Chapitre 16

Informations chiffrées

Dans ce chapitre, nous allons voir comment calculer des proportions et étudier la notion d'évolution.

16.1 Proportion

16.1.1 Proportion d'une sous-population dans une population

Voici la figure qu'il faut avoir en tête avant de poursuivre la lecture : un ensemble S est contenu dans un ensemble E.

FIGURE 16.1: S est un sous-ensemble de E

Débutons par un exemple pour voir quelles formes cela peut prendre.

Exemple 16.1.1. Sur les 480 élèves inscrits en classe de 1ère, 108 d'entre eux ont choisi la filière *STMG*. Comment calculer la proportion (ou fréquence) que cela représente?

L'ensemble des élèves de 1ère correspond à l'ensemble le plus grand (noté E) et représente 480 élèves (noté n_E) tandis que les élèves de 1ère STMG désignent un sous-ensemble (noté S) du grand ensemble E; ce sous-ensemble est composé de 108 élèves (noté n_S). Ainsi, la proportion p d'élèves ayant choisi la filière STMG s'obtient en effectuant le calcul suivant :

$$p = \frac{n_S}{n_E} = \frac{108}{480} = 0,225$$

Autrement dit, il y a 22,5% des élèves de 1ères qui ont choisi la filière STMG.

Par la suite, nous considérons toujours un « grand » ensemble E lequel contient un sousensemble S. Ceci signifiant que tout élément de S appartient également à l'ensemble E (par exemple, S peut désigner l'ensemble des français et E la population mondiale).

Voyons comment traduire de manière formelle l'exemple précédent.

Définition 16.1.1. Nous désignerons, respectivement, par n_E et n_S le nombre d'éléments (aussi appelé effectif) des ensembles E et S. La proportion p des éléments de S par rapport à E est définie comme le quotient suivant :

$$p = \frac{n_S}{n_E}.\tag{16.1.1}$$

Remarque. 1. Observons que le nombre réel $p \in [0, 1]$.

- 2. En statistiques ou en probabilités, ce nombre p est aussi désigné sous le nom de fréquence.
- 3. Pour résoudre certains exercices, il sera important de savoir manipuler la relation (16.1.1) afin de déterminer l'un des paramètres lorsque les deux autres sont connus.

Exercices à traiter : 11, 12, 14, 16 et 18 page 264.

Proportion et pourcentage

Il est important d'être à l'aise avec la notion de pourcentage, voici quelques éléments à connaitre.

A partir d'une proportion donnée, il est possible d'exprimer facilement ce nombre sous forme de pourcentage. Pour cela, il suffit de *multiplier la proportion p par* 100 *et d'ajouter le symbole* %.

Exemple 16.1.2. En reprenant l'exemple 16.1.1, nous déduisons donc qu'il y a $0,225 \times 100 = 22,5\%$ élèves de 1ère qui ont choisis la filière STMG.

Bien entendu, il est important de savoir passer d'un pourcentage à une proportion et vice-versa.

Exemple 16.1.3. Un sondage portant sur un groupe de 80 élèves indique que 22,5% d'entre eux ont un compte Twitter.

Pour déterminer le nombre d'élèves ayant un compte Twitter, il suffit de calculer

$$n_S = n_E \times p \quad \iff \quad 80 \times \frac{22,5}{100} = 18.$$

Ainsi, 18 élèves possèdent un compte Twitter.

Il est parfois utile de déterminer à quel effectif correspond un pourcentage d'une quantité.

Exemple 16.1.4. Sur la plate forme en ligne Steam, le jeu God of war subit une remise de 30%. Sachant que le jeu coûte normalement 60 euros, quel est son nouveau prix?

Pour cela, il faut d'abord déterminer la valeur de la remise :

$$60 \times \frac{30}{100} = 18$$

Le nouveau prix est donc 60 - 18 = 42 euros.

Remarque. Lorsque nous aborderons la notion **d'évolution**, nous verrons que le calcul précédent peut s'effectuer en 1 fois : $0.7 \times 60 = 42$ euros. Nous dirons que 0.7 est le coefficient multiplicateur associé à l'évolution « -30% ».

Il faudra également être capable de retrouver l'effectif total d'une population à partir d'une proportion d'un sous-ensemble.

Exemple 16.1.5. Lors des élections municipales de Couëron, 3390 personnes sont venues voter. Il a été établi que ce nombre correspondait à 60% des inscrits sur les listes électorales. Déterminer le nombre total d'inscrits.

Notons x > 0 le nombre total d'inscrits. Nous savons que x vérifie l'équation suivante :

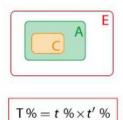
$$\frac{3390}{x} = 60\%$$
 \iff $\frac{3390}{x} = \frac{60}{100}$ \iff $x = \frac{3390 \times 100}{60} = 5650.$

Il y avait donc 5650 inscrits sur les listes électorales.

Exercices à traiter : 36, 37, 39 pages 265 - 266.

