
Partie 3 : Notions de sous-espaces vectoriels

Durant votre scolarité au lycée vous rencontrez des ensembles E vérifiant une propriété
structurelle intéressante. En substance (je simplifie un peu 2), nous avons :

1. si x → E et y → E alors x + y → E

2. si λ → R et x → E alors λx → E.

Il s’agit d’une structure d’espace vectoriel réel. Voyons quelques exemples familiers

Exemple 0.7. 1. Si E = R3 alors −→u + −→v → R3 si −→u , −→v → R3 et λ−→u → R3 si λ → R.

2. Si E = {f : R → R dérivables sur un intervalle I ⊂ R} alors f + g → E si f, g → E (en effet
(f + g)→ = f → + g→ la somme de fonctions dérivables est encore dérivable) et si λ → R alors
λf → E puisque (λf)→ = λf → (la dérivée d’une fonction multipliée par un nombre est dérivable
et vaut la fonction dérivée multipliée par ce nombre).

Exercice 12. 1. Chercher au moins trois autre exemples d’espace vectoriel que vous avez rencon-
tré dans votre scolarité.

2. Est-ce que Z est un espace vectoriel ?

Durant votre scolarité, vous avez rencontré des sous-ensembles particuliers dans ces espaces.
Ces ensembles vérifiaient une propriété de stabilité similaire à celle décrite plus haut, il s’agit de
sous-espaces vectoriels. Nous allons voir comment justifier qu’un sous-ensemble est un sous-espace
vectoriel d’un espace vectoriel connu.

Exemple 0.8. Si E = R2. Considérons la droite D = {(x, y) → R2 : 2x − y = 0}. Montrons que
que D est un sous-espace vectoriel de R2.

• D est non-vide : en effet, le point (0, 0) → D.
• Considérons maintenant −→u = (x1, y1) → D et −→v = (x2, y2) → D et montrons que le vecteur

−→u + −→v = (x1 + x2, y1 + y2) se trouve encore dans D. Pour cela, il su∆t de placer les
coordonnées dans −→u + −→v dans l’équation définissant D et obtenir 0 :

2(x1 + x2) − (y1 + y2) = 2x1 − y1 + 2x2 − y2 = 0 + 0 = 0 puisque −→u , −→v → D

donc −→u + −→v → D.
• Soit λ → R, montrons que λ−→u = (λx1, λy1) → D.

2(λx1) − (λy1) = λ(2x1 − y1) = λ × 0 = 0 puisque −→u → D.

donc λ−→u → D. Ceci termine la démonstration : D est un sous-espace vectoriel de R2.

2. Pour être précis, il faudrait mentionner la notion de loi de composition interne pour l’opération d’addition
(celle ci doit vérifier une liste précise de propriétés et une loi de composition externe liée à la multiplication par un
nombre (réel disons). Ce n’est pas l’objet des exercices ci-dessous, nous ne traiterons pas ces points.
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A vous de jouer

Exercice 13. Soit E = R3.

1. Montrer que P = {(x, y, z) → R3 ; 2x − 3y + 5z = 0} est un sous espace vectoriel de E.

2. P → = {(x, y, z) → R3 , ; −x + 2y − 3z + 1 = 0} est-il est sous-espace vectoriel de E ?

Exercice 14. Parmi les ensembles suivants, lesquels sont, ou ne sont pas, des sous-espaces vectoriels
de l’espace vectoriel Rn dans lequel ils sont inclus ?

1. E1 = {(x, y, z) → R3 : x + y + 3z = 0} ;

2. E2 = {(x, y, z) → R3 : x + y + 3z = 2} ;

3. E3 = {(x, y, z, t) → R4 : x = y = 2z = 4t} ;

4. E4 = {(x, y) → R2 : xy = 0} ;

5. E5 = {(x, y) → R2 : y = x2} ;

6. E6 = {(x, y, z) → R3 : 2x + 3y − 5z = 0} ∩ {(x, y, z) → R3; x − y + z = 0} ;

7. E7 = {(x, y, z) → R3 : 2x + 3y − 5z = 0} ∪ {(x, y, z) → R3; x − y + z = 0}.

8. E8 = {(x, y, z) → R3 : (2x + 3y − 5z)2 + (x − y + z)2 = 0}.

Remarque. Si F et G sont deux sous-espaces vectoriels de E, que dire de F ∩ G ?

