Partie 2 : Etablir une égalité entre deux ensembles

A l'aide d'une table de vérité

Pour démontrer certains égalités entre des ensembles, il est parfois utile de passer par des tables de vérités. Voyons cela sur un exemple.

Exemple 0.2. Soit A et B des ensembles non vides, nous voulons établir que $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

A	B	\bar{A}	\bar{B}	$A \cap B$	$\bar{A} \cup \bar{B}$	$\overline{A \cap B}$
0	0	1	1	0	1	1
1	0	0	1	0	1	1
0	1	1	0	0	1	1
1	1	0	0	1	0	0

Voici comment se lit la premier ligne : si un élément est pas dans A (valeur 0) et n n'est pas dans B (la valeur 0) alors

- il se trouve dans \bar{A} et dans \bar{B} (d'où la valeur 1)
- il ne se trouve pas dans $A \cap B$ (d'où la valeur 0) donc il se trouve dans $\overline{A \cap B}$ (d'où la valeur 1)
- il se trouve dans la réunion de \bar{A} et \bar{B} (d'où la valeur 1).

En reproduisant ce raisonnement sur les lignes suivantes, nous complétons le tableau. A la fin, nous observons que les deux dernières colonnes prennent les mêmes valeurs. Par disjonction de cas, nous avons donc établi que

$$\overline{A} \cup \overline{B} = \overline{A \cap B}$$
.

A vous de jouer sur une égalité similaire.

Exercice~3. Démontrer l'assertion suivante (issue des lois de De Morgan) : soient A,B deux ensembles non vides alors

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}.$$

Par doubles inclusions

Nous avons déjà rencontré ce type de raisonnement (chapitre arithmétique avec le PGCD) dans l'année : étant donnés deux ensembles A et B nous voulions établir que A=B. Pour cela, nous procédions par double inclusion :

si
$$x \in A$$
 alors $x \in B$

ceci justifiant que $A \subset B$. Puis nous faisions le contraire,

si
$$x \in B$$
 alors $x \in A$

ainsi $B \subset A$ et donc A = B. Voyons comment ce genre d'idées ce met en application sur un exemple.

Exemple 0.3. Soit A et B deux ensembles non vides. Montrons que $A \subset B \iff A \cap \overline{B} = \emptyset$.

- 1. Traitons le sens direct. Supposons que $A \subset B$. Nous devons montrer que $A \cap \overline{B} = \emptyset$. A cet effet, si $x \in A \cap \overline{B}$ alors $x \in A$ et $x \in \overline{B}$. Or, $A \subset B$ donc un élément $x \in A$ se trouve aussi dans B. Nous venons d'établir que si $x \in A \cap \overline{B}$ alors $x \in B$ et $x \in \overline{B}$. Ceci n'est pas possible donc $A \cap \overline{B} = \emptyset$.
- 2. Traitons la réciproque. Nous supposons que $A \cap \overline{B} = \emptyset$ et nous devons montrer que $A \subset B$. Soit $x \in A$ montrons alors que $x \in B$. Si $x \in A$ alors $x \in A \cap B$ ou $x \in A \cap \overline{B}$ (puisque les ensembles $A \cap B$ et $A \cap \overline{B}$ forment un partition de A). Or, par hypothèse, $A \cap \overline{B} = \emptyset$ donc, forcément, $x \in A \cap B$. En particulier, $x \in B$. Nous avons donc établi que $A \subset B$.

A vous de jouer.

Exercice 4. Soit E un ensemble non vide et $A,B\subset E$ non vides. Prouver léquivalence suivante : $A\subset B\iff A\cup B=B$

Exercice 5 (Réunion et intersection égales). Soit E un ensemble et A, B deux sous-ensembles de E. Démontrer que $A \cap B = A \cup B$ \iff A = B.

Voyons ce qui se produit si des fonctions sont impliquées.

Image directe

Définition 0.1. Soit $f: E \to F$ une application f entre deux ensembles. Si $A \subset E$, nous définissons l'image directe de A par f comme étant l'ensemble

$$f(A) = \{ y \in F ; il \ existe \ x \in A \ v\'{e}rifiant \ f(x) = y \}$$

Exemple 0.4. En établissant des tableaux de variations nous pouvons montrer que

- 1. Si $f(x) = e^x$ et $A = [0, +\infty[$ alors $f(A) = [1, +\infty[$.
- 2. Si $f(x) = x^2$ et A = [-2, 2] alors f(A) = [0, 4].