16.2 Proportions échelonnées

Parfois les proportions sont échelonnées, cela s'illustre par le schéma suivant dans lequel des ensembles sont inclus les uns dans les autres.



Voyons plutôt ce que cela signifie sur l'exemple suivant.

Exemple 16.2.1. Une centrale d'achat pour des magasins de vêtements se procure t = 40% de ses vêtements chez un fournisseur A. Une étude extérieur a déterminé que le fournisseur A vendait t' = 70% de ses vêtements à un prix normal.

Dans cet exemple nous avons 3 ensembles imbriqués les uns dans les autres, il s'agit d'une situation de *proportions échelonnées*.

Quelle est la proportion T de vêtements achetés à prix normal chez le fournisseur A?

Pour répondre à cette question, il suffit d'observer que nous avons un grand ensemble E (représentant tout les vêtements) contenant un ensemble plus petit A (les vêtements vendus par le fournisseur A) lequel contient l'ensemble C (les vêtements vendus par à prix normaux).

Le produit $t \times t' = 40\% \times 70\% = 28\% = T$ correspond à la proportion de vêtements vendus à prix normaux parmi l'ensemble des vêtements.

De manière formelle.

Proposition 43. Soient 3 ensembles $C \subset A \subset E$ d'effectifs respectifs n_C , n_A et n_E . Alors

- $t = \frac{n_A}{n_E}$ désigne la proportion de A dans E.
- $t' = \frac{n_C}{n_A}$ désigne la proportion de C dans A.

De plus, le produit $T = t \times t'$ donne la proportion de C dans E.

Exercices à traiter : 23, 24, 27, 30 page 265.

16.3 Variation absolue et taux d'évolution

Parfois, certaines quantités évoluent au cours du temps. Nous parlons alors d'évolutions.

Exemple 16.3.1. 1. Durant des soldes, il est possible de trouver des vêtements à -30%. Cela signifie que le prix initial V_0 diminue pour correspondre à un prix soldé V_1 .

2. Parfois le prix de l'essence augmente entre deux dates : il passe d'une valeur V_0 à une valeur V_1 .

Il peut-être intéressant de calculer un taux d'évolution afin de savoir « de combien » le prix a augmenté ou diminué. Voyons sur un exemple.

Exemple 16.3.2. L'ancien prix d'une bouteille de soda est $V_0 = 1,17$ euros, le nouveau prix est $V_1 = 1,23$ euros. Le taux d'évolution t du prix de la bouteille s'obtient en calculant

$$t = \frac{V_1 - V_0}{V_0} = \frac{1,23 - 1,17}{1,17} = \frac{0,06}{1,17} \approx 0,051.$$

En d'autres termes, le prix de la bouteille a augmenté de $t \approx 5,1\%$.

De manière formelle, nous avons la définition suivante.

Définition 16.3.1. Soient V_0 une valeur initiale et V_1 valeur finale.

123

- 1. La variation absolue de V_0 à V_1 est le nombre $V_1 V_0$.
- 2. Le taux d'évolution t (ou variation relative) de V_0 à V_1 est

$$t = \frac{V_1 - V_0}{V_0}.$$

Remarque. Lorsque t est positif, il s'agit d'une augmentation; lorsqu'il est négatif nous parlerons de diminution.

Exemple 16.3.3. Le prix d'un article est passé de $V_0=150$ euros à $V_1=180$ euros. Le taux d'évolution associé vaut alors

$$t = \frac{V_1 - V_0}{V_0} = \frac{180 - 150}{150} = \frac{30}{150} = 0, 2 = 20\%$$

Le prix a donc augmenté de 20%.

Exercices à traiter : 40, 41, 42, 45 page 266.

16.4 Coefficient multiplicateur

Nous avons vu plus tôt qu'il était possible de calculer un prix soldé à partir du montant de la solde et du prix initial. Néanmoins, cela demande de calculer dans un premier temps le prix de la remise. Nous allons voir qu'il est possible de multiplier le prix initial par un coefficient pour directement obtenir le prix soldé. Il s'agit de la notion de coefficient multiplicateur.

Définition 16.4.1. S'il y a une évolution de t% entre une quantité initiale V_0 et une quantité finale V_1 alors l'égalité suivante est vérifiée

$$V_1 = \left(1 + \frac{t}{100}\right)V_0.$$

Le nombre $1 + \frac{t}{100}$ s'appelle **le coefficient multiplicateur** de V_0 à V_1 .

Remarque. Il est important d'observer les faits suivants :

- augmenter une quantité de t% revient à multiplier cette quantité par $1+\frac{t}{100}$; diminuer une quantité de t% revient à multiplier cette quantité par $1-\frac{t}{100}$.

Par exemple, augmenter un nombre de 5%, c'est le multiplier par

$$1 + \frac{5}{100} = 1,05.$$

De même, diminuer une quantité de 20%, c'est la multiplier par

$$1 - \frac{20}{100} = 0, 8.$$

Voyons ceci au travers d'un exemple.

