WP(N’) V) S Wq(ﬂv V)'
Démonstration. Soient 1 < p < g et rappelons que pour toutes mesures de probabilité u, LI(u) C

LP(u), c’est pourquoi Py C Pp. Si (X,Y), avec L(X) = p et L(Y) = v, désigne un couple de
variables aléatoires qui réalise Wy (u, v) alors

[dCX V), < 40X V), = Waln ).
Or, par definition de W), (u, V) nous avons aussi
WP(/‘? V) § ||d(Xa Y)Hp

d’ou le résultat. O

Caractérisation duale de W),

Comme nous allons le voir, il est possible de caractériser de maniére duale les distances
(Wp)p>0- Nous allons nous focaliser sur les cas p =1 et p = 2.
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Théoréme 11.2.1 (Dualité pour Wi). Pour tout p,v € Py, la distance Wi (u,v) est donnée par

iy - 30

avec JF1 désignant les fonctions 1-lipschitziennes.

} (11.2.1)

Démonstration. Désignons par S le précédent supremum et montrons que S = Wi (u,v). A cet
effet, soient f une fonction 1-lipschitzienne et (X,Y) un couple de variables aléatoires tel que
L((X,Y)) =7 (i.e. m € (i, v)). Alors

’/Efdﬂ—/Efdu

= B [f(X)] - B, [f(Y)]

E[|f(X) = f(Y)]]
E[|d(X,Y)|]

IN N

puisque f est 1l-lipschitzienne. Ainsi, S < E.[|d(X,Y)|] pour tout couplage = € II(u,v); c’est
pourquoi S < Wy (u,v).

Démontrons & présent que S > Wi (u,v). Soit € > 0 fixé, d’apres la dualité de Kantorovich (i.e.
le théoréme 11.1.2), il existe ¢ € L' (u) et ¢ € L*(v) telles que, pour tout z,y € E

() + o(y) <d(z,y) et /Ewd,u + /E pdv > Wi (p,v) —e. (11.2.2)

Posons alors f(z) = sup,cp (cb(y) — d(z,y)). Il n’est pas difficile de montrer, via l'inégalité
triangulaire, que f est 1-lipschitzienne et que f € L'(u) N L' (v) puisque p,v € Pi(E).

Observons de plus, en choisissant y = z dans le supremum définissant f, que f(z) > ¢(z). En
outre, par hypothese nous avons ¥ (z) + ¢(y) < d(z,y), ce qui permet d’obtenir I'inégalité suivante

flz) = Slég (V(y) —d(z,y)) < —p(z) avec z € E. (11.2.3)

En combinant les inégalités (11.2.2) et (11.2.3) nous obtenons

S > —/ fdu+/ deZ/ wdu—&—/ opdv > Wi (p,v) — €
E E E E
ce qui acheve la démonstration. O
Les mémes arguments permettent d’obtenir un résultat similaire lorsque p = 2.

Théoréme 11.2.2 (Dualité pour Ws). Pour tout p,v € P, la distance Wa(u,v) est donnée par

WQ(M’V):JCSS;)Z{‘/Ede_/E(MV} (11.2.4)

avec Fo désignant ’ensemble des fonctions bornées v et ¢ telles que

1
P(z) < o(y) + §|x —y* avec z,y€E.
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Remarque. Le choix optimal, parmi les fonctions appartenant a F», est obtenu en choisissant ¢ de
la maniere suivante

1 est usuellement désignée comme 'infimum-convolution de la fonction ¢ pour le colit quadratique
c(z,y) = glz —yl*.

11.2.1 Lien avec la topologie faible

Les distances (W,)p>1 peuvent étre utilisées en rapport avec la convergence faible. Plus préci-
sément,

Théoréme 11.2.3. Soient u et (tn)n>1 des mesures dans P,(E). Dans ce cas, Wy(in, ) tend
vers 0 lorsque n — 400 si et seulement si

1. (pn)n>1 converge faiblement vers i ;

2. les moments d’ordre p de (fin)n>1 convergent vers ceux de fi :

lim d(a:o,x)pdun(x)z/Ed(xo,x)pdu(x).

n—-+oo E

Démonstration. Nous admettrons cette preuve qui nous éloignerait de notre sujet. Notons toutefois
que le sens direct de la démonstration utilise le Théoréme du portemanteau (pour la convergence
faible) et I'inégalité suivante : pour tout € > 0, tout p > 1, il existe C(e, p) telle que

laP —bP| < ea” + C(e,p)|b—al’  pour tout (a,b) € RY

pour la convergence des moments. Le sens réciproque utilise des résultats d’uniforme intégrabilité
ainsi que ’équivalence entre convergence en loi et convergence en probabilité d’une suite de variables
aléatoires lorsque la limite est une constante. O

11.2.2 Applications

Maintenant que nous avons préciser de quelle maniere les distances de Kantorovich-Wasserstein
sont liées a la convergence de mesure, voyons quelques illustrations de ce résultat.
Théoréme de la limite centrale

Débutons par un résultat classique. Soit X une variable aléatoire, centrée, réduite, de loi u et
de carré intégrable et rappelons que 7; désigne la mesure gaussienne standard dans R. Considérons
(X;);>1 une suite de copies indépendantes de X. Comme auparavant, S, = > ., X;.

Théoréme 11.2.4 (Théoreme de la limite centrale). Dans le cadre précédent, nous avons

lim W3 (ptn,71) =0 (11.2.5)

n—-+00

ot L(n™28,) = pin. En particulier, n=/2S,, converge en loi vers Z avec L(Z) = 1.
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Etude des files d’attentes M /M /oo

Il est également possible d’aborder des résultats plus complexes impliquant de la dépendance.
A cet effet, rappelons qu’il est usuel de modéliser certaines files d’attentes de la maniére suivante :

1. la file d’attente est composée de zg € R personnes.

2. A chaque instant, une personne est servie avec probabilité p € [0, 1] et sort de la file d’attente ;
bien entendu, avec probabilité ¢ = 1 — p cette personne reste dans la file.

3. de nouvelles personnes s’insérent dans la file d’attente. Cette quantité est déterminée par une
loi de Poisson de parameétre A > 0.

Toutes les variables aléatoires mentionnées (implicitement ou non) ci-dessus, sont supposées indé-
pendantes et nous désignons par (X,,)n>o le nombre de personnes dans la file & 'instant n € N. Il se
trouve qu’il s’agit d’une chaine de Markov dont il est possible de préciser certaines de ses propriétés.

Dans ce qui suit, pour tout k,! € N, nous noterons pas pj; les probabilités de transitions,

i.€. Pk, = ]P)(Xl = l, XO = k)
Théoréme 11.2.5. Dans le cadre précédent, nous avons

EAL S

1. pour tout k,l € N, pry =357, mquk Tem AN,

2. La chaine (X,)n>0 est irréductible, apériodique, récurrente positive, de probabilité invariante
v="P(2).

p

Le théoréme précédent combiné & un résultat classique de probabilité (cf. [17]), nous assure que
la chaine de Markov converge en loi vers la mesure v. Nous allons tacher de quantifier cette vitesse
de convergence a ’aide de distance la distance de Wasserstein 7.