Exercice 6. Déterminer l'image de [0,1] par l'application f(x) = x(1-x).

Voyons maintenant des exercices plus abstraits.

Exemple 0.5. Soient E et F deux ensembles et soit $f: E \to F$. Soient également A et B deux parties (non vides) de E. Démontrons que $A \subset B \implies f(A) \subset f(B)$.

Nous supposons donc que $A \subset B$ et nous voulons établir que $f(A) \subset f(B)$.

A cet effet, considérons $y \in f(A)$. Par définition, il existe $x \in A$ tel que f(x) = y. Or, par hypothèse, $A \subset B$, donc $x \in B$. Nous avons donc un élément $x \in B$ dont l'image par f vaut y. Autrement dit, $y \in f(B)$.

A vous de jouer.

Exercice 7 (Ensembles et images directes). Soient E et F deux ensembles et soit $f: E \to F$. Soient également A et B deux parties de E.

- 1. Démontrer que $f(A \cap B) \subset f(A) \cap f(B)$. L'inclusion réciproque est-elle vraie?
- 2. Démontrer que $f(A \cup B) = f(A) \cup f(B)$.
- 3. La réciproque de $A \subset B \implies f(A) \subset f(B)$ est-elle vraie?

Image réciproque

Dans ce qui précède, nous avons regardé ce qui se produisait lorsque nous regardions des sous-ensembles de E au travers de la fonction f (i.e. quelles images étaient obtenues à partir d'une liste d'éléments $x \in A \subset E$). Nous pourrions adopter le point de vue opposé : étant donné un ensemble d'images (i.e. des éléments de F), quel devait être l'ensemble $A \subset E$ permettant de les obtenir? C'est la notion d'image réciproque doit voici la définition.

Définition 0.2. Soit $f: E \to F$ une application. Si $B \subset F$ alors l'image réciproque de B par f est l'ensembe

$$f^{-1}(B) = \{x \in E ; f(x) \in B\}.$$

Exemple 0.6. 1. Si $f(x) = e^x$ alors $f^{-1}(0; +\infty[) = \mathbb{R}$ car $e^x > 0$ pour tout $x \in \mathbb{R}$.

2. si
$$E = [0, 2\pi]$$
 et $f(x) = \sin(x)$ alors $\sin^{-1}([0, 1]) = [0, \pi]$ car, pour $x \in [0, \pi] \subset E$,

$$0 \le \sin(x) \le 1$$
.

Remarque. Attention f^{-1} est une notation permettant de définir un ensemble, cela ne pré-suppose pas que la fonction f soit inversible.

Exercice 8. 1. Si
$$f(x) = x^2$$
. Que vaut $f^{-1}([0, 16])$?
2. Si $f(x) = xe^x$. Que vaut $f^{-1}([-e^{-1}, +\infty[)]$?

Vous êtes à présent en mesure d'utiliser les idées développées jusqu'ici pour traiter l'exercice suivant. En cas de doute, revenez à la définition cela sera toujours une bonne idée.

Exercice 9 (Ensembles et images réciproques). Soient E et F deux ensembles et soit $f: E \to F$. Soient également A et B deux parties de F.

- 1. Démontrer que $A \subset B \implies f^{-1}(A) \subset f^{-1}(B)$. La réciproque est-elle vraie?
- 2. Démontrer que $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 3. Démontrer que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Avec les deux notions maintenant.

Exercice 10. Soient E et F deux ensembles et $f:E\to F$. Démontrer que

- 1. $\forall A \subset E, A \subset f^{-1}(f(A))$;
- 2. $\forall B \subset F, f(f^{-1}(B)) \subset B$.

Question de réflexion : a-t-on égalité en général?

Exercice supplémentaire :

Exercice 11 (Différence symétrique). Soit E un ensemble, et A,B deux sous-ensembles de E. On appelle différence symétrique de A et B, notée $A\Delta B$, le sous-ensemble de E:

$$A\Delta B=\{x\in A\cup B;\ x\notin A\cap B\}.$$

- 1. Interpréter les éléments de $A\Delta B$.
- 2. Montrer que $A\Delta B = (A \cap C_E B) \cup (B \cap C_E A)$ ($C_E A$ désigne le complémentaire de A dans E).
- 3. Calculer $A\Delta A$, $A\Delta \varnothing$, $A\Delta E$, $A\Delta C_E A$.
- 4. Démontrer que pour tous A, B, C sous-ensembles de E, on a :

$$(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C).$$