Limites de suites et quantificateurs

Changeons de domaine à présent et allons faire un tour du côté de la convergence de suite numérique. Avant d'aborder cela, il est nécessaire d'établir certaines propriétés de la valeur absolue.

Définition 0.3. La fonction $x \mapsto |x|$ valeur absolue est définie sur \mathbb{R} par

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{sinon.} \end{cases}$$

Remarque. Comme le lecteur le sait déjà, la valeur absolue permet de déterminer la distance entre deux nombres a et b: simplement en calculant |a-b|. C'est pour cette raison que cette fonction intervient dans la définition de la limite d'une suite qui converge vers un nombre l.

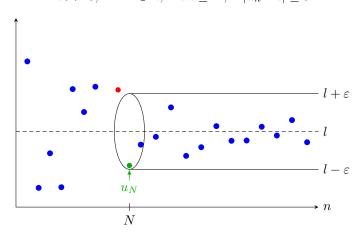
Passons à la définition formelle de la limite d'une suite. A cet effet, soit $(u_n)_{n\geq 0}$ est une suite de nombres réels. En classe de terminale, la notation suivante a été utilisée

$$\lim_{n \to +\infty} u_n = l$$

avec $l \in \mathbb{R}$ pour indiquer que u_n est aussi proche de l que souhaité à condition de choisir n suffisamment grand. Nous allons voir ce que cela signifie réellement et comment définir cette idée de manière rigoureuse. Pour cela **nous allons devoir quantifier cette notion**. L'idée est de traduire, de manière formelle, qu'étant donnée une précision, à partir d'un certain rang, la distance entre u_n et sa limite l est inférieure à cette précision. Formellement, cela donne la définition suivante.

Définition 0.4. Soit $(u_n)_{n\geq 0}$ une suite de nombres réels. Nous dirons que $\lim_{n\to +\infty} u_n = l$ avec $l\in \mathbb{R}$ si l'assertion suivante est vérifiée :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_n - l| \le \varepsilon.$$



Remarque. Commentons cette définition avant de l'illustrer à l'aide d'un exemple.

1. ε correspond à la **précision** que nous souhaitons. Dans l'idée, ε est choisi petit ($\varepsilon = 10^{-3}$ par exemple) mais la définition impose de choisir ε quelconque.

- 2. $\exists N \in \mathbb{N}$ et $\forall n \geq N$ signifie qu'il existe un rang N à partir duquel la suite u_n vérifie une propriété.
- 3. $|u_n l| \le \varepsilon$ indique que la **distance entre** u_n et l est inférieure (ou égale) à ε (la précision
- 4. En observant l'ordre des quantificateurs, il apparaît que N dépend du choix de ε , ce qui semble bien naturel.
- 5. Une dernière manière de dire tout ceci est la suivante : pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$, pour tout $n \geq N$, nous avons

$$|u_n - l| \le \varepsilon \quad \Longleftrightarrow \quad -\varepsilon \le u_n - l \le \varepsilon \quad \Longleftrightarrow \quad l - \varepsilon \le u_n \le l + \varepsilon \quad \Longleftrightarrow \quad u_n \in [l - \varepsilon; l + \varepsilon].$$

Autrement dit, à partir d'un certain rang u_n se trouve coincé dans « une boite » (l'intervalle $[l-\varepsilon;l+\varepsilon]$) de taille 2ε et ceci pour n'importe quelle valeur de ε . Cette propriété est forcément contraignante et ne peut pas être vérifiée par n'importe quelle suite.

Voyons sur un exemple simple ce que cela donne.