Théoreme 11.2.6. Pour toute loi initiale o admettant un moment d’ordre 1 et pour tout n € N
nous avons

Wi (pn,v) < ¢"Wi(po,v) (11.2.6)
avec L(Xp) = pin.

Démonstration. Avant toutes choses, introduisons des notations :

e (B,,) désigne une famille de variables aléatoires de Bernoulli indépendantes de paramétre ¢
telles que B,,; = 0 si le I-ieme client est servi au temps n; B,,; = 1 sinon.

o (A,)n>0 une famille de variables aléatoires de Poisson de parameétre A > 0 telle que A,, désigne
le nombre d’arrivée au temps n € N.

Dans ce qui suit, nous identifierons variables aléatoires avec leurs lois de probabilités. L’idée essen-
tielle de la preuve consiste, & partir d’une loi initiale (X, Yp), de construire un couplage (X, Yz )nen-
Il sera essentiel que les processus (X, )n>0 et (¥;,)n>0 soient construit a partir du méme aléa. Ces
processus sont définis par récurrence comme suit :
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Xn Yn
X71,+1 = Z Bn+1,k + An+1 et Yn-{—l = Z Bn—i—l,k + An+1-
k=1 k=1

Pris séparément, (X,)n>0 et (Y5)n>0 sont des chaines M /M /oco. L’avantage dans ce procédé de
construction est qu’il devient aisé de calculer la différence entre ces deux processus, pris au méme
instant :

HlaX(Xn ;Yn)

‘Xn—i-l - Yn—‘—l‘ = Z Bn+1,k~
k=min(X,,,Y,)+1

Alors, si F,, désigne la tribu engendrée par les variables (By 1, A;)k<n,i, NOUS avons

E |:|Xn+1 - Yn+1’

fn} = q|Xn — Yn| pour tout n € N.

A Taide d’une récurrence immédiate sur n € N, nous en déduisons que E HX”—Yn H =q¢"E [|X0—Y0 |]
pour tout n € N.

Pour conclure, considérons une loi initiale pyp admettant un moment d’ordre 1. Désignons alors
un couple (Xo, Yy) tel que Wi (po,v) = EHXO, YOH. Ainsi, par définition de Wy, nous avons

Wi(pn,v) <E[| Xy — Yal|] < ¢"E[| X0 — Y]

d’ou le résultat. O

11.3 Inégalité de Transport et concentration

Dans cette section, nous allons présenter les liens entre les inégalités de transport et la concen-
tration de la mesure.

Définition 11.3.1. Une mesure p € Pp(E) satisfait une inégalité de transport T,(C) (avec p >1)
s’il existe une constante C = Cp, > 0 telle que

W, < /2CH(p,v), pourtout v € P,(E) (11.3.1)

avec H(pu,v) = fE log %du l’entropie relative de v par rapport a v.

11.3.1 Transport et concentration, argument de Marton

Dans ce qui suit, nous supposons que p vérifie une inégalité de transport T3 (C'). Comme observé
par Marton (cf. [105]), nous allons voir qu’il est possible d’obtenir un résultat de concentration
pour la mesure y a partir de l'inégalité T3 (C) (11.3.1).

En effet, considérons deux ensemble boréliens A et B et désignons par 114 (respectivement pp)
la mesure de probabilité induite par la restriction de p & Pensemble A (respectivement & I’ensemble
B). En combinant I'inégalité triangulaire satisfaite par Wi avec l'inégalité (11.3.1) (avec p = 1),
nous obtenons
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Wipi,pe) < Wilp, pa) + Wiy, pp)
V2CH (palp) + 2CH (up|p)

1 1
= \/2ClogM(A) +\/2010gu(3)

ou la derniere égalité provient du calcul explicite des entropies relatives. De plus, observons que
toute mesure de probabilité ayant pour lois marginales p14 et pp doit avoir son support dans A x B.
Ainsi, par définition de W1,

IN

Wi(pa,up) > d(A,B) = inf{d(x,y); reA ye B}.

Enfin, si A et B sont choisis dans E tels que d(A, B) > r > 0, par ce qui précede, nous obtenons

r< \/QC’logM(lA)\/QC’log'u(;w (11.3.2)

avec, rappelons le, A, = {z € E; d(z,A) < r}. L’inégalité¢ (11.3.2) permet alors d’obtenir de la
concentration. En effet, si u(A) < %, celle-ci entraine que

1

D’ou, lorsque r > 2/2C log 2, nous avons

(M)

T

1—u(A,) <e sC.

Comme cela a été démontré par Bobkov et Gotze (cf. [23]), il est possible de préciser ’observation
de Marton. C’est le contenu du résultat suivant.

Théoréme 11.3.1 (71 (C) et concentration). Soit p une mesure de probabilité sur un espace mé-
trique (E,d) alors

Wi(p,v) < A/2C1H(v|p) pour tout v € Pi(E) (11.3.3)

avec Cy > 0 une constante numérique si et seulement si

2
sup  E[eMX)] < e pour tout A € R (11.3.4)
FeLip(1)

avec L(X) = p et Lip(1) désigne Uensemble des fonctions F : E — R 1-lipschitziennes.

Remarque. La présence de la transformée de Laplace permet de montrer que les inégalités de
transport T (C) ne sont pas adaptées pour produire des inégalités de concentration indépendantes de
la dimension. Autrement dit, les inégalités de transport 77 (C) ne se tensorisent pas indépendamment
de la dimension
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Démonstration. La démonstration repose sur la formulation duale de W5 (celle donnée par le théo-
réme 11.1.2). Celle-ci affirme que

Wi (p,v) = sup {/Eiﬁdv - /E¢du}

ol le supremum est pris sur I’ensemble des fonctions (¢, ¢) vérifiant ¥(x) < ¢(y) + d(x,y) pour
tout x,y € E. Méme si la formulation est légérement différente de celle du théoreme 11.1.2, il s’agit
bien du méme ensemble de fonctions.

Ainsi, d’apres U'inégalité de transport T;(C'), nous avons

dv
dv — du < 4/ 2CEnt, (—).
/Ewu /E‘”— ut, (37)

Cette derniere inégalité peut s’écrire de maniere équivalente sous la forme

cx 1 dv
dv — du < — + —Ent, (—
oo [ o< T+ Bt
pour tout A > 0. A présent, si g = Z—Z cette nouvelle inégalité devient

/ fgdp < Ent,(g)
E

avec f = \p — )\fE odu — CT)‘Q Puisque cette inégalité est.satisfaite pour tout choix g (i.e. pour

of

toute mesure de probabilité v), il suffit de choisir g = Toerd pour obtenir que log [, efdu < 0.
g &

Autrement dit,
2
/ My < [y dnro
E

Si F € Lip(1), il est alors possible de choisir F' = ¢ = ¢ dans ce qui précéde (le couple (¢, ¢) ainsi
défini vérifie bien la condition ¥ (z) < ¢(y) + d(z,y)) afin de conclure. O

11.3.2 Inégalité de concentration indépendante de la dimension et 75(C')

La démonstration précédente peut également étre mise en place pour W5 a ’aide du théoreme
de dualité 11.2.2.

