Chapitre 19

Position relative de courbes

Supposons que nous ayons à disposition deux fonctions g et f de courbes associées C_f et C_g . Nous souhaiterions savoir à quel moment la courbe C_f se trouve au dessus de la courbe C_g (et vice versa). Nous avons déjà observé comment résoudre ce type de problème graphiquement, il est temps d'apprendre à le faire **algébriquement**. Voici comment procéder :

Proposition 50. La position relative entre deux courbes C_f et C_g est donnée par le signe de la différence f(x) - g(x):

- 1. Si f(x) g(x) > 0 sur un ensemble I, C_f est au dessus (strictement) de C_g sur cet ensemble de points.
- 2. Si f(x) g(x) = 0 sur un ensemble I, C_f coupe C_g sur cet ensemble de points.
- 3. Si f(x) g(x) < 0 sur un ensemble I, C_f est au dessous (strictement) de C_g sur cet ensemble de points.

Exemple 19.0.1. Comparons la position relative de $f: x \mapsto x^2$ et $g: x \mapsto x^3$. Pour cela, nous étudions le signe de

$$h(x) = f(x) - g(x) = x^2 - x^3 = x^2(1-x)$$

où la dernière expression est obtenue en factorisant par le facteur commun x^2 . Nous obtenons alors le tableau de signe suivant :

x	$-\infty$		0		1		$+\infty$
signe de $1-x$		+		+	0	_	
signe de x^2		+	0	+		+	
h(x)		+	0	+	0	_	

En résumé, C_f est au dessous de C_g lorsque $x \in]1; +\infty[$, C_f coupe C_g aux points x=1 et x=0, sinon C_f est au dessus de C_g .

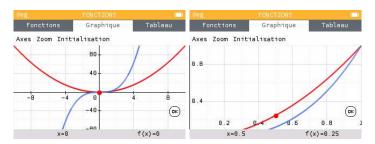


FIGURE 19.1: Position relative de $x\mapsto x^2$ et $x\mapsto x^3$

Nous pourrions traiter d'autres exemples des positions relatives :

- f(x) = x et $g(x) = x^2$
- f(x) = x et $g(x) = x^3$
- ...

Exercices à traiter : 82,91 page 201-202.