Exemple 0.12. Soit $(u_n)_{n\geq 1}$ définie par $u_n=\frac{1}{n}$. D'après vos cours du lycée, vous savez que

$$\lim_{n \to +\infty} u_n = 0.$$

Démontrons-le rigoureusement. Pour fixer les idées, débutons par le cas $\varepsilon=10^{-3}$. Puisque l=0, nous devons montrer qu'il existe un certain rang N à partir duquel,

$$|u_n - 0| \le \varepsilon \iff \frac{1}{n} \le 10^{-3}.$$

En réfléchissant un peu, nous constatons qu'il faut choisir $N=10^3$. En effet, si $n\geq N$, nous avons

$$n \ge 10^3 \quad \Longleftrightarrow \quad \frac{1}{n} \le 10^{-3} \quad \Longleftrightarrow \quad u_n \le \varepsilon.$$

Si nous avions voulu une meilleure précision, $\varepsilon = 10^{-9}$ par exemple, le raisonnement montre qu'il faut choisir N plus grand encore (i.e. $N = 10^9$).

Finalement, tout ce que nous avons fait reste valable pour n'importe quel choix d'epsilon. Formellement, si une précision $\varepsilon > 0$ est donnée, il suffit de choisir $N = \lfloor \frac{1}{\varepsilon} \rfloor + 1$. En effet, si $n \geq N$

$$\frac{1}{n} \le \frac{1}{\lfloor \frac{1}{\varepsilon} \rfloor + 1} \le \frac{1}{\frac{1}{\varepsilon}} = \varepsilon.$$

Voici un premier résultat essentiel en analyse.

Proposition 5 (Inégalités triangulaires). Soient $a, b \in \mathbb{R}$ alors

$$|a+b| \le |a| + |b|$$
 et $||a| - |b|| \le |a-b|$.

 $[|]a+b| \leq |a| + |b| \quad et \quad \big| |a| - |b| \big| \leq |a-b|.$ 3. Pour tout $x \in \mathbb{R}$, $\lfloor x \rfloor$ désigne la partie entière de x. Par exemple, $\lfloor 2,7 \rfloor = 2$ et $\lfloor -4 \rfloor = -4$. De plus, pour tout $x \in \mathbb{R}, |x| \le x < |x| + 1.$

Démonstration. Observons tout d'abord que $|a+b|^2 = (a+b)^2 = a^2 + b^2 + 2ab$. En outre ⁴, pour tout $x \in \mathbb{R}$,

$$|x|^2 = x^2 \quad \text{et} \quad x \le |x|.$$

En particulier le dernier point, entraine que

$$ab \le |ab| = |a||b|$$
.

Nous obtenons donc $|a+b|^2 \le |a|^2 + |b|^2 + 2|a||b| = (|a|+|b|)^2$. Il suffit ensuite d'appliquer la fonction croissante $x \mapsto \sqrt{x}$ pour conclure.

Traitons la deuxième inégalité en observant que

$$|a| = |a+b-b| \le |a+b| + |b|$$
 et $|b| = |a+b-a| \le |a+b| + |a|$

où nous avons utilisé l'inégalité triangulaire préalablement établie. Nous avons donc montré que

$$|a| - |b| \le |a+b|$$
 et $|b| - |a| \le |a+b|$.

Autrement dit : $|a| - |b| \le |a + b|$. Il ne reste plus qu'à remplacer b par -b pour conclure.

Voyons quelques applications de ce qui précède.

Proposition 6. Soit $(u_n)_{n\geq 0}$ une suite qui converge vers un nombre l alors, il existe un rang n_0 à partir duquel la suite est bornée : i.e. pour tout $n\geq n_0$

$$|u_n| \le |l| + 1$$

Démonstration. L'idée est de spécialiser le choix de ϵ dans la définition de la convergence. Si $\epsilon = 1$ alors il existe un rang n_0 , tel que pour tout $n \ge n_0$,

$$|u_n - l| \leq 1$$
.

Pour conclure, il convient d'utiliser l'inégalité triangulaire : soit $n \ge n_0$, alors

$$|u_n| = |u_n - l + l| \le |u_n - l| + |l| \le 1 + |l|.$$

A vous d'essayer.

Exercice 20. Démontrer les assertions suivantes.