Théoréme 11.3.2 (T»(C) et concentration). Soit u € Po(R™). Alors

W3 (p,v) < /CHv|u)

pour une constante C' > 0 et pour tout v € Po(R™) si et seulement si

/ e®ldp < e S0
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pour toute fonction mesurable bornée f : R™ — R ; ci-dessus, Qf désigne l'infimum-convolution

Q@) = inf [Fy) + 55lo—y), e weR”

entre f et le cott quadratique.

Remarque. Lorsque F est lipschitzienne, il est possible de montrer que QF > F — % IIF ||%ip. Ainsi le
théoreme précédente fournit un résultat plus fort que le théoréme 11.3.1. En fait, il a été démontré
par Gozlan (cf. [66]) que I'inégalité T5(C') est équivalente & une inégalité de concentration gaussienne
avec des parametres indépendants de la dimension.

Comme mentionné dans la remarque précédente, I'inégalité de transport T5(C') se tensorise
indépendamment de la dimension.

Proposition 11.3.1. Soit p = p1 @ ..., Quy une mesure de probabilité sur les boréliens de R™.
Supposons que pour tout i = 1,...,n, p; satisfait une inégalité de transport quadratique

Walpi, vi) < v/ CiH (1ilvs),

pour n’importe quelle mesure v; sur R et C; > 0. Alors,

%wwﬁ¢gmcﬂwm

pour nimporte quelle mesure de probabilité v sur R™.

11.4 Transport optimal et inégalités fonctionnelles

Dans cette section, nous allons voir de quelle maniére certaines inégalités fonctionnelles ren-
contrées dans ce cours peuvent étre obtenues par des arguments de transport optimal. A titre
d’exemple, débutons par 'inégalité T>(1) satisfaite par la mesure gaussienne.

Proposition 11.4.1 (Talagrand). La mesure gaussienne standard sur R™ ~y,, vérifie une inégalité
de transport T(2) avec C = 1.

Démonstration. D’apres la propriété de tensorisation, il suffit de démontrer le cas n = 1. Soit f > 0
telle que fR fdv1 =1 et posons dv = fdu. Par simplicité, supposons que f > 0 sur tout R. Ensuite,
définissons ’application de transport monotone 7' : R — R par
V(]_OO7T($)]) :71(}—()0,%‘]), z € R,

de telle sorte a ce que v soit la mesure image de y par I'application T'. La formule de changement
de variable nous fournit ’équation suivante, dite de Monge-Ampeére 11.1.2,

f(T(x))T’(ﬂc)e_T(’”)z/2 — e /2 pour tout = € R.
Ainsi, en prenant le logarithme de I’équation précédente, nous obtenons, pour tout z € R,

log f(T'(z)) +log T"(z) — %T(x)2 = —%xQ
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En intégrant cette égalité par rapport a la mesure v et en utilisant le fait que v = Tk, nous

trouvons .
/log fdv = f/[T(x)2 — 2%]dy; — / log T" dy1.
R 2 Jr R

En outre, une intégration par partie fournit que

/Ra:(T—x)d’yl - /R(T’ ~ 1)dn

H(yl,y):/Rlogfdy = /|a:— )| d’yl—i-/[T’—l—logT’]dm

> /|$— z)[Pdy

puisque y — y — 1 —logy > 0 lorsque y > 0. De plus, comme v est I'image de «; par 'application
de transport T', la mesure image 7 de v, par I’application x (:r, T(x)) a pour marginales v; et v
respectivement. Ceci entraine, par définition de W,

/Wx— () Py = /] e = yPdr > W2,0)

ce qui conclut la démonstration.

d’ou

O

En fait, il se trouve que le cas n-dimensionel peut également étre obtenu de maniere similaire
(sans utiliser de tensorisation). L’idée est d’utiliser l'application de transport monotone du
théoréme de Brenier 11.1.3.

Soient p et v deux mesures de probabilité sur R”, rappelons qu’une application T : R” — R”
envoit p sur v (ou transporte p sur v) si v est 'image de la mesure v par T. Autrement dit, pour
toute fonction borélienne positive bornée f : R — R,

| 1wants) = [ £(T@)dvia).

Si p et v admettent un moment d’ordre deux, une application T poussant p sur v est dite
optimale par rapport a la distance de Kantorovich-Wasserstein Wy si

Walguv)? = 5 [ Jo = T(@)Pduta).

Un résultat fondamental de Brenier [35] et Mc Cann [107] (présenté plus tot) assure que lorsque
est absolument continu par rapport a la mesure de Lebesgue, il existe une fonction convexe ¢ telle
que T = V¢ transporte u sur v de maniére optimale (au sens précédent).

Soit 4 = -, la mesure gaussienne standard dans R™ et supposons que dv = fdvy, avec
f > 0et [ fdy, = 1. Lorsque celui-ci fait sens, la formule de changement de variables dans le
transport de 7, & v fournit ’équation de Monge-Ampere suivante :
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f(T(m))det(Hess¢(m))e_‘T(w)|2/2 =e /2 pour tout 2 € R™,

ol Hess ¢ désigne la hessienne de ¢ (nous ignorons les problémes de régularité et le fait que T'= V¢
ne pourrait exister que presque partout). En reproduisant la démonstration du cas uni-dimensionel
et en utilisant le fait que

log Det (Hess ¢(z)) < Agp —n = A(¢p — @), (11.4.1)

nous obterons que Wa(v,,v) < v/ H(v|7,). Cette argument s’étend aisement aux mesures de pro-
babilités dy = e~V dz avec un potentiel strictement convexe V.

Théoréme 11.4.1. Soit du = e~ dx ou HessV (x) > pld, ¢ > 0 uniformément en x € R™. Alors,

pour toute mesure de probabilité v sur R",

Walvos) < 4/ H(vln).

11.4.1 1Inégalité de Sobolev logarithmique

L’utilisation de I’équation de Monge-Ampere a permis de démontrer que <, satisfait une
inégalité de transport T5(1). Nous allons voir que le méme type d’argument fonctionne au niveau
de l'inégalité de Sobolev logarithmique. Avant cela, il peut-étre utile de d’observer quelques faits
concernant l’entropie d’une fonction et I’entropie relative de deux mesures.

Si [on fdp =1, alors

But,(f) = [ log fav = H(v|u)

avec dv = fdu. Rappelons que p vérifie une inégalité de Sobolev logarithmique s’il existe C' > 0
telle pour toute fonction f : R* - R

Ent,,(f?) < 20/ IV fI2du

n

Si nous substituons f2? par f > 0 telle que fR" fdu = 1, l'inégalité de Sobolev logarithmique
précédente s’écrit de maniére équivalente sous la forme suivante

c
H(v|p) < 51(v)

avec I(v) = I,(f) = [gn @du Pinformation de Fisher de dv = fdu. Dans cette formulation, il
devient possible de démontrer la proposition 9.4.3 a ’aide des outils du transport optimal.

Démonstration. Soit f > 0 telle que fRn fdu =1 et considérons dv = fdry,,. Considérons 'applica-
tion de transport 7" optimale donnée par le théoréeme de Brenier 11.1.3 :

i.e. Tu,=p avec T =V¢
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ou ¢ : R™ — R est une fonction convexe. Pour éviter des arguments de régularisation, supposons
que tous les éléments mis en jeu sont suffisamment régulier de sorte que 1’équation de Monge-Ampeére
suivante ait du sens. Celle-ci s’écrit

f(x)e*‘””w2 = e*‘T(w)‘Q/QDet(Hess gzﬁ(x)), pour tout z € R™.

