1

Exponentielle

0.1 Propriétés algébriques

Exercice 1. Simplifier au maximum les expressions suivantes :

$$A = \exp(3x) \times \exp(6x-1) \quad ; \quad B = (\exp(x))^2 \times \exp(-2x+1) \quad ; \quad C = \frac{\exp(2x+6)}{\exp(-3x+1)} \quad ; \quad D = \frac{\exp(x^2+1)}{\exp(x(x+1))}.$$

Exercice 2. Simplifier au maximum les expressions suivantes :

$$A = \frac{4}{\exp(-2x)}$$
 ; $B = (\exp(4x)) \times \exp(-3x+1)$; $C = \frac{(\exp(x+1))^2}{\exp(3x-4)}$

Exercice 3. Justifier que pour tout $x \in \mathbb{R}$:

$$\frac{1 - e^{-x}}{1 + e^{-x}} = \frac{e^x - 1}{e^x + 1}.$$

Exercice 4. Développer et simplifier les expressions suivantes :

$$A = e^{x}(e^{x} + 5)$$
 ; $B = e^{-x}(e^{x} - 2)$; $C = e^{2x}(e^{x} - e^{-x})$

Exercice 5. Développer et simplifier les expressions suivantes :

$$A = (e^x + 2)(e^x + 5)$$
; $B = (e^x - 2)^2$; $C = (e^x - 1)(e^{-x} + 3)$

Exercice 6. Factoriser les expressions suivantes, puis étudier leur signe (sauf pour C et E):

$$A = 10e^x - 5xe^x$$
; $B = 2xe^{-x} + 3e^{-x}$; $C = e^{2x} - 4e^x$; $D = e^{2x} + 2e^x + 1$; $E = e^{2x} - 16$

Exercice 7. Résoudre dans \mathbb{R} , les équations suivantes :

$$e^{3x} = 0$$
 ; $e^{2x} = 1$; $e^x = -3$; $e^{-3x+6} = e$; $4e^{-x} + 7xe^{-x} = 0$; $\frac{5e^x - 3}{e^x + 1} = 1$

Exercice 8. Considérons l'équation (E): $e^{2x} + 2e^x - 3 = 0$.

- 1. Posons, pour tout $x \in \mathbb{R}, X = e^x$. Montrer que (E) s'exprime de manière équivalente en $(E'): X^2 + 2X 3 = 0$
- 2. Résoudre (E') d'inconnue X.
- 3. En déduire les solutions de (E) d'inconnue x.

0.2 Exponentielle et variations

Exercice 9. Etudier les variations des fonctions suivantes sur \mathbb{R} :

$$f(x) = 2e^x + 3x$$
; $g(x) = -2x - e^x$; $h(x) = x - e^{-2x}$; $\phi(x) = 2x - e^{2x}$ $\psi(x) = 3e^x - 3x$

Exercice 10. Soit f définie par $f(x) = (-2x+1)e^x$. Etudier les variations de la fonction f sur \mathbb{R} .

Indication : il faut employer la formule de dérivation d'un produit $(u \times v)'$ pour obtenir f'(x). Pour étudier le signe de f'(x), il faut d'abord factoriser.

Exercice 11. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x} + 4e^x - 6x$.

- 1. Calculer f'(x) et vérifier que $f'(x) = 2(e^x 1)(e^x + 3)$.
- 2. Etudier le signe de f'(x) sur \mathbb{R}
- 3. Dresser le tableau de variation de f sur \mathbb{R} .

Exercice 12. Soit f la fonction définie par $f(x) = \frac{x+2}{e^x}$.

- 1. Justifier que f est définie sur \mathbb{R} .
- 2. Calculer f'(x) et vérifier que $f'(x) = \frac{-x-1}{e^x}$.
- 3. Etudier le signe de f'(x) sur \mathbb{R} , puis dresser le tableau de variation de f.
- 4. Justifier que la tangente (à C_f) au point d'abscisse -1 est horizontale.
- 5. Déterminer l'équation de la tangente (à C_f) au point d'abscisse 0.

0.3 Modélisation

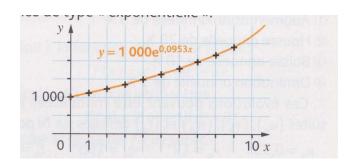
Exercice 13. 1. On considère la suite $(u_n)_{n\geq 0}$ définie par $u_n=e^{1,25n}$. Montrer qu'il s'agit d'une suite géométrique dont un précisera le premier terme et la raison.

2. Reprendre la question précédente avec la suite $(v_n)_{n\geq 0}$ définie par $v_n=4130e^{-0.85n}$.

Exercice 14. On estime qu'une population de bactéries, composée initialement de 1000 unités, augmente chaque semaine de 10%.