Quittons maintenant l’espace Rn pour constater que la richesse des espaces vectoriels et que
ces ensembles ne contiennent pas forcément des vecteurs au sens strict de l’appellation utilisée au
lycée. C’est un premier pas vers l’abstraction nécessaire pour faire de l’algèbre linéaire : la nature
des objets ne joue aucun rôle finalement, seulement la relation qui les lie.

Exemple 0.9. Considérons E l’ensemble des suites numériques (un) et considérons
F = {(un) → E ; −4un+1 + 5un = 0 ⇐n → N}. Nous allons montrer que F est un sous-
espace vectoriel de E.

• F est non-vide : en effet, la suite constante un = 0 pour tout n → N satisfait la relation
−4un+1 + 5un = 0 ⇐n → N.

• Considérons maintenant (wn) → F et (vn) → F . Autrement dit, ces deux suites vérifient la
relation −4un+1 + 5un = 0. Nous devons montrer que dans ce cas, la suite (wn + vn) vérifie
encore cette relation : soit n → N, alors

−4(wn+1+vn+1)+5(wn+vn) = −4wn+1+5wn−4vn+1+5vn = 0+0 = 0 puisque (wn), (vn) → F

donc (wn + vn) → F .
• Soit λ → R, montrons que (λvn) → F . Soit n → N, alors

−4(λvn+1) + 5(λvn) = λ(−4vn+1 + 5vn) = λ × 0 = 0 puisque (vn) → F.

donc λ(vn) → F . Ceci termine la démonstration : F est un sous-espace vectoriel de E.

A votre tour maintenant !
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Exercice 15. Considérons E l’ensemble des fonctions dérivables sur R.

1. Montrer que F = {y → E ; 3y→ + 5y = 0} est un sous-espace vectoriel de E.

2. Est-ce que G = {y → E ; 3y→ + 5y = cos(x)} est un espace vectoriel ?

Remarque. Que dire de l’ensemble de solutions de l’équation diophantienne 2x + 5y = 0 ?

Exercice 16 (Espace de matrices). Déterminer si les parties suivantes sont des sous-espaces vectoriels
de M2(R) :

1. E1 =

{(

a b
c d

)

→ M2(R) : ad − bc = 1

}

;

2. E2 =

{(

x1 x2

x3 x4

)

→ M2(R) : x1 + x2 = x4

}

;

3. E3 = {A → M2(R) : tA = A} où tA désigne la matrice transposée de A :

si A =

(

a b
c d

)

alors tA =

(

a c
b d

)

.

Exercice 17 (Polynôme et équations différentielles). Déterminer si les ensembles suivants sont ou
ne sont pas des sous-espaces vectoriels :

1. E0 = {P → R[X ] ; deg(P ) = 2} ;

2. E1 = {P → R[X ]; P (0) = P (2)} ;

3. E2 = {P → R[X ]; P →(0) = 2} ;

4. Pour A → R[X ] non-nul fixé, E3 = {P → R[X ]; A|P } ; Nous rappelons que la division eucli-
dienne de P par A signifie qu’il existe Q et R deux polynômes tels que P = AQ + R avec
0 ⇒ deg(R) < deg(A). Indication : si A|P que dire de R ?.

5. D l’ensemble des fonctions de R dans R qui sont dérivables ;

6. E4, l’ensemble des solutions de l’équation différentielle y→ + a(x)y = 0, où a → D.

7. E5, l’ensemble des solutions de l’équation différentielle y→ + a(x)y = x, où a → D.

Exercice supplémentaire :

Exercice 18 (Intégrales). Soit E l’ensemble des fonctions continues sur l’intervalle [a, b].

1. Montrer que F1 = {f → E ;
∫ b

a
|f(x)|dx < +∞} est un sous-espace vectoriel de E.

2. Montrer que F2 = {f → E ;
( ∫ b

a
|f(x)|2dx

) 1
2 < +∞} est un sous-espace vectoriel de E.

3. Si 1 ⇒ p < +∞, montrer que Fp = {f → E ;
( ∫ b

a
|f(x)|pdx

) 1
p < +∞} est un sous-espace

vectoriel de E.
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