En prenant le logarithme de I’égalité précédente et en utilisant (11.4.1), nous obtenons

log f(x) — %MQ = f%|T(a:)\2 + log Det (Hess ¢())

2
< r@Peae- ),

Ainsi, puisque T" = V¢, nous en déduisons que

1 2 |z >
log f(x) < —5IVé—af —w-(Vo—u)+A(6 - )

1 jz?
= ——|Vé—af +L(p—
5IVo—al +Lie— =)
avec L = A — z -V le générateur infinitésimal du semi-groupe d’Ornstein-Uhlenbeck. A présent,
intégrons la derniere inégalité obtenue par rapport a dv = fd~,, ceci fourni

|z

1 L2 i
/Rnflogfd'yn < 5 /]Rn fIVe — x| d’yn—f—/Rn fL((;S 5 )d’yn.

Il est alors possible d’utiliser la formule d’intégration par partie vérifiée par L et ~,,

|z

[ ose-Bran = [ vi-vo-aa,
R’V‘L

Rn
donc

IN

! 2Py, — V(6 —
[ pogfa, < 5 [ fVo-alin - [ VE-V0-a),

1OV,
5/ Iy, = 510)

La derniéere ligne s’obtient en utilisant 1'inégalité,

1 1
—§|b|2 —a-b< §|a|2 (valable pour tous vecteurs a,b € R™)
en choisissant a = % et b=+fV(¢d—z). O

Remarque. Bien entendu, la démonstration précédente fonctionne aussi pour des mesures log-
concaves :
dp = e Vdz

lorsque HessV () > pl; avec p > 0. En fait, pour de telles mesures p, il a été démontré par Caffarelli
(cf. [38]) que I'application de transport 17" envoyant -y, vers ju (i.e. Ty, = p) est lipschitzienne avec
ITlaip < p~2.
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11.4.2 Inégalités de Brunn-Minkowski et de Prekopa-Leidler

Pour illustrer la polyvalence des méthodes de transport optimal, nous allons montrer qu’elles
permettent d’obtenir 'inégalité de Brunn-Minkowski dont nous rappelons I’énoncé ci-dessous.

Théoréme 11.4.2 (Brunn-Minkowski). Pour tout ensembles boréliens bornés A,B € R™, nous
avons

Vol,,(A 4+ B)Y/™ > Vol,, (A)Y™ + Vol (B)*/™ (11.4.2)

oo A=B={x+y ; xz€ A,y B} désigne la somme de Minkowski des ensembles A et B ;

Vol,, désigne l’élément de volume de R™ (i.e. il s’agit de la mesure de Lebesgue).

L’équation (11.4.2) peut s’exprimer de maniére équivalente sous la forme multiplicative suivante

Vol,,(0A + (1 — 8)B) > Vol (A)?Vol,,(B)!=% V6 € [0,1] (11.4.3)

Remarque. Comme nous 'avons déja mentionné plus tot (cf. théoréme 6.2.1), I'inégalité de Brunn-
Minkowski permet de résoudre facilement le probléme isopérimétrique euclidien. En effet, si B
désigne une boule euclidienne de rayon r > 0 centrée en 0 alors I'inégalité (11.4.2) nous assure que
Vol,, (A,)Y™ = Vol,,(A + B)Y/™ > Vol,,(A)Y" 4+ v(r)V/"
ot v(r) désigne le volume d’une boule euclidienne de rayon r > 0. De plus, si D est une boule
euclidienne de rayon s > 0 telle que Vol, (A) = Vol, (D) alors, puisque v*/™ est une application
linéaire, nous avons
Vol,, (A)Y™ + v(r)V/™ = v(s)Y™ + u(r)Y™ = v(s + r)Y/™ = Vol,,(D,)/™.

Autrement dit, nous avons montré

Vol,(4,) > Vol (D,) Vr>0

ce qui correspond bien a la solution du probleme isopérimétrique euclidien.

Le passage de la forme additive a la forme multiplicative n’est pas difficile, voici les arguments
principaux :
1. Pour tout 8 € [0,1], il suffit d’appliquer (11.4.2) aux ensembles A et (1 — §)B pour obtenir
(11.4.3).

2. Réciproquement, il suffit d’appliquer (11.4.3) aux ensembles
A" =Vol,(A)~Y"A et B =Vol,(B)"'/"B

puis de choisir
B Vol,, (A)*/™
Vol (AY/" + Vo, (B)Y/»

pour obtenir, par homogénéité, (11.4.2).

€ [0,1]

L’intérét de cette formulation multiplicative est que celle-ci admet une version fonctionnelle plus
générale. Il s’agit de I'inégalité de Prékopa-Leidler.
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Théoréme 11.4.3 (Prékopa-Leidler). Soit 6 € [0,1] et considérons u,v et w des fonctions positives
et mesurables sur R™ telles que

w(fz + (1 —0)y) > u(x)?v(y)' =% pour tous x,y € R" (11.4.4)

[ wtes ([ o)’ ( [ i) (145

Remarque. En particulier, le résultat précédent appliqué aux fonctions caractéristiques d’ensembles
mesurables bornés A et B de R™ permet de retrouver la forme multiplicative (11.4.3) de Brunn-
Minkowski. L’inégalité de Prekopa-Leidler peut-étre étendue & un contexte Riemannien en utilisant
la notion de géodésique et de courbure (cf. [43].

alors

Démonstration. La démonstration proposée ci-dessous est due a F. Barthe (cf. [18]). Celle-ci repose
sur une récurrence sur la dimension n.

Supposons que n = 1. Par homégénéité, nous pouvons supposer que fR udx = fR vdr = 1 et,
par des arguments de régularisation, nous pouvons supposer que u et v sont des fonctions continues
strictement positives. Notons alors du = udx et dv = vdz et considérons l'application de transport
T : R — R telle que

v(] — 00, T(x)]) = pu(] — o0,2]) pour tout z € R.

Observons que 7" est croissante et différentiable, de plus T, = v. L’équation de Monge-Ampeére
associée (qui n’est rien d’autre qu'un changement de variable) s’écrit

v(T(z))T'(x) = u(x) pour tout =z € R.

Posons alors z(x) = 0z + (1 — )T (x), nous avons alors z'(x) = 0 + (1 — 6)T'(x). De plus, d’apres
Iinégalité arithmético-géométrique, nous avons

2 (x) > (T(az))1 ° pour tout =z € R. (11.4.6)

Alors, d’apres 'hypothese (11.4.4) et (11.4.6), nous avons

= "(z)dz w(z)?o(T(2))' ™2 (2)dw
Juwte= [ac@)@is = [ o o(r@) " wa
> /u(x)ev(T(m))170(T'(m))170d:ﬂ
R
= /udm =1
R
1-6
puisque, par construction, u(z)'=? = (v(T(x)) (T'(x)) . Ceci démontre le résultat lorsque

n = 1. Supposons alors que n > 1 et que le théoreme de Brunn-Minkowski est vérifié sur R* 1.
Considérons u, v et w trois fonctions vérifiant (11.4.4) pour un certain 6 € [0,1]. Soit ¢ € R fixé et
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définissons u, : R"1 — [0, +00[ par uy(z) = u(x,q). Procédons de maniére analogue pour définir
vy €t w, & partir de v et w. Observons ensuite que si ¢ = 0gp + (1 — 0)g1 avec qo, ¢1 € R alors

we (07 + (1 = 0)y) > ugy(z)?v4, (y)' ¢ pour tous z,y € R"1.