- 1. Pour tout $n \in \mathbb{N}$, on note u_n le nombre de bactéries au bout de n semaines d'évolution.
 - (a) Déterminer le nombre de bactéries au bout d'une semaine, de deux semaines.
 - (b) Déterminer une relation entre u_{n+1} et u_n . Quelle est la nature de la suite?
- 2. A l'aide d'un tableur, on a déterminé une fonction f ajustant les valeurs obtenues via la suite $(u_n)_{n\geq 0}$. La fonction est donnée par $f(t)=1\,000e^{0.0953t}$ pour tout $t\geq 0$.

0.3. MODÉLISATION 3



- (a) Pour tout $t \ge 0$, simplifier le quotient $\frac{f(t+1)}{f(t)}$. Mettre en relation avec la suite $(u_n)_{n\ge 0}$.
- (b) Calculer $f(2+\frac{1}{7})$. Interpréter le résultat. Aurait-on pu obtenir la même chose à l'aide de la suite $(u_n)_{n\geq 0}$?
- (c) Pour tout $t \ge 0$, simplifier $\frac{f(t+\frac{1}{7})}{f(t)}$. Interpréter dans le contexte de l'exercice.

Exercice 15. Le livret A est un compte épargne exonéré d'impôts et de cotisations sociales. Au premier janvier 2019, les intérêts étaient de 0,75% par an. Les intérêts sont ajoutés au capital placé à la fin de chaque année; en particulier, ils produisent des intérêts les années suivantes.

Une famille ouvre un livret A dans une banque et dépose 5 000 euros dessus.

- 1. Quelle est la nature de la suite $(u_n)_{n\geq 0}$, où $(u_n)_{n\geq 0}$ désigne le capital disponible au bout de n années de placement? A l'aide de la calculatrice, noter dans un tableau les 11 premières valeurs. *Indication : utiliser la fonction table.*
- 2. Un tableur à permis d'ajuster la suite $(u_n)_{n\geq 0}$, par la fonction $f(t)=5\,000e^{0.0723t}$ avec $t\geq 0$.
 - (a) A la calculatrice, construire le tableau de valeurs de la fonction f sur [0; 10] avec un pas de 1.
 - (b) Comparer avec les valeurs obtenues dans la question 1.
 - (c) Simplifier l'expression $\frac{f(t+1)}{f(t)}.$ Interpréter.
 - (d) Un livret est plafonné à 22 950. En quelle année atteindra-t-on ce plafond?

Exercice 16. On considère les quatre évolutions suivantes :

- augmentation annuelle de 5%,
- hausse annuelle de 20%,
- baisse annuelle de 10%,
- diminution annuelle de 5%.
- 1. Ces évolutions peuvent être modélisées par les suites $(u_n)_{n\geq 0}$, $(v_n)_{n\geq 0}$, $(w_n)_{n\geq 0}$ et $(t_n)_{n\geq 0}$ définies par

$$u_n = 0.95^n$$
 ; $v_n = 1.2^n$; $w_n = 1.05^n$; $t_n = 0.9^n$.

Associer suites et évolution en justifiant votre réponse.

2. Ces évolutions peuvent aussi être modélisées par les f, g, h et k définies sur $[0:+\infty[$ par

$$f(t) = e^{0.0488t}$$
 ; $g(t) = e^{-0.105t}$; $h(t) = e^{-0.051t}$; $k(t) = e^{0.1823t}$.

Associer fonctions et évolutions, en justifiant.

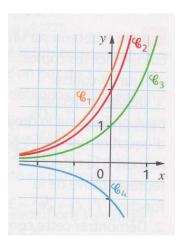
Exercice 17. Soit $f(x) = e^{kx}$ avec $k \neq 0$ et $x \in \mathbb{R}$. L'objectif de cet exercice est de démontrer le résultat suivant :

- si k > 0 alors f est strictement croissante sur \mathbb{R} ;
- si k > 0 alors f est strictement croissante sur \mathbb{R} .
- 1. Montrer que $f'(x) = ke^{kx}$ pour tout $x \in \mathbb{R}$.
- 2. Démontrer la propriété.
- 3. Quel impact a la taille de k sur les variations de f? Confronter votre réponse avec plusieurs exemples.

Exercice 18 (Sans calculatrice). On a représenté ci-dessous, les fonctions f,g,h et k définies sur $\mathbb R$ par :

$$f(x) = e^x$$
; $g(x) = 2e^x$; $h(x) = 2.5e^x$ $h(x) = -e^x$.

Associer à chaque courbe la fonction qu'elle représente.



0.4 Exercices supplémentaires

Voici une liste, non exhaustive, d'exercices supplémentaires (de votre livre) vous permettant de vous entrainer.

- \bullet Calculs algébriques : exercices 12,15,16,19,22 pages 186-187.
- Equations et inéquations : exercices 24, 26, 28, 31 page 187.

0.4. EXERCICES SUPPLÉMENTAIRES

5

 $\bullet\,$ Suites : exercice 32 page 187

Représentations graphiques : exercices 47,48 page 188.
Etude de fonction : exercices 38,40 page 188 et exercices 72,74 page 190.