1. Soit (v_n) une suite telle que $\lim_{n\to+\infty}v_n=l'>0$ en déduire qu'à partir d'un certain rang $v_n\geq \frac{l'}{2}>0$. Indication : spécifier la valeur de ϵ dans la définition.

2

3. Si $(u_n)_{n\geq 0}$ converge vers l alors $(u_n)_{n\geq 0}$ est bornée : il existe M>0 telle que, pour tout $n\in\mathbb{N}$,

$$|u_n| \le M. \tag{0.1}$$

Indication : spécifier la valeur de ϵ afin de contrôler les valeurs de u_n lorsque n est grand.

^{4.} Nous invitons le lecteur à vérifier ces assertions.

Montrons à présent que le produit de deux suites convergentes converge vers le produit des limites.

Proposition 7 (produit des limites). $Si(u_n)_{n\geq 0}$ converge vers l et $si(v_n)_{n\geq 0}$ converge vers l' alors $\lim_{n\to +\infty} u_n \times v_n = l \times l'.$

Démonstration. Pour tout $\varepsilon > 0$, nous devons montrer qu'il existe N, tel que pour tout $n \geq N$,

$$|u_n \times v_n - l \times l'| \le \varepsilon.$$

A priori, étant donné $\varepsilon > 0$, les seules informations que nous avons sont l'existence de $N_1 \in \mathbb{N}$ tel que pour tout $n \geq N_1$,

$$|u_n - l| \le \varepsilon \tag{0.2}$$

et, de manière similaire, qu'il existe $N_2 \in \mathbb{N}$ tel que

$$|u_n - l'| \le \varepsilon. \tag{0.3}$$

Observons de plus que, pour tout $n \in \mathbb{N}$, nous avons

$$u_n \times v_n - l \times l' = (u_n - l)v_n + l(v_n - l').$$

Ainsi, en utilisant l'inégalité triangulaire 5 (avec $a = (u_n - l)v_n$ et $b = l(v_n - l')$), nous obtenons

$$|u_n \times v_n - l \times l'| \le |u_n - l| \times |v_n| + |l| \times |v_n - l'|.$$

A présent, l'objectif est de montrer que toutes les quantités intervenant dans le membre de droite **sont petites**. Pour cela nous allons utiliser les rangs N_1 et N_2 . Si $N_3 = \max(N_1, N_2)$, pour tout $n \ge N_3$, forcément (0.2) et (0.3) sont vérifiées :

$$|u_n \times v_n - l \times l'| \le \varepsilon \times |v_n| + |l| \times \varepsilon.$$

En outre, d'après l'exercice précédent (l'inégalité (0.1))., puisque $(v_n)_{n\geq 0}$ converge, nous savons qu'il existe M>0 et $n_0\in\mathbb{N}$ tels que $|v_n|\leq M$ pour tout $n\geq n_0$. D'où, pour tout $n\geq \max(N_3,n_0)$,

$$|u_n \times v_n - l \times l'| \le \varepsilon \times M + |l| \times \varepsilon = \varepsilon (M + |l|).$$

Puisque ε est arbitraire, nous pouvons le remplacer par $\varepsilon' = \frac{\varepsilon}{M+|l|} > 0$ et cela termine la preuve.

A vous de faire.

Exercice 21. Si $(u_n)_{n\geq 0}$ converge vers l et si $(v_n)_{n\geq 0}$ converge vers l' alors

$$\lim_{n \to +\infty} u_n + v_n = l + l'.$$

Voici maintenant des exercices mélangeant les idées exposées plus tôt.

Exercice 22. Démontrer les assertions suivantes.

- 1. Si $(u_n)_{n>0}$ converge vers l alors l est unique. Indication: faire un raisonnement par l'absurde.
- 2. Si $(u_n)_{n\geq 0}$ converge vers 0 et si $(v_n)_{n\geq 0}$ est une suite telle qu'il existe $N\in\mathbb{N}$ et M>0 tels que pour tout $n\geq N$,

$$|v_n| \le M|u_n|.$$

Montrer que $\lim_{n\to+\infty} v_n = 0$.