D’apres 'hypothese de récurrence, nous en déduisons que

G 1-6
/ wedx > </ uqodm> (/ vqldx>
Rn—1 Rn—1 Rn—1

ce qui permet d’appliquer les arguments mis en place en dimension 1. Autrement dit,

/nwdx:/R</Rnlwqdaj)dq2 </nudm)9</nvd>1_9

ce qui est le résultat voulu. O

Nous expliquons ci-dessous, de quelle maniére 'inégalité de Prekopa-Leindler (vue comme
version fonctionnelle de 'inégalité de Brunn-Minkowski) permet d’obtenir des inégalités de concen-
trations pour certains types de mesures (mesures uniformes sur la sphére ou mesure gaussiennes
par exemple). Les idées présentées ci-dessous ont été introduites par Maurey (cf. [106]).

Supposons que g est une mesure de probabilité sur R de la forme dy = e~ Vdx avec V un
potentiel régulier strictement convexe. Autrement dit, il existe p > 0 telle que pour tout x,y € R,

Tty p 2
> |z — 11.4.7
) > By (11.4.7
Un exemple typique de telle mesure est la mesure gaussienne -y, sur R™ pour laquelle I'inégalité pré-
cédente est vérifiée pour p = 1. L’inégalité de Prékopa-Leidler nous permet de montrer le théoréme
suivant :

Vix) +v(y) — 2V(

Théoréme 11.4.4. Soit 1 une mesure de probabilité telle que dy = e~Vdx et V wvérifie (11.4.7).
Alors,

ay(r) < 2T/ p >0
avec o, la fonction de concentration associée d p (cf. définition 6.1.1). En particulier,
ay, (r) < 2774 1> 0
Démonstration. Considérons les fonctions suivantes :
u(z) = e@f@V@ () = eSOV ot w(z) = eV

ou, rappelons-le, @ f est 'infimum-convolution défini par
. B )2 n
Qf(@) = f [f)+ Jle—yP’] zeRr™

Par définition de Qf et 'hypothese de convexité (11.4.7), la condition (11.4.4) est satisfaite pour
le choix 0 = % En conséquence, d’apres le théoreme de Prékopa-Leidler 11.4.3, nous avons



252 CHAPITRE 11. TRANSPORT OPTIMAL

1:/ efvdarz/ ledu/ e Tdpu.

Pour obtenir de la concentration, il suffit de choisir un ensemble mesurable A C R" et d’appliquer
ce qui précede a la fonction f définie par

0 si z€A
f(x)—{ +o00 sinon.

Dans ce cas, Qf(z) = £d(x, A)* avec d(z, A) la distance euclidienne du point x & I'ensemble A.
Tous ceci entraine alors que

2d(-,A)? 1
et dp <
/ n 1(A)

puisque [p., e~ fdu = p(A). Enfin, pour tout 7 > 0, posons F(x) = min (d(x,A),r). Nous avons
alors

1— p(Ar) = u(F >r) < e M E[eM]

et le choix de A = £ permet d’obtenir le résultat escompté

— 2
e P4,

1 _M(Ar) < }L(A)

O

11.5 Semi-groupe d’Hamilton-Jacobi et hypercontractivité

Certains résultats décrit plus tot faisaient intervenir des fonctions obtenues par infimum-
convolution (les fonctions Q). Il est possible d’expliquer plus en détails pourquoi de telles
fonctions interviennent. Pour cela, nous devons introduire les équations aux dérivées partielles
d’Hamilton-Jacobi.

Dans un contexte euclidien, ce probléme s’énonce comme suit : étant donnée une fonction lip-
schitzienne f : R™ — R, nous souhaitons trouver (z,t) — v(z,t) : R® x Ry — R telle que

dv+ 1Vu[2 =0 sur R"x]0,+o0]
v=f sur R"x{t=0}

La solution de ce probléme est donnée par I'infimum-convolution de f avec la distance eucli-
dienne :

1
Q:f(z) = inf [f(y)+2—t|xfy|2] avec t>0 et zeR".
y

Il se trouve que la famille d’opérateur (Q;);>o défini un semi-groupe de générateur infinitésimal
(non linéaire) L = —Z|V f|2. Cette famille permet d’approfondir les liens entre transport optimal
et inégalités fonctionnelles.
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Débutons par un résultat de Otto-Villani qui permet d’obtenir une inégalité T5(C) & partir d’une
inégalité de Sobolev logarithmique.

Théoréme 11.5.1 (Otto-Villani). Considérons la mesure de probabilité du = e~Vdx avec V :
R™ — R. Si p vérifie une inégalité de Sobolev logarithmique de constante C > 0 :

ie. Ent,(f?) <2CE,[|Vf*

pour toute fonction f : R™ — R suffisamment réguliére, alors p vérifie une inégalité de transport

T(C).

Démonstration. Pour démontrer ceci, nous utiliserons la formulation duale de T>(C') (cf. théoréme
11.3.2) : p vérifie une inégalité To(C') de constante C si et seulement si

/ edp < e T

avec Qf (z) = infyer» [f(y) + 55/ — y|?] pour tout € R".. En outre, & I'aide des notations
introduites plus tot, observons que Q f(z) = Q¢ f(x); ceci expliquant pourquoi nous allons utiliser
le semi-groupe d’Hamilton-Jacobi (@Q¢):>0 pour démontrer le théoréme d’Otto-Villani.

A cet effet, observons que pour tout ¢, s > 0 nous avons Q;(sf) = sQs.f. En particulier, si t = C

et s = % nous avons

/ledNSefRnfdu — e%Ql(Cf)dug/ o Jun £

Rn

Quitte a remplacer f par % f, cela revient a
/ e%Ql(f)d'u < 6% f]Rn fdu

Considérons alors la fonction H(t) = w pour ¢t € [0,1] avec ¥(t) = [;. ec@Ndy. En
observant le fait
1 1
H == 1' 71 \IJ = —
(0) = limy > log ¥(¢) = - fau
nous constatons que U'inégalité To(C') est équivalente a H(0) > H(1). Ainsi, devons montrer que si
une inégalité de Sobolev logarithmique est vérifiée alors la fonction ¢ — H(t) est décroissante sur
[0,1].