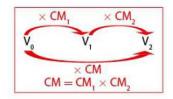
Exemple 16.4.1. La masse de céréales d'un paquet est augmentée de 20% pendant une période de promotion. La masse initiale dans un paquet était de 350g.

Le coefficient multiplicateur correspondant à cette évolution est donc de $1 + \frac{20}{100} = 1, 2$. Ainsi, la masse du paquet en promotion contient $350 \times 1, 2 = 420$ grammes de céréales.

Exercices à traiter : 32, 33, 35 page 265.

16.5 Evolutions successives

Parfois, il arrive qu'une quantité subisse plusieurs **évolutions successives**. Schématiquement cela correspond à la figure suivante : dans celle-ci une quantité V_0 évolue en V_1 puis V_1 en V_2 .



Les quantités \mathbf{CM}_i (pour i=1 et i=2) correspondent aux Coefficients Multiplicateurs associés aux deux évolutions sous-jacentes.

Il est alors naturel de se demander qu'elle a été l'évolution globale entre V_0 et V_2 . Ceci s'obtient facilement en multipliant les coefficients multiplicateurs associés aux évolutions successives.

Proposition 44. Lorsqu'une grandeur subit deux évolutions successives. Le coefficient multiplicateur global est le produit des coefficients multiplicateurs de chaque évolution.

Autrement dit, si cette grandeur subit une première évolution de taux $t_1\%$, puis une seconde de taux $t_2\%$ alors le taux d'évolution global t% est tel que

$$1 + \frac{t}{100} = \left(1 + \frac{t_1}{100}\right) \left(1 + \frac{t_2}{100}\right).$$

Voyons sur un exemple.

Exemple 16.5.1. Le prix de l'essence subit une première évolution de taux égal à 0,3 (augmentation de $t_1 = 30\%$ du prix initial) puis une seconde évolution de taux égal à -0,2 (diminution de $t_2 = 20\%$). Le prix initial a donc été multiplié par 1 + 0, 3 = 1, 3 puis par 1 - 0, 2 = 0, 8.

Le prix a donc été, globalement, multiplié par $1, 3 \times 0, 8 = 1, 04$. Le coefficient multiplicateur global du prix est ainsi : 1, 04 - 1 = 0, 04. En définitive, le prix a augmenté de t = 4%.

125

Nous venons donc de voir qu'un augmentation de 30% suivi d'une diminution de 20% correspond donc à une unique augmentation de 4%.

Exercices à traiter : 46, 48, 49, 51, 54 page 266 - 267.

16.6 Evolution réciproque

Imaginons qu'une quantité V_0 ait subit une évolution de t% pour atteindre la valeur V_1 . Nous savons qu'il est possible d'obtenir V_1 à partir de V_0 en utilisant un coefficient multiplicateur. Seraitil possible de déterminer un nouveau coefficient multiplicateur permettant de passer de V_1 à V_0 ? C'est-à-dire, un coefficient multiplicateur permettant d'annuler la première évolution. Il s'agit de la notion d'évolution réciproque. Schématiquement, cela s'illustre comme suit

et nous souhaitons déterminer la valeur de $\frac{1}{CM}$.

Définition 16.6.1. Soit V_0 et V_1 deux quantités (non nulles).

- 1. Si une évolution fait passer de la valeur V_0 à la valeur V_1 , alors l'évolution réciproque fait passer de la valeur V_1 à la valeur V_0 .
- 2. Le coefficient multiplicateur réciproque correspond à l'inverse du coefficient multiplicateur associée à l'évolution permettant de passer de V₀ à V₁. Autrement dit, le taux d'évolution réciproque t'% d'un taux d'évolution t% est tel que :

$$1 + \frac{t'}{100} = \frac{1}{1 + \frac{t}{100}}.$$

Remarque. En particulier, le produit des coefficients multiplicateurs de deux évolution réciproque est égal à 1. C'est-à-dire,

$$(1 + \frac{t'}{100})(1 + \frac{t}{100}) = 1.$$

Voyons sur un exemple.

Exemple 16.6.1. Un prix subit une augmentation de t = 23%. Le coefficient multiplicateur associé est donc égale à égal à 1, 23. Le taux d'évolution réciproque t' (permettant de retrouver le prix initial après l'évolution décrite ci-dessus) est tel que

$$1 + \frac{t'}{100} = \frac{1}{1 + \frac{23}{100}} = \frac{1}{1,23} \approx 0,813.$$

Puisque 0,813-1=-0,187, cela signifie que l'évolution réciproque $t'\approx -0,187$ (autrement dit, il s'agit d'une réduction d'environ 18,7%).

En conclusion, pour annuler une hausse de 23% il faut procéder à une baisse de 18,7%. Ces deux évolutions sont réciproques l'une de l'autre.

Exercices à traiter : 56, 57, 58, 59 page 276.