Ici, nous avons

C’est pourquoi
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Or,
1 ¢ \ t . ,
V) = | FQNeFPPdp+ 5 [ 0Qu(f)et P Ddp.
]Rn C C R’!L
Alors, en utilisant le fait que Q:(f) vérifie '’équation d’Hamilton-Jacobi 0;Q+(f) + %|VQt(f)2 =0,
nous obtenons
/ t EQh g, L 2,4Qu(1)
W) = [ LQuHEXNdu— [ [vQu(f) et Ny,
rn C 2C Jgn

Nous allons alors utiliser 'inégalité de Sobolev logarithmique pour majorer le deuxiéme terme du
membre de droite de I'inégalité précédente. En effet, si g% = et @t(f) celle-ci nous assure que

t t
Ent,(¢?) = A GQi(NeT Dy —w(t) log W(t)
2 +
< 36 L, VQt)Per @ Ddy

Ce qui est équivalent a

t n 2 t
[ GQUNE D= 5o [ FQUAPEX Dy < B(e) g W(0).

Autrement dit t9'(t) < U(t)log U(¢) qui est l'inégalité désirée. O

Nous avions déja vu, dans le cas gaussien (cf. théoréme 9.4.1), que le semi groupe d’Ornstein-
Uhlenbeck était hypercontractif si et seulement si ~,, vérifie une inégalité de Sobolev logarithmique.
Il se trouve qu’il est possible d’obtenir un lien similaire entre une mesure de probabilité u et le semi
groupe d’Hamilton-Jacobi.

Théoréme 11.5.2 (Bakry-Gentil-Ledoux). Soit u une mesure de probabilité absolument continue
par rapport a la mesure de Lebesgue. St p vérifie une inégalité de Sobolev logarithmique de constante
C > 0 alors, pour toute fonction f : R™ — R mesurable et bornée nous avons

||€QtfH <l|lef|le pourtout t>0 et acR. (11.5.1)

a+t/C

Réciproqguement, si l'inégalité (11.5.1) est vérifiée pour un certain a # 0, pour tout t > 0 et toute
fonction mesurables bornées f : R™ — R alors p vérifie une inégalité de Sobolev logarithmique de
constante C' > 0.

Démonstration. L’idée clé est de suivre la démonstration du théoreme de Nelson 9.4.1 & 1’échelle
exponentielle. Autrement dit, considérons la fonction H(t) = ﬁlog U(t) avec q(0) = a et

U(t) = [ et dp. A nouveau, pour obtenir I'hypercontractivité de (Q4)¢>o il suffit de
montrer que H(t) < H(0).

Ici, nous avons

~—

U (¢
log ¥ (t) + — (

, _ 1
H(t) = 20 (D)

En outre,
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V() = / [d Qi) + a2 Qi ()] dmu

= 4t Qt(f)eQ(t)Q*(f)duf ?/ \VQtf|2eq(t)Qf(f)d,u
R™ Rn
puisque Qq(f) vérifie 'équation d’Hamilton-Jacobi 9;Q:(f) + %‘th(f)z — 0. De plus,
1
q(t)

avec g2 = e?W@(f) En d’autres termes nous avons,

Qt(f)eq(t)Q‘(f) = [Entu(g2) + U(t)log \Il(t)]
]Rn

, "(t 1 DO,
H'(t) = qg(i)(q,)@Entu(QQ) 0] / IVQ:f?e? 9 Dy

Or, d’apres l'inégalité de Sobolev logarithmique appliquée & g2, nous avons également

C*(t
Entu(gQ) < (]2()/]R |thf|2€q(t)Qt(f)d/'l“

En conséquence,

C 1
H(t) <0 < Zq(t")=5<0
La résolution de cette inégalité différentielle nous fournit ¢(t) < % + a qui est le résultat attendu.
La réciproque s’obtient de la méme maniere que dans le théoréme 9.4.1. O

11.6 Hiérarchie des inégalités fonctionnelles

Comme nous ’avons déja observé, il existe une certaine hiérarchie parmi les inégalités fonc-
tionnelles étudiées. Au sommet de celle-ci, il y a I'inégalité de Sobolev logarithmique qui permet
d’obtenir une inégalité de Poincaré. De plus, puisqu’une inégalité de Sobolev logarithmique en-
traine & la fois une inégalité de transport T5(C), il est naturel de s’intéresser aux liens existants
entre U'inégalité T5(C) et I'inégalité de Poincaré. Le résultat suivant fournit une réponse a cette
question

Proposition 11.6.1. Soit p une mesure de probabilité admettant une densité par rapport d la
mesure de Lebesgue. Si p satisfait une inégalité de transport To(C') avec C' > 0 alors p vérifie une
inégalité de Poincaré de constante %

Démonstration. Supposons qu'une inégalité de transport T5(C) est vérifiée. Dans sa formulation
duale, cela signifie que

/ QN gy, < eJen

Appliquons cette inégalité & tf avec t — 0 et utilisons le fait suivant (valable pour tout = € R™)

Q(tf)(x) =tf(x) — %t2|Vf|2 +o(t?) lorsque t— 0
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afin de déterminer des développements limités des deux membres de la formulation duale de I'in-
égalité T»(C'). D’une part, nous obtenons

2
/ QNG = 1 4+ fdu+E/ deM—C—t/ [V f2dp + o(t?)
. o 2 Jpn 4 Jgn

et, d’autre part,
2

ottt [ g GO [ s o)

En combinant ces deux résultats, et apres simplifications, nous obtenons

t? Ct?
SVan () < S [ [9sPan
2 4 Jgn
Autrement dit, une inégalité de Poincaré de constante % est satisfaite. O

Remarque. D’une certaine maniere, 'inégalité T>(C) peut se voir comme une version duale de la
propriété () introduite par Maurey dans [106].

Dans certains cas, il est possible de renverser certaines parties de la hiérarchie que nous venons
d’établir afin d’obtenir une inégalité de Sobolev logarithmique a partir d’une inégalité de transport
T»(C). Dans ce qui suit, nous considérons une mesure sur les boréliens de R™ de la forme dy = eV dx
avec V : R™ — R une application convexe.

Théoréme 11.6.1 (HWI (Otto-Villani)). Dans le cadre précédent, supposons que p vérifie une
inégalité de transport To(C') avec C > 0 alors l'inégalité suivante est satisfaite : pour toute fonction
[ R™ = R suffisamment réguliere et pour toutes mesures v € Po(R™) nous avons

Ent,(f) < v/ CTo(ulv)IY?(v) (11.6.1)

ot I(v) est linformation de Fisher associée d la mesure v.

Remarque. 1. En particulier, cette inégalité reliant entropie, information de Fisher et distance
de Kantorovich-Wasserstein permet de renverser la hiérarchie habituelle des inégalités fonc-
tionnelles. En effet, si une inégalité de transport T»(C) est satisfaite, nous obtenons (& partir
de (11.6.1))

Ent,(f) <2CI(v)

Autrement dit, p vérifie une inégalité de Sobolev logarithmique de constante 2C'.
2. En fait, il est possible d’obtenir une inégalité HW I plus générale. En remplacant ’hypothese

de convexité (portant sur V) par HessV > pl; avec p € R (au lieu de p > 0), il est possible
de montrer que

Ent, (f) < Ta(u ) I"(v) = £T3 (u,0)

De plus, si p vérifie une inégalité de transport T5(C) avec une constante C' > 0 suffisamment
petite, il est possible de montrer que p vérifie également une inégalité de Sobolev logarith-
mique ; cependant le lien entre les constantes devient plus complexe (cf. [14]).
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Démonstration. D’apres le théoréme de Brenier, il existe une application convexe ¢ : R" — R"
telle que

T30) = [ | = Vole)dvo)
Rn
avec dv = fdu. L’équation de Monge-Ampére associé s’écrit alors

f(x)e V@ = |Det (Hess ¢(m))‘e_v(v¢(x)) x €R"”

Pour simplifier les notations, posons O(z) = ¢(z) — 5|z|> pour tous z € R". L’équation de Monge-
Ampere se formule alors de maniére équivalente sous la forme suivante :

f(z)e™V@) = |Det (Id + Hess @(x)’e—v(erve(x)) z e R".

Ainsi,

log f(z) = V(z)—V(z+VO(x))+log <|Det(Id + Hess ©(z)) |>

IN

V(z) = V(z+VO(x)) + AO(x)

puisque log ’Det([d + A)| < Tr(A) pour toutes matrices A symétriques réelles. En outre, puisque
x — V(x) est convexe,

V(z) = V(z+VO(r)) < -VV(z) VO(z)

Si L =A —VV -V nous avons donc montré que
log f(x) < LO(x). (11.6.2)

L’interét de cette nouvelle formulation est que dp = e~V *)dz est la mesure réversible et invariante
associée a 'opérateur L, en particulier : la formule d’intégration par partie suivante est satisfaite
Jon F(=LO)dp =[5, VO -V fdu. Ainsi, en multipliant (11.6.2) par f et en intégrant par rappport
a du nous obtenons

/ flogfdyg/ fLOdy = — Vf-VOdu
R Rn

RTL
enfin, d’apres I'inégalité de Cauchy-Schwarz, nous avons

A

- Vf-Vodu

) NME
N < \//Rnwwfduxww !

= To(u, )" (v)
puisque T3 (11, v) = [pu |2 — Vo(x)[Pdv = [, [VO[* fdp. O

Remarque. Nous venons de proposer une démonstration utilisant des arguments provenant de
la théorie du transport optimal. Il également possible d’obtenir une preuve qui n’utilise que des
semi-groupes (cf. [14]). Voici les arguments clés :
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1. Par interpolation, il est possible de montrer que pour tout 7' > 0
T
Ent,,(f) = / L, (P(f))dt + Ent,, (Pr(f))
0

avec I'information de Fisher de la fonction f sous p I,,(f) = fRn %du et (P)i>o0 = (€'F)i>0,

le semigroupe associé a 'opérateur L = A — VV - V et la mesure du = e~V dx. Cette égalité
peut également étre vue comme une conséquence de l’identité de Bruijn :

d

%Entu(Ptf) =—I1,(Pf) (11.6.3)

2. Lorsque Hess(V) > pl; avec p € R, cette hypothése entraine une décroissante exponentielle
de l'information de Fisher le long du semi groupe. Autrement dit,

Lu(Puf) < e, (f) t=0

Ceci permet de controler le premier terme impliquant 'information de Fisher.

3. Enfin pour conclure, il faut controler Ent,, (Pr(f)) a l'aide d’inégalité d’Harnack. Celle-ci fait
intervenir le semi groupe d’Hamilton-Jacobi (Q¢):>0. Il est alors possible de conclure la preuve
en utilisant la réversibilité de (Q¢):>0 par rapport a u avec la formulation duale de I'inégalité
T5(C).

Détaillons ce dernier point. Il a été démontré (cf. [145, 146, 13]) qu'un critére CD(p, +00) est
équivalente a une inégalité de type Harnack. Dans sa forme logarithmique, celle-ci s’énonce comme
suit

ple—yP
Pi(log g)(x) < log Pig(y) + 9620t _ 1

Ce genre de résultat est notamment pratique pour obtenir des minorations, sous p, du noyau
pe(x,y) associé au semi-groupe. Appliquons 'inégalité précédente avec t = T > 0 et g = Pr(f),
nous obtenons

pour tout z,y € R™ et t>0.

2
T —
Pr(log Prf)(z) <log Parf(y) + |26(1y“|) pour tout z,y € R"
ou
e20T _1 .
= si p#0
T = P
A(T) { 2T sinon.

En prenant l'infimum sur y € R", ceci-fournit Prlog Pr(f)(z) < Qp(rylog Porf avec (Qt)i>o0 le
semi-groupe d’Hamilton-Jacobi introduit plus t6t dans ce chapitre.

Par réversibilité, nous avons alors Ent,(Prf) = fR" Prflog Prfdu = f]R" fPrlog Prfdu. Cest
pourquoi, en utilisant I'inégalité d’Harnack logarithmique, nous obtenons

Ent, (Prf) < /R Qs (log Par-f)ds = ﬁ [ 1Qu(B(T) lox Par
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En outre, [, log Por fdu <log( [z, Porfdu) = 0. Autrement dit,

1

Ent (PTf)S{ Qlde—/ fdﬂ]-
: B(T) | Jrn R"

En prenant le supremum sur les fonctions f, nous en déduisons (via la formulation duale de Wy

11.2.2) que

1
Ent,(Prf) < ——Wa(v, u)?
avec dv = fdu. En utilisant cette derniére majoration avec les deux premiers points, il ne reste plus
qu’a optimiser en T' > 0 pour conclure la démonstration.

11.7 Références historiques
Les notes qui suivent sont tirées de [143, 14, 68].

Le transport optimal trouve ses sources dans les travaux de Monge a la fin du 18ieme siecle.
Gréace a ses capacités mathématiques, ce brillant géometre fut admit dans une école militaire
alors que ses origines modestes auraient du l’exclure de ce genre d’instruction. La-bas, il peut
développer ses idées qui lui permirent de mettre en place de nouvelles méthodes qui s’avérerent
efficaces et polyvalentes. Tout ceci, lui permit d’étre nommé professeur a 1’dge de 22 ans; cette
promotion assurait également a ses supérieurs que les travaux de Monge deviennent des secrets
militaires, uniquement accessibles a des officiers de haut rang. Par la suite, Monge devient 'un des
ardents combattants scientifiques de la révolution francaise et servi, en tant que professeur, sous
de nombreux régimes. Il échappa notamment a une sentence de mort durant la terreur et, plus
tard, devint un ami proche de Napoléon. Il enseigna d’ailleurs a ’école normale supérieur et 1’école
polytechnique de Paris qui venaient d’étre reformées au début du regne napoléonien.

En 1781, Monge publia son fameux mémoire sur la théorie des déblais et des remblais. Dans
ce mémoire, il considére le probleme suivant : supposons que nous disposions a un endroit F
d’une quantité de sable que nous souhaitons déplacer sur un site de construction F. De plus,
chacun des déplacements d’une partie du sable z de F a un emplacement y sur le site F
colite une certaine somme c¢(z,y). En modélisant ceci (le tas de sable et le site de construc-
tion) par des mesures de probabilités p et v, la théorie du transport optimal cherche & minimiser
le colit (par la suite ce colit sera la distance d entre les points « € E et y € F') d’un tel déplacement.

D’un point de vue économique, le probleme précédent peut aussi s’énoncer en termes de
boulangeries (par exemple) cherchant & approvisionner en pain ou pétisseries différents cafés.
Dans ce probléme, les quantités de pains produites dans ces boulangeries ainsi que les quantités
consommeées dans les cafés sont supposés connus a ’avance. Le probléme revient donc & trouver de
quelle maniére chaque unité de pain doit étre acheminée de sorte que le coiit de ce transport soit
minimal.

Beaucoup plus tard, le probleme de Monge fut redécouvert par la mathématicien Kantorovich.
Ce dernier, né en 1912, est également un brillant mathématicien : a ’age de 18, il possédait déja
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une solide renommée internationale et devint professeur a I’dge de 22 ans. En 1938, un laboratoire
le consulta a propos de problémes d’optimisation en économie. Kantorovich développa alors de
nouvelles méthodes de programmation linéaire afin de les résoudre et ces nouveaux travaux firent
de lui une personnalité incontournable de I’économie. Notons toutefois qu'une grande partie de
ses travaux ne furent pas publiés immédiatement car ces derniers étaient étroitement surveillés
par les autorités Soviétiques; d’ailleurs, il n’était méme pas permit a Kantorovich de s’exprimer
publiquement sur ses découvertes. Enfin, En 1975, ses travaux furent mondialement connus et
Kantorovich fut récompensé (conjointement avec Koopmans) pour leurs contributions & la théorie
d’optimisation d’allocation de ressources.

Les travaux que nous avons présentés dans ce chapitre concernent le probléeme de couplages
optimaux. Dans ce domaine, Kantorovich fut & l'origine de nombreux résultats qu’il démontra
a l'aide d’outils d’analyse fonctionnelle. Citons en particulier le théoreme de dualité qui porte
son nom. Il fallut attendre encore quelques années pour que Kantorovich fasse le lien entre ses
travaux et ceux de Monge dans [80, 81, 82]. Ces travaux peuvent étre considérés comme l'acte de
naissance de la théorie du transport optimal; depuis, le probleme de couplage optimal porte le
nom de probleme de Monge-Kantorovich. Cette théorie possede de nombreux liens avec d’autres
domaines des mathématiques, citons quelques exemples : la reconnaissance de forme, la conception
d’antennes réflectives ou de lentilles, probléme d’irrigations et de conception de réseaux, ... (cf.
[143]).

L’existence d’une application de transport provenant du gradient d’une fonction convexe prend
ses origines dans les travaux de Knott et Smith (cf. [123]) mais aussi ceux de Riischendorf et
Rachev (cf. [119]). Brenier, quant & lui, annonga ses résultats majeurs dans une courte note pour
ensuite publier les démonstrations de ces derniers dans [35] en 1991 et mis en avant la pertinence
géométrique de son théoreme dans I’étude d’équations aux dérivées partielles.

Le choix de la terminologie des distances de Wasserstein est, apparemment, attribué a
Dobrushin. Cependant, il semblerait que la définition explicite de ces distances n’apparaisse pas
exactement dans les travaux de Wasserstein et furent plutét 'oeuvre de Kantorovich. Bien que
cette terminologie de distance de Wasserstein soit extrémement répandue actuellement, il semble
judicieux de lui attribuer le nom de distance de Kantorovich-Wasserstein; malgré tout, ceci ne
permet pas de rendre hommage aux nombreux mathématiciens qui ont travaillé sur cette notion :
Gini, Mallows, Tanaka, Hoeffding, Fréchet, Rubinstein, Ornstein, Salvemini, Dall’Algio,. . .

Parmi les distances de Wasserstein, le cas p = 1 a déja été rencontré dans un chapitre précédent
sous le nom de distance de Kantorovich-Rubinstein permettant de considérer I’espace des mesures
signées M(FE) comme un espace métrique.

Nous avons retrouver dans ce chapitre I'inégalité de Brunn-Minkowski sous sa forme fonction-
nelle d’inégalité de Prékopa-Leindler. Alors que sa formulation euclidienne semblait bien connu des
mathématiciens de ’époque (cf. [98, 114]), il fallut attendre les travaux de Cordero-Erausquin pour
obtenir, grace au formalisme du transport optimal, une version de celle-ci sur la sphere. Plus tard,
en 2001, Cordero-Erausquin, McCann et Schmuckenschléger furent capable de développer les outils
nécessaires permettant d’établir rigoureusement ce genre d’inégalité dans un cadre riemannien
[43]. Bobkov et Ledoux ont montré dans [26] de quelle maniére il était possible de retrouver de
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nombreuses inégalités fonctionnelles (notamment celle de Sobolev logarithmique) & partir d’une
inégalité semblable a celle de Prékopa-Leindler.

Les inégalités de transport T,(C) furent étudiées des le début des années 90; en revanche,
I'inégalité de Csiszar-Pinsker date des années 60. La formulation duale de ces inégalités, pour
p=1et p=2est due & Bobkov et Gotze (cf. [23]). L’utilisation systématique de cette nouvelle
formulation fut exploitée par Bobkov, Gentil et Ledoux dans [25]. Ce genre d’argument est
notamment a la base de la démonstration du théoreme d’Otto-Villani, assurant qu’une inégalité
de Sobolev logarithmique entraine une inégalité de transport 75(C'). Toujours dans [25], les
auteurs mettent également en avant les liens existants entre inégalités de Sobolev logarithmiques
et hypercontractivité du semi-groupe d’Hamilton-Jacobi. L’argument de tensorisation remonte
aux travaux de Marton et ont été adaptés & de nouvelles situations (comme celle des chaines de
Markov faiblement dépendantes) depuis. Le théoréme de Gozlan, établissant I’équivalence entre
une inégalité T>(C) avec de la concentration gaussienne indépendante de la dimension, introduit
une idée nouvelle : utiliser le théoreme de Sanov provenant de la théorie des grandes déviations;
des utilisations de ce genre d’idée sont décrites dans article de survol [68], citons, par exemple, la
découverte par Gozlan d’une nouvelle démonstration du théoréme d’Otto-Villani.

Comme nous ’avons mentionné dans ce chapitre, Talagrand fut le premier a montrer que
la mesure gaussienne vérifiait une inégalité de transport quadratique. L’extension de ce type
d’inégalités a des mesures strictement log-concaves a été entrepris ensuite, citons notamment les
travaux de Gentil, Guillin et Miclo & ce sujet. L’inégalité HW I d’Otto et Villani permit d’identifier
les liens profonds entre le transport optimal et le monde des inégalités fonctionnelles. A ce titre,
la démonstration de 'inégalité de Sobolev logarithmique gaussienne et due a Cordero-Erausquin.
Nous avons aussi vu dans ce chapitre qu’il était possible, sous certaines hypotheses, d’obtenir une
inégalité de Sobolev logarithmique a partir d’une inégalité de transport T5(C') (via I'inégalité HWT),
il est donc naturel de s’interroger quant a une éventuelle équivalence entre ces deux inégalités.
Cattiaux et Guillin montrent dans [39], & aide d’un contre-exemple, que l'inégalité de Sobolev
logarithmique est strictement plus forte qu'une inégalité de transport de cotit quadratique.

Dans cette courte introduction a la théorie du transport optimal, nous n’avons pas abordé les
travaux récents de Lott, Sturm et Villani qui ont utilisé le formalisme du transport optimal pour
proposer une définition synthétique de courbure dans des espaces métriques mesurés (cf. [143]).
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